WO2017209061A1 - Bn sintered compact having excellent corrosion resistance - Google Patents
Bn sintered compact having excellent corrosion resistance Download PDFInfo
- Publication number
- WO2017209061A1 WO2017209061A1 PCT/JP2017/019938 JP2017019938W WO2017209061A1 WO 2017209061 A1 WO2017209061 A1 WO 2017209061A1 JP 2017019938 W JP2017019938 W JP 2017019938W WO 2017209061 A1 WO2017209061 A1 WO 2017209061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- sintered body
- boron nitride
- alloy
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details peculiar to crucible or pot furnaces
- F27B14/10—Crucibles
Definitions
- the present invention relates to a boron nitride sintered body suitable for an apparatus member and parts for producing a rare earth magnet material having excellent corrosion resistance against molten metal containing rare earth, and a method for producing the same.
- a magnetic body made of an alloy containing a rare earth has strong magnetic properties, and is therefore widely used as a permanent magnet used in a motor.
- melt spinning method single roll method
- atomizing method a strip casting method, and the like as methods for producing a rare earth-containing magnetic material alloy.
- a raw material of a predetermined alloy composition for example, Nd + Fe + B alloy
- the molten alloy is injected from a ceramic nozzle and rotated with respect to the nozzle.
- the alloy is rapidly cooled and solidified by being brought into contact with the outer peripheral surface and brought into contact with the outer peripheral surface to continuously form a ribbon-shaped ribbon alloy.
- atomizing method or the strip casting method a molten alloy is sprayed or injected from a nozzle, and the alloy is rapidly cooled to be formed into a sheet shape, a thread shape, or a particle shape.
- Rare earth elements are very easily oxidized, and when oxidized, the magnetic properties are degraded. For this reason, in the production of the alloy, most oxide-based materials are not suitable as materials for parts such as a melting crucible and a nozzle that come into contact with the alloy at a temperature at which the alloy melts.
- oxide-based materials that oxidizes rare earth elements is used for the nozzle, it not only oxidizes the rare earth elements in the alloy, but also causes problems such as nozzle corrosion and wear and nozzle clogging due to the generated rare earth oxide. . For this reason, a boron nitride sintered body is generally used as the nozzle material.
- Boron nitride is a chemically stable ceramic material with excellent heat resistance at high temperatures, but it is also a hardly sinterable material.
- Boron oxide (B 2 O 3 ) is used as a sintering aid in sintering according to the prior art. It is common. On the other hand, since B 2 O 3 has a melting point of about 450 ° C., it is not suitable for use at a high temperature. When a boron nitride sintered body is used in a high-temperature environment of 1000 ° C.
- the rare earth component reacts with B 2 O 3 to produce a rare earth oxide.
- a high-purity type boron nitride not containing B 2 O 3 is used for the nozzle to be sprayed.
- the high purity type boron nitride containing no B 2 O 3 has a low density and has many pores, so that there is a problem that the molten alloy penetrates into the pores and is easily melted. When boron nitride is melted, the nozzle life is shortened, which affects the productivity of the alloy.
- the injection amount of the molten alloy increases, and the cooling rate and the thickness of the alloy ribbon, the thickness of the alloy yarn, or the size of the alloy particles become nonuniform. If the cooling rate of the alloy is different, the state of crystallite size, crystallinity, etc. of the alloy will be different, resulting in quality variations as a magnetic material. Further, even when the thickness of the alloy ribbon, the thickness of the alloy yarn, or the size of the alloy particles are different, the magnetic characteristics are different, leading to a deterioration in quality as a magnet.
- the boron nitride content is 80.0% by mass or more, and calcium is converted to calcium oxide in an amount of 0.3% by mass to 12.0% by mass, and yttrium is converted to yttrium oxide.
- a boron nitride sintered body comprising 1.0% by mass or more and 18.0% by mass or less as an amount can be provided.
- the content of boron nitride in the sintered body is 80.0% by mass or more, and 0.6 mass% or more and 11.0 mass% or less when calcium is converted into calcium oxide. And 1.9 mass% or more and 17.0 mass% or less may be included as a yttrium oxide conversion amount. Further, the amount of boron oxide contained in the sintered body may be 0.3% by mass or less, or 0.1% by mass or less. In one embodiment, the relative density with respect to the true density of the sintered body may be 75% or more, the open porosity may be 7% or less, and the Shore hardness may be 13 or more.
- boron nitride 0.3% by mass or more and 12.0% by mass or less of calcium oxide as a sintering aid, and a sintering aid as Mixing 1.0% by mass or more and 18.0% by mass or less of yttrium oxide to obtain a raw material mixture; And sintering the raw material mixture at a temperature in the range of 1600 ° C. or higher and 2050 ° C. or lower.
- the amount of calcium oxide in the raw material mixture is 0.6% by mass or more and 11.0% by mass or less, and the amount of yttrium oxide is 1.9% by mass or more and 17.0% by mass. It may be the following.
- the boron nitride sintered body of the present invention can be obtained by mixing calcium nitride powder and yttrium oxide powder as a sintering aid with boron nitride powder, molding and sintering.
- Boron nitride is a hardly sinterable material, and B 2 O 3 is generally used as a sintering aid for sintering in the prior art.
- B 2 O 3 is highly reactive with rare earths and is not preferred for use as a material for handling molten metals containing rare earths.
- nitride ceramics such as silicon nitride and aluminum nitride
- Al 2 O 3 , MgO, Y 2 O 3 and the like are common, but Al 2 O 3 and MgO are also reactive with rare earths. Is expensive. Therefore, as a result of investigating and examining oxide ceramics that can be used as sintering aids for nitride ceramics and have low reactivity with rare earth metals, the present inventors have found that the combination of calcium oxide and yttrium oxide is boron nitride. It has been found that it exhibits an extremely excellent effect in sintering.
- “calcium oxide” refers to anhydrous calcium oxide.
- the sintering aid In order to sinter the boron nitride molded body, the sintering aid needs to be in a liquid phase.
- Calcium oxide and yttrium oxide are both high-melting point oxides, but if they are blended in appropriate amounts, they become complex oxides that have a lower melting point and can be made into a liquid phase even at temperatures of 2000 ° C. or lower.
- the blending amount is preferably 0.3 to 12.0% by mass of calcium oxide and 1.0 to 18.0% by mass of yttrium oxide, more preferably oxidized based on the total mass of the raw material mixture.
- Calcium is 0.6 to 11.0% by mass and yttrium oxide is 1.9 to 17.0% by mass.
- the amount of calcium oxide and the amount of yttrium oxide in the sintered body are respectively equivalent amounts that can be calculated from the amounts of calcium element and yttrium element contained in the sintered body.
- a range of values (such as those indicated by the symbol tilde “ ⁇ ”) has a meaning of “... Or more,..., Or less” including a lower limit value and an upper limit value unless otherwise specified.
- B 2 O 3 Boron nitride as a raw material contains oxygen as an impurity and often exists as B 2 O 3 . Since B 2 O 3 reacts with rare earths, it is preferable to have as little as possible. When the amount of B 2 O 3 is small, a complex oxide is formed and stabilized with calcium oxide and yttrium oxide, so that the reaction with the rare earth in the molten alloy is suppressed. However, if B 2 O 3 is present in excess, the reactivity with the rare earth becomes strong. For this reason, the amount of B 2 O 3 in the sintered body is preferably 0.3% by mass or less, more preferably 0.2% by mass or less, still more preferably 0.1% by mass or less, and still more preferably substantially present. do not do. Here, “substantially non-existent” means that the amount is below the lower limit of detection except for the amount inevitably mixed in the production process (this is expressed as “0.0 mass%”). Sometimes).
- the boron nitride sintered body of the present invention has a hexagonal crystal form, and the shape of the particles is scaly. Boron nitride is difficult to sinter and is porous due to the flake-like particle shape.
- the relative density of high-purity boron nitride with no conventional sintering aid added or B 2 O 3 removed after sintering is usually about 60 to less than 85%, and the open porosity is usually 10% or more. It is.
- High purity boron nitride has low reactivity with rare earth elements, but the penetration of molten metal into the pores promotes peeling and dropping of boron nitride particles from the surface of the sintered body, which is one of the causes of erosion. .
- the relative density (that is, relative density to the true density) of the obtained sintered body is 75% or more. It is possible to achieve 80% or more, and it is possible to realize an open porosity of 7% or less, preferably 5% or less, and more preferably 3% or less.
- the relative density can be in the range of 75% to 95% and the open porosity can be in the range of 5% or less. That is, according to the embodiment of the present invention, the penetration of the molten metal into the sintered body can be reduced, and the melt resistance can be improved.
