WO2017211373A1 - Energiespeicher in einem einbaugehäuse und einem kühlluftstrom - Google Patents

Energiespeicher in einem einbaugehäuse und einem kühlluftstrom Download PDF

Info

Publication number
WO2017211373A1
WO2017211373A1 PCT/EP2016/000930 EP2016000930W WO2017211373A1 WO 2017211373 A1 WO2017211373 A1 WO 2017211373A1 EP 2016000930 W EP2016000930 W EP 2016000930W WO 2017211373 A1 WO2017211373 A1 WO 2017211373A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling air
flow path
battery cells
group
flow
Prior art date
Application number
PCT/EP2016/000930
Other languages
English (en)
French (fr)
Inventor
Thomas Speidel
Matthias Bohner
Original Assignee
Ads-Tec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ads-Tec Gmbh filed Critical Ads-Tec Gmbh
Priority to US16/306,286 priority Critical patent/US11088409B2/en
Priority to KR1020197000326A priority patent/KR20190017882A/ko
Priority to DE112016006938.3T priority patent/DE112016006938A5/de
Priority to PCT/EP2016/000930 priority patent/WO2017211373A1/de
Priority to CN201680086464.6A priority patent/CN109478702B/zh
Publication of WO2017211373A1 publication Critical patent/WO2017211373A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an energy store from an arrangement of rechargeable batteries in a mounting housing.
  • groups of battery cells follow each other.
  • At least one flow path for cooling air is formed, which comprises at least one inlet air opening formed in an inflow side of the installation housing for a cooling air flow.
  • the cooling air flow flows along the flow path between the battery cells and through a cooling air outlet.
  • UPS uninterruptible power supply
  • the battery cells arranged in such an energy store emit thermal energy both during the discharge and during the charge, which is to be dissipated regularly by cooling air. Due to the arrangement of several groups of battery cells in the longitudinal direction of the mounting housing in a row, the supply air directly adjacent battery cells are well cooled while lying at the end of the mounting housing in the flow path of the cooling air battery cells are cooled only moderately due to the already warmed up cooling air flow. This can lead to premature failure of the energy storage.
  • the invention has for its object to make an energy storage from an array of battery cells in a mounting housing such that all recorded in the housing housing battery cells are reliably cooled.
  • a first flow path of a first group of battery cells is assigned a first cooling air outlet.
  • a second flow path of a second group of battery cells is assigned a second cooling air outlet. The cooling air flow of the first
  • the first flow path are Zu Kunststoffö réelleen and the second flow path are - preferably separate - air inlet openings assigned.
  • first supply air openings with the first flow path
  • second supply air openings with the second flow path.
  • each flow path is fed with unconsumed, fresh cooling air. Since each of the cooling air streams is discharged via a cooling air outlet assigned to it, it can be prevented that the waste heat of a first group of battery cells impairs the cooling of a second group of battery cells. A reliable cooling by several separate cooling air streams is guaranteed.
  • the flow path of the cooling air through the first group of battery cells has a first flow resistance; the flow path of the cooling air through a second group of battery cells has a second flow resistance. According to the invention it is provided that the first flow resistance is equal to the second
  • Flow resistance is. This ensures that when connecting the first cooling air outlet and the second cooling air outlet with a common suction side of a cooling air blower, the air flow through the first flow path is the same as through the second flow path.
  • it is provided to arrange a plurality of groups of battery cells with separate flow paths in the longitudinal direction of the installation housing and to design the flow resistances of the flow paths of all groups the same.
  • the cooling air flow is expediently generated by a cooling air blower, wherein the cooling air outlets are connected together with the suction side of the cooling air blower.
  • the energy storage devices can be mounted in a rack (for example, a 19 "rack), with the cooling air blower creating a vacuum in the rack's housing compartment itself, thus ensuring equal cooling of all groups of battery cells due to this same negative pressure across all the cooling air outlets.
  • a rack for example, a 19 "rack
  • cooling air outlet is formed as an outlet opening of the installation housing and extends transversely to the longitudinal direction of the outlet slot over more than half the width of a housing side.
  • the flow path of a group of battery cells is - in a subsection - guided transversely to the longitudinal direction of the mounting housing to a cooling air outlet.
  • a cooling air outlet may be formed, for example, in the bottom of the installation housing.
  • the flow path of a group of rechargeable battery cells is formed by at least one cooling air channel, wherein the cooling air channels of all groups are aligned in the longitudinal direction of the installation housing.
  • the flow path of a group is expediently formed by a plurality of adjacent cooling air channels in this group of battery cells.
  • a gap is formed between the groups of battery cells arranged one behind the other in the longitudinal direction of the installation housing. Between adjacent groups of battery cells, a cooling air-carrying bulkhead is arranged.
  • the Bulkhead is designed so that it separates incoming, cool supply air and outgoing, heated exhaust air from each other.
  • the flow path of a group opens into a collecting space, which is connected to at least one cooling air outlet.
  • the collection space is limited by the bulkhead.
  • the second group of battery cells with a second flow path following the first group of battery cells in the longitudinal direction of the installation housing.
  • the second group of battery cells is associated with a supply air duct, wherein the supply air duct of the second flow path connects the supply air opening for a cooling air flow with a lying between the groups Zu Kunststoffraum.
  • At least one further group of rechargeable battery cells with a further flow path is provided in the longitudinal direction of the installation housing of the second group of rechargeable battery cells, the further group of rechargeable battery cells being assigned a further supply air channel.
  • the further supply air duct connects upstream of the further flow path, the supply air opening for a cooling air flow with a lying between the groups further supply air space.
  • the training is provided so that the supply air duct decreases in height.
  • FIG. 1 is an isometric view of an energy storage in a built-in housing
  • FIG. 2 is a front view of the inflow side of the installation housing of FIG. 1,
  • FIG. 5 is a view of the rear wall of the installation housing of FIG. 1,
  • FIG. 6 is a horizontal section through the energy storage of FIG. 1,
  • FIG. 7 is a plan view of the section of FIG. 6,
  • FIG. 9 is a side view of the sectional view of FIG. 8,
  • FIG. 10 is a side view of the energy storage in a mounting housing of FIG. 1,
  • FIG. 11 is a longitudinal section through the arranged in a mounting housing energy storage
  • 12 shows a section through an arrangement of a plurality of energy stores according to FIG. 1, FIG.
  • Fig. 13 is an isometric view of the arrangement of several energy storage after
  • FIG. 13 is an isometric side view of the arrangement of energy storage of FIG. 13,
  • Fig. 15 is a view of the rear walls of the energy storage according to arrow XV in
  • FIG. 16 shows an arrangement of a plurality of energy stores arranged in a receiving cabinet according to FIG. 1.
  • an energy store 1 is shown in a mounting housing 2.
  • the installation housing has a front side 3, which is designed as an inflow side 4 for cooling air streams 5, 6.
  • rows 15, 16, 26 of inflow openings 35, 36, 46 are provided in the front side 3.
  • the inflow openings 35 of the row 15 are formed as slots 45, which extend over approximately 50% of the height H of the front side 3.
  • a plurality of slots 45 are provided as inflow openings 35, wherein adjacent slots 45 are at a distance s to each other.
  • Zuströmörfiiungen 36, 46 are provided, which are formed as rows of holes.
  • the inflow openings 36, 46 formed as a circular opening 34 are adjacent to each other closely, with the rows of holes extending over approximately two thirds of the width B of the front side 3.
  • the installation housing 2 has an upper side 8 (FIG. 1) and a bottom 9.
  • the installation housing 2 extends in the direction of a longitudinal axis 10 of the installation housing 2 from the front side 3 to a rear wall 7 in a longitudinal direction 100.
  • the front side 3 projects laterally beyond the longitudinal sides 11, 12 of the installation housing 2.
  • the protruding edge 14 is used to mount the energy storage in a recording cabinet, for example, in a 19 "rack.
