WO2017212534A1 - Vertical shaft pump - Google Patents

Vertical shaft pump Download PDF

Info

Publication number
WO2017212534A1
WO2017212534A1 PCT/JP2016/066822 JP2016066822W WO2017212534A1 WO 2017212534 A1 WO2017212534 A1 WO 2017212534A1 JP 2016066822 W JP2016066822 W JP 2016066822W WO 2017212534 A1 WO2017212534 A1 WO 2017212534A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
bearing
sliding
bearing device
vertical shaft
Prior art date
Application number
PCT/JP2016/066822
Other languages
French (fr)
Japanese (ja)
Inventor
裕輔 渡邊
正治 石井
真 小宮
内田 義弘
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2018522193A priority Critical patent/JP6745876B2/en
Priority to PCT/JP2016/066822 priority patent/WO2017212534A1/en
Publication of WO2017212534A1 publication Critical patent/WO2017212534A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings

Definitions

  • the present invention relates to a vertical shaft pump. More specifically, operation management is performed under dry conditions such as a vertical shaft pump that performs management operation by rotating the rotary shaft of the pump while water is not filled into the pump casing of the vertical shaft pump or a preceding standby operation pump.
  • the present invention relates to a vertical shaft pump.
  • drainage pumps installed in the drainage pump station should have rainwater before reaching the drainage pump station in order to prevent inundation damage due to delays in starting. Pre-standby operation to be started is performed.
  • FIG. 1 is a partial schematic diagram of a vertical shaft pump that performs a preliminary standby operation. Even if the water level of the water tank 100 is equal to or lower than the minimum operating water level LWL, the water tank 100 of the drainage pump station is provided with an impeller 22 at the tip of the rotary shaft 10 arranged vertically and the air is sucked into the impeller 22 together with water.
  • a vertical shaft pump 3 capable of continuing the operation (preceding standby operation) is disposed.
  • This vertical shaft pump 3 is provided with a through hole 5 in the side surface of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening 6 a in contact with outside air is attached to the through hole 5. ing.
  • this vertical shaft pump 3 the supply amount of the air supplied into the vertical shaft pump 3 through the through hole 5 is changed according to the water level, and the drainage amount of the vertical pump 3 is controlled below the minimum operating water level LWL.
  • FIG. 2 is a diagram for explaining the operating state of the preceding standby operation.
  • a vertical shaft pump is started in advance based on rainfall information or the like regardless of the suction water level (A: air operation).
  • FIG. 3 is a cross-sectional view showing an entire conventional vertical shaft pump 3 that performs the preliminary standby operation shown in FIG.
  • the through hole 5 and the air pipe 6 shown in FIG. 2 are not shown.
  • the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and a lower end of the casing 29 and an impeller 22. And a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water.
  • a single rotating shaft 10 formed by connecting two upper and lower shafts to each other by a shaft coupling 26 is provided at substantially the center in the radial direction of the casing 29, the discharge bowl 28, and the suction bell 27 of the vertical shaft pump 3.
  • the rotary shaft 10 is supported by an upper slide bearing device 32 fixed to the casing 29 via a support member, and a lower slide bearing device 33 fixed to the discharge bowl 28 via a support member.
  • An impeller 22 for sucking water into the vertical shaft pump 3 is connected to one end side (suction bell 27 side) of the rotary shaft 10.
  • the other end of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a driving machine such as an engine or a motor that rotates the impeller 22.
  • a shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
  • the drive will be installed on land so that maintenance and inspection can be performed easily.
  • the rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated.
  • the water is sucked from the suction bell 27 by the rotation of the impeller 22, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
  • FIG. 4 is an enlarged view of the sliding bearing device used in the sliding bearing devices 32 and 33 shown in FIG.
  • FIG. 5 is a perspective view of a plain bearing installed in the plain bearing device shown in FIG.
  • the rotating shaft 10 has a sleeve 11 made of stainless steel, ceramics, sintered metal, or surface-modified metal on the outer periphery thereof.
  • a slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1.
  • the slide bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 3) or the like via a collar portion 12a by a bearing case 12 made of metal or resin.
  • the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12.
  • FIG. 6 is a schematic diagram showing a connection state with a drive unit such as a motor in the upper part of the vertical shaft pump 3 shown in FIG.
  • the rotary shaft 10 that is shaft-sealed by the shaft seal 34 and extends upward from the discharge elbow 30 in the upper portion of the vertical shaft pump 3 is connected to the rotary shaft 56 of the prime mover 50 by the coupling 51 at the end.
  • the prime mover 50 is fixed on a prime mover stand 52 that supports the prime mover 50.
  • the prime mover base 52 is fixed to the base 53.
  • the rotary shaft 10 is provided with a rolling bearing 55 that receives a thrust force.
  • the rolling bearing 55 is accommodated in the bearing housing 54.
  • the bearing housing 54 is fixed to the gantry 53.
  • the bearing housing 54 is filled with lubricating oil necessary for lubricating the rolling bearing 55.
  • FIG. 7 is a schematic cross-sectional view showing the state of the rotary shaft 10, the sleeve 11, and the slide bearing 1 in a pump in which the slide bearing devices 32, 33 are arranged in a portion where the shaft swings heavily.
  • the frictional force at the contact portion portion indicated by hatching
  • the frictional heat generated at the same time is increased. Therefore, there is a concern about damage to the slide bearing 1 and the sleeve 11.
  • the rotary shaft and the slide bearing have been conventionally surrounded by a protective tube so that the pump can be operated with the sliding surface of the slide bearing existing in water even during dry operation.
  • a protective tube is used, an incidental facility for supplying water to the protective tube is required, and maintenance of the slide bearing device is difficult.
  • the stand-by pump is also becoming longer, it is necessary to increase the size of the water pump that supplies water to the protective pipe, and to increase the thickness of the pipe wall to strengthen the pressure resistance of the protective pipe. becomes expensive.
  • the inventors have a sliding bearing device that has a mechanism that, when the rotating shaft slides in dry operation, generates a couple of frictional forces that are opposite to each other to cancel the frictional force and suppress the swinging of the rotating shaft. (See Patent Document 1).
  • the canceling force depends on the magnitude of the deflection width (radial deflection width) perpendicular to the axial direction of the rotating shaft. That is, when this slide bearing device is arranged in a place (antinode) where the swing of the rotating shaft is large, the effect of suppressing the swing is great, but this slide bearing device is installed in a place (node) where the swing of the rotating shaft is small. If this is arranged, this effect is difficult to obtain.
  • the present invention has been made in view of the above problems, and is more likely to occur when the rotating shaft becomes longer when operating in a state where the water surface does not reach the pump casing of the vertical shaft pump.
  • An object of the present invention is to provide a vertical shaft pump that appropriately reduces the swaying of a rotating shaft as a whole as a whole.
  • a vertical shaft pump including a rotary shaft, a pump casing that houses at least a part of the rotary shaft, and an impeller attached to the rotary shaft.
  • the vertical shaft pump is disposed in the pump casing and supports the rotary shaft, and the second plain bearing device is disposed outside the pump casing and supports the rotary shaft.
  • the first slide bearing device is used in a state where the sliding surface is in an air atmosphere during air operation, and the second slide bearing device is always used in a state where the sliding surface is in a liquid atmosphere.
  • the second plain bearing device is configured to support the rotating shaft above the pump casing.
  • the second sliding bearing device includes a radial sliding bearing that receives a radial force of the rotating shaft and a thrust sliding bearing that receives a thrust force of the rotating shaft.
  • the second plain bearing device includes a perfect circle bearing or a multi-arc bearing.
  • the second plain bearing device includes a bearing housing that holds the liquid so that the sliding surface contacts the liquid.
  • the pump casing includes an air pipe upstream of the impeller.
  • the liquid film effect in the bearing generated on the sliding surface of the sliding bearing device that is always used in an underwater atmosphere against the frictional force generated on the sliding surface of the sliding bearing device used in an atmospheric atmosphere.
  • FIG. 4 is an enlarged view of a sliding bearing device used in the sliding bearing device shown in FIG. 3. It is a perspective view of the slide bearing installed in the slide bearing apparatus shown in FIG. It is the schematic diagram which showed the connection condition with drive machines, such as a motor, in the upper part of the vertical shaft pump shown in FIG.
  • FIGS. 8 to 13 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • “upper part” and “lower part” are described as meaning the downstream side (“discharge” side in the figure) and the upstream side (“suction” side in the figure) of the liquid transferred by the vertical shaft pump, respectively. To do.
  • FIG. 8 is a longitudinal sectional view of the vertical shaft pump 3 according to the present embodiment.
  • the vertical shaft pump 3 is a pump that may operate a rotating shaft in a state where there is no pumping target water in the pump casing. Some vertical shaft pumps perform a management operation in such a state, and others perform an aerial operation in a preceding standby operation.
  • FIG. 8 illustrates a vertical shaft pump that performs a preliminary standby operation.
  • the management operation is an operation to check whether the pump can be operated normally when the pump is stopped due to the rainy season, and the inside of the pump casing is not dry. It is an operation performed in a state.
  • the operation time may be several ten minutes to several tens of minutes.
  • the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and a lower end of the casing 29 and an impeller 22.
  • a discharge bowl 28 that stores therein (corresponding to an example of an impeller) and a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water are provided.
  • the lower end of the suction bell 27 to the discharge end of the discharge elbow 30 is called a pump casing.
  • a through hole is provided in a side surface portion of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening in contact with outside air is attached to the through hole.
  • Rotating shaft 10 is arranged at a substantially central portion in the radial direction of casing 29, discharge bowl 28, and suction bell 27 of vertical shaft pump 3.
  • An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the rotating shaft 10.
  • the rotary shaft 10 is a slide bearing device 32 fixed to the casing 29 via a support member at an appropriate position in the axial direction, and a slide bearing device fixed to the inner cylinder of the discharge bowl 28 via the support member. 33 and / or in the case of the rotating shaft 10 penetrating the impeller 22, the lower end portion of the rotating shaft 10 is supported by a plain bearing device 33 fixed to the casing 29 via a support member.
  • the sliding bearing devices 32 and 33 may be sliding bearing devices that are used in a state where the sliding surface is in an atmospheric atmosphere during atmospheric operation.
  • the sliding bearing device used in a state where the sliding surface is in an atmospheric atmosphere during the atmospheric operation is the sliding bearing device shown in FIGS. 4 and 5.
  • this plain bearing device has a sleeve 11 made of stainless steel, ceramics, sintered metal, surface-modified metal, or the like on the outer periphery of the rotating shaft 10.
  • a slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1.
  • the plain bearing 1 is fixed to a support member 13 connected to a pump casing 29 and the like through a collar portion 12a by a bearing case 12 made of metal or resin. As shown in FIG.
  • the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12.
  • One or more of the slide bearing device 33 and the slide bearing device 32 are arranged at one place, and a plurality of the slide bearing devices are combined.
  • the upper end side of the rotary shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a drive machine such as an engine or a motor that rotates the impeller 22.
  • a shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
  • the drive will be installed on land so that maintenance and inspection can be performed easily.
  • the rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated.
  • water is sucked from the suction bell 27, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
  • FIG. 9 is a schematic diagram showing a connection state between the rotary shaft 10 of the vertical shaft pump 3 and the rotary shaft 56 of the prime mover 50 according to the present embodiment.
  • the rotary shaft 10 that is shaft-sealed by the shaft seal 34 and extends upward from the discharge elbow 30 in the upper portion of the vertical shaft pump 3 is connected to the rotary shaft 56 of the prime mover 50 by the coupling 51 at the end.
  • the prime mover 50 is fixed on a prime mover stand 52 that supports the prime mover 50.
  • a slide bearing device 60 having a radial slide bearing 61 (see FIG. 10) that receives the radial force of the rotary shaft 10 and a thrust slide bearing 62 (see FIG. 10) that receives the thrust force is housed and supported in a bearing housing 63. It is fixed to the gantry 53 via a bearing housing 63.
  • the upper part of the rotary shaft 10 of the vertical shaft is relatively firmly restrained by the structure described above. That is, the sliding bearing device 60 of the rotating shaft 10 and the bearing housing 63 that supports the sliding bearing device 60 are firmly fixed to the pedestal 53 having high rigidity that supports them. Therefore, the shake of the rotating shaft 10 is restrained by them. However, below the portion of the rotating shaft 10 supported by the plain bearing device 60, the distance to the impeller 22 is long. Although the degree of swinging varies depending on the position in the height direction, the plain bearing devices 32 and 33 are provided to support the rotary shaft 10 so as to suppress this swinging.
  • the design of the rotating shaft 10 can be determined based on conditions such as the thickness, length, rotational speed, weight of the impeller, and the number of impellers based on experience or expedient calculation in the design stage. A position with a large run-out is determined, and based on this, a certain number of positions in the axial direction is determined.
  • the arrangement position of the sliding bearing device 32 predicted as a position where the swing of the rotating shaft 10 is large may deviate from a position where the actual swing is large. Further, the arrangement position of the plain bearing device 32 cannot be corrected after the vertical shaft pump 3 is assembled.
  • the sliding bearing devices 32 and 33 provided in a place where the swivel of the rotating shaft 10 has a large bearing load causes local wear and high temperature of the sleeve 11 attached to the rotating shaft 10 of the other party to slide. It becomes easy and the vibration and bearing load by interference with the rotary body (rotary shaft 10 and sleeve 11) and fixed body (slide bearing 1) of the vertical shaft pump 3 increase.
  • the vertical shaft pump 3 includes a radial plain bearing 61 as a bearing device that receives the radial force of the rotary shaft 10 in the prime mover mount 52 portion outside the casing 29.