- the boron nitride sintered body according to the embodiment of the present invention is preferably sintered by using a sintering aid containing a combination of yttrium oxide and calcium oxide, so that the Shore hardness is preferably 13 or more, more preferably 14 The above can be realized.
- the Shore hardness of the high-purity type boron nitride sintered body according to the prior art is about 11 to 12, and the sintered body according to the embodiment of the present invention has excellent wear resistance as a material (material). It is understood. This is because the wear resistance of a material generally has a correlation with the hardness, and the higher the hardness, the better the wear resistance.
- the boron nitride sintered body according to the embodiment of the present invention is hardly subject to erosion / penetration by a rare earth even when touched with a molten metal containing a rare earth, and has excellent durability.
- the boron nitride sintered compact which concerns on embodiment of this invention can be conveniently used as an apparatus member used for manufacture of the alloy containing a rare earth, for example.
- it can be suitably used as an apparatus member (for example, a nozzle, a nozzle support member, a crucible, etc.) for producing an alloy that can be used for magnetic materials such as neodymium and samarium.
- the boron nitride sintered body can also be used as a nozzle material when an alloy powder containing a rare earth (for example, an alloy powder containing neodymium or samarium) is produced by a melt spinning method or the like. is there.
- a rare earth for example, an alloy powder containing neodymium or samarium
- the diameter of the discharge hole is generally about 0.5 to 2 mm or the width of the discharge slit is about 0.2 to 1 mm. Since the molten metal continuously passes through the inside, there is a problem that the discharge port or the slit of the nozzle is worn by friction with the molten metal and gradually spreads.
- the boron nitride sintered body according to the embodiment of the present invention has low reactivity to molten rare earth and low meltability (that is, high corrosion resistance), and therefore, a molten metal containing rare earth. It can also be suitably used as a crucible for preparing the.
- the boron nitride powder is oxidized to 80.0% by mass or more, preferably 80.0 to 98.7% by mass, more preferably 80.0 to 97.5% by mass.
- Calcium powder is 0.3 to 12.0 mass%, preferably 0.6 to 11.0 mass%
- yttrium oxide powder is 1.0 mass% or more and 18.0 mass%, preferably 1.9 to 17. What added 0 mass% can be mixed and it can be set as raw material powder (raw material mixture).
- the raw material powder is molded and sintered at a temperature in the range of 1600 to 2050 ° C. to obtain the boron nitride sintered body.
- the sintered body according to the embodiment of the present invention can be produced in an inert atmosphere such as a nitrogen atmosphere.
- the boron nitride sintered body preferably has one or more of the following characteristics, more preferably a combination of two or more, and all combinations It is even more preferred to have (1)
- the B 2 O 3 content in the sintered body is 0.3% by mass or less, more preferably 0.1% by mass or less, and still more preferably substantially absent.
- the relative density with respect to the true density of the sintered body is 75% or more, more preferably 80% or more.
- the open porosity of the sintered body is 7% or less, more preferably 5% or less, and still more preferably 3% or less.
- the Shore hardness of the sintered body is 13 or more, more preferably 14 or more.
- Examples 1 to 7 Boron nitride powder (Denka Co., Ltd., oxygen content 1.0 wt%, average particle size 20 ⁇ m), anhydrous calcium oxide powder (Kishida Chemical Co., average particle size 30 ⁇ m), yttrium oxide powder (manufactured by Anan Kasei Co., Ltd., The average particle size is 4.5 ⁇ m) in the proportions shown in Table 1, filled in a cylindrical resin pot with an internal volume of 10 L together with ⁇ 10 mm silicon nitride media, mixed for 2 hours in a ball mill, and blended as shown in Table 1. A mixed powder of boron nitride was obtained.
- This mixed powder was filled in a graphite die having an inner diameter of 140 mm and subjected to hot press sintering at a temperature of 2000 ° C. and a pressure of 20 MPa to obtain a boron nitride sintered body.
- the oxygen content of boron nitride powder was measured using an O / N simultaneous analyzer (EMGA-620W / C) manufactured by Horiba.
- the average particle size of boron nitride powder, calcium oxide powder, and yttrium oxide powder was measured by adding 60 mg of a measurement sample to 200 cc of pure water mixed with 2 ml of a 20 wt% aqueous solution of sodium hexametaphosphate, and ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho). , Trade name "US-300”) for 3 minutes, and then measured with Microtrac (trade name "MT3300EXII", manufactured by Nikkiso Co., Ltd.) Pure water was used as the solvent for the microtrack circulator, and the measurement sample was adjusted to an appropriate concentration.
- the relative density and open porosity of the boron nitride sintered body are determined by Archimedes method in accordance with JIS R 1634: 1998 after grinding the outer periphery of about 3 mm to remove graphite adhering to the surface and expose a clean surface. Measured and calculated. The results are shown in Table 1.
- the Shore hardness of the boron nitride sintered body was measured in accordance with JIS Z 2246: 2000 using a D-type manufactured by Shimadzu Corporation by cutting out a test piece of 40 mm length ⁇ 30 mm width ⁇ 10 mm thickness from the sintered body. The measurement results are shown in Table 1.
- a test piece having a length of 50 mm, a width of 50 mm, and a thickness of about 3 mm was cut out from the boron nitride sintered body and finely pulverized with a silicon nitride mortar to obtain a powder.
- a certain amount of this powder was put into a dry weight (W0) container and dried at 150 ° C. for 18 hours or more. After drying, the container and powder were cooled to room temperature in a desiccator whose humidity was controlled, and the weight (W1) was measured immediately. Thereafter, methyl alcohol was added to the powder in the container, and B 2 O 3 was eluted in methyl alcohol.
- B 2 O 3 eluted by warm air drying was volatilized and removed together with methyl alcohol.
- the container containing the powder was again transferred into a desiccator, cooled to room temperature, and the weight (W2) was measured. Based on each measured weight (W0, W1, W2), the amount of B 2 O 3 was calculated by the following formula. The calculation results of the B 2 O 3 amount are shown in Table 1.
- the remaining part of the boron nitride sintered body obtained by hot press sintering was pulverized with a silicon nitride mortar, and the contained components were measured by XRF.
- the boron nitride sintered body obtained by sintering under the conditions described in Table 1 had amounts of B, Ca, and Y metal elements substantially equal to the amounts shown in Table 1. Other metal elements were not confirmed in the sintered body. The results are shown in Table 1.
- the above sintered body was processed to obtain a crucible having an outer diameter of 50 mm, an inner diameter of 30 mm, a height of 50 mm, and a depth of 40 mm.
- this crucible 60 g of an Nd alloy piece having a composition ratio of 21.5 wt% Nd-76.5 wt% Fe-1.0 wt% B-1.0 wt% Dy was placed and heated to 1350 ° C. in a nitrogen atmosphere in a vacuum atmosphere furnace. The Nd alloy was melted and held for 1 hour and then cooled. After cooling, it was cut to observe the interface between the hardened alloy and the crucible. The distribution state of Nd and Fe elements on the alloy side, the ceramic side, and the interface was observed with a scanning electron microscope SEM and EDS.
- Comparative Examples 1 to 3 In Comparative Examples 1 to 3, similar to Examples 1 to 7, hot press sintering was performed at the compounding ratio of Comparative Examples 1 to 3 shown in Table 1.
- Comparative Example 3 is obtained by adding B 2 O 3 powder to a sintering aid. The open porosity, Shore hardness, and the amount of B 2 O 3 were measured in the same manner as in the above examples, and a corrosion resistance test with an Nd alloy was performed. The results are shown in Table 1.
- Comparative Example 1 shown in Table 1 had a smaller amount of auxiliary agent than Examples 1 to 7, while Comparative Example 2 had a larger amount of auxiliary agent than Examples 1 to 7, and both had increased open porosity.
- Comparative Example 3 the amount of B 2 O 3 in the sintered body was large, an Nd component layer was formed at the interface between the crucible and the alloy layer, and the alloy structure became non-uniform.
- FIG. 1 An SEM image of a cross section of the sintered body of Example 3 is shown in FIG. 1, and an EDS image is shown in FIG. It can be seen that the alloy structure is uniform and there is no alloy penetration into the ceramic side.
- the light-colored portion (the gray portion in the color SEM image and the green portion in the color EDS image) at the top of FIGS. 1 and 2 is an alloy layer.
- the lower dark color portion (the black portion in the color SEM image / EDS image) is the ceramic layer.