  • cooling air outlets 20, 21 are formed, flows through the cooling air.
  • the cooling air outlets 20, 21 are provided as outlet openings of the installation housing 2, preferably designed as outlet slots 22 with a length L which corresponds to approximately 80% to 90% of the width EB of the installation housing 2.
  • the width T of an outlet slot 22 corresponds to about 3% to 8%, in particular 6% of the length EL of the installation housing 2.
  • the upper side 8 of the installation housing 2 drops from the front side 3 in the direction of the longitudinal axis 10 towards the rear wall 7.
  • the height drop N is about 15% to 20% of the height H of the installation housing 2.
  • the height H of the installation housing 2 corresponds to the height H of the front side 3.
  • battery cells 70, 80 and 90 are arranged in the installation housing 2.
  • the rechargeable battery cells 70 form a first group I, which - as shown in FIGS. 6 and 7 - lie directly behind the front side 3 of the installation housing 2.
  • cooling channels 71, 72, 73, 74, 75, 76, 77 are provided, which are aligned in the longitudinal direction 100, ie in the direction of the longitudinal axis 10.
  • the cooling channels 71, 72, 73, 74, 75, 76, 77 are preferably congruent to the inflow openings 35 for cooling air; in Fig. 6 is exemplified how the cooling air flow 5 enters in the direction of the longitudinal axis 10 in the cooling channel 74.
  • a second group II of AJkkuzellen 80 In the direction of the longitudinal axis 10, ie in the longitudinal direction 100 of the mounting housing 2, is at a distance z, a second group II of AJkkuzellen 80. Between the battery cells 80 are - corresponding to the formation between the battery cells 70 in Group I - cooling channels 81, 82, 83rd , 84, 85, 86, 87 are formed. The cooling channels 81, 82, 83, 84, 85, 86, 87 are aligned in the longitudinal direction 100 of the installation housing 2.
  • the second group II of battery cells 80 is followed by a distance z, a third group III of AJkkuzellen 90, between which in a corresponding manner cooling channels 91, 92, 93, 94, 95, 96, 97 are formed.
  • the cooling channels 91, 92, 93, 94, 95, 96, 97 of the AJkkuzellen 90 Group III are aligned in the longitudinal direction 100 to the longitudinal axis 10 of the mounting housing 2.
  • the cooling channels 71, 72, 73, 74, 75, 76, 77 of the group I are aligned in the longitudinal direction 100 to the cooling channels 81, 82, 83, 84, 85, 86, 87 of the group II and the cooling channels 91, 92, 93, 94, 95, 96, 97 of Group III.
  • the battery cells 70 and 80 have the distance z; In the same way, the group II of the battery cells 80 to the adjacent group III of the battery cells 90 on the distance z.
  • the distances z provided in the longitudinal direction 100 between the groups I, II and III, in each case a gap 30, 31 is formed.
  • a bulkhead 32, 33 is provided in each case, which the intermediate space 30, 31 in an exhaust-carrying collecting space 28 and a Zu- air supplying supply air space 18 divides. This results in particular from the illustrations of FIGS. 8, 9 and 11.
  • the bulkhead 32, 33 formed by a partition plate separates the cooling air channels 71, 72, 73, 74, 75, 76, 77; 81, 82, 83, 84, 85, 86, 87 and 91, 92, 93, 94, 95, 96, 97 of groups I, II and III in groups from each other.
  • the bulkhead 32 covers the end 79 of all cooling channels 71, 72, 73, 74, 75, 76, 77 of the group I, so that all channel ends 79 open into the collecting space 28.
  • the partition 32 between the group I and the group II in gap 30 covers the outlet opening 20, as shown in Fig. 4.
  • the cooling air exiting into the collecting space 28 of the intermediate space 30 can leave the installation housing 2 via the cooling air outlet 20.
  • At least one cooling air flow 5 flows via the inflow openings 35 into a cooling air channel 74 formed between the rechargeable battery cells 70, flows through the channel 74 as far as the channel end 79 (FIG. 9), exits into the collecting space 28 and flows out of the installation housing 2 via the cooling air outlet 20.
  • the first flow path 50 is formed by the inlet air opening 35, the cooling air channel 74 between the battery cells 70 of the group I, the collecting space 28 and the cooling air outlet 20.
  • a second flow path 51 is formed by an inlet air opening 36 on the inflow side 4 of the installation housing 2, a supply air channel 41 which connects the supply air opening 36 with the supply air space 18 in the first intermediate space 30, the cooling channel 84 formed between the battery cells 80 of the second group II Late 89 in the
  • Collecting space 28 of the second intermediate space 31 opens, wherein the collecting space 28 of the intermediate space 31 via the cooling air outlet 21 exits.
  • a third flow path 52 is formed by the supply air opening 46 and the supply air duct 42, which the supply air opening 46 with the air space 18 in the second intermediate space 31st combines.
  • the flow path 52 leads to outlet openings in the rear wall 7 of the installation housing 2 via the cooling air channel 94 between the battery cells 90 of the group III.
  • the cooling air outlet 23 is formed from a plurality of outlet slots 24 in accordance with the design of the inlet air openings 35 in the front side 3 of the installation housing 2.
  • the channel end 99 of the cooling channel 94 is congruent with the outlet slot 24 of the outlet opening 23, so that an immediate outflow of the cooling air along the
  • the supply air duct 41 and the supply air duct 42 of the supply air openings 36 and 46 are then separated from each other on the supply side 4 by an intermediate wall 43. This ensures that the flow paths 51 and 52 of the cooling air can initially form undisturbed.
  • the supply air channels 41 and 42 are brought together in the longitudinal direction 100 to a common channel 40.
  • the cross section of the common supply air duct 40 preferably decreases in the longitudinal direction 100 of the installation housing 2 from the supply air opening 36, 46 in the inflow side 4 in the direction of the rear wall 7 of the installation housing 2. This ensures that the cooling air flowing in the longitudinal direction 100 in the flow path 52 is displaced in the direction of the air space 18 of the intermediate space 31, wherein the flow resistance of the
  • Flow path 52 can be customized.
  • the first cooling air outlet 20 is assigned to the first flow path 50 in a first group I of battery cells 70.
  • the second flow path 51 of a second group II of battery cells 80 is associated with the second cooling air outlet 21.
  • the flow paths 50, 51 are formed such that the cooling air flow 5 of the first flow path 50 is guided separately from the cooling air flow 6 of the second flow path 51 to the first cooling air outlet 20.
  • the cooling air flow 6 of the second flow path 51 is guided separately from the cooling air flow 5 of the first flow path 50 to the second cooling air outlet 28.
  • the flow path 50 of the cooling air through the first group I of battery cells 70 has a first flow resistance.
  • the flow path 51 of the cooling air through the second group II of battery cells 80 has a second flow resistance.
  • the formation of the flow paths 50, 51 is provided so that the first
  • Flow resistance of the first flow path 50 is equal to the second flow resistance of the second flow path 51 is formed.
  • the design of the flow paths 50, 51, 52 is provided so that all in the longitudinal direction 100 of the installation housing 2 consecutive groups I, II, III of battery cells 70, 80, 90 have separate flow paths 50, 51, 52 and the flow resistance of all Flow paths 50, 51, 52 of all groups I, II, III is the same.
  • the flow path 50, 51, 52 of a group I, II, III of battery cells 70, 80, 90 is in each case by a plurality of adjacent cooling air channels 71, 72, 73, 74, 75, 76, 77; 81, 82, 83, 84, 85, 86, 87; 91, 92, 93, 94, 95, 96, 97 in the respective group I, II, III of battery cells 70, 80, 90 are formed.
  • the flow paths 50, 51 are designed such that the cooling air is guided transversely to the longitudinal direction 100 of the installation housing 2 to the respective cooling air outlet 20, 21 in the bottom 9 of the installation housing 2.
  • a cooling air blower 55 which sucks the cooling air flowing over the flow paths 50, 51, 52.
  • the incoming cooling air streams 5 and 6 on the inflow side 4 are thus generated by the cooling fan 55, wherein each cooling air outlet 20, 21, 23 is connected to the suction side 56 of the cooling air blower 55. Due to the special design of the flow paths 50, 51, 52 and the design with approximately the same flow resistance is achieved that all groups I, II, III of battery cells 70, 80, 90 are uniformly cooled.
  • the waste heat of a first group I of rechargeable battery cells 70 thus does not disturb the effective cooling of the subordinate groups II, III of rechargeable battery cells 80, 90 in the flow direction.
  • the cooling-air blower 55 can be provided on a device cabinet 65, for example a 19 "-.
  • the cooling-air blower 55 draws the air out of the equipment cabinet so that air flows in via the front sides of the energy storage devices 1, 1, 1".

Abstract

Die Erfindung betrifft einen Energiespeicher aus einer Anordnung von Akkuzellen (70, 80, 90) in einem Einbaugehäuse (2), wobei in Richtung der Längsachse (10) des Einbaugehäuses (2) Gruppen (I, II, III) von Akkuzellen (70, 80, 90) aufeinander folgen. Innerhalb jeder Gruppe (I, II, III) von Akkuzellen (70, 80, 90) ist ein Strömungspfad (50, 51, 52) für Kühlluft ausgebildet, der eine Zuluftöffnung (35, 36, 46) für einen Kühlluftstrom (5, 6) mit einen Kühlluftauslass (20, 21, 23) verbindet. Zur Erzielung einer effektiven Kühlung ist vorgesehen, einem ersten Strömungspfad (50) in einer ersten Gruppe (I) von Akkuzellen (70) erste Zuluftöffnungen (35) und einen ersten Kühlluftauslass (20) zuzuordnen und einem zweiten Strömungspfad (51) in einer zweiten Gruppe (II) von Akkuzellen (80) zweite Zuluftöffnungen (36) und einen zweiten Kühlluftauslass (21) zuzuordnen. Dabei ist der Kühlluftstrom (5) des ersten Strömungspfades (50) getrennt von dem Kühlluftstrom (6) des zweiten Strömungspfades (51) zu dem ersten Kühlluftauslass (20) geführt und der Kühlluftstrom (6) des zweiten Strömungspfades (51) getrennt von dem Kühlluftstrom (5) des ersten Strömungspfades (50) zu dem zweiten Kühlluftauslass (21) geführt.

Description

Energiespeicher in einem Einbaugehäuse und einem Kühlluftstrom
Die Erfindung betrifft einen Energiespeicher aus einer Anordnung von Akkuzellen in einem Einbaugehäuse. In Richtung der Längsachse des Einbaugehäuses folgen Gruppen von Akkuzellen aufeinander. Innerhalb einer Gruppe von Akkuzellen ist zumindest ein Strömungspfad für Kühlluft ausgebildet, der zumindest eine in einer Zuströmseite des Einbaugehäuses ausgebildete Zuluftöffnung für einen Kühlluftstrom umfasst. Der Kühlluftstrom strömt längs des Strömungspfades zwischen den Akkuzellen durch und über einen Kühlluftauslass ab.
Derartige Energiespeicher werden zum Beispiel als USV (unterbrechungsfreie Stromversorgung) in elektronischen Einrichtungen genutzt, die unabhängig vom öffentlichen Stromnetz unterbrechungsfrei zu betreiben sind.
Die in einem derartigen Energiespeicher angeordneten Akkuzellen geben sowohl bei der Entladung als auch bei der Ladung Wärmeenergie ab, die regelmäßig durch Kühlluft abzuführen ist. Aufgrund der Anordnung von mehreren Gruppen von Akkuzellen in Längsrichtung des Einbaugehäuses hintereinander werden die den Zuluftöffnungen direkt benachbarten Akkuzellen gut gekühlt, während die am Ende des Einbaugehäuses im Strömungspfad der Kühlluft liegenden Akkuzellen aufgrund des bereits aufgewärmten Kühlluftstroms nur mäßig gekühlt werden. Dies kann zu einem vorzeitigen Ausfall des Energiespeichers führen.
Der Erfindung liegt die Aufgabe zugrunde, einen Energiespeicher aus einer Anordnung von Akkuzellen in einem Einbaugehäuse derart zu gestalten, dass alle im Einbaugehäuse aufgenommenen Akkuzellen betriebssicher gekühlt werden.
ilSTÄTiGUNGSÄOÄ Die Aufgabe wird nach den Merkmalen des Anspruchs 1 gelöst.
Einem ersten Strömungspfad einer ersten Gruppe von Akkuzellen ist ein erster Kühlluftauslass zugeordnet. Einem zweiten Strömungspfad einer zweiten Gruppe von Akku- zellen ist ein zweiter Kühlluftauslass zugeordnet. Der Kühlluftstrom des ersten
Strömungspfades wird getrennt von dem Kühlluftstrom des zweiten Strömungspfades zu dem ersten Kühlluftauslass geführt, während der Kühlluftstrom des zweiten
Strömungspfades getrennt von dem Kühlluftstrom des ersten Strömungspfades zu dem zweiten Kühlluftauslass geführt wird. Dem ersten Strömungspfad sind Zuluftöffnungen und dem zweiten Strömungspfad sind - vorzugsweise getrennte - Zuluftöffnungen zugeordnet. Dabei kann es zweckmäßig sein, dem ersten Strömungspfad erste Zuluftöffnungen und dem zweiten Strömungspfad zweite Zuluftöffnungen zuzuordnen. Somit wird jeder Strömungspfad mit unverbrauchter, frischer Kühlluft gespeist. Da jeder der Kühlluftströme über einen ihm zugeordneten Kühlluftauslass abgeführt wird, kann ver- mieden werden, dass die Abwärme einer ersten Gruppe von Akkuzellen die Kühlung einer zweiten Gruppe von Akkuzellen beeinträchtigt. Eine betriebssichere Kühlung durch mehrere voneinander getrennte Kühlluftströme ist gewährleistet.
Der Strömungspfad der Kühlluft durch die erste Gruppe von Akkuzellen weist einen ersten Strömungswiderstand auf; der Strömungspfad der Kühlluft durch eine zweite Gruppe von Akkuzellen weist einen zweiten Strömungswiderstand auf. Nach der Erfindung ist vorgesehen, dass der erste Strömungswiderstand gleich dem zweiten
Strömungswiderstand ist. Damit wird erreicht, dass bei einer Verbindung des ersten Kühlluftauslasses und des zweiten Kühlluftauslasses mit einer gemeinsamen Saugseite eines Kühlluftgebläses der Luftdurchsatz durch den ersten Strömungspfad genauso groß ist wie durch den zweiten Strömungspfad. Insbesondere ist vorgesehen, in Längsrichtung des Einbaugehäuses mehrere Gruppen von Akkuzellen mit voneinander getrennten Strömungspfaden anzuordnen und die Strömungswiderstände der Strömungspfade aller Gruppen gleich auszubilden. Der Kühlluftstrom ist zweckmäßig von einem Kühlluftgebläse erzeugt, wobei die Kühl- luftauslässe gemeinsam mit der Saugseite des Kühlluftgebläses verbunden sind. So können die Energiespeicher in einem Rack (zum Beispiel 19"-Einbaugehäuse) montiert werden, wobei das Kühlluftgebläse einen Unterdruck im Gehäuseraum des Racks selbst erzeugt. Aufgrund dieses an allen Kühlluftauslässen anstehenden gleichen Unterdrucks wird eine gleiche Kühlung aller Gruppen von Akkuzellen erzielt.
Insbesondere ist der Kühlluftauslass als Auslassöffnung des Einbaugehäuses ausgebildet und erstreckt sich quer zur Längsrichtung des Auslassschlitzes über mehr als die Hälfte der Breite einer Gehäuseseite.
Der Strömungspfad einer Gruppe von Akkuzellen ist - in einem Teilabschnitt - quer zur Längsrichtung des Einbaugehäuses zu einem Kühlluftauslass geführt. Ein derartiger Kühlluftauslass kann zum Beispiel im Boden des Einbaugehäuses ausgebildet sein. Der Strömungspfad einer Gruppe von Akkuzellen ist durch zumindest einen Kühlluftkanal gebildet, wobei die Kühlluftkanäle aller Gruppen in Längsrichtung des Einbaugehäuses ausgerichtet liegen. Der Strömungspfad einer Gruppe wird zweckmäßig durch mehrere nebeneinander liegende Kühlluftkanäle in dieser Gruppe von Akkuzellen gebildet.
Zwischen den in Längsrichtung des Einbaugehäuses hintereinander liegenden Gruppen von Akkuzellen ist jeweils ein Zwischenraum ausgebildet. Zwischen benachbarten Gruppen von Akkuzellen wird eine Kühlluft führende Schottwand angeordnet. Die Schottwand ist so vorgesehen, dass sie zuströmende, kühle Zuluft und abströmende, erwärmte Abluft voneinander trennt.
In besonderer Weiterbildung der Erfindung ist vorgesehen, dass der Strömungspfad einer Gruppe in einem Sammelraum mündet, der mit zumindest einem Kühlluftauslass verbunden ist. Zweckmäßig ist der Sammelraum durch die Schottwand begrenzt.
In Weiterbildung der Erfindung ist vorgesehen, in Längsrichtung des Einbaugehäuses der ersten Gruppe von Akkuzellen folgend zumindest die zweite Gruppe von Akkuzellen mit einem zweiten Strömungspfad anzuordnen. Der zweiten Gruppe von Akkuzellen ist ein Zuluftkanal zugeordnet, wobei der Zuluftkanal des zweiten Strömungspfades die Zuluftöffnung für einen Kühlluftstrom mit einem zwischen den Gruppen liegenden Zuluftraum verbindet.
In Weiterbildung der Erfindung ist in Längsrichtung des Einbaugehäuses der zweiten Gruppe von Akkuzellen folgend zumindest eine weitere Gruppe von Akkuzellen mit einem weiteren Strömungspfad vorgesehen, wobei der weiteren Gruppe von Akkuzellen ein weiterer Zuluftkanal zugeordnet ist. Der weitere Zuluftkanal verbindet stromauf des weiteren Strömungspfades die Zuluftöffnung für einen Kühlluftstrom mit einem zwischen den Gruppen liegenden weiteren Zuluftraum.
Es kann zweckmäßig sein, den Querschnitt des Zuluftkanals in Längsrichtung des Einbaugehäuses von der Zuluftöffnung in der Zuströmseite in Richtung auf die Rückwand des Einbaugehäuses abnehmend zu gestalten. Vorteilhaft ist die Ausbildung so vorgesehen, dass der Zuluftkanal in der Höhe abnimmt.
Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und der Zeichnung, in der ein nachfolgend im Einzelnen beschriebenes Ausfuhrungsbeispiel der Erfindung dargestellt ist. Die zu den einzelnen Figuren angegebe- nen Merkmale und Vorteile sind beispielhaft genannt; die Merkmale und Vorteile lassen sich auf alle dargestellten Figuren übertragen und/oder miteinander kombinieren.
Es zeigen:
Fig. 1 eine isometrische Ansicht eines Energiespeichers in einem Einbaugehäuse,
Fig. 2 eine Frontansicht auf die Zuströmseite des Einbaugehäuses nach Fig. 1,
Fig. 3 eine Draufsicht auf das Einbaugehäuse von oben,
Fig. 4 eine Draufsicht auf den Boden des Einbaugehäuses,
Fig. 5 eine Ansicht der Rückwand des Einbaugehäuses nach Fig. 1 ,
Fig. 6 einen Horizontalschnitt durch den Energiespeicher nach Fig. 1 ,
Fig. 7 eine Draufsicht auf den Schnitt nach Fig. 6,
Fig. 8 eine isometrische Darstellung des Energiespeichers mit einem in Längsrichtung geschnittenen Einbaugehäuse,
Fig. 9 eine Seitenansicht der Schnittdarstellung nach Fig. 8,
Fig. 10 eine Seitenansicht auf den Energiespeicher in einem Einbaugehäuse gemäß Fig. 1,
Fig. 11 einen Längsschnitt durch den in einem Einbaugehäuse angeordneten Energiespeicher, Fig. 12 einen Schnitt durch eine Anordnung von mehreren Energiespeichern gemäß Fig. 1,
Fig. 13 eine isometrische Ansicht der Anordnung mehrerer Energiespeicher nach
Fig. 1,
Fig. 14 eine isometrische Seitenansicht auf die Anordnung von Energiespeichern gemäß Fig. 13,
Fig. 15 eine Ansicht auf die Rückwände der Energiespeicher gemäß Pfeil XV in
Fig. 13,
Fig. 16 eine Anordnung mehrerer in einem Aufnahmeschrank angeordneter Energiespeicher gemäß Fig. 1.
Im gezeigten Ausführungsbeispiel ist ein Energiespeicher 1 in einem Einbaugehäuse 2 gezeigt. Das Einbaugehäuse weist eine Frontseite 3 auf, die als Zuströmseite 4 für Kühlluftströme 5, 6 ausgebildet ist.
In der Frontseite 3 sind - wie Fig. 2 zeigt - Reihen 15, 16, 26 von Zuströmöffnungen 35, 36, 46 vorgesehen.
Die Zuströmöffnungen 35 der Reihe 15 sind als Schlitze 45 ausgebildet, die sich über etwa 50% der Höhe H der Frontseite 3 erstrecken. Über die Breite B der Frontseite sind mehrere Schlitze 45 als Zuströmöffnungen 35 vorgesehen, wobei benachbarte Schlitze 45 mit einem Abstand s zueinander liegen. In einem oberen Bereich 13 der Frontseite 3 sind weitere Zuströmörfiiungen 36, 46 vorgesehen, die als Lochreihen ausgebildet sind. Die als Kreisöffnung 34 ausgebildeten Zuströmöffnungen 36, 46 liegen eng benachbart nebeneinander, wobei sich die Lochreihen über etwa zwei Drittel der Breite B der Frontseite 3 erstrecken.
Das Einbaugehäuse 2 weist eine Oberseite 8 (Fig. 1) und einen Boden 9 auf. Das Einbaugehäuse 2 erstreckt sich in Richtung einer Längsachse 10 des Einbaugehäuses 2 von der Frontseite 3 bis zu einer Rückwand 7 in einer Längsrichtung 100.
Wie Fig. 3 zeigt, ragt die Frontseite 3 seitlich über die Längsseiten 11, 12 des Einbaugehäuses 2 hinaus. Der überstehende Rand 14 dient der Montage des Energiespeichers in einen Aufnahmeschrank, zum Beispiel in ein 19"-Rack.
Wie Fig. 3 zeigt, ist die Oberseite 8 des Einbaugehäuses 2 geschlossen; in der Unterseite, dem Boden 9 des Einbaugehäuses 2, sind Kühlluftauslässe 20, 21 ausgebildet, über die Kühlluft abströmt. Die Kühlluftauslässe 20, 21 sind als Auslassöffnungen des Einbaugehäuses 2 vorgesehen, bevorzugt als Auslassschlitze 22 mit einer Länge L ausgebildet, die etwa 80% bis 90% der Breite EB des Einbaugehäuses 2 entspricht. Die Breite T eines Auslassschlitzes 22 entspricht etwa 3% bis 8%, insbesondere 6% der Länge EL des Einbaugehäuses 2.
Wie aus der Darstellung der Fig. 1 und 5 zu entnehmen, fällt die Oberseite 8 des Einbaugehäuses 2 von der Frontseite 3 in Richtung der Längsachse 10 zur Rückwand 7 hin ab. Der Höhenabfall N beträgt etwa 15% bis 20% der Höhe H des Einbaugehäuses 2. Die Höhe H des Einbaugehäuses 2 entspricht der Höhe H der Frontseite 3.
Wie die Fig. 6 und 7 zeigen, sind in dem Einbaugehäuse 2 Akkuzellen 70, 80 und 90 angeordnet. Die Akkuzellen 70 bilden eine erste Gruppe I, die - wie die Fig. 6 und 7 zeigen - unmittelbar hinter der Frontseite 3 des Einbaugehäuses 2 liegen. Zwischen je zwei Akkuzellen 70 sind Kühlkanäle 71, 72, 73, 74, 75, 76, 77 vorgesehen, die in Längsrichtung 100, also in Richtung der Längsachse 10, ausgerichtet liegen.
Die Kühlkanäle 71, 72, 73, 74, 75, 76, 77 liegen vorzugsweise deckungsgleich zu den Zuströmöffnungen 35 für Kühlluft; in Fig. 6 ist beispielhaft wiedergegeben, wie der Kühlluftstrom 5 in Richtung der Längsachse 10 in den Kühlkanal 74 eintritt.
In Richtung der Längsachse 10, also in Längsrichtung 100 des Einbaugehäuses 2, liegt mit einem Abstand z eine zweite Gruppe II von AJkkuzellen 80. Zwischen den Akkuzellen 80 sind - entsprechend der Ausbildung zwischen den Akkuzellen 70 in Gruppe I - Kühlkanäle 81, 82, 83, 84, 85, 86, 87 ausgebildet. Die Kühlkanäle 81, 82, 83, 84, 85, 86, 87 sind in Längsrichtung 100 des Einbaugehäuses 2 ausgerichtet.
Der zweiten Gruppe II von Akkuzellen 80 folgt mit einem Abstand z eine dritte Gruppe III von AJkkuzellen 90, zwischen denen in entsprechender Weise Kühlkanäle 91, 92, 93, 94, 95, 96, 97 ausgebildet sind. Die Kühlkanäle 91, 92, 93, 94, 95, 96, 97 der AJkkuzellen 90 der Gruppe III sind in Längsrichtung 100 zur Längsachse 10 des Einbaugehäuses 2 ausgerichtet.
Wie Fig. 6 und 7 zeigen, liegen die Kühlkanäle 71, 72, 73, 74, 75, 76, 77 der Gruppe I in Längsrichtung 100 ausgerichtet zu den Kühlkanälen 81, 82, 83, 84, 85, 86, 87 der Gruppe II und den Kühlkanälen 91, 92, 93, 94, 95, 96, 97 der Gruppe III. Zwischen der Gruppe I und der Gruppe II weisen die Akküzellen 70 und 80 den Abstand z auf; in gleicher Weise weist die Gruppe II der Akkuzellen 80 zu der benachbarten Gruppe III der Akkuzellen 90 den Abstand z auf. Durch die in Längsrichtung 100 zwischen den Gruppen I, II und III vorgesehenen Abstände z wird jeweils ein Zwischenraum 30, 31 gebildet. In dem Zwischenraum 30, 31 ist jeweils eine Schottwand 32, 33 vorgesehen, die den Zwischenraum 30, 31 in einen abluftführenden Sammelraum 28 und einen Zu- luft zuführenden Zuluftraum 18 aufteilt. Dies ergibt sich insbesondere aus den Darstellungen der Fig. 8, 9 und 1 1.
Die aus einem Schottblech gebildete Schottwand 32, 33 trennt die Kühlluftkanäle 71, 72, 73, 74, 75, 76, 77; 81, 82, 83, 84, 85, 86, 87 und 91, 92, 93, 94, 95, 96, 97 der Gruppen I, II und III gruppenmäßig voneinander ab. So deckt die Schottwand 32 das Ende 79 aller Kühlkanäle 71, 72, 73, 74, 75, 76, 77 der Gruppe I ab, so dass alle Kanalenden 79 in den Sammelraum 28 einmünden. Das Schottblech 32 zwischen der Gruppe I und der Gruppe II in Zwischenraum 30 deckt die Auslassöffnung 20 ab, wie sie in Fig. 4 dargestellt ist. Die in den Sammelraum 28 des Zwischenraums 30 austretende Kühlluft kann das Einbaugehäuse 2 über den Kühlluftauslass 20 verlassen.
Wie in den Fig. 8 und 9 dargestellt, strömt über die Zuströmöffnungen 35 zumindest ein Kühlluftstrom 5 in einen zwischen den Akkuzellen 70 ausgebildeten Kühlluftkanal 74 ein, durchströmt den Kanal 74 bis zum Kanalende 79 (Fig. 9), tritt in den Sammelraum 28 aus und strömt über den Kühlluftauslass 20 aus dem Einbaugehäuse 2 ab. Der erste Strömungspfad 50 ist gebildet durch die Zuluftöffnung 35, den Kühlluftkanal 74 zwischen den Akkuzellen 70 der Gruppe I, den Sammelraum 28 und den Kühlluftauslass 20.
Ein zweiter Strömungspfad 51 ist gebildet durch eine Zuluftöffnung 36 auf der Zuströmseite 4 des Einbaugehäuses 2, einem Zuluftkanal 41, der die Zuluftöffnung 36 mit dem Zuluftraum 18 im ersten Zwischenraum 30 verbindet, dem zwischen den Akkuzellen 80 der zweiten Gruppe II gebildeten Kühlkanal 84, dessen Ende 89 in den
Sammelraum 28 des zweiten Zwischenraums 31 mündet, wobei der Sammelraum 28 des Zwischenraums 31 über den Kühlluftauslass 21 austritt.
Ein dritter Strömungspfad 52 ist gebildet durch die Zuluftöffnung 46 und den Zuluftkanal 42, der die Zuluftöffnung 46 mit dem Luftraum 18 im zweiten Zwischenraum 31 verbindet. Über den Kühlluftkanal 94 zwischen den Akkuzellen 90 der Gruppe III führt der Strömungspfad 52 zu Auslassöffnungen in der Rückwand 7 des Einbaugehäuses 2. Der Kühlluftauslass 23 ist entsprechend den Ausbildungen der Zuluftöffnungen 35 in der Frontseite 3 des Einbaugehäuses 2 aus mehreren Auslassschlitzen 24 gebildet.
Das Kanalende 99 des Kühlkanals 94 liegt deckungsgleich zu dem Auslassschlitz 24 der Auslassöffnung 23, so dass ein unmittelbares Abströmen der Kühlluft längs des
Strömungspfades 52 gewährleistet ist.
Der Zuluftkanal 41 und der Zuluftkanal 42 der Zuluftöffnungen 36 und 46 sind anschließend an die Zuluftseite 4 durch eine Zwischenwand 43 voneinander getrennt. Dadurch wird gewährleistet, dass die Strömungspfade 51 und 52 der Kühlluft sich zunächst störungsfrei ausbilden können. Zweckmäßig werden die Zuluftkanäle 41 und 42 in Längsrichtung 100 zu einem gemeinsamen Kanal 40 zusammengeführt. Der Querschnitt des gemeinsamen Zuluftkanals 40 nimmt vorzugsweise in Längsrichtung 100 des Einbaugehäuses 2 von der Zuluftöffnung 36, 46 in der Zuströmseite 4 in Richtung auf die Rückwand 7 des Einbaugehäuses 2 ab. Dadurch wird gewährleistet, dass die in Längsrichtung 100 zuströmende Kühlluft im Strömungspfad 52 in Richtung auf den Luftraum 18 des Zwischenraums 31 verdrängt wird, wobei der Strömungswiderstand des
Strömungspfades 52 angepasst gestaltet werden kann.
Im gezeigten Ausführungsbeispiel ist dem ersten Strömungspfad 50 in einer ersten Gruppe I von Akkuzellen 70 der erste Kühlluftauslass 20 zugeordnet. Dem zweiten Strömungspfad 51 einer zweiten Gruppe II von Akkuzellen 80 ist der zweite Kühlluftauslass 21 zugeordnet. Die Strömungspfade 50, 51 sind derart ausgebildet, dass der Kühlluftstrom 5 des ersten Strömungspfades 50 getrennt von dem Kühlluftstrom 6 des zweiten Strömungspfades 51 zu dem ersten Kühlluftauslass 20 geführt ist. Der Kühlluftstrom 6 des zweiten Strömungspfades 51 wird getrennt von dem Kühlluftstrom 5 des ersten Strömungspfades 50 zu dem zweiten Kühlluftauslass 28 geführt. Der Strömungspfad 50 der Kühlluft durch die erste Gruppe I von Akkuzellen 70 weist einen ersten Strömungswiderstand auf. Der Strömungspfad 51 der Kühlluft durch die zweite Gruppe II von Akkuzellen 80 weist einen zweiten Strömungswiderstand auf. Die Ausbildung der Strömungspfade 50, 51 ist dabei so vorgesehen, dass der erste
Strömungswiderstand des ersten Strömungspfades 50 gleich dem zweiten Strömungswiderstand des zweiten Strömungspfades 51 ausgebildet ist. Insbesondere ist die Auslegung der Strömungspfade 50, 51, 52 so vorgesehen, dass alle in Längsrichtung 100 des Einbaugehäuses 2 hintereinander liegenden Gruppen I, II, III von Akkuzellen 70, 80, 90 voneinander getrennte Strömungspfade 50, 51 , 52 haben und die Strömungswiderstände aller Strömungspfade 50, 51, 52 aller Gruppen I, II, III gleich ist.
In den Darstellungen der Fig. 8 bis 11 sind die Strömungspfade 50, 51, 52 beispielhaft angegeben. Der Strömungspfad 50, 51, 52 einer Gruppe I, II, III von Akkuzellen 70, 80, 90 ist jeweils durch mehrere nebeneinander liegende Kühlluftkanäle 71, 72, 73, 74, 75, 76, 77; 81, 82, 83, 84, 85, 86, 87; 91, 92, 93, 94, 95, 96, 97 in der jeweiligen Gruppe I, II, III von Akkuzellen 70, 80, 90 gebildet.
Die Strömungspfade 50, 51 sind derart ausgebildet, dass die Kühlluft quer zur Längs- richtung 100 des Einbaugehäuses 2 zu dem jeweiligen Kühlluftauslass 20, 21 im Boden 9 des Einbaugehäuses 2 geführt ist.
In den Fig. 12 bis 16 sind zwei und mehr Energiespeicher 1, Γ, 1 " übereinander angeordnet. Wie insbesondere die Fig. 12 bis 15 zeigen, kommt der in der Höhe abfallenden Oberseite 8 des Einbaugehäuses 2 besondere Bedeutung zu. Werden nämlich zwei
Energiespeicher 1 , Γ bzw. 1 " (Fig. 16) übereinander angeordnet, so bildet sich zwischen dem Boden 9 des Einbaugehäuses 2 des einen Energiespeichers 1 und der Oberseite 8' des Einbaugehäuses 2' des weiteren Energiespeichers 1 ' ein Abluftraum 60 aus, der sich in Strömungsrichtung der Strömungspfade 50, 51 erweitert. Die Erweiterung entspricht dem Höhenabfall N der Oberseite 9 eines Einbaugehäuses 2, 2'.
In besonderer Ausgestaltung der Erfindung ist ein Kühlluftgebläse 55 vorgesehen, welches die über die Strömungspfade 50, 51, 52 strömende Kühlluft absaugt. Die eintretenden Kühlluftströme 5 und 6 auf der Zuströmseite 4 sind somit von dem Kühlgebläse 55 erzeugt, wobei jeder Kühlluftauslass 20, 21, 23 mit der Saugseite 56 des Kühlluftgebläses 55 verbunden ist. Durch die besondere Gestaltung der Strömungspfade 50, 51, 52 und die Auslegung mit etwa gleichem Strömungswiderstand wird erreicht, dass alle Gruppen I, II, III von Akkuzellen 70, 80, 90 gleichmäßig gekühlt werden. Die Abwärme einer ersten Gruppe I von Akkuzellen 70 stört somit die effektive Kühlung der in Strömungsrichtung nachgeordneten Gruppen II, III von Akkuzellen 80, 90 nicht.
Das Kühlluftgebläse 55 kann an einem Geräteschrank 65, zum Beispiel einem 19"- vorgesehen sein. Das Kühlluftgebläse 55 saugt die Luft aus dem Geräteschrank ab, dass Luft über die Frontseiten der Energiespeicher 1, Γ, 1 " nachströmt.

Claims

Ansprüche
Energiespeicher aus einer Anordnung von Akkuzellen (70, 80, 90) in einem Einbaugehäuse (2), wobei in Richtung der Längsachse (10) des Einbaugehäuses (2) Gruppen (I, II, III) von Akkuzellen (70, 80, 90) aufeinander folgen, mit zumindest einem innerhalb einer Gruppe (I, II, III) von Akkuzellen (70, 80, 90) ausgebildeten Strömungspfad (50, 51, 52) für Kühlluft, und mit zumindest einer in einer Zuströmseite (4) des Einbaugehäuses (2) ausgebildeten Zuluftöffnung (35, 36, 46) für einen Kühlluftstrom (5, 6), wobei der Kühlluftstrom (5, 6) längs des Strömungspfades (50, 51, 52) zwischen den Akkuzellen (70, 80, 90) durchströmt und über einen Kühlluftauslass (20, 21, 23) abströmt,
dadurch gekennzeichnet, dass einem ersten Strömungspfad (50) in einer ersten Gruppe (I) von Akkuzellen (70) erste Zuluftöffnungen (35) und ein erster Kühlluftauslass (20) zugeordnet sind, dass einem zweiten Strömungspfad (51) in einer zweiten Gruppe (II) von Akkuzellen (80) zweite Zuluftöffnungen (36) und ein zweiter Kühlluftauslass (21) zugeordnet ist, und dass der Kühlluftstrom (5) des ersten Strömungspfades (50) getrennt von dem Kühlluftstrom (6) des zweiten Strömungspfades (51) zu dem ersten Kühlluftauslass (20) geführt ist, und der Kühlluftstrom (6) des zweiten Strömungspfades (51) getrennt von dem Kühlluftstrom (5) des ersten Strömungspfades (50) zu dem zweiten Kühlluftauslass (21) geführt ist.
Energiespeicher nach Anspruch 1 ,
dadurch gekennzeichnet, dass der Strömungspfad (50) der Kühlluft durch die erste Gruppe (I) von Akkuzellen (70) einen ersten Strömungswiderstand aufweist und der Strömungspfad (52) der Kühlluft durch eine zweite Gruppe (II) von Akkuzellen (80) einen zweiten Strömungswiderstand aufweist, wobei der erste Strömungswiderstand gleich dem zweiten Strömungswiderstand ist.
3. Energiespeicher nach Anspruch 2,
dadurch gekennzeichnet, dass in Längsrichtung (100) des Einbaugehäuses (2) mehrere Gruppen (I, II, III) von Akkuzellen (70, 80, 90) mit voneinander getrennten Strömungspfaden (50, 51, 52) angeordnet sind und die Strömungswiderstände der Strömungspfade (50, 51, 52) aller Gruppen (I, II, III) gleich sind.
4. Energiespeicher nach Anspruch 1,
dadurch gekennzeichnet, dass der Kühlluftstrom (5, 6) von einem Kühlluftgebläse (55) erzeugt ist, wobei der Kühlluftauslass (20, 21, 23) mit der Saugseite (56) des Kühlluftgebläses (55) verbunden ist.
5. Energiespeicher nach Anspruch 4,
dadurch gekennzeichnet, dass der Kühlluftauslass (21, 22) als Auslassöffnung des Einbaugehäuses (2) ausgebildet ist und sich quer zur Längsrichtung (100) als Auslassschlitz (22) über mehr als die Hälfte der Breite (EB) des Einbaugehäuses (2) erstreckt.
Energiespeicher nach Anspruch 1 ,
dadurch gekennzeichnet, dass ein Strömungspfad (50, 51) einer Gruppe (I, II,) von Akkuzellen (70, 80) quer zur Längsrichtung (100) des Einbaugehäuses (2) zu einem Kühlluftauslass (20, 21) geführt ist.
Energiespeicher nach Anspruch 1,
dadurch gekennzeichnet, dass ein Strömungspfad (50, 51, 52) einer Gruppe (I, II, III) von Akkuzellen (70, 80, 90) durch einen Kühlluftkanal (71, 72, 73, 74, 75, 76, 77; 81, 82, 83, 84, 85, 86, 87; 91, 92, 93, 94, 95, 96, 97) gebildet ist, und die Kühlluftkanäle (71, 72, 73, 74, 75, 76, 77; 81, 82, 83, 84, 85, 86, 87; 91, 92, 93, 94, 95, 96, 97) der Gruppen (I, II, III) in Längsrichtung (100) des Einbaugehäuses (2) ausgerichtet liegen.
Energiespeicher nach Anspruch 7,
dadurch gekennzeichnet, dass ein Strömungspfad (50, 51, 52) einer Gruppe (I, II, III) durch mehrere nebeneinander liegende Kühlluftkanäle (71, 72, 73, 74, 75, 76, 77; 81, 82, 83, 84, 85, 86, 87; 91, 92, 93, 94, 95, 96, 97) in der Gruppe (I, II, III) von Akkuzellen (70, 80, 90) gebildet ist.
Energiespeicher nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass zwischen benachbarten Gruppen (I, II, III) von Akkuzellen (70, 80, 90) ein Zwischenraum (30, 31) ausgebildet ist, in dem eine Kühlluft führende Schottwand (32, 33) angeordnet ist.
Energiespeicher nach Anspruch 9,
dadurch gekennzeichnet, dass die Schottwand (32, 33) zuströmende, kühle Zuluft und abströmende, erwärmte Abluft voneinander trennt.
Energiespeicher nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass der Strömungspfad (50, 1) einer Gruppe (I, II,) in einen Sammelraum (28) mündet, der mit einem Kühlluftauslass (20, 21) verbunden ist.
Energiespeicher nach einem der Ansprüche 1 bis 1 1 ,
dadurch gekennzeichnet, dass in Längsrichtung (100) des Einbaugehäuses (2) der ersten Gruppe (I) von Akkuzellen (70) mit dem ersten Strömungspfad (50) zumindest die zweite Gruppe (II) von Akkuzellen (80) mit dem zweiten
Strömungspfad (51) folgt, dass der zweiten Gruppe (II) von Akkuzellen (80) ein Zuluftkanal (40, 41) zugeordnet ist, und der Zuluftkanal (40, 41) stromauf des zweiten Strömungspfades (51) die Zuluftöffnung (36) für einen Kühlluftstrom (6) mit einem zwischen den Gruppen (I, II) liegenden Zuluftraum (18) verbindet.
13. Energiespeicher nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet, dass in Längsrichtung (100) des Einbaugehäuses (2) der zweiten Gruppe (II) von Akkuzellen (80) zumindest eine weitere Gruppe (ΙΠ) von Akkuzellen (90) mit einem weiteren Strömungspfad (52) folgt, dass der weiteren Gruppe (III) von Akkuzellen (90) ein Zuluftkanal (40, 42) zugeordnet ist, und der Zuluftkanal (40, 42) stromauf des weiteren Strömungspfades (52) die Zuluftöffnung (46) für einen Kühlluftstrom (6) mit einem zwischen den Gruppen (II, III) liegenden weiteren Zuluftraum (18) verbindet.
14. Energiespeicher nach Anspruch 12 oder 13,
dadurch gekennzeichnet, dass der Querschnitt des Zuluftkanals (40) in Längsrichtung (100) des Einbaugehäuses (2) von der Zuluftöffnung (36, 46) in der Zuströmseite (4) in Richtung auf eine Rückwand (7) abnimmt.
15. Energiespeicher nach Anspruch 14,
dadurch gekennzeichnet, dass der Zuluftkanal (40) in der Höhe (N) abnimmt.
PCT/EP2016/000930 2016-06-06 2016-06-06 Energiespeicher in einem einbaugehäuse und einem kühlluftstrom WO2017211373A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/306,286 US11088409B2 (en) 2016-06-06 2016-06-06 Energy store in an installation housing and in a cooling air flow
KR1020197000326A KR20190017882A (ko) 2016-06-06 2016-06-06 설치 하우징 및 냉각 공기 플로우 내의 에너지 저장 장치
DE112016006938.3T DE112016006938A5 (de) 2016-06-06 2016-06-06 Energiespeicher in einem Einbaugehäuse und einem Kühlluftstrom
PCT/EP2016/000930 WO2017211373A1 (de) 2016-06-06 2016-06-06 Energiespeicher in einem einbaugehäuse und einem kühlluftstrom
CN201680086464.6A CN109478702B (zh) 2016-06-06 2016-06-06 安装壳体以及冷却空气流中的蓄能器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/000930 WO2017211373A1 (de) 2016-06-06 2016-06-06 Energiespeicher in einem einbaugehäuse und einem kühlluftstrom

Publications (1)

Publication Number Publication Date
WO2017211373A1 true WO2017211373A1 (de) 2017-12-14

Family

ID=56108602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/000930 WO2017211373A1 (de) 2016-06-06 2016-06-06 Energiespeicher in einem einbaugehäuse und einem kühlluftstrom

Country Status (5)

Country Link
US (1) US11088409B2 (de)
KR (1) KR20190017882A (de)
CN (1) CN109478702B (de)
DE (1) DE112016006938A5 (de)
WO (1) WO2017211373A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670607A1 (de) * 1994-03-04 1995-09-06 Deutsche Automobilgesellschaft mbH Batteriekasten
DE19828252A1 (de) * 1998-06-25 1999-12-30 Deutsche Automobilgesellsch Batteriekasten
US20080026284A1 (en) * 2006-07-31 2008-01-31 Kazuhiro Fujii Electric power source
US20130017428A1 (en) * 2011-07-14 2013-01-17 Samsung Sdi Co., Ltd. Rack housing assembly and energy storage apparatus having the same
US20130309532A1 (en) * 2009-08-20 2013-11-21 Lg Chem, Ltd. Battery pack having novel cooling structure
US20160093935A1 (en) * 2014-09-30 2016-03-31 Johnson Controls Technology Company Battery module thermal management features for internal flow

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658715B1 (ko) 2004-10-28 2006-12-15 삼성에스디아이 주식회사 전지 모듈
KR100684770B1 (ko) * 2005-07-29 2007-02-20 삼성에스디아이 주식회사 이차 전지 모듈
KR100684768B1 (ko) 2005-07-29 2007-02-20 삼성에스디아이 주식회사 이차 전지 모듈
US8968904B2 (en) * 2010-04-05 2015-03-03 GM Global Technology Operations LLC Secondary battery module
KR101338275B1 (ko) 2010-11-18 2013-12-06 주식회사 엘지화학 우수한 냉각 효율성의 전지팩

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670607A1 (de) * 1994-03-04 1995-09-06 Deutsche Automobilgesellschaft mbH Batteriekasten
DE19828252A1 (de) * 1998-06-25 1999-12-30 Deutsche Automobilgesellsch Batteriekasten
US20080026284A1 (en) * 2006-07-31 2008-01-31 Kazuhiro Fujii Electric power source
US20130309532A1 (en) * 2009-08-20 2013-11-21 Lg Chem, Ltd. Battery pack having novel cooling structure
US20130017428A1 (en) * 2011-07-14 2013-01-17 Samsung Sdi Co., Ltd. Rack housing assembly and energy storage apparatus having the same
US20160093935A1 (en) * 2014-09-30 2016-03-31 Johnson Controls Technology Company Battery module thermal management features for internal flow

Also Published As

Publication number Publication date
CN109478702A (zh) 2019-03-15
KR20190017882A (ko) 2019-02-20
US20190131677A1 (en) 2019-05-02
CN109478702B (zh) 2022-08-19
US11088409B2 (en) 2021-08-10
DE112016006938A5 (de) 2019-03-14

Similar Documents

Publication Publication Date Title
DE10393165B4 (de) Brennstoffzellenstapel und Betriebsverfahren
DE112011105442B4 (de) Brennstoffzellensystem
DE69916368T2 (de) Partikelfalle im Kühlsystem von Gasturbinen
EP2250684B1 (de) Modulares batteriesystem mit kühlsystem
EP2067206B1 (de) Modulare batterieeinheit
DE102007011152B4 (de) Kühlmittelsammler/-verteiler und Verfahren zum Zuführen und Abführen von Kühlmittel
EP3167507B1 (de) Gehäuse zur aufnahme einer vielzahl von batteriezellen mit einer im gehäuse integrierten kühlungsvorrichtung
DE102017116984B4 (de) Temperiervorrichtung für eine Temperierung eines Batteriesystems sowie Batteriesystem
DE102018116085A1 (de) Hochdrucktank-Befestigungsstruktur
EP2991189B1 (de) Ladegerät für einen akkupack
DE102010016935A1 (de) Axial gekühlter Generator mit mehreren Wegen
DE102012217868A1 (de) Wärmeübertrager
DE102012023682A1 (de) Flüssigkeitsabscheider für ein Brennstoffzellensystem
DE112005001966T5 (de) Brennstoffzellenstapel-Konstruktion und Betriebsverfahren
DE102015116645B4 (de) Brennstoffzelle
WO2017211373A1 (de) Energiespeicher in einem einbaugehäuse und einem kühlluftstrom
EP3350852B1 (de) Gehäuseanordnung für zumindest eine batteriezelle
DE102012207995B4 (de) Kühleinrichtung sowie Energiespeicher mit einer Kühleinrichtung
DE102016109754A1 (de) Brennstoffzelle
DE102018125283A1 (de) Batteriemodul
EP4016783B1 (de) Ladegerät mit ladeelektronikeinheit und kühlluftführungsstruktur
DE102017209604A1 (de) Batteriemodul mit Strömungsleitformation im Modulgehäuse
DE102019213424A1 (de) Akkumulatoranordnung
DE102016111562A1 (de) Filtermedium und Filtervorrichtung mit Ionenaustauschfunktion
DE102014018142A1 (de) Gas/Gas-Befeuchter mit flachen Membranen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16727306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000326

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112016006938

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16727306

Country of ref document: EP

Kind code of ref document: A1