  • the sliding surface of the radial plain bearing 61 is accommodated in the bearing housing 63 and immersed in a liquid such as lubricating oil or water.
  • FIG. 10 is a longitudinal sectional view of the plain bearing device 60 provided in the prime mover base 52 portion outside the casing 29 according to the present embodiment.
  • the plain bearing device 60 has a bearing housing 63.
  • the bearing housing 63 includes an inner cylinder 63a which is a substantially cylindrical wall having a diameter slightly larger than the diameter of the rotary shaft 10, an outer cylinder 63b having a substantially cylindrical wall having a diameter larger than the inner cylinder 63a, and wall surfaces of the inner cylinder 63a and the outer cylinder 63b.
  • a bottom plate 63d that connects the lower portions of the inner cylinder 63a and a top plate 63c that connects the upper portions of the wall surfaces of the inner cylinder 63a and the outer cylinder 63b.
  • the bearing housing 63 forms a tank that can receive lubricating oil, water, and the like. Although each member can be disassembled, they are joined together in a watertight manner in the assembled state, and even if liquid is injected into the formed bearing housing 63, it does not leak outside.
  • a rolling element 65 having a surface is fixed. As the rotary shaft 10 rotates, the rolling element 65 rotates. At least the sliding surface of the rolling element 65 is made of stainless steel, ceramics, sintered metal, or surface-modified metal.
  • the rolling element 65 has a sliding surface for transmitting a sliding load in the radial direction on a part of the outer peripheral surface thereof, and is opposed to the sliding surface by a hollow cylindrical resin material, ceramic, sintered metal, or A radial slide bearing 61 made of a surface-modified metal is provided.
  • the radial sliding bearing 61 slides on the cylindrical outer peripheral surface of the rolling element 65.
  • the sliding surface of the rolling element 65 and the sliding surface of the radial slide bearing 61 are arranged so as to face each other and slide through a very narrow clearance.
  • the radial slide bearing 61 is supported and fixed to the bearing housing 63 by a bearing support member 66 made of metal or resin and a bottom plate 63d.
  • the bearing support member 66 is fixed in the bearing housing 63.
  • a slight gap is formed between the top plate 63c and the rotating body 65 and the rotating body such as the rotating shaft 10, or is almost sealed by a sliding seal member such as a lip seal.
  • Rotating shaft 10 extends inside inner cylinder 63a.
  • the rolling elements 65 are arranged so as to cover the inner cylinder 63a from the outside.
  • the rolling element 65 has a disk-shaped portion 65a extending in the outer peripheral direction from the lower end thereof.
  • the disk-like portion 65a has sliding surfaces facing the upper thrust sliding bearing 62a and the lower thrust sliding bearing 62b on part of the upper and lower surfaces thereof.
  • the upper thrust slide bearing 62a and the lower thrust slide bearing 62b are made of a hollow disk-shaped (doughnut-shaped) resin material, ceramics, sintered metal, or surface-modified metal, and slide with the rolling element 65.
  • the respective sliding surfaces of the rolling elements 65 and the sliding surfaces of the upper thrust sliding bearing 62a and the lower thrust sliding bearing 62b are arranged to face each other and slide with a very narrow clearance.
  • the upper thrust slide bearing 62a and the lower thrust slide bearing 62b are supported and fixed to the bearing housing 63 by a bearing support member 66 and a bottom plate 63d made of metal or resin.
  • the upper end portion of the inner cylinder 63a of the bearing housing 63 extends to a position higher than the sliding surfaces of the rolling element 65, the radial sliding bearing 61, the upper thrust sliding bearing 62a, and the lower thrust sliding bearing 62b.
  • a gap passage 71 is formed in an annular shape between the inner cylinder 63a, the rolling element 65, and the rotating shaft 10 so that the upper end and side surfaces of the inner cylinder 63a do not interfere with the rolling element 65 and the rotating shaft 10. .
  • the liquid level of water or oil or the like is injected into the space in the bearing housing 63 to the height FL of the upper end of the inner cylinder 63a, and the vertical shaft pump 3 is operated. It becomes possible. When the liquid is injected beyond the FL, the liquid overflows the upper end of the inner cylinder 63a. Therefore, it is preferable to monitor the liquid level with a level meter or the like so as not to overflow. Since the upper end of the inner cylinder 63a extends to a position higher than the upper ends of the sliding portions of the rolling element 65, radial sliding bearing 61, upper thrust sliding bearing 62a, and lower thrust sliding bearing 62b, these sliding portions Can be located in the liquid.
  • each slide bearing in the bearing housing 63 can be replaced.
  • a liquid supply pipe 69 and a supply valve 69a are provided in the upper part of the bearing housing 63, and a liquid discharge pipe 68 and a discharge valve 68a are provided in the lower part. It may be easy to inject and discharge. Thereby, the inside of the bearing housing 63 can be cleaned.
  • the rotating shaft 10 and the rolling element 65 are rotated in a state where a predetermined amount of liquid such as lubricating oil or water is injected into the bearing housing 63, the liquid is accompanied with the rotation. Rotate and get centrifugal force.
  • the outer peripheral portion of the bearing housing 63 is assembled in a watertight manner by the outer cylinder 63b and the top plate 63c, scattering to the outside due to the centrifugal force of the liquid can be prevented.
  • the liquid level rises on the wall surface of the bearing housing 63 due to the pressure of the centrifugal force.
  • the top plate 63c changes the direction of the liquid toward the rotating shaft 10, and the top plate 63c is opposed to the rotating body with a slight clearance, or the space between the top plate 63c and the rotating body is almost sealed. As a result, the liquid is prevented from jumping over the top plate 63c. Accordingly, the sliding portions of the radial sliding bearing 61, the upper thrust sliding bearing 62a, and the lower thrust sliding bearing 62b are in a state of being submerged in the liquid when the rotary shaft 10 rotates.
  • the sliding bearing devices 32 and 33 in the pump casing used in a state where the sliding surface is in an air atmosphere during the air (dry) operation and the radial slide used in a state where the sliding surface is in a liquid atmosphere.
  • the phenomenon that occurs with the bearing 61 will be described.
  • FIG. 11 is a cross-sectional view schematically showing a force acting on a sliding portion of a slide bearing device operated in an air atmosphere without liquid lubrication on a sliding surface during an air (dry) operation.
  • FIG. 11 shows a cross section perpendicular to the axial direction of the rotating shaft 10.
  • the rotation side is the rotation shaft 10 and the sleeve 11 fitted thereto.
  • the fixed side is a plain bearing 1 and a bearing case 12 that supports it.
  • the dimension of the clearance between the sleeve 11 and the slide bearing 1 is shown enlarged for convenience.
  • the magnitude of the frictional force F AF that is the destabilizing force is the swing width perpendicular to the axial direction of the rotating shaft 10 (that is, the swing width in the radial direction of the rotating shaft 10).
  • the magnitude of the frictional force F AF is relatively sensitive to whether the swing of the rotating shaft 10 is belly or node.
  • FIG. 12 shows the force acting on the sliding portion of the radial sliding bearing 61 housed in the bearing housing 63 and used in a state where the sliding surface is in a liquid atmosphere immersed in a liquid such as lubricating oil or water. It is a figure shown typically.
  • FIG. 12 shows a cross section perpendicular to the axial direction of the rotating shaft 10.
  • the rotating side is the rotating shaft 10 and the rolling element 65 connected thereto.
  • the fixed side is a radial slide bearing 61 and a bearing support member 66 that supports it.
  • the rolling element 65 fixed to the rotating shaft 10 rotates. Since the sliding surface is in a liquid atmosphere such as lubricating oil or water, a liquid film is formed between the rolling element 65 and the radial slide bearing 61. At this time, the circumferential direction of the pressure nonuniformity caused by rotation, which element 65 is in the liquid film, so that the radial fluid forces F AR and the circumferential fluid force F AT occurs the rolling element 65.
  • the effect of this phenomenon called the liquid film effect bearings, the force of the circumferential fluid force F AT is the reverse rotation direction (reverse direction) to the frictional force F AF generated by dry operation described in connection with FIG. 11 It is.
  • FIG. 13A to FIG. 13D are diagrams for explaining typical types of bearings having a cross-sectional shape cut in the radial direction of the radial slide bearing 61.
  • FIG. 13A shows a perfect circle bearing
  • FIGS. 13B and 13C show a multi-arc bearing
  • FIG. 13D shows a tilting pad bearing.
  • FIG. 13B shows a two-arc bearing
  • FIG. 13C shows an offset bearing.
  • the hatched portion represents the rotating shaft 10.
  • the perfect circle bearing shown in FIG. 13A may not include the groove 41.
  • the radius of the sliding surface of the portion where the groove 41 of the perfect circle bearing in FIG. 13A is not formed is r and the center is O.
  • a perfect circle bearing is most likely to have a liquid film effect in the bearing, and therefore is also likely to generate a force.
  • the two-arc bearing shown in FIG. 13B also has a groove 41 along the axial direction on the sliding surface in the same manner as the perfect circle bearing in FIG. 13A.
  • the radius of the slide bearing surface on which the rotary shaft 10 slides is basically r, but this slide bearing surface is composed of a plurality of arcs with different centers. It is configured.
  • the two arc bearing shown in FIG. 13B and the offset bearing shown in FIG. 13C have centers O 1 and O 2 with respect to the two arcs.
  • a multi-arc bearing having two or more arcs can also be constructed. Multi-arc bearings are not as good as perfect circle bearings among these three types, but they can still produce a liquid film effect in the bearings.
  • the tilting pad bearing shown in FIG. 13D has a plurality of plain bearing surfaces called pads 43 that can tilt around the rotating shaft 10 as a fulcrum, and surrounds the rotating shaft 10.
  • the tilting pad bearing does not produce a liquid film effect in the bearing.
  • the vertical shaft pump 3 of the present embodiment is used in a state in which the sliding bearing devices 32 and 33 in the casing 29 are in a state where the sliding surfaces are in an atmospheric atmosphere during atmospheric operation.
  • a sliding bearing device can be obtained.
  • the sliding bearing device 60 that receives the radial force of the rotary shaft 10 is used in a state in which the sliding surface is immersed in a liquid such as lubricating oil or water at the prime mover base 52 portion outside the casing 29.
  • a sliding bearing device can be obtained.
  • the force to destabilize the rotary shaft 10 (the frictional force F AF) is circumferentially fluid force F AT, whirling of the rotary shaft 10 is suppressed because the offset in opposite directions. Therefore, even when the sliding portion of the lowest slide bearing of the plurality of slide bearing devices 32 and 33 in the pump casing is not immersed in water such as pumped water, a pump that can be stably operated without problems is provided. can do.
  • the canceling force depends on the magnitude of the swing width perpendicular to the axial direction of the rotating shaft 10, that is, the canceling force is generated by generating a couple of frictional forces opposite to each other as disclosed in Patent Document 1 and the like.
  • the sliding bearing device should be arranged so that a canceling force is applied to a portion where the swing width perpendicular to the axial direction is maximum. is there.
  • the canceling couple acting on the rotary shaft 10 is used as the circumferential fluid force. Yes. Unlike the generation of the canceling force due to the frictional force, this canceling force does not depend very much on the swing width perpendicular to the axial direction of the rotating shaft 10, but rather depends on the rotational speed, so that the installation position is rotated. Regardless of whether the shaft is an antinode or a node, a suitable canceling force can be generated regardless of the location of the rotary shaft 10 where the sliding bearing device 60 is disposed. And the cancellation effect is large according to the high rotational speed of the rotating shaft 10 or high peripheral speed.
  • the sliding portion since the swinging of the rotating shaft 10 is suppressed, even if a slide bearing is disposed on the abdomen of the rotating shaft 10, the sliding portion may be locally worn or damaged due to high temperatures. The fear is gone.
  • the vertical shaft pump 3 in the vertical shaft pump 3 according to the present embodiment, a plurality of plain bearing devices conventionally provided in the casing of the vertical shaft pump are used as the sliding bearing devices 32 and 33 that are used in a state where the sliding portion is in the atmosphere. Since it can be used, the resistance and loss of the fluid inside the casing 29 are not increased as compared with the conventional vertical pump.
  • the vertical shaft pump 3 of the present embodiment includes a sliding bearing device 60 that receives the radial force of the rotating shaft 10 in the prime mover base 52 portion outside the casing 29, and the sliding surface of the sliding bearing device 60 has a lubricating oil. Used in a state immersed in a liquid such as water.
  • the sliding bearing device 60 does not require an incidental facility such as a facility for supplying water to the protective tube, and is easy to maintain, as compared with the case where a conventional protective tube is used.
  • the vertical shaft pump 3 according to the present embodiment also uses the slide bearing devices 32 and 33 whose sliding surfaces are dry during dry operation, all the slide bearing devices are slid with water stored inside. Compared to the case where the surface is replaced with a plain bearing device in which the surface is present in water, the cost can be reduced, maintenance can be easily performed, and the influence on the pump performance can be reduced.
  • the embodiment of the present invention has been described mainly using the vertical shaft pump that performs the preliminary standby operation as an example, but the vertical shaft pump 3 rotates the rotating shaft in a state where there is no water to be pumped in the pump casing.
  • a pump that may be operated in such a state, and a pump that performs a management operation in such a state is also included.
  • the above-described embodiments of the present invention are intended to facilitate understanding of the present invention, and do not limit the present invention.
  • the present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.
  • any combination or omission of each component described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect can be achieved. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a vertical shaft pump in which the centrifugal whirling of a rotational shaft, which occurs with increased frequency and intensity as rotational shafts are lengthened, has been appropriately reduced for the entire rotational shaft. Specifically provided is a vertical shaft pump comprising a rotational shaft, a pump casing that accommodates at least a part of the rotational shaft, and an impeller attached to the rotational shaft. The vertical shaft pump further comprises a first slide bearing device that is disposed on the interior of the pump casing and supports the rotational shaft, and a second slide bearing device that is disposed on the exterior of the pump casing and supports the rotational shaft. The first slide bearing device is used when the sliding surface is in an air environment during in-air operation. The second slide bearing device is normally used when the sliding surface is in a liquid environment.