- the SEM image of the cross section of the sintered body of Comparative Example 3 is shown in FIG. 3, and the EDS image is shown in FIG. It can also be seen that the alloy structure is non-uniform and the alloy permeates into the ceramic side. Further, it is understood that a layer of Nd component is formed at the interface. 3 and 4 is an alloy layer (the light-colored portion in the color SEM image and the blue-green portion in the color EDS image). The lower dark color portion (the black portion in the color SEM image / EDS image) is the ceramic layer.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Metallurgy (AREA)
- Ceramic Products (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
The purpose of the present invention is to provide a boron nitride sintered compact having excellent corrosion resistance with respect to molten metal containing rare earths. Provided is a boron nitride sintered compact characterized by having a boron nitride content of 80.0 mass% or greater, and containing 0.3 to 12.0 mass% of calcium in terms of calcium oxide and 1.0 to 18.0 mass% of yttrium in terms of yttrium oxide.
Description
本発明は、希土類を含有する溶融金属に対して優れた耐食性を持ち、希土類磁石用材料を製造する装置部材、部品に好適な窒化ホウ素焼結体、ならびにその製造方法に関するものである。
The present invention relates to a boron nitride sintered body suitable for an apparatus member and parts for producing a rare earth magnet material having excellent corrosion resistance against molten metal containing rare earth, and a method for producing the same.
OA機器、自動車部品、家電機器等においては、小型・軽量化、省エネ、高機能化を目的に、モーターの小型・軽量化および高性能化の要求が強い。モーターを小型・軽量化するには強力な磁石が必要となる。希土類を含有する合金からなる磁性体は、強力な磁気特性を有することから、モーターに使用する永久磁石として利用が広がっている。
In OA equipment, automobile parts, home appliances, etc., there is a strong demand for miniaturization, lightening, and high performance of motors for the purpose of miniaturization, lightening, energy saving, and high functionality. To make the motor smaller and lighter, a powerful magnet is required. A magnetic body made of an alloy containing a rare earth has strong magnetic properties, and is therefore widely used as a permanent magnet used in a motor.
希土類を含有する磁性体用合金の製法には、メルトスピニング法(単ロール法)、アトマイズ法、ストリップキャスト法等がある。例えば、メルトスピニング法は、希土類を含む所定の合金配合(例えばNd+Fe+B系合金)の原料をセラミックス容器内で溶融し、この溶融合金をセラミックス製ノズルから射出しノズルに対して回転している冷却ロールの外周表面上に衝突させ、該外周表面と接触させることにより合金を急冷、凝固し、リボン状の薄帯合金を連続的に形成する。またアトマイズ法やストリップキャスト法では、溶融した合金をノズルより噴霧または射出し合金を急冷し、シート状もしくは糸状もしくは粒子状に成形する。
There are a melt spinning method (single roll method), an atomizing method, a strip casting method, and the like as methods for producing a rare earth-containing magnetic material alloy. For example, in the melt spinning method, a raw material of a predetermined alloy composition (for example, Nd + Fe + B alloy) containing rare earth is melted in a ceramic container, and the molten alloy is injected from a ceramic nozzle and rotated with respect to the nozzle. The alloy is rapidly cooled and solidified by being brought into contact with the outer peripheral surface and brought into contact with the outer peripheral surface to continuously form a ribbon-shaped ribbon alloy. In the atomizing method or the strip casting method, a molten alloy is sprayed or injected from a nozzle, and the alloy is rapidly cooled to be formed into a sheet shape, a thread shape, or a particle shape.
希土類元素は、非常に酸化され易く、酸化されると磁気特性が低下してしまう。このため、該合金の製造において該合金が溶融する温度で合金と接触する溶融坩堝、ノズル等の部品の素材には殆どの酸化物系素材は適さない。特に希土類元素を酸化する酸化物系素材をノズルに使用した場合、合金内の希土類元素を酸化するだけでなく、ノズルの腐食・摩耗や生成した希土類酸化物によるノズルの閉塞等の問題が発生する。このため、ノズルの素材には、窒化ホウ素焼結体が使用されるのが一般的となっている。
Rare earth elements are very easily oxidized, and when oxidized, the magnetic properties are degraded. For this reason, in the production of the alloy, most oxide-based materials are not suitable as materials for parts such as a melting crucible and a nozzle that come into contact with the alloy at a temperature at which the alloy melts. In particular, when an oxide-based material that oxidizes rare earth elements is used for the nozzle, it not only oxidizes the rare earth elements in the alloy, but also causes problems such as nozzle corrosion and wear and nozzle clogging due to the generated rare earth oxide. . For this reason, a boron nitride sintered body is generally used as the nozzle material.
窒化ホウ素は高温耐熱性に優れ化学的に安定なセラミックス素材であるが、難焼結性素材でもあり、従来技術に係る焼結においては焼結助剤として酸化ホウ素(B2O3)を用いることが一般的である。一方、B2O3は融点が450℃程度のため、高温での使用には適さない。窒化ホウ素焼結体を1000℃以上の高温環境で使用する場合には、B2O3を含む焼結体を高温処理にてB2O3を揮発除去し高純度化する方法やB2O3を添加せずHIPやCIP等の高圧成形、焼成を行う方法等が開発されてきた(特許文献1参照)。しかし、これらの方法で製造された窒化ホウ素焼結体は、焼結助剤にB2O3を使用するものに比べ、密度、強度等が低いものとなっている。
Boron nitride is a chemically stable ceramic material with excellent heat resistance at high temperatures, but it is also a hardly sinterable material. Boron oxide (B 2 O 3 ) is used as a sintering aid in sintering according to the prior art. It is common. On the other hand, since B 2 O 3 has a melting point of about 450 ° C., it is not suitable for use at a high temperature. When a boron nitride sintered body is used in a high-temperature environment of 1000 ° C. or higher, a method in which the sintered body containing B 2 O 3 is subjected to high temperature treatment to volatilize and remove B 2 O 3 to obtain a high purity or B 2 O A method of performing high-pressure molding and firing such as HIP and CIP without adding 3 has been developed (see Patent Document 1). However, the boron nitride sintered body produced by these methods has a lower density, strength, and the like than those using B 2 O 3 as a sintering aid.
希土類を含有する磁性体用合金においても、焼結体にB2O3が含まれていると、その希土類成分とB2O3が反応し、希土類酸化物が生成するため、溶融合金を射出もしくは噴霧するノズルには、B2O3を含まない高純度タイプの窒化ホウ素が使用されている。しかしながら、B2O3を含まない高純度タイプの窒化ホウ素は密度が低く、多くの気孔が存在しているため、該気孔内に溶融合金が浸透し、溶損しやすいという問題がある。窒化ホウ素が溶損すると、ノズル寿命が短くなり、合金の生産性へ影響する。特にノズルの吐出口部が溶損すると、溶融合金の射出量が増加し、冷却速度および合金リボンの厚みまたは合金糸の太さまたは合金粒子の大きさが不均一となる。合金の冷却速度が異なると、合金の結晶子のサイズ、結晶化度等の状態が異なり、磁性体としての品質バラツキとなる。また、合金リボンの厚みまたは合金糸の太さまたは合金粒子の大きさが異なる場合も、磁気的特性が異なり磁石としての品質低下につながる。
Even in a magnetic alloy containing a rare earth, if the sintered body contains B 2 O 3 , the rare earth component reacts with B 2 O 3 to produce a rare earth oxide. Alternatively, a high-purity type boron nitride not containing B 2 O 3 is used for the nozzle to be sprayed. However, the high purity type boron nitride containing no B 2 O 3 has a low density and has many pores, so that there is a problem that the molten alloy penetrates into the pores and is easily melted. When boron nitride is melted, the nozzle life is shortened, which affects the productivity of the alloy. In particular, when the discharge port portion of the nozzle is melted, the injection amount of the molten alloy increases, and the cooling rate and the thickness of the alloy ribbon, the thickness of the alloy yarn, or the size of the alloy particles become nonuniform. If the cooling rate of the alloy is different, the state of crystallite size, crystallinity, etc. of the alloy will be different, resulting in quality variations as a magnetic material. Further, even when the thickness of the alloy ribbon, the thickness of the alloy yarn, or the size of the alloy particles are different, the magnetic characteristics are different, leading to a deterioration in quality as a magnet.
本発明においては、上述した従来技術の有する問題に鑑み、希土類を含有する溶融金属に対する耐食性および耐溶損性が優れた窒化ホウ素焼結体材料を提供することを課題とする。
In the present invention, in view of the above-described problems of the prior art, it is an object to provide a boron nitride sintered body material having excellent corrosion resistance and melt resistance against molten metal containing rare earth.
すなわち本発明の実施形態では、窒化ホウ素の含有量が80.0質量%以上であって、カルシウムを酸化カルシウム換算量として0.3質量%以上12.0質量%以下と、イットリウムを酸化イットリウム換算量として1.0質量%以上18.0質量%以下を含むことを特徴とする窒化ホウ素焼結体を提供できる。
That is, in the embodiment of the present invention, the boron nitride content is 80.0% by mass or more, and calcium is converted to calcium oxide in an amount of 0.3% by mass to 12.0% by mass, and yttrium is converted to yttrium oxide. A boron nitride sintered body comprising 1.0% by mass or more and 18.0% by mass or less as an amount can be provided.
