WO2017210964A1 - 裸眼立体显示设备 - Google Patents

裸眼立体显示设备 Download PDF

Info

Publication number
WO2017210964A1
WO2017210964A1 PCT/CN2016/090602 CN2016090602W WO2017210964A1 WO 2017210964 A1 WO2017210964 A1 WO 2017210964A1 CN 2016090602 W CN2016090602 W CN 2016090602W WO 2017210964 A1 WO2017210964 A1 WO 2017210964A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
stereoscopic display
naked
eye stereoscopic
Prior art date
Application number
PCT/CN2016/090602
Other languages
English (en)
French (fr)
Inventor
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/124,332 priority Critical patent/US20180217390A1/en
Publication of WO2017210964A1 publication Critical patent/WO2017210964A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a naked eye stereoscopic display device.
  • 3D display technology has become an inevitable development trend of future display technology because it can reproduce the cognitive modes familiar to human beings in nature. Among them, naked-eye 3D technology is popular because it has got rid of complicated auxiliary equipment.
  • grating technology can effectively block image crosstalk between different viewpoints, and has better stereoscopic display effect, but it also faces the loss of brightness.
  • the lens-based naked-eye 3D scheme has become a superior technical solution because it can minimize the influence on the brightness of 2D images.
  • FIG. 1 is a schematic structural view of a conventional lenticular stereoscopic stereoscopic display, including an LED 101, a light guide plate 102, a diffusion sheet 103, a lower polarizer 12, a liquid crystal panel 13, an upper polarizer 14, and a lens layer 3D module 15.
  • the sub-pixels corresponding to the liquid crystal panel 13 are usually placed at the focal plane position of the lens layer 3D module 15. Since the focal length of the lens layer 3D module 15 is usually about 600-1000 ⁇ m, the thickness of the 3D display is objectively increased.
  • the structure of the diffusion sheet 103 is generally used to homogenize the light field.
  • FIG. 2 is a graph of the light field of the display of FIG.
  • FIG. 3 The brightness of the primary viewpoint 16 is shown in FIG. 3 as a schematic diagram of the display of FIG.
  • An object of the present invention is to provide a naked eye stereoscopic display device capable of solving the prior art
  • the display thickness is too large and the sub-viewpoint has a problem that the brightness of the main viewpoint is lowered.
  • a technical solution adopted by the present invention is to provide a naked-eye stereoscopic display device, which includes a backlight module, a liquid crystal panel, and a lens assembly, which are sequentially stacked, and the lens assembly includes a predetermined a plurality of lens units arranged in a manner, wherein, in an arrangement direction of the lens unit, a light intensity of an output light of the backlight module is less than or equal to 5° with a full width at half angle of an angle change curve, and the lens unit is predetermined a lenticular lens arranged in sequence;
  • the backlight module includes a light source and a light guide plate, the light guide plate includes a light emitting surface, a bottom surface opposite to the light emitting surface, and a plurality of sides connecting the light emitting surface and the bottom surface, wherein The thickness of the light guide plate changes stepwise, and the light source is disposed on a side of the light guide plate having a relatively small thickness.
  • the bottom surface includes a plurality of parallel portions parallel to the light exit surface and spaced apart from each other and a light extraction portion connected between the parallel portions, wherein a distance between the parallel portions and the light exit surface is away The direction of the light source gradually becomes larger.
  • the light extraction portion when viewed perpendicular to the light-emitting surface, the light extraction portion is disposed in an arc shape, and the arc center of the light extraction portion and the light source are located on opposite sides of the light extraction portion.
  • the arc focal length of the light extraction portion gradually becomes smaller in a direction away from the light source.
  • a naked-eye stereoscopic display device which includes a backlight module, a liquid crystal panel, and a lens assembly, which are sequentially stacked, and the lens assembly includes A plurality of lens units arranged in a predetermined manner, wherein, in an arrangement direction of the lens unit, a light intensity of an output light of the backlight module is less than or equal to 10° with a full width at half maximum of an angle change curve.
  • the full width at half maximum of the light intensity as a function of the angle is less than or equal to 5°.
  • the lens unit is a lenticular lens that is sequentially arranged in a predetermined direction.
  • the backlight module includes a light source and a light guide plate
  • the light guide plate includes a light emitting surface, a bottom surface opposite to the light emitting surface, and a plurality of sides connecting the light emitting surface and the bottom surface, wherein the light guide plate
  • the thickness varies in a stepwise manner, and the light source is disposed on a side of the light guide plate having a relatively small thickness.
  • the bottom surface includes a plurality of parallel portions parallel to the light exiting surface and spaced apart from each other and a light extraction portion connected between the parallel portions, wherein a distance between the parallel portion and the light exit surface gradually becomes larger in a direction away from the light source.
  • the light extraction portion when viewed perpendicular to the light-emitting surface, the light extraction portion is disposed in an arc shape, and the arc center of the light extraction portion and the light source are located on opposite sides of the light extraction portion.
  • the arc focal length of the light extraction portion gradually becomes smaller in a direction away from the light source.
  • f is the arc focal length of the light extraction portion
  • W is the distance between the side of the light guide plate from the side of the light source and the other side of the light source
  • L is the arc of the light extraction portion. a distance between the top and the other side opposite the light source of the light guide plate.
  • the arrangement direction of the light extraction portions and the arrangement direction of the lens units are perpendicular to each other.
  • the light source is a point light source.
  • a backlight sheet is disposed above the backlight module, the liquid crystal panel is disposed above the lower polarizer, an upper polarizer is disposed above the liquid crystal panel, and the lens assembly is disposed on the upper polarizer Above the piece.
  • the light intensity of the output light of the backlight module is 4° or 3° with the full width at half angle of the angle change curve.
  • the present invention controls the output angular distribution of the light by using a directional backlight such that the light intensity of the output light is less than or equal to 10° with the full width at half angle of the angle change curve.
  • the parallel light is output on a plane perpendicular to the arrangement direction of the lens assembly, and the naked eye stereoscopic display effect is obtained after passing through the lens assembly. Since the output is parallel light, the problem that oblique light passes through the adjacent lens unit does not occur, thereby eliminating the existence of the secondary viewpoint, effectively increasing the brightness of the main viewpoint in 3D display, and reducing the image between adjacent pixels.
  • Crosstalk In the lenticular stereoscopic stereoscopic display, the sub-pixels corresponding to the liquid crystal panel need not be placed at the focal plane position of the lens assembly, thereby significantly reducing the thickness of the display.
  • FIG. 1 is a schematic structural view of a conventional lenticular naked-eye stereoscopic display
  • Figure 2 is a graph of light intensity as a function of angle of the display of Figure 1;
  • Figure 3 is a schematic diagram of the display of Figure 1;
  • FIG. 4 is a schematic structural diagram of an embodiment of a naked eye stereoscopic display device according to the present invention.
  • Figure 5 is a plan view of Figure 4.
  • Figure 6 is a graph of light intensity as a function of angle of the display device of Figure 4.
  • FIG. 7 is a schematic diagram of a naked eye stereoscopic display device of the present invention.
  • FIG. 8 is a side view of an embodiment of a light guide plate in a naked eye stereoscopic display device of the present invention.
  • FIG. 9 is a top plan view of an embodiment of a light guide plate in a naked eye stereoscopic display device.
  • FIG. 4 is a schematic structural diagram of an embodiment of a naked-eye stereoscopic display device according to the present invention.
  • Figure 5 is a plan view of Figure 4.
  • Figure 6 is a graph of light intensity as a function of angle for the display device of Figure 4.
  • Figure 7 is a schematic diagram of a naked eye stereoscopic display device of the present invention.
  • the present invention provides a naked-eye stereoscopic display device, which includes a backlight module 21, a liquid crystal panel 22, and a lens assembly 23 which are sequentially stacked, and the lens assembly 23 includes a plurality of lens units 231 arranged in a predetermined manner, wherein the lens is In the arrangement direction of the unit 231, the light intensity of the output light of the backlight module 21 is less than or equal to 10° with the full width at half maximum of the angle change curve.
  • a lower polarizer 24 is disposed above the backlight module 21, the liquid crystal panel 22 is disposed above the lower polarizer 24, and an upper polarizer 25 is disposed above the liquid crystal panel 22, and the lens assembly 23 is disposed above the upper polarizer 25.
  • the direction parallel to the lens unit 231 is defined as the y direction
  • the direction perpendicular to the lens unit is the x direction
  • the direction perpendicular to the plane of FIG. 5 is the z direction.
  • the backlight module 21 is a directional back
  • the light module and the light emitted by the backlight module 21 are distributed along a plane perpendicular to the x direction.
  • the curve of light intensity as a function of angle is shown in Fig. 6.
  • the light intensity has an extremely small angular distribution, and thus, when the output light passes through the lens assembly 23, it converges on the focus, as shown in Fig. 7. .
  • the sub-pixels of the same viewpoint respectively converge to the main viewpoint after passing through different focal points, thereby forming a naked-eye stereoscopic display effect.
  • the sub-pixels are not limited to the focal plane position placed on the lens assembly 23, and the pitch of the sub-pixels and the lens assembly 23 is generally made smaller than the focal length of the lens assembly 23 in order to reduce the thickness of the module.
  • the directional backlight has only a paraxial parallel light distribution in the x direction, there is no problem that the oblique light passes through the adjacent lens unit 231, thereby objectively improving the brightness of the 3D main viewpoint, which is advantageous for improving the 3D display effect, and Reduce image crosstalk between adjacent pixels.
  • the present invention controls the output angular distribution of light by using a directional backlight such that the light intensity of the output light is less than or equal to 10° with the full width at half angle of the angle change curve, so as to be perpendicular to the arrangement of the lens assembly 23.
  • the parallel light is output on the plane, and the naked eye stereoscopic display effect is obtained after passing through the lens assembly 23. Since the output is parallel light, the problem that the oblique light passes through the adjacent lens unit 231 does not occur, thereby eliminating the existence of the secondary viewpoint, effectively increasing the brightness of the main viewpoint in the 3D display, and reducing the difference between adjacent pixels.
  • Image crosstalk In the lenticular stereoscopic stereoscopic display, the sub-pixels corresponding to the liquid crystal panel 22 need not be placed at the focal plane position of the lens assembly 23, so that the thickness of the display can be significantly reduced.
  • the full width at half maximum of the light intensity as a function of angle is less than or equal to 5°, such as 4° or 3°.
  • the lens unit 231 of the present embodiment is a lenticular lens that is sequentially arranged in a predetermined direction.
  • FIG. 8 is a side view of an embodiment of a light guide plate in the naked-eye stereoscopic display device of the present invention.
  • 9 is a top plan view of an embodiment of a light guide plate in a naked eye stereoscopic display device.
  • the backlight module 21 of the present embodiment includes a light source 211 and a light guide plate 212.
  • the light guide plate 212 includes a light exit surface 2121, a bottom surface 2122 opposite to the light exit surface 2121, and a plurality of side surfaces connecting the light exit surface 2121 and the bottom surface 2122.
  • the light plate 212 has a wedge-shaped structure as a whole, that is, the thickness of the light guide plate 212 is different.
  • the thickness of the light guide plate 212 changes stepwise, and the light source 211 is disposed on the light guide plate.
  • the thickness of 212 is relatively small on one side.
  • the light source 211 is a point light source, such as the LED light source of the embodiment.
  • the bottom surface 2122 includes a plurality of parallel portions 2123 that are parallel to the light exit surface 2121 and are spaced apart from each other, and a light extraction portion 2124 that is connected between the parallel portions 2123.
  • the distance between the parallel portion 2123 and the light exit surface 2121 is away from the light source 211. It gradually gets bigger.
  • the light extraction portion 2124 when viewed perpendicular to the light-emitting surface, is disposed in an arc shape, and can guide the light beams emitted from the light source 211 to be redistributed along the x-direction, and the arc center and the light source of the light extraction portion 2124. 211 are located on opposite sides of the light extraction unit 2124.
  • the arrangement direction of the light extraction unit 2124 of the present embodiment and the arrangement direction of the lens unit 213 are perpendicular to each other.
  • the light extraction unit 2124 has a bevel feature or other curved feature on the xz plane, and the purpose is to compress the light incident angle with respect to the light exit surface 211 above the light guide plate 212, thereby destroying the total reflection.
  • the feature is such that light escaps from the light exit surface 2121 to illuminate the liquid crystal panel 22.
  • each light extraction portion 2124 satisfies the following formula:
  • W is the distance between the side of the light source 211 of the light guide plate 212 and the other side opposite to the light source 211
  • L is the arc top of the light extraction unit 2124 and the light guide plate 212. The distance between the opposite side of the light source 211.
  • the arc focal length of the light extraction portion 2124 gradually becomes smaller in a direction away from the light source 211.
  • the arc faces 1, 2, ..., N, ... have the corresponding curvature of the curvature and the corresponding focal length f1 ⁇ f2 ⁇ ... ⁇ fN. . . .
  • the basic principle of parallel light exit is such that the output light passes through the extraction portion 2124 and has an extremely small angular distribution along the x-direction, which approximates parallel light.
  • the present invention can eliminate the existence of the secondary viewpoint, effectively increase the brightness of the main viewpoint in the 3D display, reduce the image crosstalk between adjacent pixels, and can significantly reduce the thickness of the display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种裸眼立体显示设备,包括依次层叠设置的背光模组(21)、液晶面板(22)以及透镜组件(23)。透镜组件包括按预定方式排列的若干透镜单元(231),其中在透镜单元的排列方向上,背光模组的输出光线的光强度随角度变化曲线的半高宽小于或等于10°。这种显示设备结构能消除副视点的存在,有效增加了立体显示时主视点的亮度,降低相邻像素之间的图像串扰,还能够显著降低显示设备的厚度。

Description

裸眼立体显示设备 【技术领域】
本发明涉及显示技术领域,特别是涉及一种裸眼立体显示设备。
【背景技术】
3D显示技术由于能够再现自然界中人类所熟悉的认知方式已经成为未来显示技术的必然发展趋势,其中裸眼3D技术由于摆脱了复杂的辅助设备而大受欢迎。
实现裸眼3D显示的方式多种多样,包括光栅、透镜技术等,其中光栅技术由于能够有效阻绝不同视点之间的图像串扰,具有较优的立体显示效果,但同时也面临着亮度损失的遗憾。在3D显示技术尚未完全取代2D显示的当前环境下,基于透镜的裸眼3D方案由于能够最低限度地降低对2D图像亮度的影响成为目前较优的技术方案。
图1是现有的一种透镜式裸眼立体显示器的结构示意图,包括LED101、导光板102、扩散片103、下偏光片12、液晶面板13、上偏光片14、透镜层3D模组15。其中,液晶面板13所对应的子像素通常放置于透镜层3D模组15的焦面位置,由于透镜层3D模组15的焦距通常在600-1000μm左右,客观上增加了3D显示器的厚度。此外,为了保证面板的光场均匀分布,通常采用扩散片103结构来均匀化光场,图2是图1中的显示器的光场随角度变化的曲线图,显然在斜视时依然具有明显的光场分布,这一点对于提高显示器的可视角是有利的,但是在3D显示时由于斜向光线的存在使得在光线会经过相邻的透镜结构形成如图3所示的副视点17,客观上降低了主视点16的亮度,图3是图1中的显示器的原理图。
【发明内容】
本发明的目的在于提供一种裸眼立体显示设备,能够解决现有技术存在的 显示器厚度过大以及副视点存在导致主视点亮度降低的问题。
为实现上述目的,本发明采用的一个技术方案是:提供一种裸眼立体显示设备,所述裸眼立体显示设备包括依次层叠设置的背光模组、液晶面板以及透镜组件,所述透镜组件包括按预定方式排列的若干透镜单元,其中在所述透镜单元的排列方向上,所述背光模组的输出光线的光强度随角度变化曲线的半高宽小于或等于5°,所述透镜单元为沿预定方向依次排列的柱状透镜;所述背光模组包括光源及导光板,所述导光板包括出光面、与所述出光面相对的底面以及连接所述出光面和所述底面的多个侧面,其中所述导光板的厚度呈台阶状变化,所述光源设置于所述导光板的厚度相对较小的一侧。
其中,述底面包括与所述出光面平行且彼此间隔排列的多个平行部以及连接于所述平行部之间的光提取部,其中所述平行部与所述出光面之间的距离在远离所述光源的方向上逐渐变大。
其中,在垂直于所述出光面观察时,所述光提取部呈圆弧状设置,且所述光提取部的弧心与所述光源位于所述光提取部的相对两侧。
其中,所述光提取部的弧面焦距在远离所述光源的方向上逐渐变小。
为实现上述目的,本发明采用的另一个技术方案是:提供一种裸眼立体显示设备,所述裸眼立体显示设备包括依次层叠设置的背光模组、液晶面板以及透镜组件,所述透镜组件包括按预定方式排列的若干透镜单元,其中在所述透镜单元的排列方向上,所述背光模组的输出光线的光强度随角度变化曲线的半高宽小于或等于10°。
其中,所述光强度随角度变化曲线的半高宽小于或等于5°。
其中,所述透镜单元为沿预定方向依次排列的柱状透镜。
其中,所述背光模组包括光源及导光板,所述导光板包括出光面、与所述出光面相对的底面以及连接所述出光面和所述底面的多个侧面,其中所述导光板的厚度呈台阶状变化,所述光源设置于所述导光板的厚度相对较小的一侧。
其中,所述底面包括与所述出光面平行且彼此间隔排列的多个平行部以及 连接于所述平行部之间的光提取部,其中所述平行部与所述出光面之间的距离在远离所述光源的方向上逐渐变大。
其中,在垂直于所述出光面观察时,所述光提取部呈圆弧状设置,且所述光提取部的弧心与所述光源位于所述光提取部的相对两侧。
其中,所述光提取部的弧面焦距在远离所述光源的方向上逐渐变小。
其中,各所述光提取部的弧面焦距满足以下公式:
f=W+L,
其中,f为所述光提取部的弧面焦距,W为所述导光板的所述光源所在一侧到所述光源相对的另一侧之间的距离,L为所述光提取部的弧顶与所述导光板的所述光源相对的另一侧之间的距离。
其中,所述光提取部的排列方向与所述透镜单元的排列方向相互垂直。
其中,所述光源为点光源。
其中,所述背光模组上方设置有下偏光片,所述液晶面板设置在所述下偏光片的上方,所述液晶面板的上方设有上偏光片,所述透镜组件设置在所述上偏光片的上方。
其中,所述背光模组的输出光线的光强度随角度变化曲线的半高宽为4°或者3°。
本发明的有益效果是:区别于现有技术的情况,本发明通过采用指向性背光控制光的输出角分布,使得输出光线的光强度随角度变化曲线的半高宽小于或等于10°,从而在垂直于透镜组件排布方向的平面上输出平行光,通过透镜组件后获得裸眼立体显示效果。由于输出的是平行光,因而不会发生斜向光穿过相邻透镜单元的问题,因而消除了副视点的存在,有效增加了3D显示时主视点的亮度,降低相邻像素之间的图像串扰。所述透镜式裸眼立体显示器中,液晶面板对应的子像素无需放置在透镜组件的焦面位置,因而能够显著降低显示器的厚度。
【附图说明】
图1是现有的一种透镜式裸眼立体显示器的结构示意图;
图2是图1中的显示器的光强度随角度变化的曲线图;
图3是图1中的显示器的原理图;
图4是本发明裸眼立体显示设备实施例的结构示意图;
图5是图4的俯视图;
图6是图4中的显示设备的光强度随角度变化的曲线图;
图7是本发明裸眼立体显示设备的原理图;
图8是本发明裸眼立体显示设备中导光板实施例的侧视图;
图9是发明裸眼立体显示设备中导光板实施例的俯视图。
【具体实施方式】
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对发明所提供的一种触控面板及触摸屏做进一步详细描述。
参阅图4、图5、图6和图7,图4是本发明裸眼立体显示设备实施例的结构示意图。图5是图4的俯视图。图6是图4中的显示设备的光强度随角度变化的曲线图。图7是本发明裸眼立体显示设备的原理图。
本发明提供了一种裸眼立体显示设备,裸眼立体显示设备包括依次层叠设置的背光模组21、液晶面板22以及透镜组件23,透镜组件23包括按预定方式排列的若干透镜单元231,其中在透镜单元231的排列方向上,背光模组21的输出光线的光强度随角度变化曲线的半高宽小于或等于10°。
具体而言,背光模组21上方设置下偏光片24,液晶面板22设置在下偏光片24的上方,液晶面板22的上方设有上偏光片25,透镜组件23设置在上偏光片25的上方。
如图5所示,定义平行于透镜单元231的方向为y方向,垂直于透镜单元的方向为x方向,垂直于图5的平面的方向为z方向。背光模组21为指向性背 光模组,背光模组21出射的光线沿着垂直于x向的平面分布。光强度随角度变化的曲线如图6所示,从图6可以看出,光强度具有极小的角度分布,因而,当输出光经过透镜组件23之后会汇聚在焦点上,如图7所示。相同视点的子像素分别经过不同的焦点后汇聚到主视点上,从而形成裸眼立体显示效果。
另外,子像素并非限定与放置在透镜组件23的焦面位置,出于降低模组厚度的考虑,通常使子像素与透镜组件23的间距小于透镜组件23的焦距大小。
由于指向性背光在x方向仅有近轴平行光分布,因而不存在斜向光穿过相邻透镜单元231的问题,从而客观上提高了3D主视点的亮度,有利于提高3D显示效果,并降低相邻像素之间的图像串扰。
区别于现有技术,本发明通过采用指向性背光控制光的输出角分布,使得输出光线的光强度随角度变化曲线的半高宽小于或等于10°,从而在垂直于透镜组件23排布方向的平面上输出平行光,通过透镜组件23后获得裸眼立体显示效果。由于输出的是平行光,因而不会发生斜向光穿过相邻透镜单元231的问题,因而消除了副视点的存在,有效增加了3D显示时主视点的亮度,降低相邻像素之间的图像串扰。透镜式裸眼立体显示器中,液晶面板22对应的子像素无需放置在透镜组件23的焦面位置,因而能够显著降低显示器的厚度。
在一个实施例中,光强度随角度变化曲线的半高宽小于或等于5°,例如4°或者3°等。
本实施例的透镜单元231为沿预定方向依次排列的柱状透镜。
指向性背光结构的实现方式有多种,如图8和图9所示,图8是本发明裸眼立体显示设备中导光板实施例的侧视图。图9是发明裸眼立体显示设备中导光板实施例的俯视图。
具体而言,本实施例的背光模组21包括光源211及导光板212,导光板212包括出光面2121、与出光面2121相对的底面2122以及连接出光面2121和底面2122的多个侧面,导光板212整体呈楔形结构,即导光板212两侧的厚度不同,例如,本实施例中,导光板212的厚度呈台阶状变化,光源211设置于导光板 212的厚度相对较小的一侧。其中,光源211为点光源,例如本实施例的LED光源。
底面2122包括与出光面2121平行且彼此间隔排列的多个平行部2123以及连接于平行部2123之间的光提取部2124,其中平行部2123与出光面2121之间的距离在远离光源211的方向上逐渐变大。如图9所示,在垂直于出光面观察时,光提取部2124呈圆弧状设置,能够将光源211发射的光线导向沿着x向进行重新分布,且光提取部2124的弧心与光源211位于光提取部2124的相对两侧。本实施例的光提取部2124的排列方向与透镜单元213的排列方向相互垂直。
如图8所述,从侧面观察时,光提取部2124在x-z面具备斜面特征或者其他曲线特征,其目的在于,压缩光线相对于导光板212上方出光面2121的光入射角,从而破坏全反射特征,使得光线逸出出光面2121而照射液晶面板22。
具体地,各光提取部2124的弧面焦距满足以下公式:
f=W+L,
其中,f为光提取部2124的弧面焦距,W为导光板212的光源211所在一侧到光源211相对的另一侧之间的距离,L为光提取部2124的弧顶与导光板212的光源211相对的另一侧之间的距离。
光提取部2124的弧面焦距在远离光源211的方向上逐渐变小。请继续参阅图9,弧面1,2,......,N,......具有相应的弧面曲率以及与之相对应的焦距f1<f2<...<fN...,也即各弧面的焦距沿着y方向的分布具有不同的大小,使得光源211处于各弧面的焦点的位置附近,也即fN=W+LN,利用焦点附近的光线以平行光出射的基本原理,从而使得输出光线经过提取部2124后沿着x向具有极小的角度分布,近似于平行光。
综上所示,本发明能消除副视点的存在,有效增加了3D显示时主视点的亮度,降低相邻像素之间的图像串扰,还能够显著降低显示器的厚度。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接 运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种裸眼立体显示设备,其中,所述裸眼立体显示设备包括依次层叠设置的背光模组、液晶面板以及透镜组件,所述透镜组件包括按预定方式排列的若干透镜单元,其中在所述透镜单元的排列方向上,所述背光模组的输出光线的光强度随角度变化曲线的半高宽小于或等于5°,所述透镜单元为沿预定方向依次排列的柱状透镜;所述背光模组包括光源及导光板,所述导光板包括出光面、与所述出光面相对的底面以及连接所述出光面和所述底面的多个侧面,其中所述导光板的厚度呈台阶状变化,所述光源设置于所述导光板的厚度相对较小的一侧。
  2. 根据权利要求1所述的裸眼立体显示设备,其中,所述底面包括与所述出光面平行且彼此间隔排列的多个平行部以及连接于所述平行部之间的光提取部,其中所述平行部与所述出光面之间的距离在远离所述光源的方向上逐渐变大。
  3. 根据权利要求2所述的裸眼立体显示设备,其中,在垂直于所述出光面观察时,所述光提取部呈圆弧状设置,且所述光提取部的弧心与所述光源位于所述光提取部的相对两侧。
  4. 根据权利要求3所述的裸眼立体显示设备,其中,所述光提取部的弧面焦距在远离所述光源的方向上逐渐变小。
  5. 一种裸眼立体显示设备,其中,所述裸眼立体显示设备包括依次层叠设置的背光模组、液晶面板以及透镜组件,所述透镜组件包括按预定方式排列的若干透镜单元,其中在所述透镜单元的排列方向上,所述背光模组的输出光线的光强度随角度变化曲线的半高宽小于或等于10°。
  6. 根据权利要求5所述的裸眼立体显示设备,其中,所述光强度随角度变化曲线的半高宽小于或等于5°。
  7. 根据权利要求5所述的裸眼立体显示设备,其中,所述透镜单元为沿预 定方向依次排列的柱状透镜。
  8. 根据权利要求5所述的裸眼立体显示设备,其中,所述背光模组包括光源及导光板,所述导光板包括出光面、与所述出光面相对的底面以及连接所述出光面和所述底面的多个侧面,其中所述导光板的厚度呈台阶状变化,所述光源设置于所述导光板的厚度相对较小的一侧。
  9. 根据权利要求8所述的裸眼立体显示设备,其中,所述底面包括与所述出光面平行且彼此间隔排列的多个平行部以及连接于所述平行部之间的光提取部,其中所述平行部与所述出光面之间的距离在远离所述光源的方向上逐渐变大。
  10. 根据权利要求9所述的裸眼立体显示设备,其中,在垂直于所述出光面观察时,所述光提取部呈圆弧状设置,且所述光提取部的弧心与所述光源位于所述光提取部的相对两侧。
  11. 根据权利要求10所述的裸眼立体显示设备,其中,所述光提取部的弧面焦距在远离所述光源的方向上逐渐变小。
  12. 根据权利要求11所述的裸眼立体显示设备,其中,各所述光提取部的弧面焦距满足以下公式:
    f=W+L,
    其中,f为所述光提取部的弧面焦距,W为所述导光板的所述光源所在一侧到所述光源相对的另一侧之间的距离,L为所述光提取部的弧顶与所述导光板的所述光源相对的另一侧之间的距离。
  13. 根据权利要求10所述的裸眼立体显示设备,其中,所述光提取部的排列方向与所述透镜单元的排列方向相互垂直。
  14. 根据权利要求8所述的裸眼立体显示设备,其中,所述光源为点光源。
  15. 根据权利要求5所述的裸眼立体显示设备,其中,所述背光模组上方设置有下偏光片,所述液晶面板设置在所述下偏光片的上方,所述液晶面板的上方设有上偏光片,所述透镜组件设置在所述上偏光片的上方。
  16. 根据权利要求5所述的裸眼立体显示设备,其中,所述背光模组的输出光线的光强度随角度变化曲线的半高宽为4°或者3°。
PCT/CN2016/090602 2016-06-07 2016-07-20 裸眼立体显示设备 WO2017210964A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/124,332 US20180217390A1 (en) 2016-06-07 2016-07-20 Naked-eye stereoscopic display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610399223.9A CN105892074B (zh) 2016-06-07 2016-06-07 裸眼立体显示设备
CN201610399223.9 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017210964A1 true WO2017210964A1 (zh) 2017-12-14

Family

ID=56710938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090602 WO2017210964A1 (zh) 2016-06-07 2016-07-20 裸眼立体显示设备

Country Status (3)

Country Link
US (1) US20180217390A1 (zh)
CN (1) CN105892074B (zh)
WO (1) WO2017210964A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193069B (zh) * 2017-07-04 2019-08-23 京东方科技集团股份有限公司 一种光栅及双视显示装置
CN108445576B (zh) * 2018-03-05 2021-02-19 张家港康得新光电材料有限公司 导光板、背光模组及显示装置
US10848681B2 (en) * 2018-04-17 2020-11-24 Facebook Technologies, Llc Image reconstruction from image sensor output
CN109188700B (zh) * 2018-10-30 2021-05-11 京东方科技集团股份有限公司 光学显示系统及ar/vr显示装置
JP7394691B2 (ja) * 2020-04-07 2023-12-08 株式会社Imagica Group 立体表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973239A (zh) * 2004-06-24 2007-05-30 奥林巴斯株式会社 影像显示装置及车载用影像显示装置
CN102338951A (zh) * 2010-07-14 2012-02-01 三星电子株式会社 立体图像显示器
US20140118825A1 (en) * 2012-06-11 2014-05-01 Panasonic Corporation Stereoscopic image display apparatus and stereoscopic image display method
CN104380157A (zh) * 2012-05-18 2015-02-25 瑞尔D股份有限公司 定向照明波导布置方式
CN105008983A (zh) * 2012-12-21 2015-10-28 瑞尔D股份有限公司 用于定向显示器的超透镜组件
US9213132B2 (en) * 2014-01-20 2015-12-15 Electronics And Telecommunications Research Institute Directional backlight unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973239A (zh) * 2004-06-24 2007-05-30 奥林巴斯株式会社 影像显示装置及车载用影像显示装置
CN102338951A (zh) * 2010-07-14 2012-02-01 三星电子株式会社 立体图像显示器
CN104380157A (zh) * 2012-05-18 2015-02-25 瑞尔D股份有限公司 定向照明波导布置方式
US20140118825A1 (en) * 2012-06-11 2014-05-01 Panasonic Corporation Stereoscopic image display apparatus and stereoscopic image display method
CN105008983A (zh) * 2012-12-21 2015-10-28 瑞尔D股份有限公司 用于定向显示器的超透镜组件
US9213132B2 (en) * 2014-01-20 2015-12-15 Electronics And Telecommunications Research Institute Directional backlight unit

Also Published As

Publication number Publication date
CN105892074B (zh) 2018-07-17
US20180217390A1 (en) 2018-08-02
CN105892074A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2017210964A1 (zh) 裸眼立体显示设备
WO2021244216A1 (zh) 一种显示面板及其显示方法和显示装置
US10429567B2 (en) Multi-view pixel directional backlight module and naked-eye 3D display device
US8305511B2 (en) Backlight module, stereo display apparatus, and beam splitting film
US9217815B2 (en) Double-vision backlight module and liquid crystal display device
US9360616B2 (en) Display apparatus and light emitting module thereof
TWI393926B (zh) 用於液晶背光單元之光導面板以及具有該面板之液晶背光單元
CN102184678B (zh) 拼接显示单元和大屏幕显示装置
JP6797672B2 (ja) バックライトユニット及びこれを含むディスプレイ装置
US20140160379A1 (en) Liquid crystal lens and 3d display device
TWI591386B (zh) Prism sheet, backlight module, and display device
US20220011472A1 (en) Fresnel lens and display devices with such fresnel lens
JP2010237416A (ja) 立体表示装置
CN105911710B (zh) 一种显示装置
US10129533B2 (en) High quality and moire-free 3D stereoscopic image rendering system using a lenticular lens
JP2013258147A (ja) 導光板及び当該導光板を用いたバックライトモジュール
WO2019085006A1 (zh) 微透镜阵列薄膜及显示模组
US10429687B2 (en) Directional backlight unit and three-dimensional image display apparatus having the same
JP2016529540A (ja) 立体表示装置
TW201333591A (zh) 液晶顯示器
US9069178B2 (en) Display device and liquid crystal prism cell panel
TW201248213A (en) Backlight module and optical film thereof
TW201619672A (zh) 畫素式背光模組
TWI628467B (zh) 立體顯示裝置
CN205720988U (zh) 一种显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15124332

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904414

Country of ref document: EP

Kind code of ref document: A1