Description

立軸ポンプVertical shaft pump
 本発明は、立軸ポンプに関する。より具体的には、立軸ポンプのポンプケーシング内まで水が満たされていない状態でポンプの回転軸を回転して、管理運転を行う立軸ポンプや、先行待機運転ポンプのようなドライ条件で運転管理を行う立軸ポンプに関する。 The present invention relates to a vertical shaft pump. More specifically, operation management is performed under dry conditions such as a vertical shaft pump that performs management operation by rotating the rotary shaft of the pump while water is not filled into the pump casing of the vertical shaft pump or a preceding standby operation pump. The present invention relates to a vertical shaft pump.
 近年、都市化の進展により、緑地の減少及び路面のコンクリート化、アスファルト化の拡大が進むことでヒートアイランド現象が発生し、いわゆるゲリラ豪雨と呼ばれる局所的な集中豪雨が都市部で頻発している。局所的な大量の降雨は、コンクリート化、アスファルト化した路面では、地中に吸収されることなくそのまま水路に導かれる。その結果、大量の雨水が、短時間のうちに排水機場に流入する。 In recent years, due to the progress of urbanization, the heat island phenomenon has occurred due to the decrease in green space, the concrete on the road surface, and the expansion of asphalt. A large amount of local rainfall is introduced into the waterway without being absorbed into the ground on concrete and asphalt road surfaces. As a result, a large amount of rainwater flows into the drainage station in a short time.
 頻発するこのような集中豪雨によってもたらされる大量の雨水の速やかな排水に備えるために排水機場に設置する排水ポンプでは、始動遅れによる浸水被害が生じないよう、雨水が排水機場に到達する前に予め始動させておく先行待機運転が行われている。 In order to prepare for the rapid drainage of a large amount of rainwater caused by such frequent torrential rains, drainage pumps installed in the drainage pump station should have rainwater before reaching the drainage pump station in order to prevent inundation damage due to delays in starting. Pre-standby operation to be started is performed.
 図1は、先行待機運転を行う立軸ポンプの部分概略図である。排水機場の水槽100には、鉛直に配置された回転軸10の先端にインペラ22を備え、インペラ22に水と共に空気を吸い込ませることにより、水槽100の水位が最低運転水位LWL以下であっても運転(先行待機運転)を継続することが可能な立軸ポンプ3が配置されている。この立軸ポンプ3には、インペラ22の入口側の吸い込みベル27の側面部に貫通孔5が設けられており、この貫通孔5には、外気に接する開口6aを備えた空気管6が取付けられている。これにより、この立軸ポンプ3では貫通孔5を介して立軸ポンプ3内に供給する空気の供給量を水位に応じて変化させ、最低運転水位LWL以下で立軸ポンプ3の排水量がコントロールされる。 FIG. 1 is a partial schematic diagram of a vertical shaft pump that performs a preliminary standby operation. Even if the water level of the water tank 100 is equal to or lower than the minimum operating water level LWL, the water tank 100 of the drainage pump station is provided with an impeller 22 at the tip of the rotary shaft 10 arranged vertically and the air is sucked into the impeller 22 together with water. A vertical shaft pump 3 capable of continuing the operation (preceding standby operation) is disposed. This vertical shaft pump 3 is provided with a through hole 5 in the side surface of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening 6 a in contact with outside air is attached to the through hole 5. ing. Thereby, in this vertical shaft pump 3, the supply amount of the air supplied into the vertical shaft pump 3 through the through hole 5 is changed according to the water level, and the drainage amount of the vertical pump 3 is controlled below the minimum operating water level LWL.
 図2は、先行待機運転の運転状態を説明する図である。前述したように始動遅れによる浸水被害が生じないよう、例えば大都市の雨水排水用として、吸込水位に関係なく降雨情報等により予め立軸ポンプを始動しておく(A:気中運転)。雨水が排水機場に到達すると、低水位の状態から水位が上昇するに従って、インペラの位置まで水位が達し、立軸ポンプは空運転(気中運転)からインペラで水を撹拌する運転(B:気水撹拌運転)、さらに貫通孔を経て供給される空気を水と共に吸い込ませつつ水量を徐々に増やす運転(C:気水混合運転)を経て100%水の排出を行う全量運転(D:定常運転)へ移行する。また、高水位から水位が低下するときは、全量運転から貫通孔を経て供給する空気を水と共に吸い込ませつつ水量を徐々に減らす運転(C:気水混合運転)へ移行する。水位がLLWL近くに至ると、水を吸い込まず排水もしない運転(E:エアロック運転)へ移行する。これら5つの特徴ある運転を総称して先行待機運転という。なお、ポンプ始動は、ケーシング下端よりも低い水位LLLWLから開始する。尚、気水混合運転時にスラスト方向の上下荷重の変動が激しくなる。 FIG. 2 is a diagram for explaining the operating state of the preceding standby operation. As described above, in order to prevent inundation damage due to a delay in starting, for example, for a rainwater drainage in a large city, a vertical shaft pump is started in advance based on rainfall information or the like regardless of the suction water level (A: air operation). When rainwater reaches the drainage station, as the water level rises from a low water level, the water level reaches the impeller position, and the vertical shaft pump is an operation that stirs water with the impeller from an empty operation (air operation) (B: air water) Agitation operation), and a full amount operation (D: steady operation) in which 100% water is discharged through an operation of gradually increasing the amount of water (C: air-water mixing operation) while sucking in air supplied through the through-holes. Migrate to When the water level drops from the high water level, the operation shifts from the full operation to the operation of gradually reducing the water amount while sucking in the air supplied through the through holes together with the water (C: air-water mixing operation). When the water level reaches near LLWL, the operation shifts to an operation (E: air lock operation) in which water is not sucked and drained. These five characteristic operations are collectively referred to as advance standby operation. The pump start is started from the water level LLLWL lower than the lower end of the casing. Note that the fluctuation of the vertical load in the thrust direction becomes severe during the air-water mixing operation.
 図3は、図1に示した先行待機運転を行う従来の立軸ポンプ3の全体を示す断面図である。なお、図2に示した貫通孔5及び空気管6は図示省略されている。図3に示すように、立軸ポンプ3は、ポンプ設置床に設置固定される吐出エルボ30と、この吐出エルボ30の下端に接続されるケーシング29と、ケーシング29の下端に接続されるとともにインペラ22を内部に格納する吐出ボウル28と、吐出ボウル28の下端に接続されるとともに水を吸い込むための吸い込みベル27とを備えている。 FIG. 3 is a cross-sectional view showing an entire conventional vertical shaft pump 3 that performs the preliminary standby operation shown in FIG. The through hole 5 and the air pipe 6 shown in FIG. 2 are not shown. As shown in FIG. 3, the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and a lower end of the casing 29 and an impeller 22. And a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water.
 立軸ポンプ3のケーシング29、吐出ボウル28、及び吸い込みベル27の径方向略中心部には、上下二本の軸が軸継手26によって互いに接続されることにより形成された一本の回転軸10が配置されている。回転軸10は、支持部材を介してケーシング29に固定されている上部すべり軸受装置32と、支持部材を介して吐出ボウル28に固定されている下部すべり軸受装置33によって支持されている。回転軸10の一端側(吸い込みベル27側)には、水を立軸ポンプ3内に吸い込むためのインペラ22が接続されている。回転軸10の他端側は、吐出エルボ30に設けられた孔を通って立軸ポンプ3の外部へ延び、インペラ22を回転させるエンジンやモータ等の駆動機へ接続される。 A single rotating shaft 10 formed by connecting two upper and lower shafts to each other by a shaft coupling 26 is provided at substantially the center in the radial direction of the casing 29, the discharge bowl 28, and the suction bell 27 of the vertical shaft pump 3. Has been placed. The rotary shaft 10 is supported by an upper slide bearing device 32 fixed to the casing 29 via a support member, and a lower slide bearing device 33 fixed to the discharge bowl 28 via a support member. An impeller 22 for sucking water into the vertical shaft pump 3 is connected to one end side (suction bell 27 side) of the rotary shaft 10. The other end of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a driving machine such as an engine or a motor that rotates the impeller 22.
 回転軸10と吐出エルボ30に設けられた孔との間には、フローティングシール、グランドパッキンまたはメカニカルシール等の軸シール34が設けられており、軸シール34により立軸ポンプ3が扱う水が立軸ポンプ3の外部に流出することを防止する。 A shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
 駆動機は、保守点検を容易に行うことができるように陸上に設けられる。駆動機の回転は回転軸10に伝達され、インペラ22を回転させることができる。インペラ22の回転によって水は吸込みベル27から吸い込まれ、吐出ボウル28、ケーシング29を通過して吐出エルボ30から吐出される。 The drive will be installed on land so that maintenance and inspection can be performed easily. The rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated. The water is sucked from the suction bell 27 by the rotation of the impeller 22, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
 図4は、図3に示したすべり軸受装置32,33に用いられるすべり軸受装置の拡大図である。図5は、図4に示すすべり軸受装置に設置されたすべり軸受の斜視図である。図4に示すように、回転軸10は、その外周に、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属からなるスリーブ11を有している。スリーブ11の外周側には、中空円筒の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるすべり軸受1が設けられている。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12によりつば部12aを介してポンプのケーシング29(図3参照)等へ繋がる支持部材13に固定されている。図5に示すように、すべり軸受1は中空円筒状の形状を有しており、内周面1aがスリーブ11の外周面と対面し、外周面1bが軸受ケース12に嵌合される。 FIG. 4 is an enlarged view of the sliding bearing device used in the sliding bearing devices 32 and 33 shown in FIG. FIG. 5 is a perspective view of a plain bearing installed in the plain bearing device shown in FIG. As shown in FIG. 4, the rotating shaft 10 has a sleeve 11 made of stainless steel, ceramics, sintered metal, or surface-modified metal on the outer periphery thereof. A slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1. The slide bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 3) or the like via a collar portion 12a by a bearing case 12 made of metal or resin. As shown in FIG. 5, the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12.
 図6は、図3に示した立軸ポンプ3の上部における、モータ等の駆動機との接続状況を示した模式図である。立軸ポンプ3の上部における吐出エルボ30から、軸シール34により軸封されて上部に延びた回転軸10は、端部でカップリング51により原動機50の回転軸56と接続する。原動機50は、原動機50を支持する原動機架台52の上に固定される。原動機架台52は、架台53に固定される。回転軸10にはスラスト力を受ける転がり軸受55が設けられる。転がり軸受55は軸受ハウジング54に収納されている。軸受ハウジング54は架台53に固定されている。軸受ハウジング54内には、転がり軸受55の潤滑に必要な潤滑油が満たされている。 FIG. 6 is a schematic diagram showing a connection state with a drive unit such as a motor in the upper part of the vertical shaft pump 3 shown in FIG. The rotary shaft 10 that is shaft-sealed by the shaft seal 34 and extends upward from the discharge elbow 30 in the upper portion of the vertical shaft pump 3 is connected to the rotary shaft 56 of the prime mover 50 by the coupling 51 at the end. The prime mover 50 is fixed on a prime mover stand 52 that supports the prime mover 50. The prime mover base 52 is fixed to the base 53. The rotary shaft 10 is provided with a rolling bearing 55 that receives a thrust force. The rolling bearing 55 is accommodated in the bearing housing 54. The bearing housing 54 is fixed to the gantry 53. The bearing housing 54 is filled with lubricating oil necessary for lubricating the rolling bearing 55.
 ところで、近年、ポンプ機場はより深い地下に配置されるようになり、それに応じて先行待機ポンプも長軸化が進んでいる。回転軸を長くすればするほど、回転軸には軸の振れ回りが激しくなる部分が生じる。この軸の振れ回りを抑制するために、回転軸に沿ってすべり軸受を適切な位置により多く配置する必要が生まれてきた。 By the way, in recent years, pumping stations have been placed deeper underground, and advance standby pumps are also becoming longer shafts accordingly. The longer the rotating shaft is, the more the portion of the rotating shaft is swung around. In order to suppress the swinging of the shaft, it has become necessary to arrange more slide bearings at appropriate positions along the rotating shaft.
 しかしながら、このことにより、新たな技術的課題が発生する虞がある。図7は、軸の振れ回りが激しくなる部分にすべり軸受装置32,33を配置したポンプにおける回転軸10、スリーブ11、及びすべり軸受1の状態を示す模式的断面図である。ドライ運転においては、すべり軸受装置32,33のすべり軸受1と回転軸10に取り付けたスリーブ11とが摺動する際に、接触部(斜線で示される部分)での摩擦力が大きくなり摩耗が促進し、同時に発生する摩擦熱が大きくなる。そのため、すべり軸受1やスリーブ11の損傷が懸念される。 However, this may cause new technical problems. FIG. 7 is a schematic cross-sectional view showing the state of the rotary shaft 10, the sleeve 11, and the slide bearing 1 in a pump in which the slide bearing devices 32, 33 are arranged in a portion where the shaft swings heavily. In the dry operation, when the slide bearing 1 of the slide bearing devices 32 and 33 and the sleeve 11 attached to the rotary shaft 10 slide, the frictional force at the contact portion (portion indicated by hatching) increases and wears. The frictional heat generated at the same time is increased. Therefore, there is a concern about damage to the slide bearing 1 and the sleeve 11.
 これに対して、ドライ運転時であっても、すべり軸受の摺動面が水中に存在する状態でポンプを運転することができるように、従来から、回転軸及びすべり軸受を保護管で囲繞して、保護管内に清水を通水させたり、全てのすべり軸受装置を、すべり軸受装置内に水を溜めて摺動面が水中に存在する状態にしたものに置き換えたりすることが提案されている。しかしながら、保護管を用いる場合は、保護管に水を供給する付帯設備が必要になるし、すべり軸受装置のメインテナンスが困難である。また、先行待機ポンプも長軸化が進んでいるので、保護管に水を供給する送水ポンプの大型化や、保護管の耐圧強化のための管壁の厚みの増大などが必要になり、コストが割高になる。また、全てのすべり軸受装置を、すべり軸受装置に水を溜めて摺動面が水中に存在する状態にしたものに置き換える場合は、そもそも、このようなすべり軸受装置の構造が複雑であるのでコストが割高になることや、メインテナンスが困難であるといった問題がある。このうえ、長軸化が進んでいるので、すべり軸受装置の配置数も多くなり、コスト的な負担やメインテナンスの煩雑さが倍増する。また、このようなすべり軸受装置は、サイズが比較的大きくなるので、水流の抵抗となり、ポンプ性能を低下させるという課題がある。 On the other hand, the rotary shaft and the slide bearing have been conventionally surrounded by a protective tube so that the pump can be operated with the sliding surface of the slide bearing existing in water even during dry operation. Thus, it has been proposed to allow fresh water to flow into the protective tube, or to replace all the sliding bearing devices with water that accumulates in the sliding bearing devices so that the sliding surface exists in the water. . However, when a protective tube is used, an incidental facility for supplying water to the protective tube is required, and maintenance of the slide bearing device is difficult. In addition, since the stand-by pump is also becoming longer, it is necessary to increase the size of the water pump that supplies water to the protective pipe, and to increase the thickness of the pipe wall to strengthen the pressure resistance of the protective pipe. Becomes expensive. In addition, when replacing all plain bearing devices with those in which water is stored in the plain bearing device so that the sliding surface exists in the water, the structure of such a plain bearing device is complicated in the first place. However, there is a problem that it becomes expensive and maintenance is difficult. In addition, since the long shaft is being advanced, the number of the plain bearing devices is increased, and the cost burden and the maintenance complexity are doubled. Moreover, since such a sliding bearing device becomes relatively large in size, there is a problem that it becomes resistance to water flow and lowers pump performance.