上記実施形態の或る態様では、前記焼結体中、窒化ホウ素の含有量が80.0質量%以上であって、カルシウムを酸化カルシウム換算量として0.6質量%以上11.0質量%以下と、イットリウムを酸化イットリウム換算量として1.9質量%以上17.0質量%以下を含んでもよい。また、前記焼結体に含まれる酸化ホウ素の量が、0.3質量%以下であってもよく、0.1質量%以下であってもよい。また或る態様では、前記焼結体の真密度に対する相対密度が75%以上であってもよく、開気孔率が7%以下であってもよく、ショア硬度が13以上であってもよい。
In a certain aspect of the above-described embodiment, the content of boron nitride in the sintered body is 80.0% by mass or more, and 0.6 mass% or more and 11.0 mass% or less when calcium is converted into calcium oxide. And 1.9 mass% or more and 17.0 mass% or less may be included as a yttrium oxide conversion amount. Further, the amount of boron oxide contained in the sintered body may be 0.3% by mass or less, or 0.1% by mass or less. In one embodiment, the relative density with respect to the true density of the sintered body may be 75% or more, the open porosity may be 7% or less, and the Shore hardness may be 13 or more.
また本発明の別の実施形態では、80.0質量%以上の窒化ホウ素と、焼結助剤としての0.3質量%以上12.0質量%以下の酸化カルシウムと、焼結助剤としての1.0質量%以上18.0質量%以下の酸化イットリウムとを混合し、原料混合物を得るステップと、
前記原料混合物を、1600℃以上2050℃以下の範囲の温度で焼結するステップと
を含む、窒化ホウ素焼結体の製造方法も提供できる。 In another embodiment of the present invention, 80.0% by mass or more of boron nitride, 0.3% by mass or more and 12.0% by mass or less of calcium oxide as a sintering aid, and a sintering aid as Mixing 1.0% by mass or more and 18.0% by mass or less of yttrium oxide to obtain a raw material mixture;
And sintering the raw material mixture at a temperature in the range of 1600 ° C. or higher and 2050 ° C. or lower.
前記原料混合物を、1600℃以上2050℃以下の範囲の温度で焼結するステップと
を含む、窒化ホウ素焼結体の製造方法も提供できる。 In another embodiment of the present invention, 80.0% by mass or more of boron nitride, 0.3% by mass or more and 12.0% by mass or less of calcium oxide as a sintering aid, and a sintering aid as Mixing 1.0% by mass or more and 18.0% by mass or less of yttrium oxide to obtain a raw material mixture;
And sintering the raw material mixture at a temperature in the range of 1600 ° C. or higher and 2050 ° C. or lower.
上記実施形態の或る態様では、前記原料混合物中の酸化カルシウムの量が0.6質量%以上11.0質量%以下であり、酸化イットリウムの量が1.9質量%以上17.0質量%以下であってもよい。
In an aspect of the above embodiment, the amount of calcium oxide in the raw material mixture is 0.6% by mass or more and 11.0% by mass or less, and the amount of yttrium oxide is 1.9% by mass or more and 17.0% by mass. It may be the following.
本発明により、希土類を含む溶融合金に対する耐食性、耐溶損性が優れた窒化ホウ素焼結体材料を得ることができる。
According to the present invention, it is possible to obtain a boron nitride sintered body material excellent in corrosion resistance and melt resistance against a molten alloy containing a rare earth.
本発明の窒化ホウ素焼結体は、窒化ホウ素粉末に焼結助剤として酸化カルシウム粉末と酸化イットリウム粉末を混合し、成形、焼結することにより得られる。窒化ホウ素は難焼結性素材であり、焼結を行うための焼結助剤としてはB2O3が従来技術では一般的である。しかしB2O3は希土類との反応性が高く、希土類を含む溶融金属を扱う素材に用いることは好ましくない。また、窒化ケイ素や窒化アルミニウムなどの窒化物セラミックスの焼結助剤としては、Al2O3、MgO、Y2O3等が一般的だが、Al2O3、MgOもまた希土類との反応性が高い。そこで、窒化物セラミックスの焼結助剤として利用可能で、且つ希土類金属との反応性が低い酸化物セラミックスを調査検討した結果、本発明者は、酸化カルシウムと酸化イットリウムとの組み合わせが窒化ホウ素の焼結においてきわめて優れた効果を発揮することを見出した。なお本明細書においては、別段の断わりが無いかぎり、「酸化カルシウム」と言うときは無水酸化カルシウムのことを指す。
The boron nitride sintered body of the present invention can be obtained by mixing calcium nitride powder and yttrium oxide powder as a sintering aid with boron nitride powder, molding and sintering. Boron nitride is a hardly sinterable material, and B 2 O 3 is generally used as a sintering aid for sintering in the prior art. However, B 2 O 3 is highly reactive with rare earths and is not preferred for use as a material for handling molten metals containing rare earths. Also, as a sintering aid for nitride ceramics such as silicon nitride and aluminum nitride, Al 2 O 3 , MgO, Y 2 O 3 and the like are common, but Al 2 O 3 and MgO are also reactive with rare earths. Is expensive. Therefore, as a result of investigating and examining oxide ceramics that can be used as sintering aids for nitride ceramics and have low reactivity with rare earth metals, the present inventors have found that the combination of calcium oxide and yttrium oxide is boron nitride. It has been found that it exhibits an extremely excellent effect in sintering. In this specification, unless otherwise specified, “calcium oxide” refers to anhydrous calcium oxide.
窒化ホウ素成形体の焼結を行うには、焼結助剤が液相化する必要がある。酸化カルシウムと酸化イットリウムはいずれも高融点酸化物だが、これらを適量配合することで複合酸化物となって融点が下がり、2000℃以下の温度でも液相にすることが可能となる。配合量としては、原料混合物の全体の質量を基準として、酸化カルシウムを0.3~12.0質量%と酸化イットリウムを1.0~18.0質量%とすることが好ましく、より好ましくは酸化カルシウムを0.6~11.0質量%と酸化イットリウムを1.9~17.0質量%とする。酸化カルシウムもしくは酸化イットリウムの量が過剰となると液相の融点が高くなり、焼結性が著しく低下する問題が発生しうる。また酸化カルシウムもしくは酸化イットリウムの量が過少であると、得られる焼結体のショア硬度が低すぎる問題が発生しうる。なお、焼結体中の酸化カルシウムの量および酸化イットリウムの量はそれぞれ、焼結体中に含まれるカルシウム元素およびイットリウム元素の量から算出できる換算量である。また、本明細書において値の範囲(記号チルダ「~」で示されるものなど)は、特段の断わりがないかぎりは下限値と上限値を含む「…以上、…以下」の意味を有する。
In order to sinter the boron nitride molded body, the sintering aid needs to be in a liquid phase. Calcium oxide and yttrium oxide are both high-melting point oxides, but if they are blended in appropriate amounts, they become complex oxides that have a lower melting point and can be made into a liquid phase even at temperatures of 2000 ° C. or lower. The blending amount is preferably 0.3 to 12.0% by mass of calcium oxide and 1.0 to 18.0% by mass of yttrium oxide, more preferably oxidized based on the total mass of the raw material mixture. Calcium is 0.6 to 11.0% by mass and yttrium oxide is 1.9 to 17.0% by mass. If the amount of calcium oxide or yttrium oxide is excessive, the melting point of the liquid phase becomes high, which may cause a problem that the sinterability is significantly lowered. If the amount of calcium oxide or yttrium oxide is too small, a problem may occur that the Shore hardness of the obtained sintered body is too low. The amount of calcium oxide and the amount of yttrium oxide in the sintered body are respectively equivalent amounts that can be calculated from the amounts of calcium element and yttrium element contained in the sintered body. In this specification, a range of values (such as those indicated by the symbol tilde “˜”) has a meaning of “... Or more,..., Or less” including a lower limit value and an upper limit value unless otherwise specified.
