WO2017211279A1 - 一种具有补偿线圈的磁电阻传感器 - Google Patents

一种具有补偿线圈的磁电阻传感器 Download PDF

Info

Publication number
WO2017211279A1
WO2017211279A1 PCT/CN2017/087365 CN2017087365W WO2017211279A1 WO 2017211279 A1 WO2017211279 A1 WO 2017211279A1 CN 2017087365 W CN2017087365 W CN 2017087365W WO 2017211279 A1 WO2017211279 A1 WO 2017211279A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
compensation coil
serpentine
magnetoresistive
magnetoresistive sensor
Prior art date
Application number
PCT/CN2017/087365
Other languages
English (en)
French (fr)
Inventor
迪克詹姆斯·G
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2018563802A priority Critical patent/JP6887165B2/ja
Priority to US16/307,524 priority patent/US10845430B2/en
Priority to EP17809718.4A priority patent/EP3467530B1/en
Publication of WO2017211279A1 publication Critical patent/WO2017211279A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/022Measuring gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/095Magnetoresistive devices extraordinary magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic field sensor, and more particularly to a magnetoresistive sensor having a compensation coil.
  • a typical compensation coil (called a bias strip by Honeywell) is by placing a large serpentine coil over the sensor slice. In this way, the space utilization is low, so that the actual size of the sensor is much larger than the required size.
  • Honeywell's AMR sensor chip uses quadrature magnetic fields with bias strips and reset coils to improve sensitivity and linearity (set/reset coils) and provide closed-loop operation (offset strips).
  • the AMR sensor element has a large area and a high cost.
  • the utility model patent No. 201620296367.7 entitled “A Magnetoresistive Sensor with Initialized Coil Package” uses a spiral initialization coil, the initialization coil is disposed on the substrate, and the sensor is reduced. Hysteresis and drift.
  • the present invention proposes a wafer level compensation coil that utilizes space efficiently in a magnetoresistive sensor.
  • the compensation coil is formed by depositing and etching directly on the wafer using a serpentine coil pattern for driving the sensor in a closed loop mode.
  • the magnetoresistive sensor of the present invention is packaged on a substrate in the form of an LGA, and includes a serpentine initialization coil for control of hysteresis. Since the size of the LGA substrate is not increased by the initialization coil, and if a serpentine compensation coil is used, the size of the sensor slice is smaller than expected, so that the sensor space utilization is improved and the structure is compact, thereby effectively reducing the cost.
  • the present invention proposes a magnetoresistive sensor having a compensation coil.
  • a magnetoresistive sensor having a compensation coil comprising: a silicon substrate, an MR sensor cell string disposed on the silicon substrate, a rectangular soft ferromagnetic flux concentrator, a serpentine compensation coil, a connection circuit, and a pad
  • the MR sensor unit strings are interconnected into a push-pull sensor bridge, and the MR sensor unit string is disposed below a gap between two adjacent soft ferromagnetic flux concentrators, a serpentine compensation coil disposed above the MR sensor cell string and below the gap between the soft ferromagnetic flux concentrators, the serpentine compensation coil having the MR sensor unit A positive current band of the string and a negative current band through a rectangular soft ferromagnetic flux concentrator that connects the sensor bridge arm and the serpentine compensation coil to the package structure.
  • the magnetoresistive sensor is placed on a PCB substrate to form a sensor chip
  • the PCB substrate comprises a spiral initialization coil
  • the sensor chip is disposed on top of the spiral initialization coil, and is initialized by a spiral
  • the direction of the current of the sensor bridge arm of the coil is parallel to the direction of the sensitive axis of the sensor chip.
  • the PCB substrate further includes a lead pad and a conductive trace for interconnecting the sensor into a push-pull sensor bridge, the lead pad being disposed on the PCB substrate At the bottom, the sensor chip and lead pads are packaged in plastic or resin on top of the PCB substrate.
  • the MR sensor unit strings are interconnected into a push-pull full bridge circuit.
  • the magnetoresistive sensor adopts an LGA package structure.
  • the magnetoresistive sensor comprises an ASIC-specific integrated circuit, the ASIC-specific integrated circuit and the sensor bridge being electrically connected.
  • a lead frame is used, and the magnetoresistive sensor is disposed on the lead frame.
  • the lead frame is encapsulated in a plastic.
  • the passivation layer is deposited over the entire sensor chip.
  • the magnetoresistive sensor of the present invention has a smaller size and lower cost, improves the dynamic range and linearity of the magnetoresistive sensor, and can reduce hysteresis, making it easier to operate the magnetic field sensor in the closed loop mode.
  • FIG. 1 is a schematic view showing the distribution of a magnetoresistive sensor having a compensation coil according to the present invention
  • FIG. 2 is a top plan view showing a distribution of a magnetoresistive sensor having a compensation coil according to the present invention
  • FIG. 3 is a schematic diagram showing the simulation of a flux line of a magnetoresistive sensor having a compensation coil according to the present invention
  • FIG. 4 is a schematic view showing magnetic lines of force of a rectangular soft ferromagnetic flux concentrator of the present invention
  • Figure 5 is a schematic view showing the comparison of the magnetic field gain of the serpentine compensation coil of the present invention.
  • FIG. 6 is a schematic diagram of an LGA package according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic circuit diagram of an LGA package according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of an initialization coil used in an LGA package according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic circuit diagram of an initialization coil used in an LGA package according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic view showing the distribution of a magnetoresistive sensor having a compensation coil according to the present invention, comprising a silicon substrate 1, a rectangular soft ferromagnetic flux concentrator 4, a first insulating layer 2, a second insulating layer 3, and a MR sensor unit string. 6.
  • a serpentine compensation coil 7, a passivation layer 5, said MR sensor unit strings 6 are interconnected into a push-pull sensor bridge, said MR sensor unit string 6 being disposed adjacent to two soft ferromagnetic fluxes Below the gap between the concentrators 4, the serpentine compensation coil 7 is disposed above the MR sensor unit string 6 and between the two adjacent soft ferromagnetic flux concentrators 4 Below, the serpentine compensation coil 7 has a positive current band passing through the MR sensor cell string 6 and a negative current band passing through a rectangular soft ferromagnetic flux concentrator, the pad connecting the sensor bridge arm and the serpentine compensation coil to Package structure.
  • the first insulating layer 2 covers the MR sensor cell string 6, and the second insulating layer 3 covers the serpentine compensation coil 7.
  • the passivation layer 5 is deposited on the entire sensor chip.
  • FIG. 2 is a top plan view showing a distribution of a magnetoresistive sensor having a compensation coil according to the present invention, wherein 10 is a connection line connecting the MR sensor unit strings, 11 is a feedback coil contact electrode, and 12 is a negative contact electrode of the sensor bridge arm, 13 Is the positive contact electrode of the sensor bridge arm, 14 is the positive contact electrode of the other sensor bridge arm, 15 is the negative contact electrode of the other sensor bridge arm, and the MR sensor unit string is arranged in the rectangular soft ferromagnetic flux concentrator The gap between the MR sensor unit strings is electrically connected. The pad connects the sensor bridge arm and the serpentine compensation coil to the package structure.
  • FIG. 3 is a schematic diagram showing the magnetic lines of force of a magnetoresistive sensor having a compensation coil according to the present invention, wherein 21 indicates that the MR sensor unit is located below a position where a serpentine compensation coil generates a positive current, wherein the MR sensor unit is composed of an MR sensor unit.
  • String composition, 22 represents magnetic lines of force.
  • a rectangular soft ferromagnetic flux concentrator is disposed at the upper end of the serpentine compensation coil. As the current flows in the direction as shown, the direction of the magnetic field generated in the rectangular soft ferromagnetic flux concentrator is To the right.
  • the MR sensor unit is disposed below the rectangular soft ferromagnetic flux concentrator and has an opposite current polarity at the gap of the serpentine compensation coil.
  • the MR sensor from the serpentine compensation coil The magnetic field of the unit is also towards the right.
  • the gap of the rectangular soft ferromagnetic flux concentrator is sufficiently small, the magnetic field directed toward the right on the rectangular soft ferromagnetic flux concentrator is concentrated in the MR sensor unit in the gap, increasing the magnetic field of the serpentine compensation coil of the MR sensor unit .
  • This arrangement enhances the magnetic field of the serpentine compensation coil and increases the efficiency of the serpentine compensation coil.
  • Figure 4 is a schematic view of magnetic lines of force without a rectangular soft ferromagnetic flux concentrator. As shown in the drawing, when there is no rectangular soft ferromagnetic flux concentrator, the distribution of the magnetic fields is different between the strings of the MR sensor elements. The magnetic field of the serpentine compensation coil is not increased to the magnetic field of the MR sensor unit string, and the magnetic field gain is smaller than the magnetic field at which the MR magnetoresistive element is located. Therefore, the efficiency is very low.
  • FIG. 5 is a schematic diagram showing the comparison of the magnetic field gain of the serpentine compensation coil of the present invention, wherein the dark color is represented as a gain diagram of the magnetic field of the serpentine compensation coil when the rectangular soft ferromagnetic flux concentrator is disposed, and the magnetic field gain in the middle of the magnetoresistive sensor is greater than 1G/mA, light color indicates the gain of the magnetic field of the serpentine compensation coil when the rectangular soft ferromagnetic flux concentrator is not provided.
  • the magnetic field gain in the middle of the MR magnetoresistive sensor is about 0.8G/mA.
  • the rectangular soft ferromagnetic flux concentrator has a great influence on the magnetic field gain of the serpentine compensation coil, and the magnetic field efficiency generated by the serpentine compensation coil is increased by the rectangular soft ferromagnetic flux concentrator.
  • FIG. 6 is a schematic diagram of an LGA package according to Embodiment 1 of the present invention, wherein 16 is a pad on the back side of the substrate, a back surface of the magnetoresistive sensor, 17 is a chip A, 18 is a chip B, and the chip B is a chip A flipped 180.
  • the PCB is in the form of an LGA package.
  • the reference layer pinning direction of the chip A is from left to right
  • the reference layer pinning direction of the chip B is opposite to the reference layer pinning direction of the chip A.
  • the chip A and the chip B are composed of a sensor bridge composed of a plurality of MR sensor unit strings, and a rectangular soft ferromagnetic flux concentrator, wherein the MR sensor unit strings are interconnected into a push-pull sensor bridge, and the MR sensor unit string is set. Below the gap between two adjacent rectangular soft ferromagnetic flux concentrators.
  • FIG. 7 is a schematic circuit diagram of an LGA package according to Embodiment 1 of the present invention.
  • the chip A and the chip B constitute a full bridge circuit, and the current direction of the compensation coil A disposed above the chip A and the current of the chip A are shown. The direction is the same, set above the chip B The current direction of the compensation coil coincides with the current direction of the chip B.
  • FIG. 8 is a schematic diagram of a LGA package using a spiral initialization coil according to a second embodiment of the present invention.
  • a spiral initialization coil is added, and the magnetic field generated by the spiral initialization coil on the chip A and the chip B is opposite.
  • the direction of the magnetic field generated by the spiral initializing coil is perpendicular to the direction of the magnetic field of the serpentine compensation coil.
  • the magnetoresistive sensor is placed on a PCB substrate to form a sensor chip, the PCB substrate includes a spiral initialization coil, the sensor chip is disposed at the top of the spiral initialization coil, and the current of the coil sensor bridge arm is initialized by the spiral
  • the direction is parallel to the sensitive axis of the sensor chip.
  • the PCB substrate further includes a lead pad and a conductive trace for interconnecting the MR sensor cell string into a push-pull sensor bridge, the lead pad being disposed on the PCB At the bottom of the substrate, the sensor chip and the lead pads are encapsulated on the top of the PCB substrate using plastic or resin.
  • FIG. 9 is a schematic circuit diagram of a LGA package using a spiral initialization coil according to a second embodiment of the present invention.
  • the chip A and the chip B constitute a full bridge circuit, and the current direction and the chip of the compensation coil A disposed above the chip A are shown.
  • the current direction of A is the same
  • the current direction of the compensation coil disposed above the chip B is the same as the current direction of the chip B
  • the direction of the magnetic field generated by the initialization coil and the compensation coil is perpendicular to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种具有补偿线圈的磁电阻传感器,包括硅基片(1)、以及设置在硅基片(1)上的MR传感器单元串(6)、矩形软铁磁磁通集中器(4)、蛇形补偿线圈(7)、连接电路和焊盘(16),MR传感器单元串(6)互连接成推挽式传感器电桥,MR传感器单元串(6)设置在相邻两个软铁磁磁通集中器(4)之间间隙的下方,蛇形补偿线圈(7)具有通过MR传感器单元串(6)的正极电流带和通过矩形软铁磁磁通集中器(4)的负极电流带,焊盘(16)将传感器桥臂和蛇形补偿线圈(7)连接到封装结构。该磁电阻传感器还包括螺旋初始化线圈,初始化线圈放置在封装衬底上,传感器芯片放置在初始化线圈上,用于减少磁滞。该磁电阻传感器尺寸更小,成本更低,提高了传感器动态范围、线性度,减少磁滞,使得在闭环模式下运行磁场传感器变得更加容易。

Description

一种具有补偿线圈的磁电阻传感器 技术领域
本发明涉及磁场传感器,尤其涉及一种具有补偿线圈的磁电阻传感器。
背景技术
磁传感器的许多应用需要闭环操作,这样可以提高传感器动态范围和线性度,并能够减少磁滞。晶圆级补偿线圈的应用使得在闭环模式下运行磁传感器变得更加容易。
典型的补偿线圈(霍尼韦尔公司称为偏置条)通过是把一个大的蛇形线圈放置在传感器切片的上方。这样,空间利用率低下,使传感器实际尺寸远大于所需要的尺寸。霍尼韦尔公司的AMR传感器芯片,利用偏置条和复位线圈产生正交磁场,可以提高灵敏度和线性度(置位/复位线圈),并提供闭环操作(偏置条)的能力。但AMR传感器元件面积较大,并且成本较高。
现有技术中,申请号为201620296367.7、发明名称为“一种具有初始化线圈封装的磁电阻传感器”的实用新型专利使用了一种螺旋初始化线圈,初始化线圈设置在所述的基板上,减少了传感器的磁滞和漂移。
本发明提出了一种在磁电阻传感器中高效利用空间的晶圆级补偿线圈,该补偿线圈使用蛇形盘绕图案,直接在晶圆上沉积刻蚀形成,用于在闭环模式下驱动传感器。本发明的磁电阻传感器以LGA形式封装于衬底上,包含有用于磁滞的控制的蛇形初始化线圈。因为LGA衬底的尺寸没有因为初始化线圈而增加,并且如果使用蛇形补偿线圈,传感器切片的尺寸比预期的要小,使得传感器空间利用率提高,结构紧凑,从而有效降低成本。
发明内容
为了解决上述技术问题,本发明提出了一种具有补偿线圈的磁电阻传感器。
本发明是根据以下的技术方案实现的:
一种具有补偿线圈的磁电阻传感器,其特征在于:包括硅基片,以及设置在硅基片上的MR传感器单元串、矩形软铁磁磁通集中器、蛇形补偿线圈、连接电路和焊盘;所述的MR传感器单元串互连接成推挽式传感器电桥,所述的MR传感器单元串设置在相邻两个所述的软铁磁磁通集中器之间的间隙的下方,所述的蛇形补偿线圈设置在所述的MR传感器单元串的上方、且在所述的软铁磁磁通集中器之间间隙的下方,所述的蛇形补偿线圈具有通过所述的MR传感器单元串的正极电流带和通过矩形软铁磁磁通集中器的负极电流带,所述的焊盘将传感器桥臂和蛇形补偿线圈连接到封装结构。
优选地,所述的磁电阻传感器放置在一个PCB衬底上形成传感器芯片,所述的PCB衬底包含螺旋初始化线圈,所述的传感器芯片设置在所述的螺旋初始化线圈的顶部,通过螺旋初始化线圈所述的传感器桥臂的电流的方向平行于传感器芯片的敏感轴方向。
所述的PCB衬底还包括引线焊盘和导电迹线,所述的引线焊盘和导电迹线用于将传感器互连成一个推挽式传感器电桥,引线焊盘设置在PCB衬底的底部,传感器芯片和引线焊盘采用塑料或者树脂封装在PCB衬底的顶端。
优选地,所述的MR传感器单元串互连接成推挽式全桥电路。
优选地,所述的磁电阻传感器采用LGA封装结构。
优选地,所述磁电阻传感器包括ASIC专用集成电路,所述ASIC专用集成电路和所述传感器电桥之间电连接。
优选地,使用一个引线框,所述磁电阻传感器设置在所述的引线框上。
优选地,所述的引线框封装在塑料中。
优选地,还包括第一绝缘层、第二绝缘层、钝化层,所述的第一绝缘层覆盖所述的MR磁电阻元件串,所述的第二绝缘层覆盖所述的蛇形补偿线圈,所述的钝化层沉积在整个传感器芯片上。
本发明的磁电阻传感器的尺寸更小,成本更低,提高了磁电阻传感器动态范围、线性度,并能够减少滞后,使得在闭环模式下运行磁场传感器变得更加容易。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1为本发明的一种具有补偿线圈的磁电阻传感器分布示意图;
图2为本发明的一种具有补偿线圈的磁电阻传感器分布俯视示意图;
图3为本发明的一种具有补偿线圈的磁电阻传感器的通量线的模拟示意图;
图4为本发明没有矩形软铁磁磁通集中器的磁力线的示意图;
图5为本发明蛇形补偿线圈的磁场增益比较示意图;
图6为本发明实施例一的LGA封装的示意图;
图7为本发明实施例一的LGA封装的电路示意图;
图8为本发明实施例二的LGA封装使用初始化线圈的示意图;
图9为本发明实施例二的LGA封装使用初始化线圈的电路示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
图1为本发明的一种具有补偿线圈的磁电阻传感器分布示意图,包括硅基片1,矩形软铁磁磁通集中器4,第一绝缘层2,第二绝缘层3,MR传感器单元串6,蛇形补偿线圈7,钝化层5,所述的MR传感器单元串6互连接成推挽式传感器电桥,所述的MR传感器单元串6设置在相邻两个软铁磁磁通集中器4之间间隙的下方,所述的蛇形补偿线圈7设置在所述的MR传感器单元串6的上方、且在相邻两个所述的软铁磁磁通集中器4之间间隙的下方,所述的蛇形补偿线圈7具有通过MR传感器单元串6的正极电流带和通过矩形软铁磁磁通集中器的负极电流带,焊盘将传感器桥臂和蛇形补偿线圈连接到封装结构。第一绝缘层2覆盖所述的MR传感器单元串6,第二绝缘层3覆盖所述的蛇形补偿线圈7。所述的钝化层5沉积在整个传感器芯片上。
图2为本发明的一种具有补偿线圈的磁电阻传感器分布俯视示意图,其中,10为连接MR传感器单元串的连接线,11表示反馈线圈接触电极,12为传感器桥臂的负接触电极,13为传感器桥臂的正接触电极,14为另一个传感器桥臂的正接触电极,15为另一个传感器桥臂的负接触电极,所述的MR传感器单元串设置在矩形软铁磁磁通集中器之间的间隙,MR传感器单元串之间电连接。所述的焊盘将传感器桥臂和蛇形补偿线圈连接到封装结构。
图3为本发明的一种具有补偿线圈的磁电阻传感器的磁力线的模拟示意图,其中21表示MR传感器单元位于蛇形补偿线圈产生正电流位置的下方,其中,所述MR传感器单元由MR传感器单元串组成,22表示磁力线。根据附图3所示,矩形软铁磁磁通集中器设置在蛇形补偿线圈的上端,随着电流流进如图所示的方向,在矩形软铁磁磁通集中器产生的磁场方向是向右的。同样地,MR传感器单元设置在矩形软铁磁磁通集中器的下方并在蛇形补偿线圈的间隙处,有个相反的电流极性。通过这样的设置,来自蛇形补偿线圈的MR传感器 单元的磁场也是朝右的。当矩形软铁磁磁通集中器的间隙足够小时,矩形软铁磁磁通集中器上方向朝右的磁场聚集在处于间隙中的MR传感器单元,增加在MR传感器单元的蛇形补偿线圈的磁场。这种设置方式增强了蛇形补偿线圈的磁场,并提高了蛇形补偿线圈的效率。
图4为没有矩形软铁磁磁通集中器的磁力线的示意图,如附图所示,当没有矩形软铁磁磁通集中器时,磁场的分布是不同的,在MR传感器单元串之间的蛇形补偿线圈的磁场没有增加到MR传感器单元串的磁场,磁场增益比MR磁电阻元件所处位置的磁场要小。因此,效率是很低的。
图5为本发明蛇形补偿线圈的磁场增益比较示意图,其中深色表示为设置有矩形软铁磁磁通集中器时的蛇形补偿线圈磁场的增益示意图,在磁电阻传感器中间的磁场增益大于1G/mA,浅色表示未设置有矩形软铁磁磁通集中器时的蛇形补偿线圈磁场的增益示意图,在MR磁电阻传感器中间的磁场增益大约为0.8G/mA,因此,从图中可以看出,矩形软铁磁磁通集中器对于蛇形补偿线圈磁场增益是很大的影响,蛇形补偿线圈产生的磁场效率通过矩形软铁磁磁通集中器而增加。
图6为本发明实施例一的LGA封装的示意图,16表示为衬底背面的焊盘,磁电阻传感器的背面,17表示芯片A,18表示芯片B,所述的芯片B为芯片A翻转180度得到的,PCB采用LGA封装的形式。从图中可以看出,芯片A的参考层钉扎方向是从左到右,而芯片B的参考层钉扎方向与芯片A的参考层钉扎方向相反。芯片A和芯片B由多个MR传感器单元串构成的传感器电桥,以及矩形软铁磁磁通集中器等构成,其中MR传感器单元串互连接成推挽式传感器电桥,MR传感器单元串设置在相邻两个所述的矩形软铁磁磁通集中器之间间隙的下方。
图7为本发明实施例一的LGA封装的电路示意图,从图中可以看出,芯片A和芯片B构成全桥电路,而设置在芯片A上方的补偿线圈A的电流方向与芯片A的电流方向一致,设置在芯片B上方的 补偿线圈的电流方向与芯片B的电流方向一致。
图8为本发明实施例二的LGA封装使用螺旋初始化线圈的示意图,实施例二在实施例一的基础上,增加了螺旋初始化线圈,螺旋初始化线圈在芯片A和芯片B上产生的磁场方向相反,螺旋初始化线圈产生的磁场方向与蛇形补偿线圈的磁场方向相互垂直。磁电阻传感器放置在一个PCB衬底上形成传感器芯片,所述的PCB衬底包含螺旋初始化线圈,所述的传感器芯片设置在所述的螺旋初始化线圈的顶部,通过螺旋初始化线圈传感器桥臂的电流的方向平行于传感器芯片的敏感轴方向。
所述的PCB衬底还包括引线焊盘和导电迹线,所述的引线焊盘和导电迹线用于将MR传感器单元串互连成一个推挽式传感器电桥,引线焊盘设置在PCB衬底的底部,传感器芯片和引线焊盘采用塑料或者树脂封装在PCB衬底的顶端。
图9为本发明实施例二的LGA封装使用螺旋初始化线圈的电路示意图,如图所示,芯片A和芯片B构成了全桥电路,而设置在芯片A上方的补偿线圈A的电流方向与芯片A的电流方向一致,设置在芯片B上方的补偿线圈的电流方向与芯片B的电流方向一致,所述的初始化线圈与补偿线圈所产生的磁场方向是相互垂直的。
基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。

Claims (9)

  1. 一种具有补偿线圈的磁电阻传感器,其特征在于:包括硅基片,以及设置在硅基片上的MR传感器单元串、矩形软铁磁磁通集中器、蛇形补偿线圈、连接电路和焊盘;所述的MR传感器单元串互连接成推挽式传感器电桥,所述的MR传感器单元串设置在相邻两个所述的软铁磁磁通集中器之间间隙的下方,所述的蛇形补偿线圈设置在所述的MR传感器单元串的上方、且在相邻两个所述的软铁磁磁通集中器之间间隙的下方,所述的蛇形补偿线圈具有通过所述的MR传感器单元串的正极电流带和通过矩形软铁磁磁通集中器的负极电流带,所述的焊盘将传感器桥臂和蛇形补偿线圈连接到封装结构。
  2. 根据权利要求1所述的一种具有补偿线圈的磁电阻传感器,其特征在于:所述的磁电阻传感器放置在一个PCB衬底上形成传感器芯片,所述的PCB衬底包含螺旋初始化线圈,所述的传感器芯片设置在所述的螺旋初始化线圈的顶部,通过螺旋初始化线圈所述的传感器桥臂的电流的方向平行于传感器芯片的敏感轴方向。
  3. 根据权利要求2所述的一种具有补偿线圈的磁电阻传感器,其特征在于:所述的PCB衬底还包括引线焊盘和导电迹线,所述的引线焊盘和导电迹线用于将MR传感器单元串互连成一个推挽式传感器电桥,引线焊盘设置在PCB衬底的底部,传感器芯片和引线焊盘采用塑料或者树脂封装在PCB衬底的顶端。
  4. 根据权利要求1所述的一种具有补偿线圈的磁电阻传感器,其特征在于:所述的MR传感器单元串互连接成推挽式全桥电路。
  5. 根据权利要求1所述的一种具有补偿线圈的磁电阻传感器,其特征在于:所述的磁电阻传感器采用LGA封装结构。
  6. 根据权利要求1或2所述的一种具有补偿线圈的磁电阻传感器,其特征在于:包括ASIC专用集成电路,所述ASIC专用集成电路和所述传感器电桥之间电连接。
  7. 根据权利要求1所述的一种具有补偿线圈的磁电阻传感器,其 特征在于:使用一个引线框,所述磁电阻传感器设置在所述的引线框上。
  8. 根据权利要求7所述的一种具有补偿线圈的磁电阻传感器,其特征在于:所述的引线框封装在塑料中。
  9. 根据权利要求1所述的一种具有补偿线圈的磁电阻传感器,其特征在于:还包括第一绝缘层、第二绝缘层、钝化层,所述的第一绝缘层覆盖所述的MR传感器单元串,所述的第二绝缘层覆盖所述的蛇形补偿线圈,所述的钝化层沉积在整个传感器芯片上。
PCT/CN2017/087365 2016-06-07 2017-06-07 一种具有补偿线圈的磁电阻传感器 WO2017211279A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018563802A JP6887165B2 (ja) 2016-06-07 2017-06-07 補償コイルを有する磁気抵抗センサ
US16/307,524 US10845430B2 (en) 2016-06-07 2017-06-07 Magnetoresistive sensor with compensating coil
EP17809718.4A EP3467530B1 (en) 2016-06-07 2017-06-07 Magnetoresistive sensor having compensating coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610397752.5 2016-06-07
CN201610397752.5A CN107479010B (zh) 2016-06-07 2016-06-07 一种具有补偿线圈的磁电阻传感器

Publications (1)

Publication Number Publication Date
WO2017211279A1 true WO2017211279A1 (zh) 2017-12-14

Family

ID=60578400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087365 WO2017211279A1 (zh) 2016-06-07 2017-06-07 一种具有补偿线圈的磁电阻传感器

Country Status (5)

Country Link
US (1) US10845430B2 (zh)
EP (1) EP3467530B1 (zh)
JP (1) JP6887165B2 (zh)
CN (1) CN107479010B (zh)
WO (1) WO2017211279A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845430B2 (en) 2016-06-07 2020-11-24 MultiDimension Technology Co., Ltd. Magnetoresistive sensor with compensating coil
CN112005126A (zh) * 2018-03-29 2020-11-27 Tdk株式会社 磁传感器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037382B (zh) * 2017-04-05 2023-05-30 江苏多维科技有限公司 一种预调制磁电阻传感器
CN108318838B (zh) * 2018-03-06 2024-06-04 美新半导体(无锡)有限公司 设置有自检线圈的磁电阻传感器
CN108535667B (zh) * 2018-03-26 2019-10-18 中国科学院电子学研究所 基于双补偿线圈的航空磁场补偿多线圈系统
CN111586960B (zh) 2019-02-15 2021-09-14 华为技术有限公司 一种抗干扰电路板及终端
CN109932670B (zh) * 2019-03-27 2021-06-29 三峡大学 基于上电置位的闭环tmr磁场测量装置
JP7375419B2 (ja) 2019-09-26 2023-11-08 Tdk株式会社 磁気センサ
CN110780243A (zh) * 2019-11-19 2020-02-11 中国电子科技集团公司第四十九研究所 用于水下导航的高灵敏度微型磁传感单元、含有该传感单元的传感器及传感单元的制备方法
JP7354836B2 (ja) * 2019-12-25 2023-10-03 Tdk株式会社 磁気センサ
CN111198342B (zh) * 2020-01-10 2021-07-06 江苏多维科技有限公司 一种谐波增宽线性范围的磁电阻传感器
JP2021117004A (ja) * 2020-01-22 2021-08-10 株式会社東芝 チップパッケージ
JP7393319B2 (ja) * 2020-12-03 2023-12-06 株式会社東芝 磁気センサ及び検査装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161759A1 (en) * 2010-12-27 2012-06-28 Stmicroelectronics S.R.L. Magnetoresistive sensor with reduced parasitic capacitance, and method
CN103091649A (zh) * 2011-10-28 2013-05-08 爱盛科技股份有限公司 磁感测装置
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103995240A (zh) * 2014-05-30 2014-08-20 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN105093139A (zh) * 2015-06-09 2015-11-25 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器
CN205720615U (zh) * 2016-06-07 2016-11-23 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064357A2 (en) * 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. Flux guides for magnetic field sensors and memories
WO2009151024A1 (ja) * 2008-06-11 2009-12-17 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
EP2333573B1 (en) * 2009-11-30 2012-10-24 STMicroelectronics Srl Integrated magnetic sensor for detecting horizontal magnetic fields and manufacturing process thereof
CN102298125B (zh) * 2011-03-03 2013-01-23 江苏多维科技有限公司 推挽桥式磁电阻传感器
DE102011107703B4 (de) 2011-07-13 2015-11-26 Micronas Gmbh Integrierter Stromsensor
CN102540113B (zh) * 2011-11-11 2014-07-02 江苏多维科技有限公司 磁场传感器
CN105143902B (zh) * 2013-03-18 2018-01-23 日立金属株式会社 磁传感器
JP2016075620A (ja) * 2014-10-08 2016-05-12 ヤマハ株式会社 物理量センサ
CN205581283U (zh) 2016-04-11 2016-09-14 江苏多维科技有限公司 一种具有初始化线圈封装的磁电阻传感器
CN107479010B (zh) 2016-06-07 2019-06-04 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器
CN108072850B (zh) * 2016-11-09 2020-06-12 爱盛科技股份有限公司 磁场感测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120161759A1 (en) * 2010-12-27 2012-06-28 Stmicroelectronics S.R.L. Magnetoresistive sensor with reduced parasitic capacitance, and method
CN103091649A (zh) * 2011-10-28 2013-05-08 爱盛科技股份有限公司 磁感测装置
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103995240A (zh) * 2014-05-30 2014-08-20 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN105093139A (zh) * 2015-06-09 2015-11-25 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器
CN205720615U (zh) * 2016-06-07 2016-11-23 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467530A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845430B2 (en) 2016-06-07 2020-11-24 MultiDimension Technology Co., Ltd. Magnetoresistive sensor with compensating coil
CN112005126A (zh) * 2018-03-29 2020-11-27 Tdk株式会社 磁传感器
EP3779490A4 (en) * 2018-03-29 2021-12-22 TDK Corporation MAGNETIC SENSOR
US11442120B2 (en) 2018-03-29 2022-09-13 Tdk Corporation Magnetic sensor with compensation coil for cancelling magnetic flux applied to a magneto-sensitive element

Also Published As

Publication number Publication date
CN107479010A (zh) 2017-12-15
US20190346514A1 (en) 2019-11-14
US10845430B2 (en) 2020-11-24
EP3467530A4 (en) 2019-12-25
CN107479010B (zh) 2019-06-04
JP2019518956A (ja) 2019-07-04
EP3467530B1 (en) 2022-08-03
JP6887165B2 (ja) 2021-06-16
EP3467530A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
WO2017211279A1 (zh) 一种具有补偿线圈的磁电阻传感器
US9722175B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
JP6018093B2 (ja) 単一パッケージブリッジ型磁界角度センサ
JP6376995B2 (ja) 集積化センサの配列
CN205720615U (zh) 一种具有补偿线圈的磁电阻传感器
EP3088907B1 (en) High-sensitivity push-pull bridge magnetic sensor
US9664754B2 (en) Single chip push-pull bridge-type magnetic field sensor
US10126378B2 (en) Single-chip Z-axis linear magnetic resistance sensor
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
US9857434B2 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
US20160097828A1 (en) Single-package bridge-type magnetic field sensor
WO2015158243A1 (zh) 一种单芯片三轴线性磁传感器及其制备方法
US20160169982A1 (en) Single chip push-pull bridge-type magnetic field sensor
US9322889B2 (en) Low hysteresis high sensitivity magnetic field sensor
WO2017177877A1 (zh) 一种具有初始化线圈封装的磁电阻传感器
US20130127454A1 (en) Magnetic field sensor including an anisotropic magnetoresistive magnetic sensor and a hall magnetic sensor
CN203233390U (zh) 推挽式芯片翻转半桥磁阻开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017809718

Country of ref document: EP

Effective date: 20190107