 そもそも、回転軸の振れ回り自体を、全体として適切に低減すれば良いのであるが、これまで、立軸ポンプにおける対策は、どちらかといえば軸受負荷の大きい軸受に関する対策等、局部的な対策が多かった。 In the first place, it is only necessary to appropriately reduce the rotation of the rotating shaft as a whole, but until now, there have been many local measures such as measures for bearings with a large bearing load. It was.
 そこで、発明者等は、回転軸がドライ運転の摺動時に、互いに逆向きの摩擦力による偶力を生じさせて摩擦力を相殺し、回転軸の振れ回りを抑制する仕組みを有するすべり軸受装置を発明した(特許文献1参照)。 Therefore, the inventors have a sliding bearing device that has a mechanism that, when the rotating shaft slides in dry operation, generates a couple of frictional forces that are opposite to each other to cancel the frictional force and suppress the swinging of the rotating shaft. (See Patent Document 1).
 このすべり軸受装置は、相殺される力が、回転軸の軸方向に垂直な振れ幅(径方向の振れ幅)の大小に依存する。すなわち、回転軸の振れ回りの大きい場所(腹)にこのすべり軸受装置を配置した場合は、振れ回りを抑制する効果が大きいが、回転軸の振れ回りの小さい場所(節)にこのすべり軸受装置を配置した場合、この効果が得にくくなる。 In this plain bearing device, the canceling force depends on the magnitude of the deflection width (radial deflection width) perpendicular to the axial direction of the rotating shaft. That is, when this slide bearing device is arranged in a place (antinode) where the swing of the rotating shaft is large, the effect of suppressing the swing is great, but this slide bearing device is installed in a place (node) where the swing of the rotating shaft is small. If this is arranged, this effect is difficult to obtain.
 しかしながら、上下に長く伸びた立軸ポンプの回転軸のどの部分の振れ幅が最大(腹)であるか、最小(節)であるかを予め正確に把握することは難しく、回転軸の軸方向に垂直な振れ幅が小さい節の位置に、このすべり軸受装置を誤って配置してしまう虞があった。このすべり軸受装置を節の位置に配置した場合には、回転軸の振れ回りを抑制することは困難となる。また、一度すべり軸受を立軸ポンプに取り付けた後は、その位置を修正変更できない。また、この発明のすべり軸受装置は、サイズが大きいので、ポンプ性能や流体の流れを阻害しないように配置する必要があり、その配置位置には制限がある。そのため、配置可能な位置によっては、十分な逆向きの偶力を発揮できない場合もあった。 However, it is difficult to know in advance exactly which part of the rotary shaft of the vertical pump that extends vertically is the maximum (antinode) or minimum (node), and the axial direction of the rotary shaft There is a possibility that the slide bearing device may be mistakenly arranged at a position of a node having a small vertical swing width. When this sliding bearing device is arranged at the position of the node, it is difficult to suppress the swing of the rotating shaft. Also, once the plain bearing is attached to the vertical shaft pump, its position cannot be modified. Moreover, since the slide bearing device of the present invention is large in size, it is necessary to arrange the plain bearing device so as not to hinder the pump performance and the fluid flow, and the arrangement position is limited. Therefore, depending on the position where it can be arranged, there is a case where a sufficient reverse couple cannot be exhibited.
国際公開第2015/012350号公報International Publication No. 2015/012350 特開2015-222117号公報Japanese Patent Laying-Open No. 2015-222117 特開平6-94035号公報JP-A-6-94035 特開2000-130390号公報JP 2000-130390 A 特開2001-289191号公報JP 2001-289191 A
 本発明は、上記の問題に鑑みてなされたもので、立軸ポンプのポンプケーシング内まで水面が及んでいない状態で運転するときに、回転軸の長軸化が進むことによってより発生しやすく、また激しくなる回転軸の振れ回りを回転軸全体として適切に低減する立軸ポンプを提供することを目的とする。 The present invention has been made in view of the above problems, and is more likely to occur when the rotating shaft becomes longer when operating in a state where the water surface does not reach the pump casing of the vertical shaft pump. An object of the present invention is to provide a vertical shaft pump that appropriately reduces the swaying of a rotating shaft as a whole as a whole.
 本発明の一形態によれば、回転軸と、前記回転軸の少なくとも一部を収容するポンプケーシングと、前記回転軸に取り付けられた羽根車と、を備えた立軸ポンプが提供される。この立軸ポンプは、前記ポンプケーシング内に配置され、前記回転軸を支持する第1のすべり軸受装置と、前記ポンプケーシング外に配置され、前記回転軸を支持する第2のすべり軸受装置と、を備え、前記第1のすべり軸受装置は、気中運転時に摺動面が大気雰囲気にある状態で使用され、前記第2のすべり軸受装置は、摺動面が液体雰囲気にある状態で常時使用される。 According to an aspect of the present invention, there is provided a vertical shaft pump including a rotary shaft, a pump casing that houses at least a part of the rotary shaft, and an impeller attached to the rotary shaft. The vertical shaft pump is disposed in the pump casing and supports the rotary shaft, and the second plain bearing device is disposed outside the pump casing and supports the rotary shaft. The first slide bearing device is used in a state where the sliding surface is in an air atmosphere during air operation, and the second slide bearing device is always used in a state where the sliding surface is in a liquid atmosphere. The
 本発明の一形態において、前記第2のすべり軸受装置は、前記回転軸を前記ポンプケーシングの上方において支持するように構成される。 In one embodiment of the present invention, the second plain bearing device is configured to support the rotating shaft above the pump casing.
 本発明の一形態において、前記第2のすべり軸受装置は、前記回転軸のラジアル方向の力を受けるラジアルすべり軸受と、前記回転軸のスラスト方向の力を受けるスラストすべり軸受と、を有する。 In one embodiment of the present invention, the second sliding bearing device includes a radial sliding bearing that receives a radial force of the rotating shaft and a thrust sliding bearing that receives a thrust force of the rotating shaft.
 本発明の一形態において、前記第2のすべり軸受装置は、真円軸受又は多円弧軸受を有する。 In one embodiment of the present invention, the second plain bearing device includes a perfect circle bearing or a multi-arc bearing.
 本発明の一形態において、前記第2のすべり軸受装置は、前記摺動面が液体に接触するように前記液体を保持する軸受ハウジングを有する。 In one embodiment of the present invention, the second plain bearing device includes a bearing housing that holds the liquid so that the sliding surface contacts the liquid.
 本発明の一形態において、前記ポンプケーシングは、前記羽根車の上流側に空気管を備える。 In one embodiment of the present invention, the pump casing includes an air pipe upstream of the impeller.
 本発明によれば、大気雰囲気で使用されるすべり軸受装置の摺動面で発生する摩擦力に対して、常時水中雰囲気で使用されるすべり軸受装置の摺動面で発生する軸受内液膜効果による上記摩擦力とは逆向きの力を発生させ、これにより減衰効果を利用して、立軸ポンプの回転軸の振れ回りを全体的に抑制することができる。 According to the present invention, the liquid film effect in the bearing generated on the sliding surface of the sliding bearing device that is always used in an underwater atmosphere against the frictional force generated on the sliding surface of the sliding bearing device used in an atmospheric atmosphere. By generating a force in the direction opposite to the above frictional force, the swinging of the rotary shaft of the vertical pump can be suppressed as a whole by utilizing the damping effect.
先行待機運転を行う立軸ポンプの部分概略図である。It is a partial schematic diagram of a vertical shaft pump that performs a preliminary standby operation. 先行待機運転の運転状態を説明する図である。It is a figure explaining the driving | running state of a prior | preceding standby driving | operation. 図1に示した先行待機運転を行う従来の立軸ポンプの全体を示す断面図である。It is sectional drawing which shows the whole conventional vertical shaft pump which performs the prior | preceding standby operation shown in FIG. 図3に示したすべり軸受装置に用いられるすべり軸受装置の拡大図である。FIG. 4 is an enlarged view of a sliding bearing device used in the sliding bearing device shown in FIG. 3. 図4に示すすべり軸受装置に設置されたすべり軸受の斜視図である。It is a perspective view of the slide bearing installed in the slide bearing apparatus shown in FIG. 図3に示した立軸ポンプの上部における、モータ等の駆動機との接続状況を示した模式図である。It is the schematic diagram which showed the connection condition with drive machines, such as a motor, in the upper part of the vertical shaft pump shown in FIG. 軸の振れ回りが激しくなる部分にすべり軸受装置を配置したポンプにおける回転軸、スリーブ、及びすべり軸受の状態を示す模式的断面図である。It is typical sectional drawing which shows the state of the rotating shaft, sleeve, and slide bearing in the pump which has arrange | positioned the slide bearing apparatus in the part where the shaft runout becomes intense. 本実施形態に係る立軸ポンプの縦断面図である。It is a longitudinal cross-sectional view of the vertical shaft pump which concerns on this embodiment. 本実施形態に係る立軸ポンプの回転軸と原動機の回転軸の接続状況を示した模式図である。It is the schematic diagram which showed the connection condition of the rotating shaft of the vertical shaft pump which concerns on this embodiment, and the rotating shaft of a motor | power_engine. 本実施形態に係るケーシング外部の原動機架台部分に備えられたすべり軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the plain bearing apparatus with which the motor | power_engine mount part outside the casing which concerns on this embodiment was equipped. 大気(ドライ)運転時に、摺動面に液体の潤滑のない大気雰囲気で運転されるすべり軸受装置の摺動部分に働く力を模式的に示す断面図である。It is sectional drawing which shows typically the force which acts on the sliding part of the sliding bearing apparatus operate | moved in air | atmosphere atmosphere without liquid lubrication on a sliding surface at the time of air | atmosphere (dry) driving | operation. 軸受ハウジング3内に収容されて、摺動面が潤滑油や水などの液体に浸された液中雰囲気にある状態で使用されるラジアルすべり軸受の摺動部分に働く力を模式的に示す図である。The figure which shows typically the force which acts on the sliding part of the radial slide bearing accommodated in the bearing housing 3 and used in the state which has a sliding surface in the liquid atmosphere immersed in liquids, such as lubricating oil and water. It is. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing. すべり軸受の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。It is a figure explaining the kind of typical bearing by the cross-sectional shape cut | disconnected in the radial direction of the slide bearing.
 以下、本発明に係る立軸ポンプおよび、それに用いるすべり軸受装置の実施形態を図8から図13を参照して説明する。図8から図13において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。本明細書において、「上部」及び「下部」とは、立軸ポンプが移送する液体の下流側(図示において「吐出」側)及び上流側(図示において「吸込」側)をそれぞれ意味するものとして説明する。 Hereinafter, embodiments of a vertical shaft pump and a plain bearing device used therefor according to the present invention will be described with reference to FIGS. 8 to 13. 8 to 13, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted. In the present specification, “upper part” and “lower part” are described as meaning the downstream side (“discharge” side in the figure) and the upstream side (“suction” side in the figure) of the liquid transferred by the vertical shaft pump, respectively. To do.
 図8は、本実施形態に係る立軸ポンプ3の縦断面図である。立軸ポンプ3はポンプケーシング内にポンプの揚水対象の水がない状態で回転軸を運転することがあるポンプである。立軸ポンプにはそのような状態で管理運転を行うものや、先行待機運転において、気中運転を行うものもある。図8では先行待機運転を行う立軸ポンプを例示している。なお、管理運転とは、降水が稀な季節のためポンプの停止状態が継続している時期に、ポンプが正常に運転できるかどうかを点検するための運転であって、ポンプケーシング内がドライな状態で行う運転である。その運転時間は、十数分から数十分になる場合もある。 FIG. 8 is a longitudinal sectional view of the vertical shaft pump 3 according to the present embodiment. The vertical shaft pump 3 is a pump that may operate a rotating shaft in a state where there is no pumping target water in the pump casing. Some vertical shaft pumps perform a management operation in such a state, and others perform an aerial operation in a preceding standby operation. FIG. 8 illustrates a vertical shaft pump that performs a preliminary standby operation. Note that the management operation is an operation to check whether the pump can be operated normally when the pump is stopped due to the rainy season, and the inside of the pump casing is not dry. It is an operation performed in a state. The operation time may be several ten minutes to several tens of minutes.
 図8に示すように、立軸ポンプ3は、ポンプ設置床に設置固定される吐出エルボ30と、この吐出エルボ30の下端に接続されるケーシング29と、ケーシング29の下端に接続されるとともにインペラ22(羽根車の一例に相当する)を内部に格納する吐出ボウル28と、吐出ボウル28の下端に接続されるとともに水を吸い込むための吸い込みベル27とを備えている。吸い込みベル27の下端から吐出エルボ30の吐出端部までをポンプケーシングと呼ぶ。 As shown in FIG. 8, the vertical shaft pump 3 includes a discharge elbow 30 installed and fixed on the pump installation floor, a casing 29 connected to the lower end of the discharge elbow 30, and a lower end of the casing 29 and an impeller 22. A discharge bowl 28 that stores therein (corresponding to an example of an impeller) and a suction bell 27 that is connected to the lower end of the discharge bowl 28 and sucks water are provided. The lower end of the suction bell 27 to the discharge end of the discharge elbow 30 is called a pump casing.