原料としての窒化ホウ素には不純物として酸素が含まれており、多くの場合B2O3として存在する。B2O3は希土類と反応するため、極力少ない方が好ましい。B2O3が少量の場合には酸化カルシウム、酸化イットリウムと複合酸化物を形成し安定化するため、溶融合金中の希土類との反応を抑制する。しかし、B2O3が過剰に存在すると希土類との反応性が強くなる。このため焼結体中のB2O3量は0.3質量%以下が好ましく、0.2質量%以下がさらに好ましく、0.1質量%以下がなおさら好ましく、なおも好ましくは実質的に存在しない。なお、ここでの「実質的に存在しない」とは、製造工程上不可避的に混入する量を除き、量が検出下限を下回ることを指す(このことを「0.0質量%」と表記することもある)。
Boron nitride as a raw material contains oxygen as an impurity and often exists as B 2 O 3 . Since B 2 O 3 reacts with rare earths, it is preferable to have as little as possible. When the amount of B 2 O 3 is small, a complex oxide is formed and stabilized with calcium oxide and yttrium oxide, so that the reaction with the rare earth in the molten alloy is suppressed. However, if B 2 O 3 is present in excess, the reactivity with the rare earth becomes strong. For this reason, the amount of B 2 O 3 in the sintered body is preferably 0.3% by mass or less, more preferably 0.2% by mass or less, still more preferably 0.1% by mass or less, and still more preferably substantially present. do not do. Here, “substantially non-existent” means that the amount is below the lower limit of detection except for the amount inevitably mixed in the production process (this is expressed as “0.0 mass%”). Sometimes).
本発明の窒化ホウ素焼結体は六方晶系の結晶形をもち粒子の形は燐片状になる。窒化ホウ素は難焼結性であり燐片状の粒子形状のため多孔体となる。従来の焼結助剤を添加しないもしくは焼結後B2O3を除去した高純度タイプの窒化ホウ素の相対密度は60~85%未満程度で、開気孔率も10%以上となるのが通常である。高純度タイプの窒化ホウ素は希土類元素との反応性は低いが、気孔内に溶融金属が浸透することで焼結体表面から窒化ホウ素粒子の剥離、脱落を促進し溶損の要因の一つとなる。一方、本発明の実施形態においては、酸化イットリウムと酸化カルシウムの組み合わせを含んだ焼結助剤を用いることにより、得られる焼結体の相対密度(すなわち、真密度に対する相対密度)を75%以上、好ましくは80%以上とすることが可能となり、また開気孔率も7%以下、好ましくは5%以下、さらに好ましくは3%以下とすることが実現可能となる。例えば或る実施形態では、相対密度を75%以上95%以下の範囲とし、かつ開気孔率を5%以下の範囲とすることができる。すなわち、本発明の実施形態によれば、焼結体内への溶融金属の浸透が低減し耐溶損性の改善を図ることができる。
The boron nitride sintered body of the present invention has a hexagonal crystal form, and the shape of the particles is scaly. Boron nitride is difficult to sinter and is porous due to the flake-like particle shape. The relative density of high-purity boron nitride with no conventional sintering aid added or B 2 O 3 removed after sintering is usually about 60 to less than 85%, and the open porosity is usually 10% or more. It is. High purity boron nitride has low reactivity with rare earth elements, but the penetration of molten metal into the pores promotes peeling and dropping of boron nitride particles from the surface of the sintered body, which is one of the causes of erosion. . On the other hand, in the embodiment of the present invention, by using a sintering aid containing a combination of yttrium oxide and calcium oxide, the relative density (that is, relative density to the true density) of the obtained sintered body is 75% or more. It is possible to achieve 80% or more, and it is possible to realize an open porosity of 7% or less, preferably 5% or less, and more preferably 3% or less. For example, in some embodiments, the relative density can be in the range of 75% to 95% and the open porosity can be in the range of 5% or less. That is, according to the embodiment of the present invention, the penetration of the molten metal into the sintered body can be reduced, and the melt resistance can be improved.
また本発明の実施形態に係る窒化ホウ素焼結体は、酸化イットリウムと酸化カルシウムの組み合わせを含んだ焼結助剤を用いて焼結されることにより、好ましくはショア硬度13以上、より好ましくは14以上を実現することができる。一方、従来技術に係る高純度タイプの窒化ホウ素焼結体のショア硬度は11~12程度であり、本発明の実施形態に係る焼結体が、素材(材料)として優れた耐摩耗性を有することが理解される。一般に素材の耐摩耗性は硬度と相関があり、高硬度になるほど耐摩耗性は向上するからである。ショア硬度の上限には特に制限は無いが、例えば24以下であってもよい。
Further, the boron nitride sintered body according to the embodiment of the present invention is preferably sintered by using a sintering aid containing a combination of yttrium oxide and calcium oxide, so that the Shore hardness is preferably 13 or more, more preferably 14 The above can be realized. On the other hand, the Shore hardness of the high-purity type boron nitride sintered body according to the prior art is about 11 to 12, and the sintered body according to the embodiment of the present invention has excellent wear resistance as a material (material). It is understood. This is because the wear resistance of a material generally has a correlation with the hardness, and the higher the hardness, the better the wear resistance. Although there is no restriction | limiting in particular in the upper limit of Shore hardness, For example, 24 or less may be sufficient.
本発明の実施形態に係る窒化ホウ素焼結体は、希土類を含む溶融金属と触れても、希土類による浸食・浸透を受けにくく、優れた耐久性を有する。このため、本発明の実施形態に係る窒化ホウ素焼結体は例えば、希土類を含んだ合金の製造に用いる装置部材として好適に使用できる。好ましくは、ネオジムやサマリウムなどの磁性体用途で使用できる合金を製造するための装置部材(例えばノズル、ノズル支持部材、坩堝など)として好適に使用可能である。好ましい実施形態においては、窒化ホウ素焼結体を、希土類を含んだ合金粉(例えばネオジムやサマリウムを含んだ合金粉)をメルトスピニング法等で製造する際のノズルの素材としても用いることが可能である。そうしたノズルの吐出口の形状には穴形状やスリット形状があり、吐出穴径φ0.5~2mm程度もしくは吐出スリット幅0.2~1mm幅程度が一般的であるが、使用時にはこの穴もしくはスリット内を溶融金属が連続的に通過するため、溶融金属との摩擦によりノズルの吐出口もしくはスリットが摩耗し徐々に広がってしまうという課題がある。本発明の実施形態に係る窒化ホウ素焼結体をそうしたノズルまたはスリットに用いることで、高い耐摩耗性を発揮し耐用寿命を延ばすことができ、生産性を向上できるという効果が奏される。
The boron nitride sintered body according to the embodiment of the present invention is hardly subject to erosion / penetration by a rare earth even when touched with a molten metal containing a rare earth, and has excellent durability. For this reason, the boron nitride sintered compact which concerns on embodiment of this invention can be conveniently used as an apparatus member used for manufacture of the alloy containing a rare earth, for example. Preferably, it can be suitably used as an apparatus member (for example, a nozzle, a nozzle support member, a crucible, etc.) for producing an alloy that can be used for magnetic materials such as neodymium and samarium. In a preferred embodiment, the boron nitride sintered body can also be used as a nozzle material when an alloy powder containing a rare earth (for example, an alloy powder containing neodymium or samarium) is produced by a melt spinning method or the like. is there. There are hole shapes and slit shapes for the discharge ports of such nozzles, and the diameter of the discharge hole is generally about 0.5 to 2 mm or the width of the discharge slit is about 0.2 to 1 mm. Since the molten metal continuously passes through the inside, there is a problem that the discharge port or the slit of the nozzle is worn by friction with the molten metal and gradually spreads. By using the boron nitride sintered body according to the embodiment of the present invention for such a nozzle or slit, it is possible to exhibit high wear resistance, extend the service life, and improve productivity.
また本発明の実施形態に係る窒化ホウ素焼結体は、上述したように、溶融した希土類への反応性が低く溶損性が低いことから(すなわち耐食性が高いことから)、希土類を含む溶融金属を調製するための坩堝としても好適に使用できる。
Further, as described above, the boron nitride sintered body according to the embodiment of the present invention has low reactivity to molten rare earth and low meltability (that is, high corrosion resistance), and therefore, a molten metal containing rare earth. It can also be suitably used as a crucible for preparing the.
本発明の窒化ホウ素焼結体は、窒化ホウ素粉末を80.0質量%以上、好ましくは80.0~98.7質量%、より好ましくは80.0~97.5質量%に対して、酸化カルシウム粉末を0.3~12.0質量%、好ましくは0.6~11.0質量%と、酸化イットリウム粉末を1.0質量%以上18.0質量%、好ましくは1.9~17.0質量%を加えたものを混合し原料粉末(原料混合物)とすることができる。この原料粉末を成形し1600~2050℃の範囲の温度で焼結することにより該窒化ホウ素焼結体が得られる。好ましい実施形態においては、当該原料混合物にB2O3を添加しない。これはすなわち、不可避的な不純物として含まれるB2O3を除き、当該原料混合物へ意図的にB2O3を添加しないということである。また本発明の実施形態に係る焼結体の製造にあたっては、窒素雰囲気などの不活性雰囲気下で行うことができる。
In the boron nitride sintered body of the present invention, the boron nitride powder is oxidized to 80.0% by mass or more, preferably 80.0 to 98.7% by mass, more preferably 80.0 to 97.5% by mass. Calcium powder is 0.3 to 12.0 mass%, preferably 0.6 to 11.0 mass%, and yttrium oxide powder is 1.0 mass% or more and 18.0 mass%, preferably 1.9 to 17. What added 0 mass% can be mixed and it can be set as raw material powder (raw material mixture). The raw material powder is molded and sintered at a temperature in the range of 1600 to 2050 ° C. to obtain the boron nitride sintered body. In a preferred embodiment, no B 2 O 3 is added to the raw material mixture. This means that B 2 O 3 is not intentionally added to the raw material mixture except for B 2 O 3 contained as an inevitable impurity. In addition, the sintered body according to the embodiment of the present invention can be produced in an inert atmosphere such as a nitrogen atmosphere.
本発明の好ましい実施形態においては、窒化ホウ素焼結体は、以下の特徴の一つ以上を有していることが好ましく、二つ以上の組み合わせを有していることがさらに好ましく、すべての組み合わせを有していることがなおさら好ましい。
(1) 焼結体中のB2O3含有量が、0.3質量%以下、より好ましくは0.1質量%以下、さらに好ましくは実質的に存在しないこと。
(2) 焼結体の真密度に対する相対密度が、75%以上、より好ましくは80%以上であること。
(3) 焼結体の開気孔率が、7%以下、より好ましくは5%以下、さらに好ましくは3%以下であること。
(4) 焼結体のショア硬度が、13以上、より好ましくは14以上であること。 In a preferred embodiment of the present invention, the boron nitride sintered body preferably has one or more of the following characteristics, more preferably a combination of two or more, and all combinations It is even more preferred to have
(1) The B 2 O 3 content in the sintered body is 0.3% by mass or less, more preferably 0.1% by mass or less, and still more preferably substantially absent.
(2) The relative density with respect to the true density of the sintered body is 75% or more, more preferably 80% or more.
(3) The open porosity of the sintered body is 7% or less, more preferably 5% or less, and still more preferably 3% or less.
(4) The Shore hardness of the sintered body is 13 or more, more preferably 14 or more.
(1) 焼結体中のB2O3含有量が、0.3質量%以下、より好ましくは0.1質量%以下、さらに好ましくは実質的に存在しないこと。
(2) 焼結体の真密度に対する相対密度が、75%以上、より好ましくは80%以上であること。
(3) 焼結体の開気孔率が、7%以下、より好ましくは5%以下、さらに好ましくは3%以下であること。
(4) 焼結体のショア硬度が、13以上、より好ましくは14以上であること。 In a preferred embodiment of the present invention, the boron nitride sintered body preferably has one or more of the following characteristics, more preferably a combination of two or more, and all combinations It is even more preferred to have
(1) The B 2 O 3 content in the sintered body is 0.3% by mass or less, more preferably 0.1% by mass or less, and still more preferably substantially absent.
(2) The relative density with respect to the true density of the sintered body is 75% or more, more preferably 80% or more.
(3) The open porosity of the sintered body is 7% or less, more preferably 5% or less, and still more preferably 3% or less.
(4) The Shore hardness of the sintered body is 13 or more, more preferably 14 or more.
(実施例1~7)
窒化ホウ素粉末(デンカ株式会社製、酸素含有量1.0wt%、平均粒径20μm)と、無水酸化カルシウム粉末(キシダ化学社製、平均粒径30μm)と、酸化イットリウム粉末(阿南化成社製、平均粒径4.5μm)とを各々表1記載の割合で秤量し、内容積10Lの円柱状樹脂ポットにφ10mmの窒化ケイ素メディアと共に充填し、ボールミルで2時間混合し、表1に示す配合の窒化ホウ素の混合粉末を得た。この混合粉末を内径140mmの黒鉛製のダイスに充填し、温度2000℃、圧力20MPaでホットプレス焼結を行い、窒化ホウ素焼結体を得た。 (Examples 1 to 7)
Boron nitride powder (Denka Co., Ltd., oxygen content 1.0 wt%, average particle size 20 μm), anhydrous calcium oxide powder (Kishida Chemical Co., average particle size 30 μm), yttrium oxide powder (manufactured by Anan Kasei Co., Ltd., The average particle size is 4.5 μm) in the proportions shown in Table 1, filled in a cylindrical resin pot with an internal volume of 10 L together with φ10 mm silicon nitride media, mixed for 2 hours in a ball mill, and blended as shown in Table 1. A mixed powder of boron nitride was obtained. This mixed powder was filled in a graphite die having an inner diameter of 140 mm and subjected to hot press sintering at a temperature of 2000 ° C. and a pressure of 20 MPa to obtain a boron nitride sintered body.
窒化ホウ素粉末(デンカ株式会社製、酸素含有量1.0wt%、平均粒径20μm)と、無水酸化カルシウム粉末(キシダ化学社製、平均粒径30μm)と、酸化イットリウム粉末(阿南化成社製、平均粒径4.5μm)とを各々表1記載の割合で秤量し、内容積10Lの円柱状樹脂ポットにφ10mmの窒化ケイ素メディアと共に充填し、ボールミルで2時間混合し、表1に示す配合の窒化ホウ素の混合粉末を得た。この混合粉末を内径140mmの黒鉛製のダイスに充填し、温度2000℃、圧力20MPaでホットプレス焼結を行い、窒化ホウ素焼結体を得た。 (Examples 1 to 7)
Boron nitride powder (Denka Co., Ltd., oxygen content 1.0 wt%, average particle size 20 μm), anhydrous calcium oxide powder (Kishida Chemical Co., average particle size 30 μm), yttrium oxide powder (manufactured by Anan Kasei Co., Ltd., The average particle size is 4.5 μm) in the proportions shown in Table 1, filled in a cylindrical resin pot with an internal volume of 10 L together with φ10 mm silicon nitride media, mixed for 2 hours in a ball mill, and blended as shown in Table 1. A mixed powder of boron nitride was obtained. This mixed powder was filled in a graphite die having an inner diameter of 140 mm and subjected to hot press sintering at a temperature of 2000 ° C. and a pressure of 20 MPa to obtain a boron nitride sintered body.
窒化ホウ素粉末の酸素含有量は、堀場製作所社製のO/N同時分析機(EMGA-620W/C)を用い測定した。
The oxygen content of boron nitride powder was measured using an O / N simultaneous analyzer (EMGA-620W / C) manufactured by Horiba.
窒化ホウ素粉末、酸化カルシウム粉末、酸化イットリウム粉末の平均粒径は、ヘキサメタリン酸ナトリウムの20wt%水溶液を2mlを混ぜた純水200cc中に、測定サンプル60mgを投入し、超音波ホモジナイザー(日本精機製作所製、商品名「US-300」)で3分間分散させた後、マイクロトラック(日機装社製、商品名「MT3300EXII)により測定した。マイクロトラックの循環器の溶媒には純水を使用し、測定サンプルが適正濃度になるまで調整した。
The average particle size of boron nitride powder, calcium oxide powder, and yttrium oxide powder was measured by adding 60 mg of a measurement sample to 200 cc of pure water mixed with 2 ml of a 20 wt% aqueous solution of sodium hexametaphosphate, and ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho). , Trade name "US-300") for 3 minutes, and then measured with Microtrac (trade name "MT3300EXII", manufactured by Nikkiso Co., Ltd.) Pure water was used as the solvent for the microtrack circulator, and the measurement sample Was adjusted to an appropriate concentration.
窒化ホウ素焼結体の相対密度および開気孔率は、表面に付着した黒鉛等を除去し清浄な面を露出するため外周3mm程度を研削した後、JIS R 1634:1998に準じて、アルキメデス法にて測定算出した。結果を表1に示す。
The relative density and open porosity of the boron nitride sintered body are determined by Archimedes method in accordance with JIS R 1634: 1998 after grinding the outer periphery of about 3 mm to remove graphite adhering to the surface and expose a clean surface. Measured and calculated. The results are shown in Table 1.
窒化ホウ素焼結体のショア硬度は、焼結体より縦40mm×横30mm×厚さ10mmの試験片を切り出し、島津製作所社製 D型を用いてJIS Z 2246:2000に準じて測定した。測定結果を表1に示す。
The Shore hardness of the boron nitride sintered body was measured in accordance with JIS Z 2246: 2000 using a D-type manufactured by Shimadzu Corporation by cutting out a test piece of 40 mm length × 30 mm width × 10 mm thickness from the sintered body. The measurement results are shown in Table 1.