 インペラ22の入口側の吸い込みベル27の側面部には貫通孔が設けられており、この貫通孔には、外気に接する開口を備えた空気管6が取り付けられている。これにより、この立軸ポンプ3は、貫通孔を介して立軸ポンプ3内に供給する空気の供給量を水位に応じて変化させ、立軸ポンプ3の排水量がコントロールされる。 A through hole is provided in a side surface portion of the suction bell 27 on the inlet side of the impeller 22, and an air pipe 6 having an opening in contact with outside air is attached to the through hole. Thereby, this vertical shaft pump 3 changes the supply amount of the air supplied in the vertical shaft pump 3 through a through-hole according to a water level, and the amount of drainage of the vertical shaft pump 3 is controlled.
 立軸ポンプ3のケーシング29、吐出ボウル28、及び吸い込みベル27の径方向略中心部には、回転軸10が配置されている。回転軸10の一端側(吸い込みベル27側)には、水をポンプ内に吸い込むためのインペラ22が接続されている。 Rotating shaft 10 is arranged at a substantially central portion in the radial direction of casing 29, discharge bowl 28, and suction bell 27 of vertical shaft pump 3. An impeller 22 for sucking water into the pump is connected to one end side (suction bell 27 side) of the rotating shaft 10.
 回転軸10は、軸方向の適当な位置で、支持部材を介してケーシング29に固定されているすべり軸受装置32と、吐出ボウル28の内筒に支持部材を介して固定されているすべり軸受装置33、及び/又はインペラ22を貫通した回転軸10の場合において回転軸10の下端部で、支持部材を介してケーシング29に固定されているすべり軸受装置33によって支持されている。すべり軸受装置32,33は、大気運転時に摺動面が大気雰囲気にある状態で使用されるすべり軸受装置であってよい。大気運転時に摺動面が大気雰囲気にある状態で使用されるすべり軸受装置とは、図4および図5にて示したすべり軸受装置である。 The rotary shaft 10 is a slide bearing device 32 fixed to the casing 29 via a support member at an appropriate position in the axial direction, and a slide bearing device fixed to the inner cylinder of the discharge bowl 28 via the support member. 33 and / or in the case of the rotating shaft 10 penetrating the impeller 22, the lower end portion of the rotating shaft 10 is supported by a plain bearing device 33 fixed to the casing 29 via a support member. The sliding bearing devices 32 and 33 may be sliding bearing devices that are used in a state where the sliding surface is in an atmospheric atmosphere during atmospheric operation. The sliding bearing device used in a state where the sliding surface is in an atmospheric atmosphere during the atmospheric operation is the sliding bearing device shown in FIGS. 4 and 5.
 すなわち、図4に示すように、このすべり軸受装置は、回転軸10の外周に、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属等からなるスリーブ11を有している。スリーブ11の外周側には、中空円筒の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるすべり軸受1が設けられている。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12によりつば部12aを介してポンプのケーシング29等へ繋がる支持部材13に固定されている。図5に示すように、すべり軸受1は中空円筒状の形状を有しており、内周面1aがスリーブ11の外周面と対面し、外周面1bが軸受ケース12に嵌合される。すべり軸受装置33とすべり軸受装置32はともに1か所以上配置され、両者合わせて複数のすべり軸受装置となる。 That is, as shown in FIG. 4, this plain bearing device has a sleeve 11 made of stainless steel, ceramics, sintered metal, surface-modified metal, or the like on the outer periphery of the rotating shaft 10. A slide bearing 1 made of a hollow cylindrical resin material, ceramics, sintered metal, or surface-modified metal is provided on the outer peripheral side of the sleeve 11. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (slide surface) of the slide bearing 1 through a very narrow clearance, and is configured to slide with respect to the slide bearing 1. The plain bearing 1 is fixed to a support member 13 connected to a pump casing 29 and the like through a collar portion 12a by a bearing case 12 made of metal or resin. As shown in FIG. 5, the plain bearing 1 has a hollow cylindrical shape, the inner peripheral surface 1 a faces the outer peripheral surface of the sleeve 11, and the outer peripheral surface 1 b is fitted in the bearing case 12. One or more of the slide bearing device 33 and the slide bearing device 32 are arranged at one place, and a plurality of the slide bearing devices are combined.
 回転軸10の上端側は、吐出エルボ30に設けられた孔を通って立軸ポンプ3の外部へ延び、インペラ22を回転させるエンジンやモータ等の駆動機へ接続される。回転軸10と吐出エルボ30に設けられた孔との間には、フローティングシール、グランドパッキンまたはメカニカルシール等の軸シール34が設けられており、軸シール34により立軸ポンプ3が扱う水が立軸ポンプ3の外部に流出することを防止する。 The upper end side of the rotary shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30 and is connected to a drive machine such as an engine or a motor that rotates the impeller 22. A shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the water handled by the vertical pump 3 by the shaft seal 34 is supplied to the vertical pump. 3 is prevented from flowing out.
 駆動機は、保守点検を容易に行うことができるように陸上に設けられる。駆動機の回転は回転軸10に伝達され、インペラ22を回転させることができる。インペラ22の回転によって水が吸込みベル27から吸い込まれ、吐出ボウル28、ケーシング29を通過して吐出エルボ30から吐出される。 The drive will be installed on land so that maintenance and inspection can be performed easily. The rotation of the driving machine is transmitted to the rotary shaft 10 and the impeller 22 can be rotated. As the impeller 22 rotates, water is sucked from the suction bell 27, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
 図9は、本実施形態に係る立軸ポンプ3の回転軸10と原動機50の回転軸56の接続状況を示した模式図である。立軸ポンプ3の上部における吐出エルボ30から、軸シール34により軸封されて上部に延びた回転軸10は、端部でカップリング51により原動機50の回転軸56と接続する。原動機50は、原動機50を支持する原動機架台52の上に固定される。回転軸10のラジアル力を受けるラジアルすべり軸受61(図10参照)とスラスト力を受けるスラストすべり軸受62(図10参照)を有するすべり軸受装置60が、軸受ハウジング63内に収容されて支持され、軸受ハウジング63を介して架台53に固定されている。 FIG. 9 is a schematic diagram showing a connection state between the rotary shaft 10 of the vertical shaft pump 3 and the rotary shaft 56 of the prime mover 50 according to the present embodiment. The rotary shaft 10 that is shaft-sealed by the shaft seal 34 and extends upward from the discharge elbow 30 in the upper portion of the vertical shaft pump 3 is connected to the rotary shaft 56 of the prime mover 50 by the coupling 51 at the end. The prime mover 50 is fixed on a prime mover stand 52 that supports the prime mover 50. A slide bearing device 60 having a radial slide bearing 61 (see FIG. 10) that receives the radial force of the rotary shaft 10 and a thrust slide bearing 62 (see FIG. 10) that receives the thrust force is housed and supported in a bearing housing 63. It is fixed to the gantry 53 via a bearing housing 63.
 ところで、立軸ポンプの回転軸10の上部は、以上で説明した構造により、比較的しっかりと拘束されている。すなわち、回転軸10のすべり軸受装置60とそれを支持する軸受ハウジング63が、それらを支える剛性の大きい架台53にしっかり固定されている。そのため、回転軸10の振れはそれらに拘束されている。しかし、回転軸10のすべり軸受装置60に支持された部分より下は、インペラ22までの距離が長いので、そのまま回転させると振れ回りが生じる。振れ回りの程度は高さ方向の位置により異なるが、この振れ回りを抑制するように、すべり軸受装置32,33を設けて回転軸10を支持している。 Incidentally, the upper part of the rotary shaft 10 of the vertical shaft is relatively firmly restrained by the structure described above. That is, the sliding bearing device 60 of the rotating shaft 10 and the bearing housing 63 that supports the sliding bearing device 60 are firmly fixed to the pedestal 53 having high rigidity that supports them. Therefore, the shake of the rotating shaft 10 is restrained by them. However, below the portion of the rotating shaft 10 supported by the plain bearing device 60, the distance to the impeller 22 is long. Although the degree of swinging varies depending on the position in the height direction, the plain bearing devices 32 and 33 are provided to support the rotary shaft 10 so as to suppress this swinging.
 すべり軸受装置32の配置については、設計段階において、経験、あるいは便法的な計算により、回転軸10の太さ、長さ、回転数、インペラの重さや枚数等の条件から、回転軸10の振れ回りの大きい位置を割り出し、それに基づいて軸方向のどの辺りに、いくつ配置するかをある程度決めている。しかしながら、回転軸10の振れ回りの大きい位置として予測されたすべり軸受装置32の配置位置が、実際の振れ回りの大きい位置からずれてしまうことがある。また、このすべり軸受装置32の配置位置は、立軸ポンプ3を組み立てた後に修正することはできない。 With regard to the arrangement of the sliding bearing device 32, the design of the rotating shaft 10 can be determined based on conditions such as the thickness, length, rotational speed, weight of the impeller, and the number of impellers based on experience or expedient calculation in the design stage. A position with a large run-out is determined, and based on this, a certain number of positions in the axial direction is determined. However, the arrangement position of the sliding bearing device 32 predicted as a position where the swing of the rotating shaft 10 is large may deviate from a position where the actual swing is large. Further, the arrangement position of the plain bearing device 32 cannot be corrected after the vertical shaft pump 3 is assembled.
 特に、回転軸10が長くなるほど、回転軸10に振れ回りの大きい部分が複数の場所に生じやすくなる。それを抑制するために、回転軸10の軸方向に沿ってすべり軸受装置32をより多く配置する必要が生じる。しかしながら、これにより、すべり軸受装置32の配置位置が実際の回転軸10の振れ回りが大きい位置からずれるケースがますます多くなり、また、ずれの大きさも拡大している。すなわち、複数のすべり軸受装置の一部は、回転軸10の振れ回りの極端に小さい、いわゆる「節」の位置に配置されてしまうといったことが生じる。 In particular, as the rotating shaft 10 becomes longer, a portion with a large swing around the rotating shaft 10 is likely to occur at a plurality of locations. In order to suppress this, it is necessary to arrange more sliding bearing devices 32 along the axial direction of the rotary shaft 10. However, as a result, the number of cases where the arrangement position of the sliding bearing device 32 deviates from the position where the actual rotation of the rotary shaft 10 is large is increasing, and the size of the deviation is also increasing. That is, a part of the plurality of plain bearing devices is disposed at a so-called “node” position where the swing of the rotating shaft 10 is extremely small.
 ところで、ドライ運転においては、すべり軸受装置32,33におけるすべり軸受1と、回転軸10に取り付けたスリーブ11が摺動する際に、接触部での摩擦力が大きくなり、発生する摩擦熱が大きくなる。そのため、すべり軸受1やスリーブ11の損傷が懸念される。 By the way, in the dry operation, when the slide bearing 1 in the slide bearing devices 32 and 33 and the sleeve 11 attached to the rotary shaft 10 slide, the frictional force at the contact portion increases, and the generated frictional heat increases. Become. Therefore, there is a concern about damage to the slide bearing 1 and the sleeve 11.
 特に、回転軸10の振れ回りの大きい所に備えたすべり軸受装置32,33ほど軸受荷重が大きいので、摺動する相手方の回転軸10に取り付けたスリーブ11の局所的な摩耗や高温化が生じやすくなり、立軸ポンプ3の回転体(回転軸10及びスリーブ11)と固定体(すべり軸受1)との干渉による振動や軸受荷重が増加する。 In particular, the sliding bearing devices 32 and 33 provided in a place where the swivel of the rotating shaft 10 has a large bearing load causes local wear and high temperature of the sleeve 11 attached to the rotating shaft 10 of the other party to slide. It becomes easy and the vibration and bearing load by interference with the rotary body (rotary shaft 10 and sleeve 11) and fixed body (slide bearing 1) of the vertical shaft pump 3 increase.
 そこで、本実施形態に係る立軸ポンプ3は、ケーシング29外部の原動機架台52部分において、回転軸10のラジアル力を受ける軸受装置としてラジアルすべり軸受61を備える。また、このラジアルすべり軸受61の摺動面は、軸受ハウジング63内に収容して潤滑油や水等の液体に浸漬される。 Therefore, the vertical shaft pump 3 according to this embodiment includes a radial plain bearing 61 as a bearing device that receives the radial force of the rotary shaft 10 in the prime mover mount 52 portion outside the casing 29. The sliding surface of the radial plain bearing 61 is accommodated in the bearing housing 63 and immersed in a liquid such as lubricating oil or water.
 図10は、本実施形態に係るケーシング29外部の原動機架台52部分に備えられたすべり軸受装置60の縦断面図である。図10に示すように、すべり軸受装置60は、軸受ハウジング63を有する。軸受ハウジング63は、回転軸10の径よりやや大きい径の略円筒壁である内筒63aと、内筒63aより大きい径の略円筒壁の外筒63bと、内筒63a及び外筒63bの壁面の下部同士を接続する底板63dと、内筒63a及び外筒63bの壁面の上部同士を接続する天板63cとを有する。これにより、軸受ハウジング63は、潤滑油や水などを受液できる槽を形成している。各部材は分解可能であるが、組み立てられた状態では互いに水密に接合しており、形成される軸受ハウジング63内に液体を注入しても外部に遺漏することはない。 FIG. 10 is a longitudinal sectional view of the plain bearing device 60 provided in the prime mover base 52 portion outside the casing 29 according to the present embodiment. As shown in FIG. 10, the plain bearing device 60 has a bearing housing 63. The bearing housing 63 includes an inner cylinder 63a which is a substantially cylindrical wall having a diameter slightly larger than the diameter of the rotary shaft 10, an outer cylinder 63b having a substantially cylindrical wall having a diameter larger than the inner cylinder 63a, and wall surfaces of the inner cylinder 63a and the outer cylinder 63b. A bottom plate 63d that connects the lower portions of the inner cylinder 63a and a top plate 63c that connects the upper portions of the wall surfaces of the inner cylinder 63a and the outer cylinder 63b. Thus, the bearing housing 63 forms a tank that can receive lubricating oil, water, and the like. Although each member can be disassembled, they are joined together in a watertight manner in the assembled state, and even if liquid is injected into the formed bearing housing 63, it does not leak outside.
 回転軸10の外周には、ラジアル方向の摺動荷重をラジアルすべり軸受61に伝達する摺動面と、上下スラストの摺動荷重を上部スラストすべり軸受62a及び下部スラストすべり軸受62bに伝達する摺動面を有する転動体65が固定されている。回転軸10の回転に伴い転動体65は回転する。転動体65の少なくとも摺動面は、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属からなる。 On the outer periphery of the rotary shaft 10, a sliding surface that transmits a sliding load in the radial direction to the radial sliding bearing 61 and a sliding that transmits the sliding load of the upper and lower thrusts to the upper thrust sliding bearing 62a and the lower thrust sliding bearing 62b. A rolling element 65 having a surface is fixed. As the rotary shaft 10 rotates, the rolling element 65 rotates. At least the sliding surface of the rolling element 65 is made of stainless steel, ceramics, sintered metal, or surface-modified metal.
 転動体65は、その外周面の一部に、ラジアル方向の摺動荷重を伝達する摺動面を有し、この摺動面に相対して、中空円筒の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなるラジアルすべり軸受61が設けられる。このラジアルすべり軸受61は、転動体65の円筒外周面と摺動する。転動体65の摺動面と、ラジアルすべり軸受61の摺動面とは、非常に狭いクリアランスを介して対面して摺動するように配置される。ラジアルすべり軸受61は、金属又は樹脂からなる軸受支持部材66や底板63dにより軸受ハウジング63に支持固定されている。軸受支持部材66は、軸受ハウジング63内に固定されている。また、天板63cと転動体65及び回転軸10等の回転体との間は、わずかな隙間が形成されるか、リップシール等の摺動シール部材によりほぼ封止されている。 The rolling element 65 has a sliding surface for transmitting a sliding load in the radial direction on a part of the outer peripheral surface thereof, and is opposed to the sliding surface by a hollow cylindrical resin material, ceramic, sintered metal, or A radial slide bearing 61 made of a surface-modified metal is provided. The radial sliding bearing 61 slides on the cylindrical outer peripheral surface of the rolling element 65. The sliding surface of the rolling element 65 and the sliding surface of the radial slide bearing 61 are arranged so as to face each other and slide through a very narrow clearance. The radial slide bearing 61 is supported and fixed to the bearing housing 63 by a bearing support member 66 made of metal or resin and a bottom plate 63d. The bearing support member 66 is fixed in the bearing housing 63. In addition, a slight gap is formed between the top plate 63c and the rotating body 65 and the rotating body such as the rotating shaft 10, or is almost sealed by a sliding seal member such as a lip seal.
 内筒63aの内側には、回転軸10が延在する。この内筒63aを外側から覆うように転動体65が配置される。また、転動体65は、その下端から外周方向に延びた円盤状部分65aを有する。円盤状部分65aには、その上面及び下面の一部に、上部スラストすべり軸受62a及び下部スラストすべり軸受62bと相対する摺動面を有する。 Rotating shaft 10 extends inside inner cylinder 63a. The rolling elements 65 are arranged so as to cover the inner cylinder 63a from the outside. Moreover, the rolling element 65 has a disk-shaped portion 65a extending in the outer peripheral direction from the lower end thereof. The disk-like portion 65a has sliding surfaces facing the upper thrust sliding bearing 62a and the lower thrust sliding bearing 62b on part of the upper and lower surfaces thereof.
 上部スラストすべり軸受62a及び下部スラストすべり軸受62bは、中空円盤状(ドーナツ状)の樹脂材料、セラミックス、焼結金属又は表面改質された金属からなり、転動体65と摺動する。転動体65の各々の摺動面と、上部スラストすべり軸受62a及び下部スラストすべり軸受62bの摺動面とは、非常に狭いクリアランスを介して対面して摺動するように配置される。これら上部スラストすべり軸受62a及び下部スラストすべり軸受62bは、金属又は樹脂からなる軸受支持部材66や底板63dにより軸受ハウジング63に支持固定されている。立軸ポンプ3が先行待機運転の気水混合運転を行っているときは、スラスト方向の荷重の変動が激しくなる。しかし、本実施形態では、上部スラストすべり軸受62a及び下部スラストすべり軸受62bを設けたので、回転軸10のスラスト上下方向の荷重変動が生じても、安定して回転運動を継続することができる。 The upper thrust slide bearing 62a and the lower thrust slide bearing 62b are made of a hollow disk-shaped (doughnut-shaped) resin material, ceramics, sintered metal, or surface-modified metal, and slide with the rolling element 65. The respective sliding surfaces of the rolling elements 65 and the sliding surfaces of the upper thrust sliding bearing 62a and the lower thrust sliding bearing 62b are arranged to face each other and slide with a very narrow clearance. The upper thrust slide bearing 62a and the lower thrust slide bearing 62b are supported and fixed to the bearing housing 63 by a bearing support member 66 and a bottom plate 63d made of metal or resin. When the vertical shaft pump 3 performs the air / water mixing operation in the preceding standby operation, the variation in the load in the thrust direction becomes severe. However, in this embodiment, since the upper thrust slide bearing 62a and the lower thrust slide bearing 62b are provided, the rotational motion can be stably continued even if the load fluctuation in the thrust vertical direction of the rotating shaft 10 occurs.
 軸受ハウジング63の内筒63aの上端部は、転動体65と、ラジアルすべり軸受61、上部スラストすべり軸受62a、及び下部スラストすべり軸受62bとの各摺動面よりも、高い位置まで延びている。内筒63aと転動体65及び回転軸10との間には、内筒63aの上端および側面と転動体65及び回転軸10とが干渉しないように、円環状に隙間通路71が形成されている。 The upper end portion of the inner cylinder 63a of the bearing housing 63 extends to a position higher than the sliding surfaces of the rolling element 65, the radial sliding bearing 61, the upper thrust sliding bearing 62a, and the lower thrust sliding bearing 62b. A gap passage 71 is formed in an annular shape between the inner cylinder 63a, the rolling element 65, and the rotating shaft 10 so that the upper end and side surfaces of the inner cylinder 63a do not interfere with the rolling element 65 and the rotating shaft 10. .
 本実施形態のすべり軸受装置60によれば、軸受ハウジング63内の空間に水や油等の液体の液面が、内筒63aの上端の高さFLまで注入して、立軸ポンプ3を運転することが可能となる。尚、FLを越えて液体を注入すると、液体が内筒63aの上端を溢流してしまうので、レベル計等により、溢流しないレベルに液面が維持されるように監視することが好ましい。内筒63aの上端は、転動体65、ラジアルすべり軸受61、上部スラストすべり軸受62a、及び下部スラストすべり軸受62bの各摺動部の上端部より高い位置まで延びているので、これらの摺動部を液中に位置させることができる。 According to the slide bearing device 60 of the present embodiment, the liquid level of water or oil or the like is injected into the space in the bearing housing 63 to the height FL of the upper end of the inner cylinder 63a, and the vertical shaft pump 3 is operated. It becomes possible. When the liquid is injected beyond the FL, the liquid overflows the upper end of the inner cylinder 63a. Therefore, it is preferable to monitor the liquid level with a level meter or the like so as not to overflow. Since the upper end of the inner cylinder 63a extends to a position higher than the upper ends of the sliding portions of the rolling element 65, radial sliding bearing 61, upper thrust sliding bearing 62a, and lower thrust sliding bearing 62b, these sliding portions Can be located in the liquid.
 なお、軸受ハウジング63を分解、組立可能とした場合、軸受ハウジング63内部の各すべり軸受を交換することができる。また、図10に示すように、軸受ハウジング63の上部に液供給用配管69と供給用バルブ69aを設け、下部に液排出用配管68と排出用バルブ68aを設けて、必要なときに液体の注入や排出をし易くしてもよい。これにより、軸受ハウジング63内を洗浄することができる。 In addition, when the bearing housing 63 can be disassembled and assembled, each slide bearing in the bearing housing 63 can be replaced. Further, as shown in FIG. 10, a liquid supply pipe 69 and a supply valve 69a are provided in the upper part of the bearing housing 63, and a liquid discharge pipe 68 and a discharge valve 68a are provided in the lower part. It may be easy to inject and discharge. Thereby, the inside of the bearing housing 63 can be cleaned.
 本実施形態に係る立軸ポンプ3においては、軸受ハウジング63内に潤滑油や水等の液体を所定量注入した状態で、回転軸10及び転動体65を回転させると、その回転に伴って液体が回転し、遠心力を得る。しかしながら、軸受ハウジング63は、外筒63bと天板63cにより外周部分が水密に組み立てられているので、液体の遠心力による外部への飛散を防止することができる。遠心力の圧力により軸受ハウジング63の壁面で液面が上昇する。しかし、天板63cが回転軸10側に液体の向きを変える上、天板63cがわずかなクリアランスで回転体と相対しているか、天板63cと回転体との間がほぼ封止されているので、液体が天板63cを乗り越えて外部に飛散することが抑制される。したがって、ラジアルすべり軸受61、上部スラストすべり軸受62a、及び下部スラストすべり軸受62bの各摺動部は、回転軸10の回転時には液中に没した状態にある。 In the vertical shaft pump 3 according to the present embodiment, when the rotating shaft 10 and the rolling element 65 are rotated in a state where a predetermined amount of liquid such as lubricating oil or water is injected into the bearing housing 63, the liquid is accompanied with the rotation. Rotate and get centrifugal force. However, since the outer peripheral portion of the bearing housing 63 is assembled in a watertight manner by the outer cylinder 63b and the top plate 63c, scattering to the outside due to the centrifugal force of the liquid can be prevented. The liquid level rises on the wall surface of the bearing housing 63 due to the pressure of the centrifugal force. However, the top plate 63c changes the direction of the liquid toward the rotating shaft 10, and the top plate 63c is opposed to the rotating body with a slight clearance, or the space between the top plate 63c and the rotating body is almost sealed. As a result, the liquid is prevented from jumping over the top plate 63c. Accordingly, the sliding portions of the radial sliding bearing 61, the upper thrust sliding bearing 62a, and the lower thrust sliding bearing 62b are in a state of being submerged in the liquid when the rotary shaft 10 rotates.
 ここで、大気(ドライ)運転時に摺動面が大気雰囲気にある状態で使用されるポンプケーシング内のすべり軸受装置32,33と、摺動面が液中雰囲気にある状態で使用されるラジアルすべり軸受61とでどのような現象が生じているかを説明する。 Here, the sliding bearing devices 32 and 33 in the pump casing used in a state where the sliding surface is in an air atmosphere during the air (dry) operation, and the radial slide used in a state where the sliding surface is in a liquid atmosphere. The phenomenon that occurs with the bearing 61 will be described.
 図11は、大気(ドライ)運転時に、摺動面に液体の潤滑のない大気雰囲気で運転されるすべり軸受装置の摺動部分に働く力を模式的に示す断面図である。図11は、回転軸10の軸方向に垂直な断面を示す。ここで、回転側は、回転軸10及びそれに嵌合するスリーブ11である。それに対して、固定側は、すべり軸受1及びそれを支える軸受ケース12である。なお、図11においては、スリーブ11とすべり軸受1の間のクリアランスの寸法は、便宜上拡大されて示されている。 FIG. 11 is a cross-sectional view schematically showing a force acting on a sliding portion of a slide bearing device operated in an air atmosphere without liquid lubrication on a sliding surface during an air (dry) operation. FIG. 11 shows a cross section perpendicular to the axial direction of the rotating shaft 10. Here, the rotation side is the rotation shaft 10 and the sleeve 11 fitted thereto. On the other hand, the fixed side is a plain bearing 1 and a bearing case 12 that supports it. In FIG. 11, the dimension of the clearance between the sleeve 11 and the slide bearing 1 is shown enlarged for convenience.
 回転軸10が回転すると、回転軸10に固定されたスリーブ11が回転する。大気雰囲気でこのすべり軸受装置が使用される場合、回転軸10の振れ回りによりスリーブ11の外周面がすべり軸受1に点Aにて接触したときに、回転軸10には軸受反力FANが発生する。この軸受反力FANによって、回転軸10の回転方向とは逆方向に摩擦力FAFが発生し、この摩擦力FAFが回転軸10に回転方向とは逆方向の振れ回り振動を引き起こす不安定化力となる。 When the rotating shaft 10 rotates, the sleeve 11 fixed to the rotating shaft 10 rotates. When this sliding bearing device is used in an air atmosphere, when the outer peripheral surface of the sleeve 11 comes into contact with the sliding bearing 1 at point A due to the swinging of the rotating shaft 10, the bearing reaction force F AN is applied to the rotating shaft 10. appear. By this bearing reaction force FAN , a frictional force FAF is generated in a direction opposite to the rotational direction of the rotary shaft 10, and this frictional force FAF causes a whirling vibration in the direction opposite to the rotational direction on the rotary shaft 10. Stabilization power.
 ここで注意すべきことは、不安定化力である摩擦力FAFの大きさの程度は、回転軸10の軸方向に垂直な振れ幅(即ち、回転軸10の径方向の振れ幅)の大きさに依存する。すなわち、摩擦力FAFの大きさは、この回転軸10の振れが腹であるか節であるかに比較的敏感である。 It should be noted here that the magnitude of the frictional force F AF that is the destabilizing force is the swing width perpendicular to the axial direction of the rotating shaft 10 (that is, the swing width in the radial direction of the rotating shaft 10). Depends on size. That is, the magnitude of the frictional force F AF is relatively sensitive to whether the swing of the rotating shaft 10 is belly or node.
 図12は、軸受ハウジング63内に収容されて、摺動面が潤滑油や水などの液体に浸された液中雰囲気にある状態で使用されるラジアルすべり軸受61の摺動部分に働く力を模式的に示す図である。図12は、回転軸10の軸方向に垂直な断面を示す。このラジアルすべり軸受61において、回転側は、回転軸10及びそれに接続される転動体65である。それに対して、固定側は、ラジアルすべり軸受61及びそれを支える軸受支持部材66である。 FIG. 12 shows the force acting on the sliding portion of the radial sliding bearing 61 housed in the bearing housing 63 and used in a state where the sliding surface is in a liquid atmosphere immersed in a liquid such as lubricating oil or water. It is a figure shown typically. FIG. 12 shows a cross section perpendicular to the axial direction of the rotating shaft 10. In the radial plain bearing 61, the rotating side is the rotating shaft 10 and the rolling element 65 connected thereto. On the other hand, the fixed side is a radial slide bearing 61 and a bearing support member 66 that supports it.
 回転軸10が回転すると、回転軸10に固定された転動体65が回転する。摺動面が潤滑油や水などの液体雰囲気にあるので、転動体65とラジアルすべり軸受61の間に液膜が構成される。このとき、液膜には転動体65の回転による周方向の圧力不均一が生じ、その結果、転動体65に半径方向流体力FARと周方向流体力FATが発生する。この現象による効果を軸受内液膜効果といい、この周方向流体力FATは、図11に関連して説明したドライ運転で発生する摩擦力FAFとは逆回転方向(逆方向)の力である。 When the rotating shaft 10 rotates, the rolling element 65 fixed to the rotating shaft 10 rotates. Since the sliding surface is in a liquid atmosphere such as lubricating oil or water, a liquid film is formed between the rolling element 65 and the radial slide bearing 61. At this time, the circumferential direction of the pressure nonuniformity caused by rotation, which element 65 is in the liquid film, so that the radial fluid forces F AR and the circumferential fluid force F AT occurs the rolling element 65. The effect of this phenomenon called the liquid film effect bearings, the force of the circumferential fluid force F AT is the reverse rotation direction (reverse direction) to the frictional force F AF generated by dry operation described in connection with FIG. 11 It is.
 ここで注意すべきことは、回転軸10の軸方向に垂直な振れ幅の大きさへの周方向流体力FATの依存性は、図11におけるドライ運転時の摩擦力FAFに比べて小さいことである。すなわち、周方向流体力FATは、回転軸10の振れが腹であるか節であるかでなく、むしろ回転数の大きさに影響する。 It should be noted that, dependent of circumferential fluid forces F AT to the magnitude of the vertical deflection width in the axial direction of the rotary shaft 10 is smaller than the frictional force F AF during dry operation in FIG. 11 That is. That is, the circumferential fluid force F AT is runout of the rotating shaft 10 is not whether a clause or a belly, but rather affects the magnitude of the rotational speed.
 ところで、軸受内液膜効果は、ラジアルすべり軸受61の径方向に切断した断面形状にも依存する。図13Aから図13Dは、ラジアルすべり軸受61の径方向に切断した断面形状による典型的な軸受の種類を説明する図である。図13Aは真円軸受を示し、図13B及び図13Cは多円弧軸受を示し、図13Dはティルティングパッド軸受を示す。また、具体的には、図13Bは、2円弧軸受を示し、図13Cはオフセット軸受を示す。なお、図13Aから図13Dにおいて、斜線部は回転軸10を表している。 By the way, the liquid film effect in the bearing also depends on the cross-sectional shape of the radial slide bearing 61 cut in the radial direction. FIG. 13A to FIG. 13D are diagrams for explaining typical types of bearings having a cross-sectional shape cut in the radial direction of the radial slide bearing 61. FIG. 13A shows a perfect circle bearing, FIGS. 13B and 13C show a multi-arc bearing, and FIG. 13D shows a tilting pad bearing. Specifically, FIG. 13B shows a two-arc bearing, and FIG. 13C shows an offset bearing. In FIG. 13A to FIG. 13D, the hatched portion represents the rotating shaft 10.
 図13Aに示す真円軸受は、概ね軸方向に沿った溝41を摺動面に有し、溝41により水や潤滑油をすべり軸受2の軸方向に速やかに供給する。なお、図13Aに示す真円軸受は、溝41を備えない場合もある。図13Aの真円軸受の溝41が形成されていない部分の摺動面の半径はrで、中心はOである。真円軸受はこれら3種類の軸受中で一番軸受内液膜効果が生じやすく、したがってそれによる力も生じやすい。 13A has a groove 41 substantially in the axial direction on the sliding surface, and quickly supplies water and lubricating oil in the axial direction of the slide bearing 2 through the groove 41. Note that the perfect circle bearing shown in FIG. 13A may not include the groove 41. The radius of the sliding surface of the portion where the groove 41 of the perfect circle bearing in FIG. 13A is not formed is r and the center is O. Of these three types of bearings, a perfect circle bearing is most likely to have a liquid film effect in the bearing, and therefore is also likely to generate a force.
 図13Bに示す2円弧軸受も、図13Aの真円軸受と同様に軸方向に沿った溝41を摺動面に有する。図13B及び図13Cに示す多円弧軸受は、基本的に、回転軸10が摺動するすべり軸受面の半径はrであるが、このすべり軸受面は、中心が異なる複数の円弧が組み合わさって構成されている。図13Bに示す2円弧軸受と図13Cに示すオフセット軸受は、2つの円弧に対する中心OとOを有する。2以上の円弧を有する多円弧軸受も構成され得る。多円弧軸受は、これら3種類の中で真円軸受ほどではないが、それでも軸受内液膜効果が生じ得る。 The two-arc bearing shown in FIG. 13B also has a groove 41 along the axial direction on the sliding surface in the same manner as the perfect circle bearing in FIG. 13A. In the multi-arc bearing shown in FIGS. 13B and 13C, the radius of the slide bearing surface on which the rotary shaft 10 slides is basically r, but this slide bearing surface is composed of a plurality of arcs with different centers. It is configured. The two arc bearing shown in FIG. 13B and the offset bearing shown in FIG. 13C have centers O 1 and O 2 with respect to the two arcs. A multi-arc bearing having two or more arcs can also be constructed. Multi-arc bearings are not as good as perfect circle bearings among these three types, but they can still produce a liquid film effect in the bearings.
 図13Dに示すティルティングパッド軸受は、回転軸10の周りにピボット42を支点として傾斜運動ができるようなパッド43と呼ばれるすべり軸受面を複数有し、回転軸10の周囲を囲んでいる。ティルティングパッド軸受は、軸受内液膜効果が生じない。 The tilting pad bearing shown in FIG. 13D has a plurality of plain bearing surfaces called pads 43 that can tilt around the rotating shaft 10 as a fulcrum, and surrounds the rotating shaft 10. The tilting pad bearing does not produce a liquid film effect in the bearing.
 従来は、すべり軸受の摺動面に回転軸10が液中で摺動することで液膜効果が生じると、立軸ポンプ3の回転軸10に不安定力がかかるので、液膜効果の生じないようにティルティングパッド軸受を用いることも多かった。しかしながら、本実施形態においては、図10に示した液中で使用されるラジアルすべり軸受61を採用して、先行待機運転のドライ運転時に、ドライな摺動面のすべり軸受1によって回転軸10に生じる摩擦力FAFに対向する力を、摺動面が常時液中にあるラジアルすべり軸受61における液膜効果によって生じさせている。このため、本実施形態では、多円弧軸受、より好ましくは真円軸受が用いられる。 Conventionally, if the liquid film effect is caused by sliding the rotary shaft 10 in the liquid on the sliding surface of the slide bearing, an unstable force is applied to the rotary shaft 10 of the vertical shaft pump 3, so that the liquid film effect does not occur. In many cases, tilting pad bearings are used. However, in the present embodiment, the radial slide bearing 61 used in the liquid shown in FIG. 10 is adopted, and the rotary shaft 10 is attached to the rotary shaft 10 by the slide bearing 1 having a dry sliding surface at the time of the dry standby operation. The force opposite to the generated frictional force F AF is generated by the liquid film effect in the radial slide bearing 61 whose sliding surface is always in the liquid. For this reason, in this embodiment, a multi-arc bearing, more preferably a perfect circle bearing is used.
 以上、説明した原理から理解できるように、本実施形態の立軸ポンプ3は、ケーシング29内の複数のすべり軸受装置32、33は、大気運転時に摺動面が大気雰囲気にある状態で使用されるすべり軸受装置とすることができる。他方、ケーシング29外部の原動機架台52部分において、回転軸10のラジアル方向の力を受けるすべり軸受装置60を、その摺動面が潤滑油や水などの液体に浸漬されている状態で使用されるすべり軸受装置とすることができる。これにより、立軸ポンプ3の大気運転時において、図11に示した摩擦力と、図12に示した周方向流体力が同時に発生する。そのため、回転軸10を不安定化する力(摩擦力FAF)と周方向流体力FATが、互いに逆向きに相殺するので回転軸10の振れ回りが抑制される。したがって、ポンプケーシング内の複数のすべり軸受装置32、33の最下部のすべり軸受の摺動部が揚水などの水に浸されていない状態の時でも、安定的に問題なく運転可能なポンプを提供することができる。 As can be understood from the above-described principle, the vertical shaft pump 3 of the present embodiment is used in a state in which the sliding bearing devices 32 and 33 in the casing 29 are in a state where the sliding surfaces are in an atmospheric atmosphere during atmospheric operation. A sliding bearing device can be obtained. On the other hand, the sliding bearing device 60 that receives the radial force of the rotary shaft 10 is used in a state in which the sliding surface is immersed in a liquid such as lubricating oil or water at the prime mover base 52 portion outside the casing 29. A sliding bearing device can be obtained. As a result, during the atmospheric operation of the vertical shaft pump 3, the frictional force shown in FIG. 11 and the circumferential fluid force shown in FIG. 12 are generated simultaneously. Therefore, the force to destabilize the rotary shaft 10 (the frictional force F AF) is circumferentially fluid force F AT, whirling of the rotary shaft 10 is suppressed because the offset in opposite directions. Therefore, even when the sliding portion of the lowest slide bearing of the plurality of slide bearing devices 32 and 33 in the pump casing is not immersed in water such as pumped water, a pump that can be stably operated without problems is provided. can do.
 仮に、相殺する力が、回転軸10の軸方向に垂直な振れ幅の大小に依存する場合、すなわち、特許文献1等に開示された、互いに逆向きの摩擦力による偶力を生じさせて相殺し、回転軸10の振れ回りを抑制する仕組みのすべり軸受装置などを用いる場合には、軸方向に垂直な振れ幅が最大の部分に相殺力がかかるように、すべり軸受装置を配置するべきである。しかしながら、先に述べたように回転軸10のどの部分の振れ幅が最大(腹)であるか、最小(節)であるかを予め正確に把握して配置することは難しく、回転軸10の軸方向に垂直な振れ幅がない節の位置に配置する可能性がある。そして、一旦、節の位置にすべり軸受装置を配置した場合には、回転軸の振れ回りを止めることは困難となってしまい、また後から位置を変更できない。 If the canceling force depends on the magnitude of the swing width perpendicular to the axial direction of the rotating shaft 10, that is, the canceling force is generated by generating a couple of frictional forces opposite to each other as disclosed in Patent Document 1 and the like. However, when using a sliding bearing device or the like having a mechanism for suppressing the swinging of the rotary shaft 10, the sliding bearing device should be arranged so that a canceling force is applied to a portion where the swing width perpendicular to the axial direction is maximum. is there. However, as described above, it is difficult to accurately determine in advance which portion of the rotation shaft 10 has the maximum (antinode) or minimum (node) swing width, and the rotation shaft 10 There is a possibility that it is arranged at the position of a node having no runout width perpendicular to the axial direction. Once the plain bearing device is arranged at the node position, it becomes difficult to stop the rotation of the rotating shaft, and the position cannot be changed later.
 しかし、本実施形態に係る立軸ポンプ3においては、摺動面が液体に浸漬された状態で使用されるすべり軸受装置60を備えることで、回転軸10に働く相殺偶力を周方向流体力としている。この相殺力は、摩擦力による相殺力の発生とは異なり、回転軸10の軸方向に垂直な振れ幅の大小にあまり依存せず、むしろ回転数の大小に依存するので、設置する位置が回転軸の腹か節かに関係なく、回転軸10のどの場所にこのすべり軸受装置60を配置してもそれなりの相殺力を生じさせることができる。そして、回転軸10の高回転数化や、高周速化に応じてその相殺効果は大きい。 However, in the vertical shaft pump 3 according to the present embodiment, by providing the slide bearing device 60 that is used in a state where the sliding surface is immersed in the liquid, the canceling couple acting on the rotary shaft 10 is used as the circumferential fluid force. Yes. Unlike the generation of the canceling force due to the frictional force, this canceling force does not depend very much on the swing width perpendicular to the axial direction of the rotating shaft 10, but rather depends on the rotational speed, so that the installation position is rotated. Regardless of whether the shaft is an antinode or a node, a suitable canceling force can be generated regardless of the location of the rotary shaft 10 where the sliding bearing device 60 is disposed. And the cancellation effect is large according to the high rotational speed of the rotating shaft 10 or high peripheral speed.
 したがって、本実施形態によれば、回転軸10の振れ回りが抑制されるので、回転軸10の腹部にすべり軸受を配置したとしても、その摺動部における局所的な摩耗や高温化による損傷といった虞はなくなった。 Therefore, according to the present embodiment, since the swinging of the rotating shaft 10 is suppressed, even if a slide bearing is disposed on the abdomen of the rotating shaft 10, the sliding portion may be locally worn or damaged due to high temperatures. The fear is gone.
 また、本実施形態の立軸ポンプ3は、立軸ポンプのケーシング内に従来から備えられている複数のすべり軸受装置を、摺動部が大気雰囲気にある状態で使用されるすべり軸受装置32,33として利用することができるので、従来の立軸ポンプに比べて、ケーシング29内部の流体の抵抗や損失を増加させることがない。さらに、本実施形態の立軸ポンプ3は、ケーシング29外部の原動機架台52部分において、回転軸10のラジアル力を受けるすべり軸受装置60を備え、このすべり軸受装置60は、その摺動面が潤滑油や水などの液体に浸漬された状態で使用される。このため、このすべり軸受装置60は、従来の保護管を用いる場合に比べ、保護管に水を供給する設備のような付帯設備は不要であるし、メインテナンスもしやすくなる。また、本実施形態に係る立軸ポンプ3は、ドライ運転時に摺動面がドライな状態であるすべり軸受装置32,33も併用するので、全てのすべり軸受装置を、内部に水を溜めて摺動面が水中に存在する状態にしたすべり軸受装置に置き換える場合に比べ、コストを抑えられ、メインテナンスもしやすくなり、ポンプ性能に与える影響も低減させることができる。 Further, in the vertical shaft pump 3 according to the present embodiment, a plurality of plain bearing devices conventionally provided in the casing of the vertical shaft pump are used as the sliding bearing devices 32 and 33 that are used in a state where the sliding portion is in the atmosphere. Since it can be used, the resistance and loss of the fluid inside the casing 29 are not increased as compared with the conventional vertical pump. Further, the vertical shaft pump 3 of the present embodiment includes a sliding bearing device 60 that receives the radial force of the rotating shaft 10 in the prime mover base 52 portion outside the casing 29, and the sliding surface of the sliding bearing device 60 has a lubricating oil. Used in a state immersed in a liquid such as water. For this reason, the sliding bearing device 60 does not require an incidental facility such as a facility for supplying water to the protective tube, and is easy to maintain, as compared with the case where a conventional protective tube is used. Further, since the vertical shaft pump 3 according to the present embodiment also uses the slide bearing devices 32 and 33 whose sliding surfaces are dry during dry operation, all the slide bearing devices are slid with water stored inside. Compared to the case where the surface is replaced with a plain bearing device in which the surface is present in water, the cost can be reduced, maintenance can be easily performed, and the influence on the pump performance can be reduced.
 以上、本発明の実施形態について、主に先行待機運転を行う立軸ポンプを例として説明したが、立軸ポンプ3は、ポンプケーシング内に、ポンプが揚水する対象の水がない状態で回転軸を回転して運転することがあるポンプであって、そのような状態で管理運転を行うポンプも含まれる。上述した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲及び明細書に記載された各構成要素の任意の組み合わせ、又は省略が可能である。 As described above, the embodiment of the present invention has been described mainly using the vertical shaft pump that performs the preliminary standby operation as an example, but the vertical shaft pump 3 rotates the rotating shaft in a state where there is no water to be pumped in the pump casing. A pump that may be operated in such a state, and a pump that performs a management operation in such a state is also included. The above-described embodiments of the present invention are intended to facilitate understanding of the present invention, and do not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof. In addition, any combination or omission of each component described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect can be achieved. is there.
  3…立軸ポンプ
  6…空気管
  10…回転軸
  22…インペラ
  29…ケーシング
  32…すべり軸受装置
  33…すべり軸受装置
  60…すべり軸受装置
  61…ラジアルすべり軸受
  62…スラストすべり軸受
  62a…上部スラストすべり軸受
  62b…下部スラストすべり軸受
  63…軸受ハウジング
  65…転動体
 
DESCRIPTION OF SYMBOLS 3 ... Vertical shaft pump 6 ... Air pipe 10 ... Rotary shaft 22 ... Impeller 29 ... Casing 32 ... Slide bearing device 33 ... Slide bearing device 60 ... Slide bearing device 61 ... Radial slide bearing 62 ... Thrust slide bearing 62a ... Upper thrust slide bearing 62b ... Lower thrust plain bearing 63 ... Bearing housing 65 ... Rolling element

Claims (6)

  1.  回転軸と、前記回転軸の少なくとも一部を収容するポンプケーシングと、前記回転軸に取り付けられた羽根車と、を備えた立軸ポンプであって、
     前記ポンプケーシング内に配置され、前記回転軸を支持する第1のすべり軸受装置と、
     前記ポンプケーシング外に配置され、前記回転軸を支持する第2のすべり軸受装置と、を備え、
     前記第1のすべり軸受装置は、気中運転時に摺動面が大気雰囲気にある状態で使用され、
     前記第2のすべり軸受装置は、摺動面が液体雰囲気にある状態で常時使用される、立軸ポンプ。
    A vertical shaft pump comprising: a rotary shaft; a pump casing that houses at least a part of the rotary shaft; and an impeller attached to the rotary shaft,
    A first plain bearing device disposed in the pump casing and supporting the rotating shaft;
    A second plain bearing device disposed outside the pump casing and supporting the rotating shaft,
    The first plain bearing device is used in a state where the sliding surface is in an air atmosphere during air operation,
    The second plain bearing device is a vertical shaft pump that is always used in a state where the sliding surface is in a liquid atmosphere.
  2.  請求項1に記載された立軸ポンプにおいて、
     前記第2のすべり軸受装置は、前記回転軸を前記ポンプケーシングの上方において支持するように構成される、立軸ポンプ。
    The vertical shaft pump according to claim 1,
    The second plain bearing device is a vertical shaft pump configured to support the rotating shaft above the pump casing.
  3.  請求項1又は2に記載された立軸ポンプにおいて、
     前記第2のすべり軸受装置は、前記回転軸のラジアル方向の力を受けるラジアルすべり軸受と、前記回転軸のスラスト方向の力を受けるスラストすべり軸受と、を有する、立軸ポンプ。
    In the vertical shaft pump according to claim 1 or 2,
    The second sliding bearing device includes a radial sliding bearing that receives a radial force of the rotating shaft and a thrust sliding bearing that receives a thrust force of the rotating shaft.
  4.  請求項1から3のいずれか一項に記載された立軸ポンプにおいて、
     前記第2のすべり軸受装置は、真円軸受又は多円弧軸受を有する、立軸ポンプ。
    In the vertical shaft pump according to any one of claims 1 to 3,
    The second plain bearing device is a vertical shaft pump having a perfect circle bearing or a multi-arc bearing.
  5.  請求項1から4に記載された立軸ポンプにおいて、
     前記第2のすべり軸受装置は、前記摺動面が液体に接触するように前記液体を保持する軸受ハウジングを有する、立軸ポンプ。
    In the vertical shaft pump according to claims 1 to 4,
    The second sliding bearing device is a vertical shaft pump having a bearing housing that holds the liquid so that the sliding surface contacts the liquid.
  6.  請求項1から5のいずれか一項に記載された立軸ポンプにおいて、
     前記ポンプケーシングは、前記羽根車の上流側に空気管を備える、立軸ポンプ。
    In the vertical shaft pump according to any one of claims 1 to 5,
    The pump casing is a vertical pump including an air pipe on the upstream side of the impeller.
PCT/JP2016/066822 2016-06-07 2016-06-07 Vertical shaft pump WO2017212534A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018522193A JP6745876B2 (en) 2016-06-07 2016-06-07 Vertical pump
PCT/JP2016/066822 WO2017212534A1 (en) 2016-06-07 2016-06-07 Vertical shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066822 WO2017212534A1 (en) 2016-06-07 2016-06-07 Vertical shaft pump

Publications (1)

Publication Number Publication Date
WO2017212534A1 true WO2017212534A1 (en) 2017-12-14

Family

ID=60578438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066822 WO2017212534A1 (en) 2016-06-07 2016-06-07 Vertical shaft pump

Country Status (2)

Country Link
JP (1) JP6745876B2 (en)
WO (1) WO2017212534A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084836A (en) * 2018-11-20 2020-06-04 株式会社荏原製作所 Vertical shaft pump
JP2020169629A (en) * 2019-04-05 2020-10-15 三菱電機株式会社 Air blowing device and ventilating fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417850A (en) * 1982-12-20 1983-11-29 Allis-Chalmers Corporation Vertical column pump
JP2002021762A (en) * 2000-07-11 2002-01-23 Ebara Corp Pump
JP2002213384A (en) * 2001-01-16 2002-07-31 Ebara Corp Vertical shaft pump for precedent standby operation
WO2015012350A1 (en) * 2013-07-25 2015-01-29 株式会社 荏原製作所 Vertical shaft pump
JP2015175240A (en) * 2014-03-13 2015-10-05 株式会社荏原製作所 Bearing device and vertical shaft pump including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417850A (en) * 1982-12-20 1983-11-29 Allis-Chalmers Corporation Vertical column pump
JP2002021762A (en) * 2000-07-11 2002-01-23 Ebara Corp Pump
JP2002213384A (en) * 2001-01-16 2002-07-31 Ebara Corp Vertical shaft pump for precedent standby operation
WO2015012350A1 (en) * 2013-07-25 2015-01-29 株式会社 荏原製作所 Vertical shaft pump
JP2015175240A (en) * 2014-03-13 2015-10-05 株式会社荏原製作所 Bearing device and vertical shaft pump including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084836A (en) * 2018-11-20 2020-06-04 株式会社荏原製作所 Vertical shaft pump
JP7158256B2 (en) 2018-11-20 2022-10-21 株式会社荏原製作所 Vertical shaft pump
JP2020169629A (en) * 2019-04-05 2020-10-15 三菱電機株式会社 Air blowing device and ventilating fan
JP7215306B2 (en) 2019-04-05 2023-01-31 三菱電機株式会社 Blowers and fans

Also Published As

Publication number Publication date
JP6745876B2 (en) 2020-08-26
JPWO2017212534A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6603382B2 (en) Vertical shaft pump
WO2017212534A1 (en) Vertical shaft pump
JP6411902B2 (en) Vertical shaft pump
JP6389657B2 (en) Slide bearing device
JP6749393B2 (en) Vertical pump
JP2019015193A (en) Vertical shaft pump
JPS6349086B2 (en)
JP6936062B2 (en) Vertical pump
JP6472735B2 (en) Slide bearing device
JP7158256B2 (en) Vertical shaft pump
JP2017166590A (en) Bearing assembly and rotating machine
JP6320208B2 (en) Vertical shaft pump
JP6491215B2 (en) Vertical shaft pump
JP2019015194A (en) Vertical shaft pump
JP2017166380A (en) Rotating machine
JP2020139454A (en) Slide bearing device and vertical shaft pump
KR102633066B1 (en) A suction bell for a pump
JP2019044606A (en) Bearing device for vertical shaft pump, and vertical shaft pump
WO2011102558A1 (en) Pad-type thrust bearing and submerged motor and submerged motor pump
JP6488207B2 (en) Slide bearing device
KR101984545B1 (en) Spindle
JP2017072192A (en) Sliding bearing device
JP2017036761A (en) Bearing device and rotary machine
JP2017172660A (en) Bearing assembly and rotary machine
JP2017032134A (en) Bearing device and rotary machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522193

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904569

Country of ref document: EP

Kind code of ref document: A1