窒化ホウ素焼結体より、縦50mm×横50mm×厚さ3mm程度の試験片を切り出し、これを窒化ケイ素製乳鉢にて微粉砕し粉末とした。この粉末を乾燥重量(W0)の容器に一定量を入れ、150℃で18時間以上乾燥を行った。乾燥後、湿度が管理されたデシケーター内で容器及び粉末を室温まで冷却し、速やかに重量(W1)を測定した。その後、容器内の粉末にメチルアルコールを加えB2O3分をメチルアルコール内に溶出後、温風乾燥にて溶出したB2O3をメチルアルコールと共に揮発除去した。改めて粉末が入った容器をデシケーター内に移し室温まで冷却し重量(W2)を測定した。測定した各重量(W0、W1、W2)を基に下記の式にてB2O3量を算出した。B2O3量の算出結果を表1に示す。
A test piece having a length of 50 mm, a width of 50 mm, and a thickness of about 3 mm was cut out from the boron nitride sintered body and finely pulverized with a silicon nitride mortar to obtain a powder. A certain amount of this powder was put into a dry weight (W0) container and dried at 150 ° C. for 18 hours or more. After drying, the container and powder were cooled to room temperature in a desiccator whose humidity was controlled, and the weight (W1) was measured immediately. Thereafter, methyl alcohol was added to the powder in the container, and B 2 O 3 was eluted in methyl alcohol. Then, B 2 O 3 eluted by warm air drying was volatilized and removed together with methyl alcohol. The container containing the powder was again transferred into a desiccator, cooled to room temperature, and the weight (W2) was measured. Based on each measured weight (W0, W1, W2), the amount of B 2 O 3 was calculated by the following formula. The calculation results of the B 2 O 3 amount are shown in Table 1.
また、ホットプレス焼結して得られた窒化ホウ素焼結体の残部を窒化ケイ素乳鉢で粉砕し、XRFによる含有成分の測定を行った。その結果、表1記載の条件で焼結して得られた窒化ホウ素焼結体はB、Ca、Yの金属元素を表1に示す量と実質的に等しい量を有することを確認した。その他の金属元素は焼結体中に確認されなかった。結果を表1に示す。
Further, the remaining part of the boron nitride sintered body obtained by hot press sintering was pulverized with a silicon nitride mortar, and the contained components were measured by XRF. As a result, it was confirmed that the boron nitride sintered body obtained by sintering under the conditions described in Table 1 had amounts of B, Ca, and Y metal elements substantially equal to the amounts shown in Table 1. Other metal elements were not confirmed in the sintered body. The results are shown in Table 1.
前記の焼結体を加工し、外径50mm、内径30mm、高さ50mm、深さ40mmの坩堝を得た。この坩堝に組成比21.5wt%Nd-76.5wt%Fe-1.0wt%B-1.0wt%DyのNd系合金片を60g入れ、真空雰囲気炉にて窒素雰囲気で1350℃に加熱しNd系合金を溶解し、1時間保持後冷却した。冷却後、固まった合金と坩堝との界面を観察するため切断した。走査型電子顕微鏡SEMおよびEDSにて合金側およびセラミックス側および界面のNd、Fe元素の分布状況を観察した。
The above sintered body was processed to obtain a crucible having an outer diameter of 50 mm, an inner diameter of 30 mm, a height of 50 mm, and a depth of 40 mm. In this crucible, 60 g of an Nd alloy piece having a composition ratio of 21.5 wt% Nd-76.5 wt% Fe-1.0 wt% B-1.0 wt% Dy was placed and heated to 1350 ° C. in a nitrogen atmosphere in a vacuum atmosphere furnace. The Nd alloy was melted and held for 1 hour and then cooled. After cooling, it was cut to observe the interface between the hardened alloy and the crucible. The distribution state of Nd and Fe elements on the alloy side, the ceramic side, and the interface was observed with a scanning electron microscope SEM and EDS.
セラミック側の観察においては、Nd合金との界面からセラミックス内部への金属成分の浸食、浸透、拡散の有無を確認した。
In the observation on the ceramic side, the presence or absence of erosion, penetration and diffusion of metal components from the interface with the Nd alloy into the ceramics was confirmed.
合金側の観察においては、EDSの元素分布の画像よりNd元素およびFe元素の分布状態が局所的に集合した箇所もしくは局所的に存在しない箇所があるかを確認し、このような局所的なNdもしくはFe元素の粗密斑が存在しないものを均一、存在するものを不均一とした。結果を表1に示す。
In the observation on the alloy side, it is confirmed from the image of the element distribution of EDS whether there is a place where the distribution state of the Nd element and the Fe element is locally gathered or a place where the distribution state does not exist locally. Or the thing which does not have the coarse dense spot of Fe element was made uniform, and the thing which existed was made nonuniform. The results are shown in Table 1.
(比較例1~3)
比較例1~3は、実施例1~7と同様に表1記載の比較例1~3の配合比にてホットプレス焼結を行った。ここで、比較例3は焼結助剤にB2O3粉を加えたものである。上記実施例と同様に開気孔率、ショア硬度、B2O3量を測定し、Nd系合金との耐食性試験を実施した。結果を表1に示す。 (Comparative Examples 1 to 3)
In Comparative Examples 1 to 3, similar to Examples 1 to 7, hot press sintering was performed at the compounding ratio of Comparative Examples 1 to 3 shown in Table 1. Here, Comparative Example 3 is obtained by adding B 2 O 3 powder to a sintering aid. The open porosity, Shore hardness, and the amount of B 2 O 3 were measured in the same manner as in the above examples, and a corrosion resistance test with an Nd alloy was performed. The results are shown in Table 1.
比較例1~3は、実施例1~7と同様に表1記載の比較例1~3の配合比にてホットプレス焼結を行った。ここで、比較例3は焼結助剤にB2O3粉を加えたものである。上記実施例と同様に開気孔率、ショア硬度、B2O3量を測定し、Nd系合金との耐食性試験を実施した。結果を表1に示す。 (Comparative Examples 1 to 3)
In Comparative Examples 1 to 3, similar to Examples 1 to 7, hot press sintering was performed at the compounding ratio of Comparative Examples 1 to 3 shown in Table 1. Here, Comparative Example 3 is obtained by adding B 2 O 3 powder to a sintering aid. The open porosity, Shore hardness, and the amount of B 2 O 3 were measured in the same manner as in the above examples, and a corrosion resistance test with an Nd alloy was performed. The results are shown in Table 1.
表1記載の比較例1は、実施例1~7に比べ助剤量が少なく、一方、比較例2は実施例1~7に比べ助剤量が多く、何れも開気孔率が増加した。断面観察では開気孔率が大きい比較例では、合金が気孔内に浸透しており、また比較例2ではさらに坩堝界面を破壊している箇所も観察された。比較例3は焼結体中のB2O3量が多く、坩堝と合金層の界面にNd成分層を形成し、合金組織も不均一となった。
Comparative Example 1 shown in Table 1 had a smaller amount of auxiliary agent than Examples 1 to 7, while Comparative Example 2 had a larger amount of auxiliary agent than Examples 1 to 7, and both had increased open porosity. In the cross-sectional observation, in the comparative example having a large open porosity, the alloy penetrated into the pores, and in comparative example 2, a portion where the crucible interface was further broken was also observed. In Comparative Example 3, the amount of B 2 O 3 in the sintered body was large, an Nd component layer was formed at the interface between the crucible and the alloy layer, and the alloy structure became non-uniform.
実施例3の焼結体断面のSEM画像を図1に、EDS画像を図2に示した。合金組織が均一であり、またセラミックス側への合金浸透が無いことがわかる。なお図1および図2の上部の淡色部分(カラーのSEM画像では灰白色、カラーのEDS画像では緑色の部分)が、合金層である。また下側の濃色部分(カラーのSEM画像・EDS画像では黒色の部分)が、セラミックス層である。
An SEM image of a cross section of the sintered body of Example 3 is shown in FIG. 1, and an EDS image is shown in FIG. It can be seen that the alloy structure is uniform and there is no alloy penetration into the ceramic side. In addition, the light-colored portion (the gray portion in the color SEM image and the green portion in the color EDS image) at the top of FIGS. 1 and 2 is an alloy layer. The lower dark color portion (the black portion in the color SEM image / EDS image) is the ceramic layer.
また比較例3の焼結体断面のSEM画像を図3に、EDS画像を図4に示した。合金組織が不均一であり、またセラミックス側への合金浸透が生じていることもわかる。さらに、界面にNd成分の層が形成されていることも理解される。なお図3および図4の上部の淡色部分(カラーのSEM画像では灰白色、カラーのEDS画像では青緑色の部分)が、合金層である。また下側の濃色部分(カラーのSEM画像・EDS画像では黒色の部分)が、セラミックス層である。
The SEM image of the cross section of the sintered body of Comparative Example 3 is shown in FIG. 3, and the EDS image is shown in FIG. It can also be seen that the alloy structure is non-uniform and the alloy permeates into the ceramic side. Further, it is understood that a layer of Nd component is formed at the interface. 3 and 4 is an alloy layer (the light-colored portion in the color SEM image and the blue-green portion in the color EDS image). The lower dark color portion (the black portion in the color SEM image / EDS image) is the ceramic layer.
Claims (9)
- 窒化ホウ素の含有量が80.0質量%以上であって、カルシウムを酸化カルシウム換算量として0.3質量%以上12.0質量%以下と、イットリウムを酸化イットリウム換算量として1.0質量%以上18.0質量%以下を含むことを特徴とする窒化ホウ素焼結体。 The content of boron nitride is 80.0% by mass or more, calcium is 0.3 to 12.0% by mass in terms of calcium oxide, and 1.0% by mass or more in terms of yttrium oxide. A boron nitride sintered body containing 18.0% by mass or less.
- 窒化ホウ素の含有量が80.0質量%以上であって、カルシウムを酸化カルシウム換算量として0.6質量%以上11.0質量%以下と、イットリウムを酸化イットリウム換算量として1.9質量%以上17.0質量%以下を含むことを特徴とする請求項1に記載の窒化ホウ素焼結体。 The content of boron nitride is 80.0% by mass or more, calcium is 0.6 to 11.0% by mass in terms of calcium oxide, and 1.9% by mass in terms of yttrium oxide. The boron nitride sintered body according to claim 1, comprising 17.0% by mass or less.
- 前記焼結体に含まれる酸化ホウ素の量が、0.3質量%以下であることを特徴とする請求項1または2に記載の窒化ホウ素焼結体。 The boron nitride sintered body according to claim 1 or 2, wherein the amount of boron oxide contained in the sintered body is 0.3 mass% or less.
- 前記焼結体に含まれる酸化ホウ素の量が、0.1質量%以下であることを特徴とする請求項3に記載の窒化ホウ素焼結体。 The boron nitride sintered body according to claim 3, wherein the amount of boron oxide contained in the sintered body is 0.1 mass% or less.
- 前記焼結体の真密度に対する相対密度が、75%以上であることを特徴とする請求項1から4のいずれか一項に記載の窒化ホウ素焼結体。 The boron nitride sintered body according to any one of claims 1 to 4, wherein a relative density with respect to a true density of the sintered body is 75% or more.
- 前記焼結体の開気孔率が、7%以下であることを特徴とする請求項1から5のいずれか一項に記載の窒化ホウ素焼結体。 The boron nitride sintered body according to any one of claims 1 to 5, wherein an open porosity of the sintered body is 7% or less.
- 前記焼結体のショア硬度が、13以上であることを特徴とする請求項1から6のいずれか一項に記載の窒化ホウ素焼結体。 7. The boron nitride sintered body according to claim 1, wherein a shore hardness of the sintered body is 13 or more.
- 80.0質量%以上の窒化ホウ素と、焼結助剤としての0.3質量%以上12.0質量%以下の無水酸化カルシウムと、焼結助剤としての1.0質量%以上18.0質量%以下の酸化イットリウムとを混合し、原料混合物を得るステップと、
前記原料混合物を、1600℃以上2050℃以下の範囲の温度で焼結するステップと
を含む、窒化ホウ素焼結体の製造方法。 80.0% by mass or more of boron nitride, 0.3% by mass to 12.0% by mass of anhydrous calcium oxide as a sintering aid, and 1.0% by mass or more of 18.0% by mass as a sintering aid. Mixing a yttrium oxide having a mass% or less to obtain a raw material mixture;
Sintering the raw material mixture at a temperature in the range of 1600 ° C. or higher and 2050 ° C. or lower. - 前記原料混合物中の無水酸化カルシウムの量が0.6質量%以上11.0質量%以下であり、酸化イットリウムの量が1.9質量%以上17.0質量%以下である、請求項8に記載の製造方法。 The amount of anhydrous calcium oxide in the raw material mixture is 0.6 mass% or more and 11.0 mass% or less, and the amount of yttrium oxide is 1.9 mass% or more and 17.0 mass% or less. The manufacturing method as described.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-109405 | 2016-05-31 | ||
JP2016109405A JP2019131410A (en) | 2016-05-31 | 2016-05-31 | Bn sintered body excellent in corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017209061A1 true WO2017209061A1 (en) | 2017-12-07 |
Family
ID=60477833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019938 WO2017209061A1 (en) | 2016-05-31 | 2017-05-29 | Bn sintered compact having excellent corrosion resistance |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019131410A (en) |
TW (1) | TWI737739B (en) |
WO (1) | WO2017209061A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7349921B2 (en) * | 2020-01-24 | 2023-09-25 | デンカ株式会社 | Hexagonal boron nitride sintered body |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05310476A (en) * | 1992-05-08 | 1993-11-22 | Shin Etsu Chem Co Ltd | Boron nitride setter for calcining aluminum nitride |
JP2007506864A (en) * | 2003-09-24 | 2007-03-22 | ゼネラル・エレクトリック・カンパニイ | Metal evaporation container and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6645612B2 (en) * | 2001-08-07 | 2003-11-11 | Saint-Gobain Ceramics & Plastics, Inc. | High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them |
US7524560B2 (en) * | 2005-08-19 | 2009-04-28 | Momentive Performance Materials Inc. | Enhanced boron nitride composition and compositions made therewith |
JP5310476B2 (en) | 2009-10-20 | 2013-10-09 | 日本精工株式会社 | Vehicle drive device |
EP3106429B1 (en) * | 2014-02-12 | 2018-07-04 | Denka Company Limited | Boron nitride particles and production method therefor |
CN105399426A (en) * | 2015-11-16 | 2016-03-16 | 长兴鑫宇耐火材料有限公司 | Preparation method of boron nitride ceramic |
-
2016
- 2016-05-31 JP JP2016109405A patent/JP2019131410A/en active Pending
-
2017
- 2017-05-29 WO PCT/JP2017/019938 patent/WO2017209061A1/en active Application Filing
- 2017-05-31 TW TW106117795A patent/TWI737739B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05310476A (en) * | 1992-05-08 | 1993-11-22 | Shin Etsu Chem Co Ltd | Boron nitride setter for calcining aluminum nitride |
JP2007506864A (en) * | 2003-09-24 | 2007-03-22 | ゼネラル・エレクトリック・カンパニイ | Metal evaporation container and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201803834A (en) | 2018-02-01 |
JP2019131410A (en) | 2019-08-08 |
TWI737739B (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5477282B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP4997431B2 (en) | Method for producing high thermal conductivity silicon nitride substrate | |
JP4869070B2 (en) | High thermal conductivity silicon nitride sintered body and silicon nitride structural member | |
JP5836522B2 (en) | Method for manufacturing silicon nitride substrate | |
US20090121197A1 (en) | Sintered Material, Sinterable Powder Mixture, Method for Producing Said Material and Use Thereof | |
KR101794410B1 (en) | Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof | |
JP5046221B2 (en) | Manufacturing method of highly reliable silicon nitride ceramics with high reliability | |
US20090105062A1 (en) | Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof | |
WO2012053486A1 (en) | Electrode for electric discharge machining | |
KR960016070B1 (en) | Sintered aluminium nitride and its production | |
WO2017209061A1 (en) | Bn sintered compact having excellent corrosion resistance | |
EP2902378A1 (en) | Silicon nitride sintered compact, heating device and adsorption device | |
EP2703349B1 (en) | Lanthanum boride sintered body and method for producing the same | |
JP5434583B2 (en) | Method for producing sintered metal boride | |
US7319079B2 (en) | Container for evaporation of metal and method to manufacture thereof | |
JP6720053B2 (en) | Method for manufacturing silicon nitride sintered body | |
JP2008105936A (en) | Carbide powder | |
JPH07172921A (en) | Aluminum nitride sintered material and its production | |
EP2850041A1 (en) | Silicon nitride ceramics with improved wear resistance and production method therefore | |
WO2017209063A1 (en) | Boron nitride nozzle and boron nitride crucible for production of neodymium alloy, and neodymium alloy production method using nozzle or crucible | |
JP6725325B2 (en) | Boron nitride nozzle for manufacturing neodymium alloy and method for manufacturing neodymium alloy using the nozzle | |
JPH08134563A (en) | Sintered member and its production | |
JP4122550B2 (en) | Manufacturing method of SiC sintered body | |
JP2017214246A (en) | Boron nitride crucible for production of neodymium alloy and method for producing neodymium alloy using crucible | |
KR20070017468A (en) | Container for evaporation of metal and method to manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806616 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806616 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |