WO2017208941A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2017208941A1
WO2017208941A1 PCT/JP2017/019414 JP2017019414W WO2017208941A1 WO 2017208941 A1 WO2017208941 A1 WO 2017208941A1 JP 2017019414 W JP2017019414 W JP 2017019414W WO 2017208941 A1 WO2017208941 A1 WO 2017208941A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
conductor pattern
semiconductor device
filler metal
brazing filler
Prior art date
Application number
PCT/JP2017/019414
Other languages
French (fr)
Japanese (ja)
Inventor
米田 裕
菊池 正雄
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016227966A external-priority patent/JP2019133965A/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2017208941A1 publication Critical patent/WO2017208941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a power semiconductor device and a manufacturing method thereof.
  • a method of joining the electrode terminals using a high heat resistance solder or a brazing filler metal having a melting point higher than that of the solder can be considered.
  • the melting point of the brazing filler metal is generally as high as 450 ° C. or higher, brazing using an ordinary torch or in-furnace brazing, a member around the semiconductor device, such as an adhesive, a resin case, etc.
  • the solder that joins the insulating substrate to the base plate or the solder that die-bonds the semiconductor element melts. Therefore, in order to braze the electrode terminal of the semiconductor device using a hard brazing material, it is necessary to locally heat the tip of the electrode terminal, which is the part to be brazed, in a short time.
  • Patent Document 2 as a method for locally heating the tip of an electrode terminal in a short time, the melting point of the electrode terminal and the surface electrode is higher than at least one of the surfaces facing each other in the electrode terminal and the surface electrode of the semiconductor element.
  • a low melting point metal layer is formed in advance.
  • fever, and joins a surface electrode and an electrode terminal is proposed.
  • the electrode terminals can be joined without melting the entire solder joining the base plate and the insulating substrate, the surrounding adhesive, the case, or the like.
  • the object to be melted by heating with laser light is a low melting point metal layer, not a high heat resistance solder or a brazing filler metal having a higher melting point than solder.
  • the object to which the electrode terminal is bonded is the surface electrode in the semiconductor element, and is not in the form of bonding the electrode terminal to the conductor pattern on the insulating substrate, for example.
  • the present invention has been made to solve the above-described problems.
  • the electrode terminal and the conductor pattern are higher than conventional ones.
  • An object of the present invention is to provide a semiconductor device having the following junction reliability and a method for manufacturing the same.
  • the present invention is configured as follows. That is, the semiconductor device according to one embodiment of the present invention includes an insulating substrate having a conductor pattern on both surfaces of an insulating base, a semiconductor element mounted on one conductor pattern on the insulating substrate, and the one conductor pattern.
  • the bonding material is a hard brazing material
  • the electrode terminal has a unit area larger than a heat capacity per unit area in the one conductor pattern. It has a heat capacity per unit.
  • the electrode terminal since the electrode terminal has a larger heat capacity per unit area than the conductor pattern, the difference in heat capacity between the electrode terminal and the conductor pattern is reduced, and the electrode terminal is used for local heating. And the temperature difference between the conductor pattern is reduced. Therefore, it is possible to prevent the electrode terminal from being melted before the hard brazing material is melted. Therefore, higher bonding reliability between the electrode terminal and the conductor pattern can be obtained as compared with the conventional case.
  • FIG. 3 is a cross-sectional view showing a part of the configuration of the power semiconductor device in the first embodiment.
  • 1B is a plan view of the power semiconductor device shown in FIG. 1A.
  • FIG. FIG. 6 is a cross-sectional view showing a part of the configuration of a power semiconductor device in a second embodiment.
  • FIG. 2B is a plan view of the power semiconductor device shown in FIG. 2A. It is sectional drawing for demonstrating an example of the manufacturing method of the power semiconductor device shown to FIG. 2A. It is a top view of the power semiconductor device shown in FIG. 2C. It is sectional drawing for demonstrating the other example of the manufacturing method of the semiconductor device for electric power shown to FIG. 2A. It is a top view of the power semiconductor device shown to FIG. 2E.
  • FIG. 2B is a plan view of the power semiconductor device shown in FIG. 2G. It is sectional drawing for demonstrating the manufacturing method (Embodiment 3) of the semiconductor device for electric power shown to FIG. 1A. It is sectional drawing for demonstrating the manufacturing method of the power semiconductor device shown to FIG. 1A. It is sectional drawing for demonstrating the manufacturing method of the power semiconductor device shown to FIG. 1A. It is sectional drawing of the semiconductor device for electric power for demonstrating the method to join the conductor pattern and electrode terminal in an insulated substrate using solder.
  • FIG. 9 is a cross-sectional view showing a part of the configuration of a power semiconductor device in a fourth embodiment.
  • FIG. 6B is a plan view of the power semiconductor device shown in FIG. 6A.
  • FIG. 10 is a cross-sectional view showing a positional relationship between a through hole and a light beam in a fourth embodiment. It is sectional drawing which shows the state of the heating by a laser beam, and is a figure which shows the case where there is no through-hole. It is sectional drawing which shows the state of the heating by a laser beam, and is a figure which shows the case where there exists a through-hole. It is a top view which shows the other example of the irradiation method by a laser beam. It is sectional drawing which shows a part of structure of the semiconductor device for electric power concerned about the case where Embodiment 4 is not used. FIG.
  • FIG. 6B is a plan view illustrating another example of the configuration of the power semiconductor device illustrated in FIG. 6A.
  • FIG. 6B is a plan view illustrating another example of the configuration of the power semiconductor device illustrated in FIG. 6A. It is a figure which shows the modification of a through-hole. It is a figure which shows the modification of a through-hole. It is sectional drawing which shows the usage number of a terminal deformation
  • FIG. 15B is a plan view of the power semiconductor device shown in FIG. 15A.
  • FIG. 10 is a cross-sectional view showing a part of the configuration of a power semiconductor device in a fifth embodiment. It is a figure which shows the modification of the press structure shown in FIG. It is a figure which shows the other modification of the press structure shown in FIG. It is a figure which shows another modification of the press structure shown in FIG.
  • each corresponding component is independent.
  • the size or scale of the same component may be different.
  • the configuration of the power semiconductor device is actually provided with a plurality of members, but for the sake of simplicity, only the portions necessary for the description are described, and the description of the other portions is omitted. ing.
  • a power semiconductor device is taken as an example, but each embodiment can also be applied to a semiconductor device that handles a normal current instead of power.
  • FIG. 1 is a partial cross-sectional view (FIG. 1A) and a plan view (FIG. 1B) showing a schematic configuration of a power semiconductor device 101 according to the first embodiment.
  • the power semiconductor device 101 includes a power semiconductor element 1, an electrode terminal 3, and an insulating substrate 5 as basic components, and can further include a heat dissipation member 6 and a case 12 as illustrated.
  • the power semiconductor element 1 and the electrode terminal 3 are disposed on one side of the insulating substrate 5, and the heat dissipating member 6 is disposed on the other surface side of the insulating substrate 5, and the power semiconductor element is disposed around the heat dissipating member 6.
  • a case 12 is disposed so as to surround 1 and the electrode terminal 3. Further details will be described below.
  • an IGBT Insulated Gate Bipolar Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the insulating substrate 5 includes an insulating base material 51, a conductor pattern 52a formed on one surface of both surfaces facing each other in the thickness direction of the insulating base material 51, and a conductor pattern 52b formed on the other surface.
  • the insulating base 51 is an electrical insulator and is preferably a material having a high thermal conductivity in order to efficiently cool the power semiconductor element 1, and generally has a thickness of, for example, 0.635 mm or 0.32 mm.
  • a ceramic plate of AlN, Si 3 N 4 , Al 2 O 3 or the like is used.
  • the same material is used for the conductor pattern 52a and the conductor pattern 52b.
  • the main electrode of the power semiconductor element 1 is soldered to one conductor pattern 52a corresponding to the circuit surface side, and the conductor pattern 52a is an electrode terminal with a hard brazing material 10 corresponding to an example of a bonding material interposed therebetween. 3 and a joint part are formed. Since such a conductor pattern 52a is a wiring member for electrically connecting the power semiconductor element 1 and an external circuit, a metal having a small electric resistance is preferable. Therefore, the conductor patterns 52a and 52b are generally made of Cu or Al having a thickness of about 1.0 mm or less, for example.
  • the heat radiating member 6 is joined by solder 8 to the other conductor pattern 52b corresponding to the heat radiating surface.
  • the electrode terminal 3 is a wiring member for electrically connecting the power semiconductor element 1 and an external circuit. Therefore, the material of the electrode terminal 3 is preferably a metal having a low electric resistance, and is generally Cu or Al. Such an electrode terminal 3 is obtained by cutting a sheet metal or by pressing, and one end of the electrode terminal 3 forms a joint with the conductor pattern 52a with the brazing filler metal 10 interposed therebetween, and the other end is a case. 12 extends to the outer surface and is electrically connected to another circuit member or an external circuit.
  • the heat capacity of the electrode terminal 3 is larger than the heat capacity of the conductor pattern 52a so that the temperature difference between the electrode terminal 3 and the conductor pattern 52a does not increase during heating.
  • the heat capacity is the amount of heat necessary to raise the temperature of the object by a unit temperature of 1K. That is, when the same amount of heat is applied, it is preferable that the electrode terminal 3 is less likely to rise in temperature than the conductor pattern 52a.
  • the volume of the electrode terminal 3 is preferably larger than the volume of the conductor pattern 52a because the heat capacity is proportional to the volume.
  • the materials of the electrode terminal 3 and the conductor pattern 52a are different, the amount of heat required to raise the temperature of the substance with constant conditions such as weight and size is different by 1K. It is necessary to consider.
  • the insulating substrate 5 serves as a heat dissipation path. Therefore, when it is considered as one object including the heat radiation member 6 connected to the insulating substrate 5, generally, the heat capacity of the electrode terminal 3 is smaller than that of the insulating substrate 5, and moreover, for brazing. Since heating is performed from the electrode terminal 3 side, the temperature of the electrode terminal 3 is likely to rise during brazing.
  • the electrode terminal 3 when the electrode terminal 3 is heated with laser light, only the portion irradiated with the laser light is instantaneously heated. Therefore, even if the heat capacity of the electrode terminal 3 as a whole is not necessarily larger than the heat capacity of the conductor pattern 52a, the heat capacity of the electrode terminal 3 heated by the laser light and the heat capacity in the vicinity thereof are electrodes viewed from the irradiation direction of the laser light. What is necessary is just to become larger than the heat capacity of the conductor pattern 52a in the same plane as the terminal 3.
  • the electrode terminal 3 has a relatively large cross-sectional area in order to make the heat capacity of the electrode terminal 3 larger than the heat capacity of the conductor pattern 52a and further increase the current that can be energized.
  • the cross-sectional area of the electrode terminal 3 is an area of the cross section of the electrode terminal 3 in a plane (that is, a yz plane) perpendicular to the x direction shown in FIGS. 1A and 1B.
  • the cross-sectional area of the electrode terminal 3 is determined by the width and thickness of the electrode terminal 3, but in order to reduce the size of the power semiconductor device 101, it is preferable that the width of the electrode terminal 3 is small.
  • the width of the electrode terminal 3 is a dimension of the electrode terminal 3 along the y direction shown in FIGS. 1A and 1B.
  • the relationship between the width dimension and thickness of the electrode terminal 3 is preferably as follows. That is, in the electrode terminal 3, when the surface to be bonded to the brazing filler metal 10 is the bonding surface 3j, in order to spread the heat applied to the surface 3a of the electrode terminal 3 by the laser beam over the entire bonding surface 3j, the electrode In the width direction of the terminal 3, the length from the end of the laser light irradiation region of the electrode terminal 3 to the end of the electrode terminal 3 is preferably about the thickness dimension of the electrode terminal 3 or less.
  • the heating operation of the electrode terminal 3 will be described in detail in a third embodiment to be described later, including the case of using laser light.
  • the thickness of the electrode terminal 3 is preferably in the range of about 0.5 mm to 2.0 mm as an example, but more preferably 0.8 mm to 2.0 mm. As one means for making the heat capacity of the electrode terminal 3 larger than the heat capacity of the conductor pattern 52a, the electrode terminal 3 has a thickness exceeding the thickness of the conductor pattern 52a.
  • the heat capacity per unit area (1 mm 2 ) of the electrode terminal 3 heated by the laser beam is set to be a conductor pattern facing the electrode terminal 3 heated by the laser beam. It can be made larger than the heat capacity per unit area (1 mm 2 ) in 52a.
  • the effect of spreading the heat obtained by increasing the thickness of the electrode terminal 3 can be increased. Therefore, the temperature distribution on the joint surface 3j can be reduced.
  • the heat radiating member 6 will be described.
  • the heat dissipating member 6 is joined to a single or a plurality of insulating substrates 5 with solder 8 and plays a role as a heat dissipating plate, and a heat sink is provided on the connection surface 6b of the heat dissipating member 6 with heat conduction grease or the like.
  • the material of the heat radiating member 6 is preferably a metal having a high thermal conductivity, and generally a metal plate of Cu, Al, AlSiC or the like having a thickness of about 1.0 to 5.0 mm is used.
  • the connection surface 6 b of the heat radiating member 6 is a surface facing the joint surface 6 a with the solder 8.
  • the case 12 has a frame shape.
  • the case 12 is erected on the joint surface 6 a around the heat dissipation member 6 and is fixed to the heat dissipation member 6 with an adhesive 11.
  • Such a case 12 covers the entire power semiconductor device 101, supports the other end of the electrode terminal 3, and also plays a role of connection to an external circuit outside the case 12.
  • the material of the case 12 is generally a thermoplastic plastic material such as PBT (polybutylene terephthalate) or PPS (polyphenylene sulfide), and its melting point is about 300 ° C. or less.
  • the solder 8 joins the conductive pattern 52b located on the heat radiation surface side of the insulating substrate 5 and the heat radiation member 6. Therefore, the material of the solder 8 is preferably a metal having a relatively low melting point and a high thermal conductivity. Generally, an alloy containing Sn, Pb, Ag, Cu or the like and having a melting point of less than 450 ° C. is used. Further, the thickness after joining of the solder 8 is preferably about 0.1 to 0.3 mm from the viewpoint of connection reliability and heat dissipation.
  • the brazing filler metal 10 joins the joint surface 3 j of the electrode terminal 3 and the conductor pattern 52 a of the insulating substrate 5.
  • the brazing filler metal 10 is a heat dissipation path for cooling the electrode terminal 3 that has generated heat by energization, and is also an energization path for electrically connecting the electrode terminal 3 and the conductor pattern 52a. Therefore, the material of the brazing filler metal 10 is preferably a metal having a relatively high melting point and a large thermal conductivity and electrical conductivity. Unlike the solder 8, it contains Au, Ag, Cu, Zn, Ni, etc. An alloy having a temperature of 450 ° C. or higher is used.
  • the brazing filler metal 10 uses a phosphor copper brazing material (Cu—Ag—P) having a melting point of about 800 ° C. ing.
  • the thickness after the joining is generally preferably thinner from the viewpoint of connection reliability, and is preferably 0.25 mm or less. Especially 0.1 mm or less is preferable. Within this range, sufficient results can be obtained in all of the strength of the joint, the electrical resistance of the brazed part, and the thermal resistance of the brazed part.
  • the adhesive 11 bonds the heat radiating member 6 and the case 12 together. Therefore, generally, an epoxy thermosetting resin is used.
  • the surface 3 a facing the joining surface 3 j of the electrode terminal 3 joined to the brazing filler metal 10 is heated by irradiating laser light.
  • the heat capacity per unit area (1 mm 2 ) of the electrode terminal 3 heated by the laser light is larger than the heat capacity per unit area (1 mm 2 ) of the conductor pattern 52a facing the electrode terminal 3 heated by the laser light.
  • the heat applied to the surface 3a of the electrode terminal 3 by the laser beam can be spread to the bonding surface 3j on the hard soldering material 10 side. Therefore, the whole joining surface 3j with the brazing filler metal 10 and the conductor pattern 52a can be heated uniformly, and an unjoined portion in the brazing filler metal 10 can be eliminated. Therefore, a brazing area necessary for energization can be secured.
  • the power semiconductor device 101 can be reduced by reducing the number of the electrode terminals 3 for energizing the power semiconductor element or by reducing the width of the electrode terminals 3 by increasing the thickness of the electrode terminals 3. Can be miniaturized.
  • the stress generated at the junction between the insulating substrate and the electrode terminal increases due to the difference in linear expansion coefficient between the insulating substrate and the electrode terminal.
  • the reliability of the system deteriorated.
  • the brazing filler metal 10 for joining the electrode terminal 3 and the conductor pattern 52a the reliability of the joint can be greatly improved as compared with the conventional power semiconductor device. Therefore, in power semiconductor device 101 in the first embodiment, there is no problem with reliability in the range of life generally required for power semiconductor devices.
  • the mechanical strength of the brazing filler metal 10 is generally the main material of the electrode terminal 3 and the conductor pattern 52a. It is larger than Cu, which is also used in the first embodiment. Therefore, the reliability with respect to the thermal stress caused by the heat generated by the power semiconductor device 101 at the joint between the electrode terminal 3, the brazing filler metal 10 and the conductor pattern 52 a is the conventional power semiconductor device using solder for joining the electrode terminals. Compared with, it can be greatly improved.
  • the power semiconductor device can be reduced in size because the area necessary for joining the electrode terminals 3 is reduced.
  • the power semiconductor device using SiC for the power semiconductor element 1 operates at a higher temperature, the temperature change of the semiconductor device becomes particularly large on the high temperature side. Therefore, the thermal stress and tensile stress generated in the joint portion are increased, and the decrease in material strength due to high temperature tends to be increased. Therefore, in the power semiconductor device using SiC, the merit by this embodiment becomes more effective.
  • the material of the brazing filler metal 10 has a higher melting point in order to improve reliability, and the material of the electrode terminal 3 and the conductor pattern 52a is preferably higher than the melting point of the brazing filler metal 10.
  • the heating time for the electrode terminal 3 is preferably short.
  • the melting point of the brazing filler metal 10, the electrode terminal 3 and the conductor pattern 52a is 250 ° C. or more.
  • the material of the electrode terminal 3 and the conductor pattern 52a is the same, and Cu is more preferable as mentioned above.
  • the conductor pattern 52 a is preferably a material whose melting point is higher than that of the electrode terminal 3.
  • the conductor pattern 52 a is preferably a material having a lower thermal conductivity than the electrode terminal 3.
  • the conductor pattern 52a is made of Ni plated on the surface of Cu
  • the material of the electrode terminal 3 is Cu without plating
  • the hard soldering material 10 is silver solder, phosphor bronze, or the like.
  • the heat capacity per unit area (1 mm 2 ) of the electrode terminal 3 heated by the laser light is heated by the laser light.
  • the temperature difference between the electrode terminal 3 and the conductor pattern 52a due to heating of the laser light is reduced, and before brazing. It is possible to prevent the electrode terminal 3 from melting.
  • the thickness of the electrode terminal 3 is made larger than before, the heat applied to the surface 3a of the electrode terminal 3 by the laser beam can be spread to the bonding surface 3j on the brazing filler metal 10 side. Therefore, the whole joining surface of the brazing filler metal 10 and the conductor pattern 52a can be heated uniformly, and the unjoined part of the brazing filler metal 10 can be eliminated. Therefore, a brazing area necessary for energization can be secured between the electrode terminal 3 and the conductor pattern 52a.
  • the applicant uses an electrode terminal 3 whose heat capacity is changed by changing the thickness of the electrode terminal 3, and actually conducts an experiment to compare the wettability of the brazing filler metal 10 and whether or not the electrode terminal 3 is melted. did.
  • three types of electrode terminals 3 having a length of 12 mm, a width of 4 mm, and a thickness of 0.4 mm, 0.8 mm, and 1.2 mm were prepared.
  • As the brazing filler metal 10 a length of 12 mm, a width of 4 mm, A phosphor copper braze having a thickness of 0.13 mm was used.
  • the laser beam is irradiated from the surface 3a side of the electrode terminal 3 sandwiching the sheet-like hard solder material 10, and the focal position of the laser beam is adjusted so that the center of the surface 3a and the center of the laser beam overlap, and the maximum is 4 kW.
  • Irradiation with a fiber laser After irradiating the laser beam, with respect to the three types of electrode terminals 3, by visual inspection, the presence or absence of melting of the electrode terminals 3, the presence or absence of melting of the brazing filler metal 10, and the presence or absence of bonding of the electrode terminals 3 to the conductor pattern 52a Were compared and examined. The experimental results are shown in FIG.
  • the electrode terminal 3 having a thickness of 0.4 mm the electrode terminal 3 was melted before the brazing filler metal 10 was spread over the conductor pattern 52 a, and bonding was not possible.
  • the electrode terminal 3 having a thickness of 0.8 mm the surface 3a of the electrode terminal 3 is melted by heating with laser light, but before the entire electrode terminal 3 is melted, the brazing filler metal 10 is melted. Wetting and spreading on the conductor pattern 52a was completed. Furthermore, in the electrode terminal 3 having a thickness of 1.2 mm, the surface 3a of the electrode terminal 3 was not melted by heating with laser light, and the joining was completed.
  • the ratio of the cross-sectional area of the electrode terminal 3 at the laser light irradiation location to the cross-sectional area of the conductor pattern 52a facing the electrode terminal 3 at this irradiation location is 0 mm in thickness.
  • electrode terminal 3 and conductor pattern 52a 4: 3, in the case of 0.8 mm thickness electrode terminal 3 and conductor pattern 52a, 8: 3, electrode terminal 3 and conductor 1.2 mm in thickness.
  • the pattern 52a it is 4: 1. Therefore, it is preferable that the electrode terminal 3 heated by the laser beam is designed to have a cross-sectional area of at least twice or more, more preferably three times or more with respect to the conductor pattern 52a facing the electrode terminal 3. it is conceivable that.
  • FIG. FIG. 2 shows a schematic configuration of the power semiconductor device 102 according to the second embodiment in a partial cross-sectional view and a plan view.
  • the power semiconductor device 102 according to the second embodiment also basically has the same configuration as that of the power semiconductor device 101 according to the first embodiment, but differs in the following points. Therefore, here, mainly the differences will be described, and the description of the same components will be omitted.
  • FIG. 2 includes FIGS. 2A to 2H, and shows only the joint portion of the electrode terminal 3 in the power semiconductor device 102, and the other components are not shown.
  • the thickness of the electrode terminal 3 is made larger than the thickness of the conductor pattern 52a.
  • the electrode terminal 3 is joined to the conductor pattern 52a with the brazing filler metal 10 and has a joint portion 31 having a first cross-sectional area
  • the second embodiment is different from the first embodiment in that it is configured to have a non-joining portion 32 having a second sectional area larger than one sectional area. This will be described in detail below.
  • the joint portion 31 and the non-joint portion 32 can be bent and oriented, but the directions of the surfaces representing the first cross-sectional area and the second cross-sectional area are different. That is, the first cross-sectional area in the joint portion 31 is the area in the cross section of the electrode terminal 3 in the plane perpendicular to the x direction (that is, the yz plane) as in the case of the first embodiment.
  • the second cross-sectional area in the portion 32 is an area in the cross section of the electrode terminal 3 in a plane perpendicular to the z direction (that is, the xy plane).
  • the sectional area of the electrode terminal 3 is increased by increasing the thickness of the electrode terminal 3 than the width of the electrode terminal 3.
  • the thickness of the electrode terminal 3 is excessively increased, a temperature difference is generated between the surface 3a of the electrode terminal 3 heated by the laser beam and the bonding surface 3j, and before the hard soldering material 10 is melted. Further, there is a possibility that the surface 3a of the electrode terminal 3 is melted.
  • a portion of the electrode terminal 3 that has the joint surface 3j and is joined to the conductor pattern 52a is a joint 31 as shown in FIG. 2A, and a cross-sectional area at the joint 31 is a first cross-sectional area. Further, a portion that is located close to the joint surface 3j and that is not joined to the conductor pattern 52a is defined as a non-joint portion 32, and the non-joint portion 32 is configured to have a second cross-sectional area larger than the first cross-sectional area.
  • the heat capacity of the part adjacent to the part heated by the laser beam of the electrode terminal 3 can be made larger than before.
  • the cross-sectional area of the heat applied by the laser beam is increased without increasing the width of the electrode terminal 3 (the dimension of the electrode terminal 3 in the y direction shown in FIGS. 2A and 2B). It is possible to efficiently escape to the non-joining portion 32. Therefore, it is more preferable that the power capacity of the electrode terminal 3 can be made larger than the heat capacity of the conductor pattern 52a while the power semiconductor device 102 is downsized. Further, the same effect can be obtained even if the width of the electrode terminal 3 is increased in the non-joint portion 32 instead of the thickness. If the width of the electrode terminal 3 is increased as long as it is in the vicinity of the joint surface 3j of the electrode terminal 3, the power semiconductor device 102 is not hindered in size reduction.
  • a hard brazing material 10 may be brazed in advance in a brazing furnace or the like to the joint surface 3j of the electrode terminal 3.
  • the heat capacity of the electrode terminal 3 can be increased by the amount brazed previously.
  • the temperature rise of the electrode terminal 3 due to the heating of the laser light can be suppressed by the latent heat of melting when the brazing filler metal 10 is melted by the heating of the laser light.
  • the interface where the contact thermal resistance between the electrode terminal 3 and the conductor pattern 52a occurs can be reduced by one, and the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be reduced, which is more preferable. .
  • contact thermal resistance between the electrode terminal 3 and the conductor pattern 52a is also generated by brazing the hard soldering material 10 to the conductor pattern 52a in advance. The effect of reducing the interface can be obtained.
  • a material having a melting point lower than that of the electrode terminal 3 may be preliminarily applied in the vicinity of the joint surface 3j of the electrode terminal 3 by plating 3m or the like.
  • the heat capacity of the electrode terminal 3 can be increased by the amount of the applied material, and when the temperature of the electrode terminal 3 rises due to heating with laser light, the applied material becomes the electrode terminal. Since the melting point reaches the melting point before 3, the temperature rise of the electrode terminal 3 can be suppressed by the latent heat of fusion.
  • FIG. 3 shows a method for manufacturing the power semiconductor device 101 in the first embodiment
  • FIGS. 4 and 5 are diagrams for supplementing the description of the method for manufacturing the power semiconductor device 101.
  • solder 9 of the same alloy as solder 8 is used as a material for joining electrode terminal 3 and conductor pattern 52a.
  • solder 9 is placed on or supplied to the conductor pattern 52a to start soldering.
  • the entire power semiconductor device 100A being soldered is heated from the bottom surface of the heat radiating member 6 by the hot plate 40 or the like, and from the surface 3a of the electrode terminal 3 by the hot tool 41 or the like. Heated and pressurized.
  • the solder 9 is melted to join the electrode terminal 3 and the conductor pattern 52a.
  • the solder 9 a solder having a lower melting point than that of the solder 8 is generally selected. Note that the melting points of the solder 8 and the solder 9 are both about 250 ° C. or less. Therefore, the heating temperature of the hot plate 40 is set to be equal to or lower than the melting point of the solder 8, and the solder 8 and the case 12 are not melted by the heating of the hot plate 40. Further, when the entire power semiconductor device 100A is heated from the bottom surface side of the heat dissipation member 6 to the vicinity of the melting point of the solder 9 by a hot plate, and is locally heated from the surface 3a of the electrode terminal 3 by the hot tool 41. The solder 9 easily reaches the melting point and melts.
  • the conductor pattern 52a side also reaches a temperature equal to or higher than the melting point of the solder 9 due to heating by the hot plate 40, the molten solder 9 spreads wet to the conductor pattern 52a side and forms a fillet.
  • the melting point of the solder 9 must be lowered, and it is difficult to cope with the severe temperature environment in which the power semiconductor device is used. Therefore, it is conceivable that the power semiconductor device 100A configured using the solder 9 cannot satisfy the reliability required for the product.
  • a hard brazing material 10 is used instead of the solder 9.
  • the temperature of the hot plate 40 is set near the melting point of the brazing filler metal 10 (800 in the third embodiment).
  • a hot tool 41 that can be heated to the melting point of the brazing filler metal 10 or higher, or
  • iii Heat locally from the surface 3a of the electrode terminal 3 to the melting point of the brazing filler metal 10 or higher. It is necessary to use possible heating means.
  • the entire power semiconductor device 100B is heated to, for example, about 800 ° C.
  • a phenomenon such as melting of the case 12 and the solder 8 occurs, and functions necessary for the power semiconductor device are achieved.
  • the heating by the hot tool 41 is a heat transfer by point contact between the surface 3a of the electrode terminal 3 and the hot tool 41, and thus heating takes a long time. .
  • the heating proceeds to the whole of the solder 8, and the solder 8 may be melted to cause displacement of the insulating substrate 5.
  • the method (iii), that is, the surface of the electrode terminal 3 is used so as not to melt the case 12 and the solder 8. It is necessary to use a heating method capable of locally heating to a temperature equal to or higher than the melting point of the brazing filler metal 10 in a short time of about several seconds with respect to 3a.
  • a heating method there is a method using friction stirring or ultrasonic waves, but a heating method using laser light can be employed.
  • This heating by laser light does not cause mechanical damage such as pressurization or vibration to the insulating substrate of the semiconductor device, does not impair the insulation and conductivity required for the power semiconductor device, and can be handled in a small space.
  • it since it can be used in air, it is preferable.
  • the brazing filler metal 10 is melted and brazed, and a material harder than the electrode terminal 3 is used for the brazing filler metal 10 as in the phosphor copper brazing material used in the first embodiment, whereby the electrode terminal 3 A more reliable joint can be obtained.
  • the conductor pattern 52a to be joined to the electrode terminal 3 that is heated by laser light is formed on the insulating substrate 5.
  • the insulating substrate 5 has a heat dissipation structure for efficiently cooling the semiconductor elements.
  • the area of the insulating substrate 5 is compared with the area of the bonding surface 3j of the electrode terminal 3.
  • the heat dissipation member 6 is connected. Therefore, the heat capacity of the insulating substrate 5 is much larger than that of the electrode terminal 3, and even when the surface 3a of the electrode terminal 3 is locally heated using laser light, the electrode terminal 3, Due to the contact thermal resistance between the brazing filler metal 10 and the conductor pattern 52a, a temperature difference occurs between them.
  • oxidation of the surface of the conductor pattern 52a proceeds due to heating, and there is a concern that the brazing property is lowered. If the heating by the laser beam is continued as it is, the temperature of the electrode terminal 3 rises too much before the conductor pattern 52a reaches the temperature at which the brazing filler metal 10 gets wet, and the electrode terminal 3 can reach its melting point and melt. There is sex. As the electrode terminal 3 melts, the absorption rate of the laser light is significantly increased, and the temperature rise of the electrode terminal 3 is further increased.
  • the entire electrode terminal 3 in the thickness direction is melted, and the laser light may be in a state similar to general laser light welding in which the surface of the conductor pattern 52a is directly melted. There is.
  • the laser beam When the laser beam directly melts the conductor pattern 52a as in general laser beam welding, the laser beam penetrates the conductor pattern 52a and reaches the insulating base material 51 of the insulating substrate 5, and the insulating base material 51 May cause damage. Even when the laser beam does not penetrate the conductor pattern 52a, the melted portion of the conductor pattern 52a or the region in the insulating substrate 5 heated by the laser beam locally expands in a short time. Therefore, local stress is generated in the insulating base material 51, which may damage the insulating base material 51. In general, in a power semiconductor device, a current flowing through a semiconductor element during operation flows through a conductor pattern 52a from an electrode terminal 3 through a junction. Since the conductor pattern 52a is generally formed integrally with the insulating base 51, damage to the insulating base 51 makes it difficult to ensure insulation of the power semiconductor device.
  • the joint portion obtained by general laser beam welding is limited to the laser light irradiation region and its periphery, the joint area is smaller than the joint portion obtained by melting the brazing filler metal 10.
  • the junction between the electrode terminal 3 of the power semiconductor device 100B and the conductor pattern 52a is an energization path for energizing the semiconductor element of the power semiconductor device 100B, particularly in a power semiconductor device that handles a large current.
  • the electric resistance is locally increased and the heat dissipation path of the electrode terminal 3 is also reduced, the temperature of the electrode terminal 3 is increased, and the reliability of the joint portion is lowered.
  • the cross-sectional area of the electrode terminal 3 is preferably larger as already described in the first embodiment. It is preferable to make the thickness thicker than the width of the electrode terminal 3.
  • the power semiconductor devices 101 and 102 having the electrode terminals 3 having a larger heat capacity than the conductor pattern 52 a in the third embodiment The manufacturing method, specifically, the brazing process using laser light will be described below.
  • the power semiconductor device 101 is taken as an example. 3 is a control device that controls the operation of the laser device 42.
  • control device 43 is actually realized using a computer, and includes software corresponding to the operation control function of the laser device 42 and hardware such as a CPU (Central Processing Unit) and a memory for executing the software. It is configured.
  • a CPU Central Processing Unit
  • the electrode terminal 3 is placed with the brazing filler metal 10 sandwiched between the conductor pattern 52 a so that the joint surface 3 j of the electrode terminal 3 is in contact with the brazing filler metal 10. Then, the surface 3a of the electrode terminal 3 and the conductor pattern 52a are irradiated with laser light to heat them. At this time, the laser beam is irradiated to the entire surface 3a facing the bonding surface 3j of the electrode terminal 3 by defocusing or the like so that the entire bonding surface 3j can be heated uniformly by the laser beam. Is preferred. This operation is executed by controlling the laser device 42 by the control device 43.
  • Each surface of the electrode terminal 3, the conductor pattern 52a, and the brazing filler metal 10 is covered with an oxide film. At this time, the temperature of the brazing filler metal 10 has not risen to its melting point, and the electrode terminal 3 and the conductor pattern 52a are not joined by the hard soldering material 10.
  • the electrode terminal 3 is heated by further irradiating a laser beam in a range including at least the surface 3 a of the electrode terminal 3.
  • the brazing filler metal 10 is indirectly heated by the heating of the electrode terminal 3, and the brazing filler metal 10 reaches the melting point and melts.
  • the temperature of the surface of the conductor pattern 52a approaches the temperature at which the brazing filler metal 10 spreads out, but has not yet reached the temperature at which the brazing filler metal 10 can spread out. Therefore, at this time, the molten brazing filler metal 10 wets and spreads only on the joint surface 3j of the electrode terminal 3. Further, since the latent heat of fusion exists when the brazing filler metal 10 is melted, the temperature rise of the electrode terminal 3 due to the heating of the laser beam is slowed during this time.
  • the brazing filler metal 10 is melted, the bonding surface 3j of the electrode terminal 3 is reduced by the reducing action of phosphorus contained in the phosphor copper brazing, and the brazing filler metal 10 wets and spreads on the electrode terminal 3 even without flux.
  • a brazing material that requires flux it is necessary to apply the flux to the portions to be joined at the time of the step shown in FIG. 3A.
  • the melting point of Cu is higher by about 300 ° C. than the melting point of the brazing filler metal 10, and a large difference in melting point from the brazing filler metal 10 can be obtained. Therefore, when Cu is used for the electrode terminal 3, the merit in this embodiment becomes more effective.
  • the temperature of the surface of the conductor pattern 52a is increased to the temperature at which the brazing filler metal 10 spreads out before the electrode terminal 3 is melted. Then, the brazing filler metal 10 can be spread and spread on the conductor pattern 52a side.
  • the temperature of the conductor pattern 52a rises most in the portion immediately below the range heated by the laser beam. Therefore, the brazing filler metal 10 is wetted from the portion immediately below to the conductor pattern 52a side, and as the heating is continued, the wetted area spreads outside the surface of the conductor pattern 52a that faces the joint surface 3j. Eventually, after the brazing filler metal 10 wets and spreads over the entire surface facing the joint surface 3j, a wet spread and fillet is formed further outside.
  • the conductor pattern 52a is reduced by the reducing action of phosphorus contained in the phosphor copper brazing, so that the hard pattern is hard even without flux.
  • the brazing material 10 spreads over the conductor pattern 52a.
  • the laser beam is irradiated on the entire surface 3a of the electrode terminal 3 by defocusing or the like so that the entire bonding surface 3j can be uniformly heated by the laser beam. Thereby, the temperature of the surface which opposes the joint surface 3j in the conductor pattern 52a rises equally.
  • the brazing filler metal 10 gets wet on the conductor pattern 52a side, the brazing filler metal 10 spreads almost simultaneously on the entire facing surface of the bonding surface 3j in the conductor pattern 52a. Therefore, the time required to wet and spread the brazing filler metal 10 on the conductor pattern 52a side can be shortened, and the electrode terminal 3 is not locally heated. Therefore, the temperature difference between the electrode terminal 3 and the conductor pattern 52a is reduced. Can be small.
  • electromagnetic waves other than laser light can be used. Even when other electromagnetic waves are used, the effect of reducing the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be obtained.
  • the temperature control for heating the bonding surface 3j of the electrode terminal 3 and the surface facing the bonding surface 3j in the conductor pattern 52a to the same level is possible. Since it becomes easy and can be stably heated regardless of the surface state of the electrode terminal 3 and the conductor pattern 52a, it is preferable in the same manner as the laser beam.
  • the thickness of the electrode terminal 3 is increased in order to increase the cross-sectional area, the thickness of the electrode terminal 3 is obtained even when the entire surface 3a of the electrode terminal 3 is not irradiated with laser light. Heat spreads in the direction. Therefore, compared with the case where the thickness of the electrode terminal 3 is relatively thin, the effect of reducing the temperature difference of the conductor pattern 52a can be obtained.
  • FIG. 6 shows a schematic configuration of the power semiconductor device 104 according to the fourth embodiment in a partial cross-sectional view and a plan view.
  • the power semiconductor device 104 in the fourth embodiment also basically has the same configuration as that of the power semiconductor device 101 in the first embodiment, but differs in the following points. Therefore, here, mainly the differences will be described, and the description of the same components will be omitted.
  • FIG. 6 includes FIGS. 6A to 6B, and illustrates only the joint portion of the electrode terminal 3 in the power semiconductor device 104, and the other components are not illustrated.
  • the electrode terminal 3 in order to reduce the temperature difference between the electrode terminal 3 and the conductor pattern 52a due to heating of the laser beam, the electrode terminal 3 is configured to have a thickness larger than the thickness of the conductor pattern 52a.
  • the heat capacity per unit area was made larger than that of the conductor pattern 52a.
  • the electrode terminal 3 is directly heated by a laser beam and includes a joining surface 3j joined to the conductor pattern 52a by the brazing filler metal 10 as shown in FIGS. 6A and 6B.
  • the present embodiment is different from the first embodiment in that it is configured to have a through hole 33 in a part of the surface. This will be described in detail below.
  • the through hole 33 corresponds to an example of a defective portion in which the electrode terminal 3 is lost in the thickness direction of the electrode terminal 3.
  • the temperature difference between the electrode terminal 3 and the conductor pattern 52a is set. It is necessary to make it smaller. Therefore, in the first embodiment, the cross-sectional area of the electrode terminal 3 is increased by making the thickness larger than the width of the electrode terminal 3.
  • the thickness of the electrode terminal 3 is excessively increased, a temperature difference is generated between the surface 3a of the electrode terminal 3 heated by the laser beam and the bonding surface 3j. Therefore, there is a possibility that the surface 3a of the electrode terminal 3 is melted before the brazing filler metal 10 is melted.
  • the electrode terminal 3 is configured to have a through-hole 33 in a part of the portion directly heated by the laser beam.
  • the through hole 33 it is possible to directly heat the conductor pattern 52a together with the electrode terminal 3 by laser light, so that the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be reduced.
  • the electrode terminal 3 and the conductor pattern 52a can be evenly heated by the heat given by the laser beam. Therefore, the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be further reduced as compared with the case of the above-described embodiment while the power semiconductor device 104 is downsized. This is because, as described in the first embodiment, when considering the reliability of the power semiconductor device, the minimum required junction area can be reduced, so that the effect of reducing the size of the power semiconductor device 104 is maintained. This means that the effect of reducing the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be obtained.
  • the conductor pattern 52a can be efficiently heated by causing the laser beam focal point and the through-hole 33 to coincide with each other or close to each other.
  • the vicinity of the optical axis of the laser light has the highest energy density and is easily heated.
  • the surface of the conductor pattern 52a is not directly irradiated with laser light. Therefore, the temperature rise of the conductor pattern 52a is caused by the heat of the surface 3a of the electrode terminal 3 heated by the laser beam between the electrode terminal 3 and the brazing filler metal 10 where the thermal contact resistance exists. It is necessary to wait for conduction at two places between the patterns 52a. Therefore, the temperature rise of the conductor pattern 52 a is smaller than that of the electrode terminal 3.
  • the through hole 33 is provided in the electrode terminal 3, as shown in FIG. 8B, the surface of the conductor pattern 52a can be directly heated by the laser light passing through the through hole 33. Both the surface 3a and the surface of the conductor pattern 52a are directly heated. Therefore, the surface temperature of the conductor pattern 52a tends to rise.
  • the through hole 33 is provided in the central portion of the electrode terminal 3 (the central portion of the bonding surface 3j), the surface of the conductor pattern 52a can be directly heated at the portion where the energy density of the laser beam is highest, Furthermore, the surface temperature of the conductor pattern 52a can be increased.
  • the temperature rise of the electrode terminal 3 is delayed compared to the electrode terminal 3 that does not have the through hole 33. Therefore, the temperature difference between the conductor pattern 52a and the electrode terminal 3 can be reduced.
  • the temperature does not deviate from the center of the joint surface 3 j toward the outside of the electrode terminal 3. It is preferable because it can be heated.
  • the surface 3a of the electrode terminal 3 is prevented from melting the case 12 and the solder 8.
  • the void below the joining surface 3 j is obtained by scrubbing the electrode terminal 3 in the joining process. Reduction measures cannot be implemented. Therefore, there is a concern that the void 34 remains below the bonding surface 3j after bonding, as shown in FIG.
  • the brazing filler metal 10 Since the brazing filler metal 10 is used, even if the void 34 remains, the reliability of the power semiconductor device 104 does not decrease. However, since the brazing filler metal 10 is not present in the portion where the void 34 exists, the bonding area is small. Become. For this reason, the energization path and the heat dissipation path between the electrode terminal 3 and the conductor pattern 52a are reduced, and therefore it is preferable that there is no void 34.
  • Each experimental state is shown in FIG. 10 and FIG. 6A.
  • the electrode terminal 3 having a length of 12 mm, a width of 4 mm, and a thickness of 0.8 mm was used, and the through hole 33 was provided in the center of the electrode terminal 3 with a size of ⁇ 2 mm.
  • a laser beam a laser was irradiated with a fiber laser of a maximum of 4 kW so that the center of the through hole 33 of the electrode terminal 3 overlapped with the center of the laser beam.
  • the electrode terminal 3 having the through hole 33 enters the through hole 33 as shown in FIG. 6A.
  • the amount of the brazing filler metal 10 to be reduced is reduced. Accordingly, the cross-sectional area of the electrode terminal 3 is reduced by the amount of the through hole 33, and the electrical resistance of the electrode terminal 3 is increased. Furthermore, since the heat of the electrode terminal 3 does not spread in the through-hole 33 part, the state where it does not become a heat dissipation path of the electrode terminal 3 occurs.
  • the brazing filler metal 10 may be supplied in excess.
  • the extra brazing filler metal 10 can enter the through hole 33 by having the through hole 33.
  • the brazing filler metal 10 becomes more advantageous as the bonding reliability becomes thinner.
  • the molten brazing filler metal 10 wets and spreads inside the through-hole 33, and the thickness of the brazing filler metal 10 below the electrode terminal 3 is set so that the brazing filler metal 10 wetted and spreads inside the through-hole 33. Thinner than the thickness. Therefore, it is possible to obtain an effect of improving the bonding reliability.
  • the brazing filler metal 10 may not be supplied into the through hole 33.
  • a hole having the same size as or larger than the through hole 33 is provided in the brazing filler metal 10, and the brazing filler metal 10 is arranged so that the center of the provided hole is aligned with the center of the through hole 33. That is, the hard brazing material 10 is arranged so as not to be seen when viewed from the laser beam irradiation side during assembly.
  • the surface of the conductor pattern 52a can be reliably heated with laser light, so that the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be reliably reduced.
  • the electrode terminal 3 and the conductor pattern 52a can be heated more uniformly with a laser beam.
  • the brazing filler metal 10 when supplied into the through-hole 33 in advance, it operates as follows. That is, the brazing filler metal 10 is first melted by the heating of the laser beam. Until the conductive pattern 52a reaches the melting point of the brazing filler metal 10, the molten brazing filler metal 10 does not wet and spread on the conductive pattern 52a, but gathers around the through holes 33 due to the surface tension of the brazing filler metal 10. Therefore, heating of the conductor pattern 52a by laser light is not hindered.
  • the brazing filler metal 10 can be prevented from spreading and getting into the through-hole 33, and reducing the energization path and the heat dissipation path. . Further, the brazing filler metal 10 is melted during heating, and it is more preferable because it does not prevent the voiding gas from coming out of the through hole 33.
  • a plurality of through holes 33 may be provided in the electrode terminal 3 as shown in FIG. 11A.
  • the through holes 33 can be evenly arranged in the joint surface 3j, and the voids 34 in the joint portion 31 can be more efficiently reduced.
  • the temperature is also deviated, so that the focal position of the laser beam is preferably at the center of the bonding surface 3j from the viewpoint of uniform temperature in the bonding surface 3j. Therefore, when a plurality of through holes 33 are provided in the electrode terminal 3, it is preferable to provide the through holes 33 evenly in a concentric manner with the focal point as the center.
  • the through hole 33 may be formed in a groove shape instead of a hole.
  • channel is corresponded to an example of the defect
  • FIG. 13 The groove extends from the tip 3c of the electrode terminal 3 (FIG. 13) toward the bent portion of the electrode terminal 3. Therefore, the tip 3c of the electrode terminal 3 is divided by the groove.
  • the distance (groove width) between both walls along the extending direction of the groove is not more than twice the distance of the fillet formed by the brazing filler metal 10, the molten brazing filler metal 10 gets wet in the groove. Can spread. Therefore, both the effect of reducing the temperature difference between the electrode terminal 3 and the conductor pattern 52a and the effect of reducing the void 34 in the joint surface 3j can be obtained without reducing the energization path and the heat dissipation path.
  • the brazing filler metal 10 can be uniformly spread in the joining surface regardless of the supply position of the brazing filler metal 10 or the variation in the supply amount.
  • the temperature at the root 33a side (the side in contact with the brazing filler metal 10) of the square shape is This is considered to be lower than the tip 33b side of the C shape (the surface 3a side of the electrode terminal 3). Therefore, it is possible to obtain an effect of suppressing creeping of the brazing filler metal 10 (a state in which the molten brazing filler metal 10 is wet and spreads to the surface 3a side facing the bonding surface 3j of the electrode terminal 3 through the wall surface of the electrode terminal 3). Therefore, it is preferable.
  • wax material 10 can be acquired by any of a square shape and a reverse staircase shape.
  • the wall surface of the through-hole 33 is an inclined surface and there is no level
  • soldering is possible even without applying pressure to the extent that the electrode terminal 3 is deformed.
  • the brazing filler metal 10 is used as in the present embodiment, the conductor pattern is reduced in order to reduce the contact thermal resistance between the electrode terminal 3 and the brazing filler metal 10 and between the brazing filler metal 10 and the conductor pattern 52a. It is necessary to pressurize the electrode terminal 3 against 52a. At this time, when the electrode terminal 3 is irradiated with laser light with the tip 3c and the root 3d of the electrode terminal 3 shown in FIG. The electrode terminal 3 is deformed, and the deformation remains after brazing.
  • the deformation is larger as the tip 3c of the electrode terminal 3 is thinner, the deformation can be suppressed by making the electrode terminal 3 thicker. Moreover, by providing the electrode terminal 3 with the through hole 33 and setting the focal position of the laser beam to the position of the through hole 33, the heating temperature of the electrode terminal 3 can be suppressed as described above, and the electrode terminal by heating The deformation of 3 can be similarly suppressed.
  • the arrangement of the electrode terminal 3 and the conductor pattern 52a is as follows. It is preferable that the relationship is as follows. That is, for example, as shown in FIG. 2A, in a form in which the non-joining portion 32 is bent with respect to the joining portion 31 of the electrode terminal 3 and extends along the z direction, as shown in FIG.
  • the laser beam is irradiated along the z direction with respect to the surface 3a, a part of the irradiated laser beam is also irradiated to the non-joint portion 32. Therefore, in the electrode terminal 3, the lower portion 3 e (FIG.
  • the joint portions 31 other than the lower portion 3e in the electrode terminal 3 are heated to a temperature equal to or higher than the melting point of the brazing filler metal 10 because they are heated by the laser beam. Since the molten brazing filler metal 10 wets and spreads in the portion heated to the melting point of the brazing filler metal 10 or higher, the brazing filler metal 10 wets and spreads in most parts of the joint portion 31, but in the conductor pattern 52a, the lower portion 3e.
  • the brazing filler metal 10 does not spread and fillets may not be formed.
  • the brazing filler metal 10 does not spread to the outside of the electrode terminal 3, and the contact angle (wetting angle) between the brazing filler metal 10 and the electrode terminal 3 is 90.
  • a fillet shape opposite to the tip 3c of the electrode terminal 3 is formed. That is, in the lower part 3 e of the electrode terminal 3 corresponding to the bent part of the electrode terminal 3, the contact angle between the brazing filler metal 10 and the electrode terminal 3 is the contact angle in the part other than the lower part 3 e of the electrode terminal 3. Smaller than
  • the lower portion 3e is oriented toward the end 52aE side of the conductor pattern 52a, thereby making it possible to prevent the insulating base material 51 from being damaged. This will be described in detail below.
  • the end surface 3cE of the tip 3c of the electrode terminal 3 and the end 52aE of the conductor pattern 52a are arranged at the same position in the x direction in the direction opposite to that shown in FIG.
  • the tip 3c is irradiated with the laser beam and heated. Therefore, the brazing filler metal 10 wets and spreads to the end surface 3cE of the tip 3c and the end 52aE of the conductor pattern 52a.
  • the conductor pattern 52a is pulled by the difference in linear expansion coefficient between the insulating substrate 5 and the brazing filler metal 10, and the insulating base material 51 may be damaged from the end 52aE of the conductor pattern 52a.
  • the electrode terminal 3 it is possible to place the electrode terminal 3 closer to the end side 52aE side of the conductor pattern 52a by using the brazing filler metal 10 as compared with the conventional joining using solder. Therefore, the size of the conductor pattern 52a required for joining the electrode terminals 3 can be reduced as compared with the conventional case, and as a result, the entire power semiconductor device can be further reduced.
  • FIG. 16 is a partial cross-sectional view showing a schematic configuration of power semiconductor device 105 in the fifth embodiment.
  • the power semiconductor device 105 according to the fifth embodiment also basically has the same configuration as that of the power semiconductor device 101 according to the first embodiment, but differs in the following points. Therefore, here, mainly the differences will be described, and the description of the same components will be omitted. Note that FIG. 16 illustrates only the joint portion of the electrode terminal 3 in the power semiconductor device 105, and the other components are not illustrated.
  • the electrode terminal 3 in order to reduce the temperature difference between the electrode terminal 3 and the conductor pattern 52a due to heating of the laser beam, the electrode terminal 3 is configured to have a thickness larger than the thickness of the conductor pattern 52a. It has been described that the heat capacity per unit area is made larger than that of the conductor pattern 52a.
  • the conductor pattern 52a when a brazing filler metal is used, in order to reduce contact thermal resistance at two locations between the electrode terminal 3 and the brazing filler metal 10 and between the brazing filler metal 10 and the conductor pattern 52a, the conductor pattern 52a is used.
  • the power semiconductor device 105 in the fifth embodiment has a pressing structure that enables the pressing described in the fourth embodiment to be performed without using a jig.
  • the electrode terminal 3 is forcibly pressed against the conductor pattern 52a.
  • a pressing structure is formed on the rising portion 36 that is not joined to the conductor pattern 52 a in the electrode terminal 3, and the electrode terminal 3 is given elasticity (spring property) to force
  • the electrode terminal 3 is installed while being pressed against the conductor pattern 52a.
  • the rising portion 36 has, for example, a V-shaped curved shape.
  • the electrode terminal 3 can be pressed against the conductor pattern 52a by the elastic force of the electrode terminal 3 itself without using a separate jig. Therefore, it is possible to reduce the contact thermal resistance at two locations between the electrode terminal 3 and the hard solder material 10 and between the hard solder material 10 and the conductor pattern 52a.
  • the arrangement position of the electrode terminal 3 is not restricted by the jig for pressurizing the electrode terminal 3, so that the degree of freedom of arrangement of the electrode terminal 3 is improved. be able to.
  • the pressing structure at the rising portion 36 of the electrode terminal 3 needs to be provided at a position that does not hinder laser light irradiation on the surface 3 a of the electrode terminal 3.
  • the pressing structure in the rising part 36 of the electrode terminal 3 is not limited to the above-mentioned curved shape, For example, as shown to FIG. 17A and FIG. 17B, a U-shaped curved shape, an S-shaped curved shape, etc. may be sufficient. .
  • the pressing structure is not limited to that formed on the electrode terminal 3 itself.
  • the pressing member 12 ⁇ / b> A that enables the tip 3 c of the electrode terminal 3 to be pressed against the conductor pattern 52 a is used as a part of the case 12. It can also be produced integrally with the case 12.
  • the pressing structure can be provided on at least one of the electrode terminal 3 and the case 12.
  • the case 12 can be manufactured by injection molding or the like, and can be manufactured in the same process as the conventional case even if it has a complicated shape. Therefore, the pressing member 12A can also be formed integrally with the case 12. In such a structure, it is possible to press the electrode terminal 3 without using a jig without forming the above-described pressing structure on the electrode terminal 3 itself. Therefore, the manufacturing cost of the power semiconductor device 105 can be reduced.
  • the pressing member 12A since the case 12 is made of a plastic material having a low heat-resistant temperature such as a thermoplastic resin, the pressing member 12A has the electrode terminal 3 placed at a position where the laser beam is not melted or deformed. It is necessary to press. Further, in order to prevent the entire case 12, particularly the pressing member 12 ⁇ / b> A, from being melted and deformed by the heat generation of the electrode terminal 3 due to the laser beam, the pressing surface of the pressing member 12 ⁇ / b> A with respect to the electrode terminal 3 is preferably small, particularly one point like a protrusion If it is the shape which can pressurize with, it is more preferable.

Abstract

A semiconductor device provided with an insulating substrate (5) having conductor patterns (52a, 52b) on both sides of an insulating base material (51), a semiconductor element (1) mounted on one of the conductor patterns, and an electrode terminal (3) bonded to the one conductor pattern by means of a hard brazing material (10), wherein the electrode terminal has a larger heat capacity per unit area than the heat capacity per unit area in the one conductor pattern.

Description

半導体装置及びその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置及びその製造方法に関し、特には電力用半導体装置及びその製造方法に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a power semiconductor device and a manufacturing method thereof.
 従来の半導体装置、特に大電流を扱う電力用半導体装置では、効率的に大電流を流すために電極端子を大面積で接合する必要があることから、電極端子の接合には、はんだ接合が用いられてきた(特許文献1参照)。しかしながら、電力用半導体装置が使用される温度環境が過酷化するにしたがい、従来のはんだ接合では、たとえ高耐熱はんだを用いた場合でも、要求される信頼性を満足できない可能性が生じてきた。 In conventional semiconductor devices, particularly power semiconductor devices that handle large currents, it is necessary to bond electrode terminals in a large area in order to efficiently flow large currents, so solder bonding is used for bonding electrode terminals. (See Patent Document 1). However, as the temperature environment in which the power semiconductor device is used becomes severe, there is a possibility that the required reliability cannot be satisfied even in the case of using a high heat-resistant solder in the conventional solder joint.
 この問題を解決する方法として、高耐熱はんだ、あるいははんだより融点の高い硬ろう材を用いて電極端子を接合する方法が考えられる。しかしながら、硬ろう材の融点は、一般的に450℃以上と高温であるため、通常のトーチを用いたろう付け、あるいは炉中ろう付けでは、半導体装置の周囲における部材、例えば接着剤、樹脂製ケース、絶縁基板をベース板に接合しているはんだ、あるいは、半導体素子をダイボンドしているはんだ等、が溶融してしまうという問題がある。そのため、半導体装置の電極端子を硬ろう材を用いてろう付けするためには、ろう付けしたい部分である電極端子の先端を短時間で局所的に加熱する必要がある。 As a method of solving this problem, a method of joining the electrode terminals using a high heat resistance solder or a brazing filler metal having a melting point higher than that of the solder can be considered. However, since the melting point of the brazing filler metal is generally as high as 450 ° C. or higher, brazing using an ordinary torch or in-furnace brazing, a member around the semiconductor device, such as an adhesive, a resin case, etc. There is a problem that the solder that joins the insulating substrate to the base plate or the solder that die-bonds the semiconductor element melts. Therefore, in order to braze the electrode terminal of the semiconductor device using a hard brazing material, it is necessary to locally heat the tip of the electrode terminal, which is the part to be brazed, in a short time.
 電極端子の先端を短時間で局所的に加熱する方法として特許文献2では、電極端子と半導体素子の表面電極とにおいて互いに対向する各表面の少なくとも一方に対して、電極端子及び表面電極の融点よりも低い低融点金属層を予め形成しておく。そして電極端子の表面をレーザー光で溶融させ、その熱で低融点金属層を溶融させて、表面電極と電極端子とを接合する技術を提案している。 In Patent Document 2, as a method for locally heating the tip of an electrode terminal in a short time, the melting point of the electrode terminal and the surface electrode is higher than at least one of the surfaces facing each other in the electrode terminal and the surface electrode of the semiconductor element. A low melting point metal layer is formed in advance. And the technique which fuse | melts the surface of an electrode terminal with a laser beam, fuses a low melting metal layer with the heat | fever, and joins a surface electrode and an electrode terminal is proposed.
特開2006-253516号公報JP 2006-253516 A 特開2009-105266号公報JP 2009-105266 A
 レーザー光を用いたはんだ付けあるいはろう付けでは、半導体装置全体の加熱工程を必要としない。よって電極端子の接合時において、例えばベース板と絶縁基板とを接合しているはんだの全体、周囲の接着剤、あるいはケース等を溶融させずに、電極端子を接合することができる。 は ん だ Soldering or brazing using laser light does not require a heating process for the entire semiconductor device. Therefore, at the time of joining the electrode terminals, for example, the electrode terminals can be joined without melting the entire solder joining the base plate and the insulating substrate, the surrounding adhesive, the case, or the like.
 しかしながら特許文献2では、上述のように、レーザー光の加熱で溶融させる対象は、低融点金属層であり、高耐熱はんだ、あるいははんだより融点の高い硬ろう材ではない。さらに特許文献2では、電極端子を接合する対象は、半導体素子における表面電極であり、例えば絶縁基板上の導体パターンに対して電極端子を接合する形態ではない。 However, in Patent Document 2, as described above, the object to be melted by heating with laser light is a low melting point metal layer, not a high heat resistance solder or a brazing filler metal having a higher melting point than solder. Further, in Patent Document 2, the object to which the electrode terminal is bonded is the surface electrode in the semiconductor element, and is not in the form of bonding the electrode terminal to the conductor pattern on the insulating substrate, for example.
 本発明は、上述の問題点を解決するためになされたものであり、絶縁基板における導体パターンに対し電極端子を硬ろう付けする半導体装置において、従来に比べてより高い、電極端子と導体パターンとの接合信頼性を有する半導体装置及びその製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems. In a semiconductor device in which electrode terminals are hard-brazed to a conductor pattern on an insulating substrate, the electrode terminal and the conductor pattern are higher than conventional ones. An object of the present invention is to provide a semiconductor device having the following junction reliability and a method for manufacturing the same.
 上記目的を達成するため、本発明は以下のように構成する。
 即ち、本発明の一態様における半導体装置は、絶縁基材の両面に導体パターンを有する絶縁基板と、上記絶縁基板における一方の導体パターンに実装された半導体素子と、上記一方の導体パターンに対して接合材を介して接合した電極端子と、を備えた半導体装置において、上記接合材は硬ろう材であって、上記電極端子は、上記一方の導体パターンにおける単位面積当たりの熱容量よりも大きい単位面積当たりの熱容量を有することを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, the semiconductor device according to one embodiment of the present invention includes an insulating substrate having a conductor pattern on both surfaces of an insulating base, a semiconductor element mounted on one conductor pattern on the insulating substrate, and the one conductor pattern. In the semiconductor device including the electrode terminal bonded via the bonding material, the bonding material is a hard brazing material, and the electrode terminal has a unit area larger than a heat capacity per unit area in the one conductor pattern. It has a heat capacity per unit.
 本発明の一態様における半導体装置によれば、単位面積当たりの熱容量が導体パターンに比べて大きい電極端子を有することから、電極端子と導体パターンの熱容量差を低減し、局所加熱の際、電極端子と導体パターンとの温度差が小さくなる。よって、硬ろう材が溶融する前に電極端子が溶融するのを防止することができる。したがって、従来に比べてより高い、電極端子と導体パターンとの接合信頼性を得ることができる。 According to the semiconductor device of one embodiment of the present invention, since the electrode terminal has a larger heat capacity per unit area than the conductor pattern, the difference in heat capacity between the electrode terminal and the conductor pattern is reduced, and the electrode terminal is used for local heating. And the temperature difference between the conductor pattern is reduced. Therefore, it is possible to prevent the electrode terminal from being melted before the hard brazing material is melted. Therefore, higher bonding reliability between the electrode terminal and the conductor pattern can be obtained as compared with the conventional case.
実施の形態1における電力用半導体装置の構成の一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of the configuration of the power semiconductor device in the first embodiment. 図1Aに示す電力用半導体装置の平面図である。1B is a plan view of the power semiconductor device shown in FIG. 1A. FIG. 実施の形態2における電力用半導体装置の構成の一部を示す断面図である。FIG. 6 is a cross-sectional view showing a part of the configuration of a power semiconductor device in a second embodiment. 図2Aに示す電力用半導体装置の平面図である。FIG. 2B is a plan view of the power semiconductor device shown in FIG. 2A. 図2Aに示す電力用半導体装置の製造方法の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the manufacturing method of the power semiconductor device shown to FIG. 2A. 図2Cに示す電力用半導体装置の平面図である。It is a top view of the power semiconductor device shown in FIG. 2C. 図2Aに示す電力用半導体装置の製造方法の他の例を説明するための断面図である。It is sectional drawing for demonstrating the other example of the manufacturing method of the semiconductor device for electric power shown to FIG. 2A. 図2Eに示す電力用半導体装置の平面図である。It is a top view of the power semiconductor device shown to FIG. 2E. 図2Aに示す電力用半導体装置の製造方法の別の例を説明するための断面図である。It is sectional drawing for demonstrating another example of the manufacturing method of the power semiconductor device shown to FIG. 2A. 図2Gに示す電力用半導体装置の平面図である。FIG. 2B is a plan view of the power semiconductor device shown in FIG. 2G. 図1Aに示す電力用半導体装置の製造方法(実施の形態3)を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method (Embodiment 3) of the semiconductor device for electric power shown to FIG. 1A. 図1Aに示す電力用半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the power semiconductor device shown to FIG. 1A. 図1Aに示す電力用半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the power semiconductor device shown to FIG. 1A. 絶縁基板における導体パターンと電極端子とをはんだを用いて接合する方法を説明するための電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power for demonstrating the method to join the conductor pattern and electrode terminal in an insulated substrate using solder. 絶縁基板における導体パターンと電極端子とをはんだを用いて接合する方法を説明するための電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power for demonstrating the method to join the conductor pattern and electrode terminal in an insulated substrate using solder. 絶縁基板における導体パターンと電極端子とをはんだを用いて接合する方法を説明するための電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power for demonstrating the method to join the conductor pattern and electrode terminal in an insulated substrate using solder. 絶縁基板における導体パターンと電極端子とを硬ろう材を用いて接合する方法を説明するための電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power for demonstrating the method to join the conductor pattern and electrode terminal in an insulated substrate using a brazing material. 絶縁基板における導体パターンと電極端子とを硬ろう材を用いて接合する方法を説明するための電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power for demonstrating the method to join the conductor pattern and electrode terminal in an insulated substrate using a brazing material. 実施の形態4における電力用半導体装置の構成の一部を示す断面図である。FIG. 9 is a cross-sectional view showing a part of the configuration of a power semiconductor device in a fourth embodiment. 図6Aに示す電力用半導体装置の平面図である。FIG. 6B is a plan view of the power semiconductor device shown in FIG. 6A. 実施の形態4における、貫通孔と光ビームの位置関係を示す断面図である。FIG. 10 is a cross-sectional view showing a positional relationship between a through hole and a light beam in a fourth embodiment. レーザー光による加熱の状態を示す断面図であり、貫通孔がない場合を示す図である。It is sectional drawing which shows the state of the heating by a laser beam, and is a figure which shows the case where there is no through-hole. レーザー光による加熱の状態を示す断面図であり、貫通孔がある場合を示す図である。It is sectional drawing which shows the state of the heating by a laser beam, and is a figure which shows the case where there exists a through-hole. レーザー光による照射方法の他の例を示す平面図である。It is a top view which shows the other example of the irradiation method by a laser beam. 実施の形態4を用いなかった場合に懸念される、電力用半導体装置の構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the semiconductor device for electric power concerned about the case where Embodiment 4 is not used. 図6Aに示す電力用半導体装置の構成の他の例を示す平面図である。FIG. 6B is a plan view illustrating another example of the configuration of the power semiconductor device illustrated in FIG. 6A. 図6Aに示す電力用半導体装置の構成の他の例を示す平面図である。FIG. 6B is a plan view illustrating another example of the configuration of the power semiconductor device illustrated in FIG. 6A. 貫通孔の変形例を示す図である。It is a figure which shows the modification of a through-hole. 貫通孔の変形例を示す図である。It is a figure which shows the modification of a through-hole. 電極端子を治具で加圧した場合の端子変形の用数を示す断面図である。It is sectional drawing which shows the usage number of a terminal deformation | transformation at the time of pressurizing an electrode terminal with a jig | tool. 実施の形態1における電力用半導体装置において、レーザー光の照射による電極端子及び硬ろう材の状態、並びに電極端子と導体パターンとの接合性を、電極端子の厚みの変化と共に示した図である。In the semiconductor device for electric power in Embodiment 1, it is the figure which showed the state of the electrode terminal by the irradiation of a laser beam and a brazing material, and the joining property of an electrode terminal and a conductor pattern with the change of the thickness of an electrode terminal. 実施の形態4において、電極端子の下方部分での電極端子と硬ろう材との接触角を説明するための、電力用半導体装置の構成の一部を示す断面図である。In Embodiment 4, it is sectional drawing which shows a part of structure of the semiconductor device for electric power for demonstrating the contact angle of the electrode terminal and brazing material in the lower part of an electrode terminal. 図15Aに示す電力用半導体装置の平面図である。FIG. 15B is a plan view of the power semiconductor device shown in FIG. 15A. 実施の形態5における電力用半導体装置の構成の一部を示す断面図である。FIG. 10 is a cross-sectional view showing a part of the configuration of a power semiconductor device in a fifth embodiment. 図16に示す押圧構造の変形例を示す図である。It is a figure which shows the modification of the press structure shown in FIG. 図16に示す押圧構造の他の変形例を示す図である。It is a figure which shows the other modification of the press structure shown in FIG. 図16に示す押圧構造の別の変形例を示す図である。It is a figure which shows another modification of the press structure shown in FIG.
 実施形態である半導体装置及びその製造方法について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。また、以下の説明が不必要に冗長になるのを避け当業者の理解を容易にするため、既によく知られた事項の詳細説明及び実質的に同一の構成に対する重複説明を省略する場合がある。また、以下の説明及び添付図面の内容は、特許請求の範囲に記載の主題を限定することを意図するものではない。 The semiconductor device according to the embodiment and the manufacturing method thereof will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals. In addition, in order to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art, a detailed description of already well-known matters and a duplicate description of substantially the same configuration may be omitted. . Further, the contents of the following description and the accompanying drawings are not intended to limit the subject matter described in the claims.
 また、各図間では、対応する各構成部分のサイズあるいは縮尺はそれぞれ独立している。例えば、構成の一部を変更した図と変更していない図示において、同一構成部分のサイズあるいは縮尺が異なっている場合もある。また、該電力用半導体装置の構成について、実際にはさらに複数の部材を備えているが、説明を簡単にするため、説明に必要な部分のみを記載し、その他の部分については説明を省略している。
 また以下の説明では、電力用半導体装置を例に採るが、電力用ではなく通常電流を扱う半導体装置に対して各実施形態を適用することもできる。
Moreover, between each figure, the size or scale of each corresponding component is independent. For example, in the drawing in which a part of the configuration is changed and the illustration in which the configuration is not changed, the size or scale of the same component may be different. In addition, the configuration of the power semiconductor device is actually provided with a plurality of members, but for the sake of simplicity, only the portions necessary for the description are described, and the description of the other portions is omitted. ing.
In the following description, a power semiconductor device is taken as an example, but each embodiment can also be applied to a semiconductor device that handles a normal current instead of power.
 実施の形態1.
 図1は、実施の形態1における電力用半導体装置101の概略構成を部分断面図(図1A)及び平面図(図1B)で示している。電力用半導体装置101は、基本的構成部分として、電力用半導体素子1と、電極端子3と、絶縁基板5とを有し、図示するようにさらに放熱部材6及びケース12を有することができる。電力用半導体素子1及び電極端子3が絶縁基板5の一方面側に配置され、絶縁基板5の他方面側には放熱部材6が配置されており、放熱部材6の周囲には電力用半導体素子1及び電極端子3を取り囲むようにケース12が配置されている。さらに詳しく以下に説明する。
Embodiment 1 FIG.
FIG. 1 is a partial cross-sectional view (FIG. 1A) and a plan view (FIG. 1B) showing a schematic configuration of a power semiconductor device 101 according to the first embodiment. The power semiconductor device 101 includes a power semiconductor element 1, an electrode terminal 3, and an insulating substrate 5 as basic components, and can further include a heat dissipation member 6 and a case 12 as illustrated. The power semiconductor element 1 and the electrode terminal 3 are disposed on one side of the insulating substrate 5, and the heat dissipating member 6 is disposed on the other surface side of the insulating substrate 5, and the power semiconductor element is disposed around the heat dissipating member 6. A case 12 is disposed so as to surround 1 and the electrode terminal 3. Further details will be described below.
 電力用半導体素子1としては、例えばIGBT(Insulated Gate Bipolar Transistor)等が相当する。 As the power semiconductor element 1, for example, an IGBT (Insulated Gate Bipolar Transistor) or the like corresponds.
 絶縁基板5について説明する。
 絶縁基板5は、絶縁基材51と、この絶縁基材51の厚み方向おいて対向する両面のうち一方面に形成された導体パターン52aと 、他方面に形成された導体パターン52bとを有する。絶縁基材51は電気的絶縁物であり、電力用半導体素子1を効率的に冷却するため、熱伝導率の大きい材料が好ましく、一般的には、例えば厚さ0.635mm、あるいは0.32mmのAlN、Si、Al等のセラミック板が用いられる。
The insulating substrate 5 will be described.
The insulating substrate 5 includes an insulating base material 51, a conductor pattern 52a formed on one surface of both surfaces facing each other in the thickness direction of the insulating base material 51, and a conductor pattern 52b formed on the other surface. The insulating base 51 is an electrical insulator and is preferably a material having a high thermal conductivity in order to efficiently cool the power semiconductor element 1, and generally has a thickness of, for example, 0.635 mm or 0.32 mm. A ceramic plate of AlN, Si 3 N 4 , Al 2 O 3 or the like is used.
 導体パターン52a及び導体パターン52bは、同じ材料が用いられるのが一般的である。回路面側に相当する一方の導体パターン52aには、電力用半導体素子1の主電極がはんだ付けされ、また、導体パターン52aは、接合材の一例に相当する硬ろう材10を挟んで電極端子3と接合部を形成する。このような導体パターン52aは、電力用半導体素子1と、外部の回路とを電気接続するための配線部材であるため、電気抵抗の小さい金属が好ましい。よって、導体パターン52a、52bは、一般的には、例えば厚さ1.0mm以下程度のCu、あるいはAl等が用いられる。
 放熱面側に相当する他方の導体パターン52bには、放熱部材6がはんだ8によって接合される。
In general, the same material is used for the conductor pattern 52a and the conductor pattern 52b. The main electrode of the power semiconductor element 1 is soldered to one conductor pattern 52a corresponding to the circuit surface side, and the conductor pattern 52a is an electrode terminal with a hard brazing material 10 corresponding to an example of a bonding material interposed therebetween. 3 and a joint part are formed. Since such a conductor pattern 52a is a wiring member for electrically connecting the power semiconductor element 1 and an external circuit, a metal having a small electric resistance is preferable. Therefore, the conductor patterns 52a and 52b are generally made of Cu or Al having a thickness of about 1.0 mm or less, for example.
The heat radiating member 6 is joined by solder 8 to the other conductor pattern 52b corresponding to the heat radiating surface.
 次に、電極端子3について説明する。
 電極端子3は、電力用半導体素子1と外部の回路とを電気接続するための配線部材である。よって電極端子3の材料は、電気抵抗の小さい金属が好ましく、一般的にはCuあるいはAl等である。このような電極端子3は、板金を切断したもの、あるいはプレス加工したものが用いられ、その一端側は、硬ろう材10を挟んで導体パターン52aと接合部を形成し、他端側はケース12の外面まで延在して他の回路部材あるいは外部回路と電気接続される。
Next, the electrode terminal 3 will be described.
The electrode terminal 3 is a wiring member for electrically connecting the power semiconductor element 1 and an external circuit. Therefore, the material of the electrode terminal 3 is preferably a metal having a low electric resistance, and is generally Cu or Al. Such an electrode terminal 3 is obtained by cutting a sheet metal or by pressing, and one end of the electrode terminal 3 forms a joint with the conductor pattern 52a with the brazing filler metal 10 interposed therebetween, and the other end is a case. 12 extends to the outer surface and is electrically connected to another circuit member or an external circuit.
 また、硬ろう材10を用いて電極端子3を導体パターン52aにろう付けするためには、電極端子3の表面3a側から間接的に熱を加えて、硬ろう材10及び導体パターン52aを加熱する必要がある。よって加熱の際に、電極端子3と導体パターン52aとの温度差が大きくならないように、電極端子3の熱容量は、導体パターン52aの熱容量よりも大きい方が好ましい。 Moreover, in order to braze the electrode terminal 3 to the conductor pattern 52a using the brazing filler metal 10, heat is indirectly applied from the surface 3a side of the electrode terminal 3 to heat the brazing filler metal 10 and the conductor pattern 52a. There is a need to. Therefore, it is preferable that the heat capacity of the electrode terminal 3 is larger than the heat capacity of the conductor pattern 52a so that the temperature difference between the electrode terminal 3 and the conductor pattern 52a does not increase during heating.
 ここで上記熱容量とは、物体の温度を単位温度1K上昇させるのに必要な熱量のことである。つまり、同じ熱量を加えたとき、電極端子3の方が導体パターン52aよりも温度が上がりにくい方が好ましい。例えば電極端子3と導体パターン52aとが同じ材料、例えばCuで形成されている場合、熱容量は体積に比例するため、導体パターン52aの体積よりも電極端子3の体積が大きいことが好ましい。一方、電極端子3と導体パターン52aとの材料が異なる場合には、重さ及び大きさなどの条件を一定にした物質の温度を1K上昇させるのに必要な熱量が異なるため、その熱量差も考慮する必要がある。 Here, the heat capacity is the amount of heat necessary to raise the temperature of the object by a unit temperature of 1K. That is, when the same amount of heat is applied, it is preferable that the electrode terminal 3 is less likely to rise in temperature than the conductor pattern 52a. For example, when the electrode terminal 3 and the conductor pattern 52a are made of the same material, for example, Cu, the volume of the electrode terminal 3 is preferably larger than the volume of the conductor pattern 52a because the heat capacity is proportional to the volume. On the other hand, when the materials of the electrode terminal 3 and the conductor pattern 52a are different, the amount of heat required to raise the temperature of the substance with constant conditions such as weight and size is different by 1K. It is necessary to consider.
 しかしながら上述のように、他方の導体パターン52bには放熱部材6が接合されていることから、絶縁基板5は放熱経路となっている。よって、絶縁基板5に接続された放熱部材6を含めて一つの物体と考えた場合、一般的には、電極端子3の熱容量は、絶縁基板5と比較して小さく、さらに、ろう付け用の加熱を電極端子3側から行うことから、ろう付けの際には電極端子3の方が温度上昇し易い。 However, as described above, since the heat dissipation member 6 is joined to the other conductor pattern 52b, the insulating substrate 5 serves as a heat dissipation path. Therefore, when it is considered as one object including the heat radiation member 6 connected to the insulating substrate 5, generally, the heat capacity of the electrode terminal 3 is smaller than that of the insulating substrate 5, and moreover, for brazing. Since heating is performed from the electrode terminal 3 side, the temperature of the electrode terminal 3 is likely to rise during brazing.
 しかしながら、レーザー光で電極端子3を加熱する場合には、レーザー光が照射された部分のみが瞬間的に加熱される。よって、必ずしも電極端子3全体の熱容量を導体パターン52aの熱容量よりも大きくしなくても、電極端子3のレーザー光で加熱される部分及びその近傍における熱容量が、レーザー光の照射方向から見た電極端子3と同じ面内における導体パターン52aの熱容量よりも大きくなっていればよい。 However, when the electrode terminal 3 is heated with laser light, only the portion irradiated with the laser light is instantaneously heated. Therefore, even if the heat capacity of the electrode terminal 3 as a whole is not necessarily larger than the heat capacity of the conductor pattern 52a, the heat capacity of the electrode terminal 3 heated by the laser light and the heat capacity in the vicinity thereof are electrodes viewed from the irradiation direction of the laser light. What is necessary is just to become larger than the heat capacity of the conductor pattern 52a in the same plane as the terminal 3.
 上述の観点から、電極端子3の熱容量を導体パターン52aの熱容量よりも大きくし、さらに、通電可能な電流を大きくするためにも、電極端子3の断面積は比較的大きい方が好ましい。ここで電極端子3の断面積とは、図1A及び図1Bに示すx方向に垂直な面(つまりy-z平面)における電極端子3の断面における面積である。電極端子3の断面積は、電極端子3の幅及び厚みで決定されるが、電力用半導体装置101を小型化するためには、電極端子3の幅は小さい方が好ましい。ここで電極端子3の幅とは、図1A及び図1Bに示すy方向に沿った電極端子3の寸法である。 From the above viewpoint, it is preferable that the electrode terminal 3 has a relatively large cross-sectional area in order to make the heat capacity of the electrode terminal 3 larger than the heat capacity of the conductor pattern 52a and further increase the current that can be energized. Here, the cross-sectional area of the electrode terminal 3 is an area of the cross section of the electrode terminal 3 in a plane (that is, a yz plane) perpendicular to the x direction shown in FIGS. 1A and 1B. The cross-sectional area of the electrode terminal 3 is determined by the width and thickness of the electrode terminal 3, but in order to reduce the size of the power semiconductor device 101, it is preferable that the width of the electrode terminal 3 is small. Here, the width of the electrode terminal 3 is a dimension of the electrode terminal 3 along the y direction shown in FIGS. 1A and 1B.
 よって電極端子3の断面積を大きくするためには、電極端子3の幅よりも厚さを大きくする方が好ましい。例えばレーザー光にて電極端子3を加熱する場合、電極端子3の幅寸法と厚みとの関係は、下記のものが好ましい。即ち、電極端子3において、硬ろう材10と接合する面を接合面3jとしたとき、レーザー光によって電極端子3の表面3aに与えられた熱を接合面3jの全体に広げるためには、電極端子3の幅方向において、電極端子3のレーザー光の照射領域の端から電極端子3の端までの長さが、電極端子3の厚さ寸法以下程度とするのが好ましい。具体的に説明すると、例えば厚さ1.5mmの電極端子3に対して、接合面3jの中心から半径1.0mmの領域をレーザー光で加熱する場合、電極端子3の幅寸法は、5.0mm(=1.0mm×2+1.5mm×2)以下とするのが好ましい。
 尚、電極端子3の加熱動作については、レーザー光による場合も含めて、後述の実施の形態3にて詳しく説明する。
Therefore, in order to increase the cross-sectional area of the electrode terminal 3, it is preferable to increase the thickness rather than the width of the electrode terminal 3. For example, when the electrode terminal 3 is heated with laser light, the relationship between the width dimension and thickness of the electrode terminal 3 is preferably as follows. That is, in the electrode terminal 3, when the surface to be bonded to the brazing filler metal 10 is the bonding surface 3j, in order to spread the heat applied to the surface 3a of the electrode terminal 3 by the laser beam over the entire bonding surface 3j, the electrode In the width direction of the terminal 3, the length from the end of the laser light irradiation region of the electrode terminal 3 to the end of the electrode terminal 3 is preferably about the thickness dimension of the electrode terminal 3 or less. More specifically, for example, when a region having a radius of 1.0 mm from the center of the bonding surface 3j is heated with a laser beam with respect to the electrode terminal 3 having a thickness of 1.5 mm, the width dimension of the electrode terminal 3 is 5. It is preferably 0 mm (= 1.0 mm × 2 + 1.5 mm × 2) or less.
The heating operation of the electrode terminal 3 will be described in detail in a third embodiment to be described later, including the case of using laser light.
 一方、電極端子3の厚さを大きくし過ぎると、接合面3jと、接合面3jに対向する、レーザー光が照射され加熱されている電極端子3の表面3aとの温度差が大きくなりすぎる。よって、電極端子3の厚さは、一例として0.5mmから2.0mm程度の範囲とするのが好ましいが、0.8mmから2.0mmとするのがより好ましい。電極端子3の熱容量を導体パターン52aの熱容量よりも大きくするための一つの手段として、電極端子3は、導体パターン52aの厚みを超える厚さを有する。 On the other hand, if the thickness of the electrode terminal 3 is excessively increased, the temperature difference between the bonding surface 3j and the surface 3a of the electrode terminal 3 that is opposed to the bonding surface 3j and is heated by irradiation with laser light becomes too large. Therefore, the thickness of the electrode terminal 3 is preferably in the range of about 0.5 mm to 2.0 mm as an example, but more preferably 0.8 mm to 2.0 mm. As one means for making the heat capacity of the electrode terminal 3 larger than the heat capacity of the conductor pattern 52a, the electrode terminal 3 has a thickness exceeding the thickness of the conductor pattern 52a.
 以上のように電極端子3を構成することで、レーザー光で加熱されている電極端子3の単位面積(1mm)当たりの熱容量を、レーザー光で加熱されている電極端子3と対向する導体パターン52aにおける単位面積(1mm)当たりの熱容量よりも大きくすることができる。 By configuring the electrode terminal 3 as described above, the heat capacity per unit area (1 mm 2 ) of the electrode terminal 3 heated by the laser beam is set to be a conductor pattern facing the electrode terminal 3 heated by the laser beam. It can be made larger than the heat capacity per unit area (1 mm 2 ) in 52a.
 また、電極端子3の表面3aにレーザー光の焦点が合うように、レーザー光の径を小さくしても、電極端子3の厚さが大きいことによって得られる熱の広がりの効果を大きくすることができるため、接合面3jの温度分布を小さくすることができる。 Moreover, even if the diameter of the laser beam is reduced so that the surface of the electrode terminal 3 is focused on the surface 3a, the effect of spreading the heat obtained by increasing the thickness of the electrode terminal 3 can be increased. Therefore, the temperature distribution on the joint surface 3j can be reduced.
 放熱部材6について説明する。
 放熱部材6は、単体、又は複数枚の絶縁基板5に対してはんだ8によって接合され、自身が放熱板としての役割を果たすと共に、放熱部材6の接続面6bに熱伝導グリス等を介してヒートシンクが接続される場合には、電力用半導体装置101で発生した熱を効率よく外部へ放熱させるための部材である。よって放熱部材6の材料は、熱伝導率の大きい金属が好ましく、一般的には、厚さが1.0~5.0mm程度のCu、Al、あるいはAlSiC等の金属板が用いられる。尚、放熱部材6の接続面6bは、はんだ8との接合面6aに対向する面である。
The heat radiating member 6 will be described.
The heat dissipating member 6 is joined to a single or a plurality of insulating substrates 5 with solder 8 and plays a role as a heat dissipating plate, and a heat sink is provided on the connection surface 6b of the heat dissipating member 6 with heat conduction grease or the like. Is a member for efficiently radiating heat generated in the power semiconductor device 101 to the outside. Therefore, the material of the heat radiating member 6 is preferably a metal having a high thermal conductivity, and generally a metal plate of Cu, Al, AlSiC or the like having a thickness of about 1.0 to 5.0 mm is used. The connection surface 6 b of the heat radiating member 6 is a surface facing the joint surface 6 a with the solder 8.
 次にケース12について説明する。
 ケース12は、枠状の形状を有し、本実施形態1では放熱部材6の周囲における接合面6aに立設され、接着剤11にて放熱部材6に固定されている。このようなケース12は、電力用半導体装置101の全体を覆うと共に、電極端子3の他端側を支持し、ケース12の外側で外部回路との接続の役割も果たす。ケース12の材料は、一般的にはPBT(ポリブチレンテレフタレート)、あるいはPPS(ポリフェニレンサルファイド)等の熱可塑性のプラスチック材が用いられ、その融点は300℃以下程度である。
Next, the case 12 will be described.
The case 12 has a frame shape. In the first embodiment, the case 12 is erected on the joint surface 6 a around the heat dissipation member 6 and is fixed to the heat dissipation member 6 with an adhesive 11. Such a case 12 covers the entire power semiconductor device 101, supports the other end of the electrode terminal 3, and also plays a role of connection to an external circuit outside the case 12. The material of the case 12 is generally a thermoplastic plastic material such as PBT (polybutylene terephthalate) or PPS (polyphenylene sulfide), and its melting point is about 300 ° C. or less.
 次に、上述のはんだ8、硬ろう材10、及び接着剤11について説明する。
 はんだ8は、絶縁基板5の放熱面側に位置する導体パターン52bと放熱部材6とを接合する。よってはんだ8の材料は、融点が比較的低く、熱伝導率の大きい金属が好ましく、一般的にはSn、Pb、Ag、Cu等を含有しその融点が450℃未満の合金が用いられる。また、はんだ8の接合後の厚さは、接続信頼性及び放熱性の観点から、0.1~0.3mm程度が好ましい。
Next, the solder 8, the brazing filler metal 10, and the adhesive 11 will be described.
The solder 8 joins the conductive pattern 52b located on the heat radiation surface side of the insulating substrate 5 and the heat radiation member 6. Therefore, the material of the solder 8 is preferably a metal having a relatively low melting point and a high thermal conductivity. Generally, an alloy containing Sn, Pb, Ag, Cu or the like and having a melting point of less than 450 ° C. is used. Further, the thickness after joining of the solder 8 is preferably about 0.1 to 0.3 mm from the viewpoint of connection reliability and heat dissipation.
 硬ろう材10は、電極端子3の接合面3jと、絶縁基板5の導体パターン52aとを接合する。硬ろう材10は、通電によって発熱した電極端子3を冷却するための放熱経路であると共に、電極端子3と導体パターン52aとを電気的に接続する通電経路でもある。そのため、硬ろう材10の材料は、比較的融点が高く、熱伝導率及び電気伝導率の大きい金属が好ましく、はんだ8とは異なり、Au、Ag、Cu、Zn、Ni等を含有し、融点が450℃以上の合金が用いられる。本実施の形態1では、電極端子3及び導体パターン52aは、共にCuを使用しているため、硬ろう材10は、融点800℃程度のりん銅ろう材(Cu-Ag-P)を使用している。また、その接合後の厚さは接続信頼性の観点から一般的に薄い方が好ましく、0.25mm以下が好ましい。特に0.1mm以下が好ましい。この範囲であれば接合部の強度、ろう付け部の電気抵抗、ろう付け部の熱抵抗の全てにおいて十分な結果が得られる。 The brazing filler metal 10 joins the joint surface 3 j of the electrode terminal 3 and the conductor pattern 52 a of the insulating substrate 5. The brazing filler metal 10 is a heat dissipation path for cooling the electrode terminal 3 that has generated heat by energization, and is also an energization path for electrically connecting the electrode terminal 3 and the conductor pattern 52a. Therefore, the material of the brazing filler metal 10 is preferably a metal having a relatively high melting point and a large thermal conductivity and electrical conductivity. Unlike the solder 8, it contains Au, Ag, Cu, Zn, Ni, etc. An alloy having a temperature of 450 ° C. or higher is used. In the first embodiment, since the electrode terminal 3 and the conductor pattern 52a both use Cu, the brazing filler metal 10 uses a phosphor copper brazing material (Cu—Ag—P) having a melting point of about 800 ° C. ing. Further, the thickness after the joining is generally preferably thinner from the viewpoint of connection reliability, and is preferably 0.25 mm or less. Especially 0.1 mm or less is preferable. Within this range, sufficient results can be obtained in all of the strength of the joint, the electrical resistance of the brazed part, and the thermal resistance of the brazed part.
 接着剤11は、放熱部材6とケース12とを接着する。そのため、一般的にはエポキシ系の熱硬化性樹脂が用いられる。 The adhesive 11 bonds the heat radiating member 6 and the case 12 together. Therefore, generally, an epoxy thermosetting resin is used.
 以上のように構成された電力用半導体装置101の効果について説明する。ここでは、硬ろう材10を溶融するため、硬ろう材10と接合する電極端子3の接合面3jに対向する表面3aに対してレーザー光を照射して加熱を行う。
 レーザー光で加熱されている電極端子3の単位面積(1mm)当たりの熱容量を、レーザー光で加熱されている電極端子3と対向する導体パターン52aの単位面積(1mm)当たりの熱容量よりも大きくすることで、レーザー光の加熱による電極端子3と導体パターン52aの温度差を小さくし、ろう付け前に電極端子3が溶融するのを防止することができる。さらに、電極端子3の厚さを厚くしたことで、レーザー光によって電極端子3の表面3aに与えられた熱を、硬ろう材10側の接合面3jに対して拡げることができる。よって、硬ろう材10及び導体パターン52aとの接合面3jの全体を均一に加熱することができ、硬ろう材10における未接合部を無くすことができる。したがって通電に必要なろう付け面積を確保することができる。
The effect of the power semiconductor device 101 configured as described above will be described. Here, in order to melt the brazing filler metal 10, the surface 3 a facing the joining surface 3 j of the electrode terminal 3 joined to the brazing filler metal 10 is heated by irradiating laser light.
The heat capacity per unit area (1 mm 2 ) of the electrode terminal 3 heated by the laser light is larger than the heat capacity per unit area (1 mm 2 ) of the conductor pattern 52a facing the electrode terminal 3 heated by the laser light. By enlarging, the temperature difference of the electrode terminal 3 and the conductor pattern 52a by the heating of a laser beam can be made small, and it can prevent that the electrode terminal 3 fuse | melts before brazing. Furthermore, by increasing the thickness of the electrode terminal 3, the heat applied to the surface 3a of the electrode terminal 3 by the laser beam can be spread to the bonding surface 3j on the hard soldering material 10 side. Therefore, the whole joining surface 3j with the brazing filler metal 10 and the conductor pattern 52a can be heated uniformly, and an unjoined portion in the brazing filler metal 10 can be eliminated. Therefore, a brazing area necessary for energization can be secured.
 加えて、電極端子3の厚さを大きくすることで、電極端子3の断面積が大きくなり、1本の電極端子3に、より大きな電流を流すことができるようになる。よって、電力用半導体素子に通電するための電極端子3の本数を減らすことで、又は、電極端子3の厚さを厚くした分、電極端子3の幅を細くすることで、電力用半導体装置101を小型化することができる。 In addition, by increasing the thickness of the electrode terminal 3, the cross-sectional area of the electrode terminal 3 is increased, and a larger current can be passed through one electrode terminal 3. Therefore, the power semiconductor device 101 can be reduced by reducing the number of the electrode terminals 3 for energizing the power semiconductor element or by reducing the width of the electrode terminals 3 by increasing the thickness of the electrode terminals 3. Can be miniaturized.
 従来の電力用半導体装置では、電極端子の厚さを大きくした場合には、絶縁基板と電極端子との線膨張係数差によって、両者間の接合部に発生する応力が大きくなり、電力用半導体装置の信頼性が低下するという問題があった。
 しかしながら実施の形態1では、電極端子3と導体パターン52aとの接合に硬ろう材10を用いることで、接合部の信頼性を従来の電力用半導体装置と比較して大きく向上させることができる。よって実施の形態1における電力用半導体装置101では、電力用半導体装置が一般的に必要する寿命の範囲において信頼性に関する問題は生じない。
In the conventional power semiconductor device, when the thickness of the electrode terminal is increased, the stress generated at the junction between the insulating substrate and the electrode terminal increases due to the difference in linear expansion coefficient between the insulating substrate and the electrode terminal. There was a problem that the reliability of the system deteriorated.
However, in the first embodiment, by using the brazing filler metal 10 for joining the electrode terminal 3 and the conductor pattern 52a, the reliability of the joint can be greatly improved as compared with the conventional power semiconductor device. Therefore, in power semiconductor device 101 in the first embodiment, there is no problem with reliability in the range of life generally required for power semiconductor devices.
 即ち、電極端子3と導体パターン52aとの接合に硬ろう材10を用いた場合、硬ろう材10の機械的強度は、一般的に電極端子3及び導体パターン52aの主な材料である、本実施の形態1においても使用している、Cuよりも大きい。よって、電極端子3-硬ろう材10-導体パターン52aの接合部における、電力用半導体装置101の発熱による熱応力に対する信頼性は、従来の、電極端子の接合にはんだを用いた電力用半導体装置と比較して、大きく向上させることができる。 That is, when the brazing filler metal 10 is used for joining the electrode terminal 3 and the conductor pattern 52a, the mechanical strength of the brazing filler metal 10 is generally the main material of the electrode terminal 3 and the conductor pattern 52a. It is larger than Cu, which is also used in the first embodiment. Therefore, the reliability with respect to the thermal stress caused by the heat generated by the power semiconductor device 101 at the joint between the electrode terminal 3, the brazing filler metal 10 and the conductor pattern 52 a is the conventional power semiconductor device using solder for joining the electrode terminals. Compared with, it can be greatly improved.
 加えて、はんだでは、Snが主な材料なのに対して、一般的な硬ろう材10は、CuあるいはAgが主な材料となっている。よって、はんだと比較して熱伝導率及び電気伝導率が高いため、上述の効果と合わせて、製品に最低限必要な接合面積を小さくすることができる。その結果、電極端子3の接合に必要な面積が小さくなった分、電力用半導体装置を小型化することができる。 In addition, in solder, Sn is the main material, whereas the general brazing filler metal 10 is mainly Cu or Ag. Therefore, since heat conductivity and electrical conductivity are high compared with solder, combined with the above-described effects, the minimum joint area required for the product can be reduced. As a result, the power semiconductor device can be reduced in size because the area necessary for joining the electrode terminals 3 is reduced.
 また、電力用半導体素子1にSiCを用いた電力用半導体装置は、より高温で動作するため、半導体装置の温度変化が特に高温側に大きくなる。よって接合部に生じる熱応力及び引張応力は、より大きくなり、高温による材料強度の低下も大きくなる傾向にある。したがってSiCを用いた電力用半導体装置では、本実施形態によるメリットがより効果的なものとなる。
 このとき、硬ろう材10の材質は、信頼性向上のため、融点が高い方が好ましく、かつ電極端子3及び導体パターン52aの材質は、硬ろう材10の融点よりも高い方が好ましい。さらに、絶縁基板5とはんだ付けされているはんだ8をできるだけ再溶融させないために、電極端子3に対する加熱時間は、短い方が好ましい。しかしながら、加熱時間が短くなる程、温度制御が難しくなることから、硬ろう材10と、電極端子3及び導体パターン52aとの融点は、250℃以上開いていることが好ましい。
In addition, since the power semiconductor device using SiC for the power semiconductor element 1 operates at a higher temperature, the temperature change of the semiconductor device becomes particularly large on the high temperature side. Therefore, the thermal stress and tensile stress generated in the joint portion are increased, and the decrease in material strength due to high temperature tends to be increased. Therefore, in the power semiconductor device using SiC, the merit by this embodiment becomes more effective.
At this time, it is preferable that the material of the brazing filler metal 10 has a higher melting point in order to improve reliability, and the material of the electrode terminal 3 and the conductor pattern 52a is preferably higher than the melting point of the brazing filler metal 10. Furthermore, in order not to remelt the solder 8 soldered to the insulating substrate 5 as much as possible, the heating time for the electrode terminal 3 is preferably short. However, since the temperature control becomes more difficult as the heating time becomes shorter, it is preferable that the melting point of the brazing filler metal 10, the electrode terminal 3 and the conductor pattern 52a is 250 ° C. or more.
 また、硬ろう材10は、電極端子3及び導体パターン52aの両方に濡れ広がる材料を選択する必要がある。よって電極端子3と導体パターン52aとの材料は、同じであるのが好ましく、上述のようにCuがより好ましい。 Further, it is necessary to select a material that spreads wet on both the electrode terminal 3 and the conductor pattern 52a for the brazing filler metal 10. Therefore, it is preferable that the material of the electrode terminal 3 and the conductor pattern 52a is the same, and Cu is more preferable as mentioned above.
 一方、電極端子3と導体パターン52aとで異なる材料を使用する場合には、どちらの材料も硬ろう材10の融点より高い融点を有する材料であり、かつ、導体パターン52aが溶融した場合における絶縁基材51の局所的な膨張による絶縁基材51の破損を考慮して、導体パターン52aの融点は、電極端子3の融点よりも高い材料であることが好ましい。加えて、レーザー光の加熱による電極端子3と導体パターン52aとの温度差を小さくするために、導体パターン52aは、電極端子3よりも熱伝導率の小さい材料であることが好ましい。例えば、導体パターン52aは、Cuの表面にNiめっきしたもの、電極端子3の材料は、めっきなしのCu、硬ろう材10は、銀ろう、りん青銅等である。 On the other hand, when different materials are used for the electrode terminal 3 and the conductor pattern 52a, both materials are materials having a melting point higher than the melting point of the hard soldering material 10, and insulation when the conductor pattern 52a is melted. In consideration of breakage of the insulating base material 51 due to local expansion of the base material 51, the conductor pattern 52 a is preferably a material whose melting point is higher than that of the electrode terminal 3. In addition, in order to reduce the temperature difference between the electrode terminal 3 and the conductor pattern 52 a due to heating of the laser light, the conductor pattern 52 a is preferably a material having a lower thermal conductivity than the electrode terminal 3. For example, the conductor pattern 52a is made of Ni plated on the surface of Cu, the material of the electrode terminal 3 is Cu without plating, and the hard soldering material 10 is silver solder, phosphor bronze, or the like.
 以上説明したように、実施の形態1にかかる電力用半導体装置101によれば、レーザー光で加熱されている電極端子3の単位面積(1mm)当たりの熱容量を、レーザー光で加熱されている電極端子3と対向する導体パターン52aの単位面積(1mm)当たりの熱容量よりも大きくしたことで、レーザー光の加熱による電極端子3と導体パターン52aとの温度差を小さくし、ろう付け前に電極端子3が溶融するのを防止することができる。 As described above, according to the power semiconductor device 101 of the first embodiment, the heat capacity per unit area (1 mm 2 ) of the electrode terminal 3 heated by the laser light is heated by the laser light. By making it larger than the heat capacity per unit area (1 mm 2 ) of the conductor pattern 52a facing the electrode terminal 3, the temperature difference between the electrode terminal 3 and the conductor pattern 52a due to heating of the laser light is reduced, and before brazing. It is possible to prevent the electrode terminal 3 from melting.
 さらに、電極端子3の厚みを従来よりも大きくすることで、レーザー光によって電極端子3の表面3aに与えられた熱を、硬ろう材10側の接合面3jに対して拡げることができる。よって、硬ろう材10と導体パターン52aとの接合面全体を均一に加熱して、硬ろう材10の未接合部を無くすことができる。したがって、電極端子3と導体パターン52aとの間で、通電に必要なろう付け面積を確保することができる。その結果、大電流の通電に必要なろう付け面積を確保し、かつ導体パターン52a及び絶縁基材51の破損を防止した、高温動作においても接合信頼性の高い電力用半導体装置101を得ることができる。 Furthermore, by making the thickness of the electrode terminal 3 larger than before, the heat applied to the surface 3a of the electrode terminal 3 by the laser beam can be spread to the bonding surface 3j on the brazing filler metal 10 side. Therefore, the whole joining surface of the brazing filler metal 10 and the conductor pattern 52a can be heated uniformly, and the unjoined part of the brazing filler metal 10 can be eliminated. Therefore, a brazing area necessary for energization can be secured between the electrode terminal 3 and the conductor pattern 52a. As a result, it is possible to obtain a power semiconductor device 101 having a high bonding reliability even in a high temperature operation that secures a brazing area necessary for energizing a large current and prevents the conductor pattern 52a and the insulating base 51 from being damaged. it can.
 出願人は、電極端子3の厚みを変更することで熱容量を変化させた電極端子3を用いて、硬ろう材10の濡れ性、及び電極端子3の溶融の有無について、実際に実験を行い比較した。実験では、電極端子3として、長さ12mm、幅4mmで、厚さが0.4mm、0.8mm、1.2mmの3種類を用意し、硬ろう材10として、長さ12mm、幅4mm、厚さ0.13mmのりん銅ろうを用いた。レーザー光は、シート状の硬ろう材10を挟んだ電極端子3の表面3a側から照射し、表面3aの中央とレーザー光の中心とが重なるようにレーザー光の焦点位置を調整し、最大4kWのファイバレーザーにて照射を行った。レーザー光の照射後、3種類の電極端子3について、外観目視にて、電極端子3の溶融の有無、硬ろう材10の溶融の有無、及び、導体パターン52aへの電極端子3の接合の有無を、比較し検査した。この実験結果を図14に示す。 The applicant uses an electrode terminal 3 whose heat capacity is changed by changing the thickness of the electrode terminal 3, and actually conducts an experiment to compare the wettability of the brazing filler metal 10 and whether or not the electrode terminal 3 is melted. did. In the experiment, three types of electrode terminals 3 having a length of 12 mm, a width of 4 mm, and a thickness of 0.4 mm, 0.8 mm, and 1.2 mm were prepared. As the brazing filler metal 10, a length of 12 mm, a width of 4 mm, A phosphor copper braze having a thickness of 0.13 mm was used. The laser beam is irradiated from the surface 3a side of the electrode terminal 3 sandwiching the sheet-like hard solder material 10, and the focal position of the laser beam is adjusted so that the center of the surface 3a and the center of the laser beam overlap, and the maximum is 4 kW. Irradiation with a fiber laser. After irradiating the laser beam, with respect to the three types of electrode terminals 3, by visual inspection, the presence or absence of melting of the electrode terminals 3, the presence or absence of melting of the brazing filler metal 10, and the presence or absence of bonding of the electrode terminals 3 to the conductor pattern 52a Were compared and examined. The experimental results are shown in FIG.
 図14に示す通り、厚さが0.4mmの電極端子3の場合、硬ろう材10が導体パターン52aに濡れ広がる前に、電極端子3が溶融してしまい、接合はできなかった。一方、厚さが0.8mmの電極端子3の場合、レーザー光による加熱によって電極端子3の表面3aは溶融するが、電極端子3全体が溶融に至る前に、硬ろう材10が溶融して導体パターン52aに濡れ広がり、接合は完了した。さらに、厚さが1.2mmの電極端子3では、電極端子3の表面3aがレーザー光加熱によって溶融することもなく、接合が完了できた。 As shown in FIG. 14, in the case of the electrode terminal 3 having a thickness of 0.4 mm, the electrode terminal 3 was melted before the brazing filler metal 10 was spread over the conductor pattern 52 a, and bonding was not possible. On the other hand, in the case of the electrode terminal 3 having a thickness of 0.8 mm, the surface 3a of the electrode terminal 3 is melted by heating with laser light, but before the entire electrode terminal 3 is melted, the brazing filler metal 10 is melted. Wetting and spreading on the conductor pattern 52a was completed. Furthermore, in the electrode terminal 3 having a thickness of 1.2 mm, the surface 3a of the electrode terminal 3 was not melted by heating with laser light, and the joining was completed.
 この実験で用いた電極端子3について、レーザー光の照射箇所での電極端子3の断面積と、この照射箇所での電極端子3に対向する導体パターン52aの断面積との比は、厚さ0.4mmの電極端子3と導体パターン52aとの場合では4:3、厚さ0.8mmの電極端子3と導体パターン52aとの場合では8:3、厚さ1.2mmの電極端子3と導体パターン52aとの場合では4:1である。よって、レーザー光によって加熱される電極端子3は、当該電極端子3に対向する導体パターン52aに対して、少なくとも2倍以上、より好ましくは3倍以上の断面積を有するように設計するのが好ましいと考えられる。 For the electrode terminal 3 used in this experiment, the ratio of the cross-sectional area of the electrode terminal 3 at the laser light irradiation location to the cross-sectional area of the conductor pattern 52a facing the electrode terminal 3 at this irradiation location is 0 mm in thickness. In the case of 4 mm electrode terminal 3 and conductor pattern 52a, 4: 3, in the case of 0.8 mm thickness electrode terminal 3 and conductor pattern 52a, 8: 3, electrode terminal 3 and conductor 1.2 mm in thickness. In the case of the pattern 52a, it is 4: 1. Therefore, it is preferable that the electrode terminal 3 heated by the laser beam is designed to have a cross-sectional area of at least twice or more, more preferably three times or more with respect to the conductor pattern 52a facing the electrode terminal 3. it is conceivable that.
 実施の形態2.
 図2は、実施の形態2における電力用半導体装置102の概略構成を部分断面図及び平面図で示している。本実施の形態2における電力用半導体装置102も基本的に実施の形態1における電力用半導体装置101の構成と同じ構成を有するが、以下の点で相違する。よってここでは、主に相違点について説明を行い、同じ構成部分についてはその説明を省略する。尚、図2は、図2A~図2Hを含み、電力用半導体装置102における電極端子3の接合箇所のみを図示し、その他の構成部分については図示を省略している。
Embodiment 2. FIG.
FIG. 2 shows a schematic configuration of the power semiconductor device 102 according to the second embodiment in a partial cross-sectional view and a plan view. The power semiconductor device 102 according to the second embodiment also basically has the same configuration as that of the power semiconductor device 101 according to the first embodiment, but differs in the following points. Therefore, here, mainly the differences will be described, and the description of the same components will be omitted. Note that FIG. 2 includes FIGS. 2A to 2H, and shows only the joint portion of the electrode terminal 3 in the power semiconductor device 102, and the other components are not shown.
 実施の形態1では、電極端子3の熱容量を導体パターン52aよりも大きくするために、電極端子3の厚さを導体パターン52aの厚さよりも大きく構成した。
 これに対して本実施の形態2では、図2A及び図2Bに示すように、電極端子3は、導体パターン52aに硬ろう材10で接合した、第1断面積を有する接合部31と、第1断面積よりも大きい第2断面積を有する非接合部32とを有するように構成した点で実施の形態1と相違する。以下に詳しく説明する。
In Embodiment 1, in order to make the heat capacity of the electrode terminal 3 larger than that of the conductor pattern 52a, the thickness of the electrode terminal 3 is made larger than the thickness of the conductor pattern 52a.
On the other hand, in the second embodiment, as shown in FIGS. 2A and 2B, the electrode terminal 3 is joined to the conductor pattern 52a with the brazing filler metal 10 and has a joint portion 31 having a first cross-sectional area, The second embodiment is different from the first embodiment in that it is configured to have a non-joining portion 32 having a second sectional area larger than one sectional area. This will be described in detail below.
 尚、図2Aに示すように、接合部31と非接合部32とは屈曲して配向可能であるが、第1断面積及び第2断面積を表す各面の向きは異なる。即ち、接合部31における第1断面積は、実施の形態1の場合と同様に、図示のx方向に垂直な面(つまりy-z平面)における電極端子3の断面における面積であり、非接合部32における第2断面積は、z方向に垂直な面(つまりx-y平面)における電極端子3の断面における面積である。 Note that, as shown in FIG. 2A, the joint portion 31 and the non-joint portion 32 can be bent and oriented, but the directions of the surfaces representing the first cross-sectional area and the second cross-sectional area are different. That is, the first cross-sectional area in the joint portion 31 is the area in the cross section of the electrode terminal 3 in the plane perpendicular to the x direction (that is, the yz plane) as in the case of the first embodiment. The second cross-sectional area in the portion 32 is an area in the cross section of the electrode terminal 3 in a plane perpendicular to the z direction (that is, the xy plane).
 実施の形態1で説明したように、レーザー光の加熱による電極端子3と導体パターン52aとの温度差を小さくするために、つまり電極端子3の熱容量を導体パターン52aの熱容量よりも大きくするために、電極端子3の幅よりも厚さを大きくすることで電極端子3の断面積を大きくする旨を述べた。
 一方、電極端子3の厚さを厚くし過ぎた場合、レーザー光で加熱される電極端子3の表面3aと接合面3jとの間に温度差が生じてしまい、硬ろう材10が溶融する前に、電極端子3の表面3aが溶融する可能性が生じる。
 そこで電極端子3において、接合面3jを有し導体パターン52aと接合する部分を、図2Aに示すように接合部31とし、この接合部31における断面積を第1断面積とする。さらに、接合面3jに近接して位置し、導体パターン52aと接合しない部分を非接合部32とし、非接合部32は、第1断面積よりも大きい第2断面積を有するように構成した。このようにして電極端子3のレーザー光で加熱される部分に隣接した部分の熱容量を従来よりも大きくすることができる。
As described in the first embodiment, in order to reduce the temperature difference between the electrode terminal 3 and the conductor pattern 52a due to the heating of the laser beam, that is, in order to make the heat capacity of the electrode terminal 3 larger than the heat capacity of the conductor pattern 52a. It has been stated that the sectional area of the electrode terminal 3 is increased by increasing the thickness of the electrode terminal 3 than the width of the electrode terminal 3.
On the other hand, when the thickness of the electrode terminal 3 is excessively increased, a temperature difference is generated between the surface 3a of the electrode terminal 3 heated by the laser beam and the bonding surface 3j, and before the hard soldering material 10 is melted. Further, there is a possibility that the surface 3a of the electrode terminal 3 is melted.
Therefore, a portion of the electrode terminal 3 that has the joint surface 3j and is joined to the conductor pattern 52a is a joint 31 as shown in FIG. 2A, and a cross-sectional area at the joint 31 is a first cross-sectional area. Further, a portion that is located close to the joint surface 3j and that is not joined to the conductor pattern 52a is defined as a non-joint portion 32, and the non-joint portion 32 is configured to have a second cross-sectional area larger than the first cross-sectional area. Thus, the heat capacity of the part adjacent to the part heated by the laser beam of the electrode terminal 3 can be made larger than before.
 このように構成することで、電極端子3の幅(図2A及び図2Bに示すy方向における電極端子3の寸法)を大きくすることなく、レーザー光で与えられた熱を、断面積を大きくした非接合部32へ効率的に逃がすことができる。よって、電力用半導体装置102を小型化しつつ、電極端子3の熱容量を導体パターン52aの熱容量よりも大きくすることができ、より好ましい。
 また、非接合部32において、電極端子3の厚さではなく幅を広げても同様の効果を得ることができる。電極端子3の接合面3jの近傍であれば,電極端子3の幅を広げても電力用半導体装置102の小型化を妨げることはない。
With this configuration, the cross-sectional area of the heat applied by the laser beam is increased without increasing the width of the electrode terminal 3 (the dimension of the electrode terminal 3 in the y direction shown in FIGS. 2A and 2B). It is possible to efficiently escape to the non-joining portion 32. Therefore, it is more preferable that the power capacity of the electrode terminal 3 can be made larger than the heat capacity of the conductor pattern 52a while the power semiconductor device 102 is downsized.
Further, the same effect can be obtained even if the width of the electrode terminal 3 is increased in the non-joint portion 32 instead of the thickness. If the width of the electrode terminal 3 is increased as long as it is in the vicinity of the joint surface 3j of the electrode terminal 3, the power semiconductor device 102 is not hindered in size reduction.
 また、図2C及び図2Dに示すように、電極端子3の接合面3jに対して硬ろう材10を、ろう付け炉等で予めろう付けしておいてもよい。
 このように構成することで、電極端子3の熱容量を、先にろう付けした分だけ増やすことができる。加えてレーザー光の加熱により硬ろう材10が溶融する際の溶融潜熱で、レーザー光の加熱による電極端子3の温度上昇を抑制することができる。
 さらに、電極端子3と導体パターン52aとの間の接触熱抵抗が生じる界面を一つ減らすことができ、電極端子3と導体パターン52aとの間の温度差を小さくすることができるため、より好ましい。
Further, as shown in FIGS. 2C and 2D, a hard brazing material 10 may be brazed in advance in a brazing furnace or the like to the joint surface 3j of the electrode terminal 3.
By comprising in this way, the heat capacity of the electrode terminal 3 can be increased by the amount brazed previously. In addition, the temperature rise of the electrode terminal 3 due to the heating of the laser light can be suppressed by the latent heat of melting when the brazing filler metal 10 is melted by the heating of the laser light.
Furthermore, the interface where the contact thermal resistance between the electrode terminal 3 and the conductor pattern 52a occurs can be reduced by one, and the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be reduced, which is more preferable. .
 同様に、図2E及び図2Fに示すように、導体パターン52aに対して硬ろう材10を、予めろう付けしておくことによっても、電極端子3と導体パターン52aと間の接触熱抵抗が生じる界面を減らす効果を得ることができる。 Similarly, as shown in FIGS. 2E and 2F, contact thermal resistance between the electrode terminal 3 and the conductor pattern 52a is also generated by brazing the hard soldering material 10 to the conductor pattern 52a in advance. The effect of reducing the interface can be obtained.
 さらにまた、図2G及び図2Hに示すように、電極端子3よりも融点の低い材料をめっき3mなどで、電極端子3の接合面3jの近傍に予め塗布しておいてもよい。
 このように構成することで、塗布した材料の分、電極端子3の熱容量を大きくすることができ、また、レーザー光による加熱で電極端子3の温度が上昇したときに、塗布した材料が電極端子3よりも先に融点に達して溶融することから、溶融潜熱によって電極端子3の温度上昇を抑制することができる。
Furthermore, as shown in FIGS. 2G and 2H, a material having a melting point lower than that of the electrode terminal 3 may be preliminarily applied in the vicinity of the joint surface 3j of the electrode terminal 3 by plating 3m or the like.
With this configuration, the heat capacity of the electrode terminal 3 can be increased by the amount of the applied material, and when the temperature of the electrode terminal 3 rises due to heating with laser light, the applied material becomes the electrode terminal. Since the melting point reaches the melting point before 3, the temperature rise of the electrode terminal 3 can be suppressed by the latent heat of fusion.
 実施の形態3.
 本実施の形態3では、実施の形態1における電力用半導体装置101の製造方法について、図3(図3A~図3C)、図4(図4A~図4C)及び図5(図5A、図5B)を参照して説明を行う。ここで、図3は実施の形態1における電力用半導体装置101の製造方法を示し、図4及び図5は、電力用半導体装置101の製造方法の説明を補足するための図である。
Embodiment 3 FIG.
In the third embodiment, the method for manufacturing the power semiconductor device 101 in the first embodiment will be described with reference to FIGS. 3 (FIGS. 3A to 3C), 4 (FIGS. 4A to 4C), and 5 (FIGS. 5A and 5B). ) To explain. Here, FIG. 3 shows a method for manufacturing the power semiconductor device 101 in the first embodiment, and FIGS. 4 and 5 are diagrams for supplementing the description of the method for manufacturing the power semiconductor device 101.
 まず、図4及び図5を参照して電力用半導体装置100A、100Bの製造方法について説明する。
 本明細書の冒頭部分で説明したように、電力用半導体装置が使用される温度環境が近年、過酷化するに伴い、要求される信頼性を満足するためには、はんだより融点の高い硬ろう材を用いて電極端子を接合する方法が考えられる。硬ろう材を用いた接合方法を説明するにあたり、まず図4を参照して、実施の形態1における電力用半導体装置101に類似する構成を有する電力用半導体装置100Aを用いて、絶縁基板5における導体パターン52aに対して、はんだを用いて電極端子3を接合する場合について説明する。次に図5を参照して、絶縁基板5における導体パターン52aに対して、硬ろう材10を用いて電極端子3を接合する場合について説明する。
First, a method for manufacturing the power semiconductor devices 100A and 100B will be described with reference to FIGS.
As explained at the beginning of this specification, in order to satisfy the required reliability as the temperature environment in which the power semiconductor device is used has become severe in recent years, a hard solder having a melting point higher than that of solder is used. A method of joining electrode terminals using a material is conceivable. In describing the bonding method using the brazing filler metal, first, referring to FIG. 4, power semiconductor device 100 </ b> A having a configuration similar to that of power semiconductor device 101 in the first embodiment is used in insulating substrate 5. The case where the electrode terminal 3 is joined to the conductor pattern 52a using solder will be described. Next, with reference to FIG. 5, the case where the electrode terminal 3 is joined to the conductor pattern 52a on the insulating substrate 5 using the brazing filler metal 10 will be described.
 電力用半導体装置100Aでは、図4Aに示すように、電極端子3と導体パターン52aとを接合する材料として、はんだ8と同じ合金のはんだ9が使用されている。
 図4Aに示すように、導体パターン52aに、はんだ9を載置もしくは供給してはんだ付けを開始する。このとき、図4Bに示すように、はんだ付け中の電力用半導体装置100Aの全体を、放熱部材6の底面からホットプレート40等で加熱しつつ、電極端子3の表面3aからホットツール41等で加熱し加圧している。そして図4Cに示すように、はんだ9が溶融することで電極端子3と導体パターン52aとが接合される。
In power semiconductor device 100A, as shown in FIG. 4A, solder 9 of the same alloy as solder 8 is used as a material for joining electrode terminal 3 and conductor pattern 52a.
As shown in FIG. 4A, solder 9 is placed on or supplied to the conductor pattern 52a to start soldering. At this time, as shown in FIG. 4B, the entire power semiconductor device 100A being soldered is heated from the bottom surface of the heat radiating member 6 by the hot plate 40 or the like, and from the surface 3a of the electrode terminal 3 by the hot tool 41 or the like. Heated and pressurized. As shown in FIG. 4C, the solder 9 is melted to join the electrode terminal 3 and the conductor pattern 52a.
 はんだ9は、はんだ8と比較して融点の低いはんだを選択するのが一般的である。尚、はんだ8及びはんだ9の融点は、共に250℃以下程度である。そのため、ホットプレート40の加熱温度は、はんだ8の融点以下に設定されており、ホットプレート40の加熱によってはんだ8及びケース12が溶融することはない。また、放熱部材6の底面側から電力用半導体装置100Aの全体を、ホットプレートによって、はんだ9の融点付近まで加熱することで、ホットツール41で電極端子3の表面3aから局所的に加熱したときには、はんだ9は容易に融点に達して溶融する。このとき導体パターン52a側もホットプレート40による加熱によって、はんだ9の融点以上の温度に達するため、溶融したはんだ9は、導体パターン52a側に濡れ広がり、フィレットを形成する。 As the solder 9, a solder having a lower melting point than that of the solder 8 is generally selected. Note that the melting points of the solder 8 and the solder 9 are both about 250 ° C. or less. Therefore, the heating temperature of the hot plate 40 is set to be equal to or lower than the melting point of the solder 8, and the solder 8 and the case 12 are not melted by the heating of the hot plate 40. Further, when the entire power semiconductor device 100A is heated from the bottom surface side of the heat dissipation member 6 to the vicinity of the melting point of the solder 9 by a hot plate, and is locally heated from the surface 3a of the electrode terminal 3 by the hot tool 41. The solder 9 easily reaches the melting point and melts. At this time, since the conductor pattern 52a side also reaches a temperature equal to or higher than the melting point of the solder 9 due to heating by the hot plate 40, the molten solder 9 spreads wet to the conductor pattern 52a side and forms a fillet.
 しかしながら、上述のような構成から、はんだ9の融点は低くならざるを得ず、電力用半導体装置が使用される温度環境が過酷化することへの対応が困難である。よって、はんだ9を用いた構成の電力用半導体装置100Aでは、製品に必要な信頼性を満足できなくなることが考えられる。 However, due to the configuration as described above, the melting point of the solder 9 must be lowered, and it is difficult to cope with the severe temperature environment in which the power semiconductor device is used. Therefore, it is conceivable that the power semiconductor device 100A configured using the solder 9 cannot satisfy the reliability required for the product.
 これに対して、電力用半導体装置100Bでは、図5Aに示すように、はんだ9に代えて硬ろう材10を用いる。この場合、図4を参照して説明した加熱方法にて硬ろう材10を溶融させるためには、(i)ホットプレート40の温度を硬ろう材10の融点付近(本実施の形態3では800℃)まで上昇させる、(ii)硬ろう材10の融点以上まで加熱可能なホットツール41を使用する、又は(iii)電極端子3の表面3aから局所的に硬ろう材10の融点以上に加熱可能な加熱手段を用いる、ことが必要となる。 On the other hand, in the power semiconductor device 100B, as shown in FIG. 5A, a hard brazing material 10 is used instead of the solder 9. In this case, in order to melt the brazing filler metal 10 by the heating method described with reference to FIG. 4, (i) the temperature of the hot plate 40 is set near the melting point of the brazing filler metal 10 (800 in the third embodiment). (Ii) Use a hot tool 41 that can be heated to the melting point of the brazing filler metal 10 or higher, or (iii) Heat locally from the surface 3a of the electrode terminal 3 to the melting point of the brazing filler metal 10 or higher. It is necessary to use possible heating means.
 しかしながら、(i)の方法では、電力用半導体装置100Bの全体を例えば800℃程度まで加熱することから、ケース12及びはんだ8が溶融する等の現象が生じ、電力用半導体装置として必要な機能を喪失する問題が生じる。また(ii)の方法では、ケース12の溶融は防げるものの、ホットツール41による加熱は、電極端子3の表面3aとホットツール41との点接触による熱伝達であるため、加熱に長時間を要する。その結果、はんだ8の全体まで加熱が進み、はんだ8が溶融して絶縁基板5の位置ズレが生じる可能性がある。 However, in the method (i), since the entire power semiconductor device 100B is heated to, for example, about 800 ° C., a phenomenon such as melting of the case 12 and the solder 8 occurs, and functions necessary for the power semiconductor device are achieved. The problem of losing arises. In the method (ii), although melting of the case 12 can be prevented, the heating by the hot tool 41 is a heat transfer by point contact between the surface 3a of the electrode terminal 3 and the hot tool 41, and thus heating takes a long time. . As a result, the heating proceeds to the whole of the solder 8, and the solder 8 may be melted to cause displacement of the insulating substrate 5.
 よって、絶縁基板5における導体パターン52aに対して電極端子3を硬ろう材10で接合するためには、ケース12及びはんだ8を溶融させないように、(iii)の方法、つまり電極端子3の表面3aに対して数秒程度の短時間で、硬ろう材10の融点以上の温度まで局所的に加熱できる加熱方法を用いる必要がある。このような加熱方法としては、摩擦撹拌あるいは超音波による方法等もあるが、レーザー光による加熱方法を採ることができる。 Therefore, in order to join the electrode terminal 3 to the conductor pattern 52a on the insulating substrate 5 with the brazing filler metal 10, the method (iii), that is, the surface of the electrode terminal 3 is used so as not to melt the case 12 and the solder 8. It is necessary to use a heating method capable of locally heating to a temperature equal to or higher than the melting point of the brazing filler metal 10 in a short time of about several seconds with respect to 3a. As such a heating method, there is a method using friction stirring or ultrasonic waves, but a heating method using laser light can be employed.
 このレーザー光による加熱は、半導体装置の絶縁基板に加圧あるいは振動等の機械的ダメージを与えず、電力用半導体装置に必要な絶縁性及び導電性を損なうことがなく、かつ小さいスペースで対応でき、また空気中で使用できるため、好ましい。これによって、硬ろう材10を溶融させてろう付けし、本実施形態1で使用したりん銅ろう材のように、電極端子3より硬い材料を硬ろう材10に使用することで、電極端子3より信頼性の高い接合部を得ることができる。 This heating by laser light does not cause mechanical damage such as pressurization or vibration to the insulating substrate of the semiconductor device, does not impair the insulation and conductivity required for the power semiconductor device, and can be handled in a small space. In addition, since it can be used in air, it is preferable. As a result, the brazing filler metal 10 is melted and brazed, and a material harder than the electrode terminal 3 is used for the brazing filler metal 10 as in the phosphor copper brazing material used in the first embodiment, whereby the electrode terminal 3 A more reliable joint can be obtained.
 しかしながら、レーザー光で加熱を行う電極端子3と接合される導体パターン52aは、絶縁基板5に形成されている。また一般的な電力用半導体装置では、絶縁基板5は半導体素子を効率的に冷却するため放熱構造になっており、加えて絶縁基板5の面積が電極端子3の接合面3jの面積と比較して大きい上、放熱部材6と接続されている。よって、絶縁基板5の熱容量が電極端子3に比して非常に大きく、レーザー光を用いて局所的に電極端子3の表面3aを加熱しても、短時間での接合では、電極端子3、硬ろう材10、及び導体パターン52aの間の接触熱抵抗によってこれらの間には温度差が生じる。したがって、加熱により硬ろう材10が溶融しても、導体パターン52aの温度が硬ろう材10の融点まで達しておらず、図5Bに示すように、硬ろう材10が電極端子3の接合面3j側にのみ濡れて、導体パターン52a側には濡れない状態となる。さらにホットプレート40を用いて、放熱部材6の底面側からの加熱を同時に行ったとしても、はんだ8及びケース12の融点以下(200℃以下程度)の加熱では、上述の温度差を補償することは難しい。尚、図5Bにおいて、符号の「42」はレーザー光を発生し照射するレーザー装置である。 However, the conductor pattern 52a to be joined to the electrode terminal 3 that is heated by laser light is formed on the insulating substrate 5. In a general power semiconductor device, the insulating substrate 5 has a heat dissipation structure for efficiently cooling the semiconductor elements. In addition, the area of the insulating substrate 5 is compared with the area of the bonding surface 3j of the electrode terminal 3. In addition, the heat dissipation member 6 is connected. Therefore, the heat capacity of the insulating substrate 5 is much larger than that of the electrode terminal 3, and even when the surface 3a of the electrode terminal 3 is locally heated using laser light, the electrode terminal 3, Due to the contact thermal resistance between the brazing filler metal 10 and the conductor pattern 52a, a temperature difference occurs between them. Therefore, even if the brazing filler metal 10 is melted by heating, the temperature of the conductor pattern 52a does not reach the melting point of the brazing filler metal 10, and the brazing filler metal 10 is bonded to the electrode terminal 3 as shown in FIG. 5B. It becomes wet only on the 3j side and does not get wet on the conductor pattern 52a side. Furthermore, even if heating from the bottom surface side of the heat radiating member 6 is simultaneously performed using the hot plate 40, the above temperature difference is compensated by heating below the melting point of the solder 8 and the case 12 (about 200 ° C. or less). Is difficult. In FIG. 5B, reference numeral “42” denotes a laser device that generates and emits laser light.
 さらに加熱によって導体パターン52aの表面の酸化が進行し、ろう付け性が低下する懸念も生じる。そして、このままレーザー光による加熱を続けた場合、導体パターン52aが硬ろう材10が濡れる温度に達する前に、電極端子3の温度が上昇し過ぎて、電極端子3がその融点に達し溶融する可能性がある。電極端子3の溶融により、レーザー光の吸収率が大幅に上昇し、さらに電極端子3の温度上昇が大きくなる。その結果、レーザー光の照射領域において、電極端子3の厚み方向における全体が溶融してしまい、レーザー光が導体パターン52aの表面を直接溶融させる一般的なレーザー光溶接と同様の状態になる可能性がある。 Further, oxidation of the surface of the conductor pattern 52a proceeds due to heating, and there is a concern that the brazing property is lowered. If the heating by the laser beam is continued as it is, the temperature of the electrode terminal 3 rises too much before the conductor pattern 52a reaches the temperature at which the brazing filler metal 10 gets wet, and the electrode terminal 3 can reach its melting point and melt. There is sex. As the electrode terminal 3 melts, the absorption rate of the laser light is significantly increased, and the temperature rise of the electrode terminal 3 is further increased. As a result, in the laser light irradiation region, the entire electrode terminal 3 in the thickness direction is melted, and the laser light may be in a state similar to general laser light welding in which the surface of the conductor pattern 52a is directly melted. There is.
 一般的なレーザー光溶接のように、レーザー光が導体パターン52aを直接溶融させた場合には、レーザー光が導体パターン52aを貫通して絶縁基板5の絶縁基材51まで達し、絶縁基材51を損傷させる可能性がある。また、レーザー光が導体パターン52aを貫通するに至らない場合でも、導体パターン52aの溶融した部分、あるいはレーザー光で加熱された絶縁基板5における領域が短時間で局所的に熱膨張する。よって、絶縁基材51に局所的な応力が発生するため、絶縁基材51が損傷する恐れがある。
 一般的に電力用半導体装置では、動作時に半導体素子を流れる電流は、電極端子3から接合部を通じて導体パターン52aを流れている。導体パターン52aは、絶縁基材51と一体的に形成されているのが一般的であるため、絶縁基材51の損傷は、電力用半導体装置の絶縁性確保を困難にする。
When the laser beam directly melts the conductor pattern 52a as in general laser beam welding, the laser beam penetrates the conductor pattern 52a and reaches the insulating base material 51 of the insulating substrate 5, and the insulating base material 51 May cause damage. Even when the laser beam does not penetrate the conductor pattern 52a, the melted portion of the conductor pattern 52a or the region in the insulating substrate 5 heated by the laser beam locally expands in a short time. Therefore, local stress is generated in the insulating base material 51, which may damage the insulating base material 51.
In general, in a power semiconductor device, a current flowing through a semiconductor element during operation flows through a conductor pattern 52a from an electrode terminal 3 through a junction. Since the conductor pattern 52a is generally formed integrally with the insulating base 51, damage to the insulating base 51 makes it difficult to ensure insulation of the power semiconductor device.
 加えて、一般的なレーザー光溶接で得られる接合部は、レーザー光の照射領域とその周囲に限られるため、接合面積は、硬ろう材10を溶融して得られる接合部と比較して小さくなる。電力用半導体装置100Bの電極端子3と導体パターン52aとの接合部は、電力用半導体装置100Bの半導体素子に通電するための通電経路となっており、特に大電流を扱う電力用半導体装置においては、効率的に大電流を流すために電極端子3を大面積で接合する必要がある。そのため、電極端子3と導体パターン52aとの接合面積が小さい場合には、通電に必要な接合面積が確保されず、安定した電力供給が妨げられる。さらに、電気抵抗が局所的に大きくなり電極端子3の放熱経路も小さくなるため、電極端子3の温度が上昇し、接合部の信頼性低下を招く。 In addition, since the joint portion obtained by general laser beam welding is limited to the laser light irradiation region and its periphery, the joint area is smaller than the joint portion obtained by melting the brazing filler metal 10. Become. The junction between the electrode terminal 3 of the power semiconductor device 100B and the conductor pattern 52a is an energization path for energizing the semiconductor element of the power semiconductor device 100B, particularly in a power semiconductor device that handles a large current. In order to efficiently flow a large current, it is necessary to join the electrode terminals 3 in a large area. Therefore, when the bonding area between the electrode terminal 3 and the conductor pattern 52a is small, the bonding area required for energization is not ensured, and stable power supply is hindered. Furthermore, since the electric resistance is locally increased and the heat dissipation path of the electrode terminal 3 is also reduced, the temperature of the electrode terminal 3 is increased, and the reliability of the joint portion is lowered.
 そのため、レーザー光を用いて局所的に電極端子3を加熱してろう付けする場合には、実施の形態1において既に説明したように、電極端子3の断面積は大きい方が好ましく、そのために、電極端子3の幅よりも厚さを厚くする方が好ましい。 Therefore, when the electrode terminal 3 is locally heated and brazed using a laser beam, the cross-sectional area of the electrode terminal 3 is preferably larger as already described in the first embodiment. It is preferable to make the thickness thicker than the width of the electrode terminal 3.
 上述の、特に図5を参照した説明を基に、図3を参照して、導体パターン52aに比べて熱容量を大きくした電極端子3を有する電力用半導体装置101、102の、実施の形態3における製造方法について、具体的にはレーザー光による、ろう付けのプロセスについて、以下に説明する。尚、電力用半導体装置101を例に採る。また、図3に示す符号の「43」は、レーザー装置42の動作制御を行う制御装置である。 Based on the above description, particularly with reference to FIG. 5, referring to FIG. 3, the power semiconductor devices 101 and 102 having the electrode terminals 3 having a larger heat capacity than the conductor pattern 52 a in the third embodiment. The manufacturing method, specifically, the brazing process using laser light will be described below. The power semiconductor device 101 is taken as an example. 3 is a control device that controls the operation of the laser device 42.
 ここで制御装置43は、実際にはコンピュータを用いて実現され、レーザー装置42の動作制御機能に対応するソフトウェアと、これを実行するためのCPU(中央演算処理装置)及びメモリ等のハードウェアから構成されている。 Here, the control device 43 is actually realized using a computer, and includes software corresponding to the operation control function of the laser device 42 and hardware such as a CPU (Central Processing Unit) and a memory for executing the software. It is configured.
 まず、図3Aに示すように、電極端子3の接合面3jが硬ろう材10と接触するように、導体パターン52aに対して硬ろう材10を挟んで電極端子3を載置する。そして、電極端子3の表面3a及び導体パターン52aにレーザー光を照射してこれらを加熱する。
このとき、レーザー光によって接合面3jの全体を均等に加熱可能なように、レーザー光は、デフォーカス等によって電極端子3の接合面3jと対向する表面3aの全体に照射されるようにするのが好ましい。この動作は、制御装置43によってレーザー装置42を制御して実行される。
 また、電極端子3、導体パターン52a、及び硬ろう材10の各表面は、酸化膜によって覆われており、この時点では硬ろう材10の温度は、その融点まで上昇しておらず、電極端子3と導体パターン52aとが硬ろう材10によって接合されることはない。
First, as shown in FIG. 3A, the electrode terminal 3 is placed with the brazing filler metal 10 sandwiched between the conductor pattern 52 a so that the joint surface 3 j of the electrode terminal 3 is in contact with the brazing filler metal 10. Then, the surface 3a of the electrode terminal 3 and the conductor pattern 52a are irradiated with laser light to heat them.
At this time, the laser beam is irradiated to the entire surface 3a facing the bonding surface 3j of the electrode terminal 3 by defocusing or the like so that the entire bonding surface 3j can be heated uniformly by the laser beam. Is preferred. This operation is executed by controlling the laser device 42 by the control device 43.
Each surface of the electrode terminal 3, the conductor pattern 52a, and the brazing filler metal 10 is covered with an oxide film. At this time, the temperature of the brazing filler metal 10 has not risen to its melting point, and the electrode terminal 3 and the conductor pattern 52a are not joined by the hard soldering material 10.
 次に、図3Bに示すように、少なくとも電極端子3の表面3aを含む範囲に、さらにレーザー光を照射して電極端子3を加熱していく。電極端子3の加熱により硬ろう材10が間接的に加熱され、硬ろう材10が融点に達して溶融する。このとき、導体パターン52aの表面の温度は、硬ろう材10が濡れ広がる温度に近づいているが、まだ硬ろう材10が濡れ広がり可能な温度には達していない。よってこの時点では、溶融した硬ろう材10は、電極端子3の接合面3jにのみ濡れ広がる。また、硬ろう材10の溶融時には溶融潜熱が存在するため、この間、レーザー光の加熱による電極端子3の温度上昇は鈍化する。 Next, as shown in FIG. 3B, the electrode terminal 3 is heated by further irradiating a laser beam in a range including at least the surface 3 a of the electrode terminal 3. The brazing filler metal 10 is indirectly heated by the heating of the electrode terminal 3, and the brazing filler metal 10 reaches the melting point and melts. At this time, the temperature of the surface of the conductor pattern 52a approaches the temperature at which the brazing filler metal 10 spreads out, but has not yet reached the temperature at which the brazing filler metal 10 can spread out. Therefore, at this time, the molten brazing filler metal 10 wets and spreads only on the joint surface 3j of the electrode terminal 3. Further, since the latent heat of fusion exists when the brazing filler metal 10 is melted, the temperature rise of the electrode terminal 3 due to the heating of the laser beam is slowed during this time.
 電力用半導体装置101では、電極端子3及び導体パターン52aにはCuを用い、硬ろう材10にはりん銅ろうを用いている。よって硬ろう材10が溶融したときには、りん銅ろうに含まれているリンの還元作用によって、電極端子3の接合面3jは還元され、フラックスなしでも硬ろう材10は電極端子3に濡れ広がる。一方、フラックスを必要とするろう材を用いる場合には、図3Aに示す工程の時点で、接合したい部分にフラックスを塗布しておく必要がある。またCuの融点は、硬ろう材10の融点よりも300℃以上程度高く、硬ろう材10との融点差を大きく取ることができる。そのため、電極端子3にCuを用いた場合、本実施形態におけるメリットがより効果的なものとなる。 In the power semiconductor device 101, Cu is used for the electrode terminal 3 and the conductor pattern 52 a, and phosphorous copper solder is used for the hard solder material 10. Therefore, when the brazing filler metal 10 is melted, the bonding surface 3j of the electrode terminal 3 is reduced by the reducing action of phosphorus contained in the phosphor copper brazing, and the brazing filler metal 10 wets and spreads on the electrode terminal 3 even without flux. On the other hand, when a brazing material that requires flux is used, it is necessary to apply the flux to the portions to be joined at the time of the step shown in FIG. 3A. Further, the melting point of Cu is higher by about 300 ° C. than the melting point of the brazing filler metal 10, and a large difference in melting point from the brazing filler metal 10 can be obtained. Therefore, when Cu is used for the electrode terminal 3, the merit in this embodiment becomes more effective.
 さらにレーザー光による加熱を続行することで、最終的には図3Cに示すように、電極端子3が溶融する前に、硬ろう材10が濡れ広がる温度まで、導体パターン52aの表面の温度は上昇し、硬ろう材10を導体パターン52a側に濡れ広がらせることができる。 Furthermore, by continuing the heating with the laser beam, as shown in FIG. 3C, the temperature of the surface of the conductor pattern 52a is increased to the temperature at which the brazing filler metal 10 spreads out before the electrode terminal 3 is melted. Then, the brazing filler metal 10 can be spread and spread on the conductor pattern 52a side.
 導体パターン52aの温度は、レーザー光で加熱されている範囲の直下部分が最も上昇する。よって硬ろう材10は、上記直下部分から導体パターン52a側へ濡れ、加熱を続けるにつれて、濡れ面積は、導体パターン52aにおいて接合面3jと対向する面の外側へ広がっていく。最終的には、接合面3jと対向する面の全体に硬ろう材10が濡れ広がった後、さらにその外側まで濡れ広がりフィレットが形成される。 The temperature of the conductor pattern 52a rises most in the portion immediately below the range heated by the laser beam. Therefore, the brazing filler metal 10 is wetted from the portion immediately below to the conductor pattern 52a side, and as the heating is continued, the wetted area spreads outside the surface of the conductor pattern 52a that faces the joint surface 3j. Eventually, after the brazing filler metal 10 wets and spreads over the entire surface facing the joint surface 3j, a wet spread and fillet is formed further outside.
 本実施の形態3では、電極端子3と同様に、硬ろう材10が濡れ広がるときに、りん銅ろうに含まれているリンの還元作用によって導体パターン52aは還元されるため、フラックスなしでも硬ろう材10は導体パターン52aに濡れ広がる。このとき、レーザー光によって接合面3jの全体が均等に加熱可能なように、レーザー光をデフォーカス等によって電極端子3の表面3aの全体に照射する。これにより、導体パターン52aにおいて接合面3jと対向する面の温度が均等に上昇する。よって、硬ろう材10が導体パターン52a側に濡れるときに、硬ろう材10は、導体パターン52aにおける接合面3jの対向面の全体に、ほぼ同時に濡れ広がる。したがって、導体パターン52a側に硬ろう材10を濡れ広がらせるに要する時間を短縮でき、また局所的に電極端子3が加熱されることもないため、電極端子3と導体パターン52aとの温度差を小さくすることができる。 In the third embodiment, similarly to the electrode terminal 3, when the brazing filler metal 10 is wet and spreads, the conductor pattern 52a is reduced by the reducing action of phosphorus contained in the phosphor copper brazing, so that the hard pattern is hard even without flux. The brazing material 10 spreads over the conductor pattern 52a. At this time, the laser beam is irradiated on the entire surface 3a of the electrode terminal 3 by defocusing or the like so that the entire bonding surface 3j can be uniformly heated by the laser beam. Thereby, the temperature of the surface which opposes the joint surface 3j in the conductor pattern 52a rises equally. Therefore, when the brazing filler metal 10 gets wet on the conductor pattern 52a side, the brazing filler metal 10 spreads almost simultaneously on the entire facing surface of the bonding surface 3j in the conductor pattern 52a. Therefore, the time required to wet and spread the brazing filler metal 10 on the conductor pattern 52a side can be shortened, and the electrode terminal 3 is not locally heated. Therefore, the temperature difference between the electrode terminal 3 and the conductor pattern 52a is reduced. Can be small.
 電極端子3の表面3aに対する加熱方法として、レーザー光以外の電磁波を用いることもできる。他の電磁波を用いた場合でも、電極端子3と導体パターン52aとの温度差を小さくする効果を得ることはできる。
 特に電子ビームは、加熱する部分を細かく振分けることができるため、電極端子3の接合面3jと、導体パターン52aにおける接合面3jの対向面とを同程度の温度に加熱するための温度管理が容易になり、また、電極端子3及び導体パターン52aの表面状態によらず安定して加熱可能なことから、レーザー光と同様に好ましい。
As a heating method for the surface 3 a of the electrode terminal 3, electromagnetic waves other than laser light can be used. Even when other electromagnetic waves are used, the effect of reducing the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be obtained.
In particular, since the electron beam can be finely distributed in the heated portion, the temperature control for heating the bonding surface 3j of the electrode terminal 3 and the surface facing the bonding surface 3j in the conductor pattern 52a to the same level is possible. Since it becomes easy and can be stably heated regardless of the surface state of the electrode terminal 3 and the conductor pattern 52a, it is preferable in the same manner as the laser beam.
 また、断面積を増すために電極端子3の厚さを大きくしていることから、たとえ、電極端子3の表面3aの全面に対してレーザー光を照射していない場合でも、電極端子3の厚さ方向へ熱は広がる。よって、電極端子3の厚さが比較的薄い場合と比べて、導体パターン52aの温度差を小さくする効果を得ることができる。 Further, since the thickness of the electrode terminal 3 is increased in order to increase the cross-sectional area, the thickness of the electrode terminal 3 is obtained even when the entire surface 3a of the electrode terminal 3 is not irradiated with laser light. Heat spreads in the direction. Therefore, compared with the case where the thickness of the electrode terminal 3 is relatively thin, the effect of reducing the temperature difference of the conductor pattern 52a can be obtained.
 実施の形態4.
 図6は、実施の形態4における電力用半導体装置104の概略構成を部分断面図及び平面図で示している。本実施の形態4における電力用半導体装置104も基本的に実施の形態1における電力用半導体装置101の構成と同じ構成を有するが、以下の点で相違する。よってここでは、主に相違点について説明を行い、同じ構成部分についてはその説明を省略する。尚、図6は、図6A~図6Bを含み、電力用半導体装置104における電極端子3の接合箇所のみを図示し、その他の構成部分については図示を省略している。
Embodiment 4 FIG.
FIG. 6 shows a schematic configuration of the power semiconductor device 104 according to the fourth embodiment in a partial cross-sectional view and a plan view. The power semiconductor device 104 in the fourth embodiment also basically has the same configuration as that of the power semiconductor device 101 in the first embodiment, but differs in the following points. Therefore, here, mainly the differences will be described, and the description of the same components will be omitted. Note that FIG. 6 includes FIGS. 6A to 6B, and illustrates only the joint portion of the electrode terminal 3 in the power semiconductor device 104, and the other components are not illustrated.
 実施の形態1では、レーザー光の加熱による電極端子3と導体パターン52aの温度差を小さくするために、電極端子3の厚さを導体パターン52aの厚さよりも大きく構成して、電極端子3の単位面積当たりの熱容量を導体パターン52aよりも大きくした。
 これに対して本実施の形態4では、電極端子3は、レーザー光で直接加熱され、図6A及び図6Bに示すように、導体パターン52aに硬ろう材10で接合される接合面3jを含む面内の一部に貫通孔33を有するように構成した点で実施の形態1と相違する。以下に詳しく説明する。尚、貫通孔33は、電極端子3の厚み方向において電極端子3を欠損させた欠損部の一例に相当する。
In the first embodiment, in order to reduce the temperature difference between the electrode terminal 3 and the conductor pattern 52a due to heating of the laser beam, the electrode terminal 3 is configured to have a thickness larger than the thickness of the conductor pattern 52a. The heat capacity per unit area was made larger than that of the conductor pattern 52a.
On the other hand, in the fourth embodiment, the electrode terminal 3 is directly heated by a laser beam and includes a joining surface 3j joined to the conductor pattern 52a by the brazing filler metal 10 as shown in FIGS. 6A and 6B. The present embodiment is different from the first embodiment in that it is configured to have a through hole 33 in a part of the surface. This will be described in detail below. In addition, the through hole 33 corresponds to an example of a defective portion in which the electrode terminal 3 is lost in the thickness direction of the electrode terminal 3.
 実施の形態1で説明したように、レーザー光による電極端子3の加熱の際、ろう付け前に電極端子3が溶融するのを防止するために、電極端子3と導体パターン52aとの温度差を小さくすることが必要である。そのため実施の形態1では、電極端子3の幅よりも厚さを大きくすることで、電極端子3の断面積を大きくした。
 一方、実施の形態2で説明したように、電極端子3の厚さを厚くし過ぎた場合、レーザー光で加熱される電極端子3の表面3aと接合面3jとの間に温度差が生じてしまい、硬ろう材10が溶融する前に、電極端子3の表面3aが溶融する可能性が生じてしまう。
As described in the first embodiment, when the electrode terminal 3 is heated by laser light, in order to prevent the electrode terminal 3 from melting before brazing, the temperature difference between the electrode terminal 3 and the conductor pattern 52a is set. It is necessary to make it smaller. Therefore, in the first embodiment, the cross-sectional area of the electrode terminal 3 is increased by making the thickness larger than the width of the electrode terminal 3.
On the other hand, as described in the second embodiment, when the thickness of the electrode terminal 3 is excessively increased, a temperature difference is generated between the surface 3a of the electrode terminal 3 heated by the laser beam and the bonding surface 3j. Therefore, there is a possibility that the surface 3a of the electrode terminal 3 is melted before the brazing filler metal 10 is melted.
 そこで、図7に示すように、電極端子3において、レーザー光で直接加熱される部分の一部に貫通孔33を有するように構成した。貫通孔33を設けることで、レーザー光により電極端子3と共に導体パターン52aを直接加熱することが可能になるため、電極端子3と導体パターン52aとの温度差を小さくすることができる。 Therefore, as shown in FIG. 7, the electrode terminal 3 is configured to have a through-hole 33 in a part of the portion directly heated by the laser beam. By providing the through hole 33, it is possible to directly heat the conductor pattern 52a together with the electrode terminal 3 by laser light, so that the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be reduced.
 よって、レーザー光により与えられた熱で、電極端子3及び導体パターン52aを均等に加熱することができる。よって、電力用半導体装置104を小型化しつつ、電極端子3と導体パターン52aとの温度差を、上述の実施の形態の場合に比べてさらに小さくすることができる。これは、実施の形態1で説明した通り、電力用半導体装置の信頼性を考えたとき、最低限必要な接合面積を小さくできるため電力用半導体装置104を小型化できる効果を維持した状態で、電極端子3と導体パターン52aとの温度差を小さくできる効果をも得ることができる、という意味である。 Therefore, the electrode terminal 3 and the conductor pattern 52a can be evenly heated by the heat given by the laser beam. Therefore, the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be further reduced as compared with the case of the above-described embodiment while the power semiconductor device 104 is downsized. This is because, as described in the first embodiment, when considering the reliability of the power semiconductor device, the minimum required junction area can be reduced, so that the effect of reducing the size of the power semiconductor device 104 is maintained. This means that the effect of reducing the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be obtained.
 また、実施形態3で説明したように、レーザー光がデフォーカスされていても、レーザー光の焦点付近ほど温度が上昇し易い。よって、レーザー光の焦点となる部分と、貫通孔33とを一致又は近接させることで、導体パターン52aを効率的に加熱でき、より好ましい。 Also, as described in the third embodiment, even when the laser beam is defocused, the temperature is likely to increase as the laser beam is focused. Therefore, it is more preferable that the conductor pattern 52a can be efficiently heated by causing the laser beam focal point and the through-hole 33 to coincide with each other or close to each other.
 これについて以下に詳しく説明する。
 図8Aに示すように、デフォーカスされているレーザー光であってもレーザー光の光軸付近が最もエネルギ密度が高く、加熱され易い。また、貫通孔33を有しない電極端子3の場合には、導体パターン52aの表面に直接レーザー光は照射されない。よって、導体パターン52aの温度上昇は、レーザー光で加熱されている電極端子3の表面3aの熱が、接触熱抵抗が存在する、電極端子3-硬ろう材10間、硬ろう材10-導体パターン52a間の2ヶ所を伝導してくるのを待たなければならない。よって、導体パターン52aの温度上昇は、電極端子3と比較すると小さい。
This will be described in detail below.
As shown in FIG. 8A, even in the case of defocused laser light, the vicinity of the optical axis of the laser light has the highest energy density and is easily heated. Further, in the case of the electrode terminal 3 having no through-hole 33, the surface of the conductor pattern 52a is not directly irradiated with laser light. Therefore, the temperature rise of the conductor pattern 52a is caused by the heat of the surface 3a of the electrode terminal 3 heated by the laser beam between the electrode terminal 3 and the brazing filler metal 10 where the thermal contact resistance exists. It is necessary to wait for conduction at two places between the patterns 52a. Therefore, the temperature rise of the conductor pattern 52 a is smaller than that of the electrode terminal 3.
 一方、電極端子3に貫通孔33を設けた場合には、図8Bに示すように、貫通孔33を通ったレーザー光により、導体パターン52aの表面を直接加熱することができ、電極端子3の表面3a及び導体パターン52aの表面が共に直接加熱される。よって、導体パターン52aの表面温度は上昇し易い。また、貫通孔33を電極端子3の中央部(接合面3jの中央部)に設けた場合には、レーザー光のエネルギ密度が最も高い部分にて、導体パターン52aの表面を直接加熱可能となり、さらに導体パターン52aの表面温度上昇が可能となる。加えて、電極端子3の表面3aは、レーザー光の焦点位置から外れるため、貫通孔33を有しない電極端子3と比較して、電極端子3の温度上昇は遅くなる。よって導体パターン52aと電極端子3との温度差を小さくすることが可能になる。 On the other hand, when the through hole 33 is provided in the electrode terminal 3, as shown in FIG. 8B, the surface of the conductor pattern 52a can be directly heated by the laser light passing through the through hole 33. Both the surface 3a and the surface of the conductor pattern 52a are directly heated. Therefore, the surface temperature of the conductor pattern 52a tends to rise. In addition, when the through hole 33 is provided in the central portion of the electrode terminal 3 (the central portion of the bonding surface 3j), the surface of the conductor pattern 52a can be directly heated at the portion where the energy density of the laser beam is highest, Furthermore, the surface temperature of the conductor pattern 52a can be increased. In addition, since the surface 3a of the electrode terminal 3 deviates from the focal position of the laser beam, the temperature rise of the electrode terminal 3 is delayed compared to the electrode terminal 3 that does not have the through hole 33. Therefore, the temperature difference between the conductor pattern 52a and the electrode terminal 3 can be reduced.
 これによって、(i)電極端子3と導体パターン52aとの温度差を小さくすることができる、(ii)接合面3jの中央から加熱された熱が接合面3j全体に広がるため、導体パターン52a表面の接合面3j内での温度差を抑制できる、という効果が得られる。 Accordingly, (i) the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be reduced. (Ii) Since the heat heated from the center of the joint surface 3j spreads over the entire joint surface 3j, the surface of the conductor pattern 52a. The effect that the temperature difference in the bonding surface 3j can be suppressed is obtained.
 また、図9に示すように、レーザー光の照射を、例えば、接合面3jの中央から周囲へ渦巻き状に行うことで、接合面3jの中央から電極端子3の外側へ向かって温度の偏りなく加熱可能となるため、好ましい。 Further, as shown in FIG. 9, for example, by irradiating laser light in a spiral shape from the center of the joint surface 3 j to the periphery, the temperature does not deviate from the center of the joint surface 3 j toward the outside of the electrode terminal 3. It is preferable because it can be heated.
 また、実施の形態3で説明したように、導体パターン52aに対して電極端子3を硬ろう材10で接合するためには、ケース12及びはんだ8を溶融させないように、電極端子3の表面3aに対して、数秒程度の短時間で、硬ろう材10の融点以上の温度まで局所的に加熱する必要がある。
 このため、硬ろう材10を用いた接合では、図4に示すような、はんだ9を用いた製造方法とは異なり、接合過程において、電極端子3をスクラブすることによる、接合面3j下のボイド低減対策を実施することができない。そのため、接合後に、図10に示すように、接合面3j下にボイド34が残存する懸念がある。
Further, as described in the third embodiment, in order to join the electrode terminal 3 to the conductor pattern 52a with the brazing filler metal 10, the surface 3a of the electrode terminal 3 is prevented from melting the case 12 and the solder 8. On the other hand, it is necessary to locally heat to a temperature equal to or higher than the melting point of the brazing filler metal 10 in a short time of about several seconds.
For this reason, in the joining using the brazing filler metal 10, unlike the manufacturing method using the solder 9 as shown in FIG. 4, the void below the joining surface 3 j is obtained by scrubbing the electrode terminal 3 in the joining process. Reduction measures cannot be implemented. Therefore, there is a concern that the void 34 remains below the bonding surface 3j after bonding, as shown in FIG.
 硬ろう材10を用いているため、たとえボイド34が残存した場合でも電力用半導体装置104の信頼性は低下しないが、ボイド34の存在部分には硬ろう材10が無いため、接合面積が小さくなる。そのため電極端子3と導体パターン52aとの通電経路及び放熱経路が小さくなることから、ボイド34は無い方が好ましい。 Since the brazing filler metal 10 is used, even if the void 34 remains, the reliability of the power semiconductor device 104 does not decrease. However, since the brazing filler metal 10 is not present in the portion where the void 34 exists, the bonding area is small. Become. For this reason, the energization path and the heat dissipation path between the electrode terminal 3 and the conductor pattern 52a are reduced, and therefore it is preferable that there is no void 34.
 そこで、電極端子3の接合面3jを含む面内に、気体が通過可能である程度の大きさの貫通孔33を設けることで、硬ろう材10の溶融時に電極端子3の接合面3jの中央付近で硬ろう材10内に残っている気体は、貫通孔33を通じて外部へ排出可能となる。よって、接合面3j下のボイド34の存在を低減することができる。 Therefore, by providing a through hole 33 having a certain size through which gas can pass in a plane including the bonding surface 3j of the electrode terminal 3, the vicinity of the center of the bonding surface 3j of the electrode terminal 3 when the brazing filler metal 10 is melted. Thus, the gas remaining in the brazing filler metal 10 can be discharged to the outside through the through hole 33. Therefore, the presence of the void 34 below the joint surface 3j can be reduced.
 出願人は、貫通孔33を設けていない電極端子3と、貫通孔33を設けた電極端子3とにそれぞれレーザー光を照射してろう付けを行う実験を行った。各実験状態を、図10と図6Aとに示す。実験には、長さ12mm、幅4mm、厚さ0.8mmの電極端子3を使用し、貫通孔33として、電極端子3の中心にφ2mmのサイズで設けた。レーザー光として、最大4kWのファイバレーザーで、電極端子3の貫通孔33の中心がレーザー光の中心と重なるようにレーザーを照射した。 The applicant conducted an experiment in which the electrode terminal 3 not provided with the through-hole 33 and the electrode terminal 3 provided with the through-hole 33 were respectively irradiated with laser light for brazing. Each experimental state is shown in FIG. 10 and FIG. 6A. In the experiment, the electrode terminal 3 having a length of 12 mm, a width of 4 mm, and a thickness of 0.8 mm was used, and the through hole 33 was provided in the center of the electrode terminal 3 with a size of φ2 mm. As a laser beam, a laser was irradiated with a fiber laser of a maximum of 4 kW so that the center of the through hole 33 of the electrode terminal 3 overlapped with the center of the laser beam.
 実験の結果、貫通孔33を設けていない電極端子3のろう付け部には、図10に示すように、電極端子3の中央部にボイド34が存在した。一方、貫通孔33を設けた電極端子3では、図6Aに示すように、貫通孔33内にも硬ろう材10が濡れ広がり、ボイドは観察されなかった。該実験結果より、電極端子3に貫通孔33を設けることで、実際に接合面3j下のボイド34を低減できることがわかった。さらに、貫通孔33をレーザー光の焦点位置に設けたことで、電極端子3の表面3aの温度が上がり過ぎ表面3aが溶融する現象も見られなかった。このように、電極端子3に貫通孔33を設けることで、電極端子3と導体パターン52aとの温度差が小さくなったことがわかった。 As a result of the experiment, a void 34 was present at the center of the electrode terminal 3 at the brazed portion of the electrode terminal 3 where the through-hole 33 was not provided, as shown in FIG. On the other hand, in the electrode terminal 3 provided with the through hole 33, as shown in FIG. 6A, the hard brazing filler metal 10 spreads in the through hole 33, and no void was observed. From the experimental results, it was found that by providing the through holes 33 in the electrode terminals 3, the voids 34 below the joint surface 3j can actually be reduced. Furthermore, by providing the through hole 33 at the focal position of the laser beam, the phenomenon that the temperature of the surface 3a of the electrode terminal 3 is excessively increased and the surface 3a is melted was not observed. Thus, it was found that the temperature difference between the electrode terminal 3 and the conductor pattern 52a was reduced by providing the through hole 33 in the electrode terminal 3.
 さらにまた、貫通孔33を有しない電極端子3の場合と同様にして硬ろう材10を供給した場合、貫通孔33を有する電極端子3では、図6Aに示すように、貫通孔33内に進入する硬ろう材10の量が少なくなる。よって、貫通孔33を設けた分、電極端子3の断面積が小さくなり、電極端子3の電気抵抗は大きくなる。さらに、貫通孔33部分には電極端子3の熱が広がらないことから、電極端子3の放熱経路にはならないという状態が生じる。
 このような、貫通孔33部分が未接合部となり通電経路及び放熱経路が小さくなってしまうという接合状態を防ぐために、硬ろう材10を余分に供給しておく場合もある。この場合、貫通孔33を有することで、余分な硬ろう材10は、貫通孔33内に進入することができる。その結果、電極端子3に貫通孔33を設けたことで生じる、局所的に電気抵抗が大きくなる、及び放熱経路が小さくなるという接合状態は無くすことができる。
Furthermore, when the brazing filler metal 10 is supplied in the same manner as in the case of the electrode terminal 3 having no through hole 33, the electrode terminal 3 having the through hole 33 enters the through hole 33 as shown in FIG. 6A. The amount of the brazing filler metal 10 to be reduced is reduced. Accordingly, the cross-sectional area of the electrode terminal 3 is reduced by the amount of the through hole 33, and the electrical resistance of the electrode terminal 3 is increased. Furthermore, since the heat of the electrode terminal 3 does not spread in the through-hole 33 part, the state where it does not become a heat dissipation path of the electrode terminal 3 occurs.
In order to prevent such a joined state that the through-hole 33 portion becomes an unjoined portion and the energization path and the heat dissipation path become small, the brazing filler metal 10 may be supplied in excess. In this case, the extra brazing filler metal 10 can enter the through hole 33 by having the through hole 33. As a result, it is possible to eliminate the joint state that is caused by providing the through hole 33 in the electrode terminal 3 and locally increases in electrical resistance and decreases in the heat dissipation path.
 また、一般的に硬ろう材10は、薄くなるほど接合信頼性が有利になる。貫通孔33を設けることで、溶融した硬ろう材10は、貫通孔33内部に濡れ広がり、電極端子3下の硬ろう材10の厚さは、貫通孔33内部に濡れ広がった硬ろう材10の厚さよりも薄くなる。よって、接合信頼性が向上するという効果を得ることもできる。 Moreover, generally, the brazing filler metal 10 becomes more advantageous as the bonding reliability becomes thinner. By providing the through-hole 33, the molten brazing filler metal 10 wets and spreads inside the through-hole 33, and the thickness of the brazing filler metal 10 below the electrode terminal 3 is set so that the brazing filler metal 10 wetted and spreads inside the through-hole 33. Thinner than the thickness. Therefore, it is possible to obtain an effect of improving the bonding reliability.
 また硬ろう材10は、貫通孔33内には供給していなくてもよい。そのための一手法として、硬ろう材10に貫通孔33と同サイズ、あるいはより大きいサイズの孔を設け、設けた孔の中央を貫通孔33の中央と合わせるように硬ろう材10を配置する。即ち、組立時にレーザー光の照射側から見て、硬ろう材10が見えないように配置する。このようにすることで、レーザー光で導体パターン52aの表面を確実に加熱することが可能になるため、電極端子3と導体パターン52aとの温度差を確実に小さくすることが可能になる。
 このように構成することで、レーザー光で電極端子3及び導体パターン52aをより均等に加熱することができる。
Further, the brazing filler metal 10 may not be supplied into the through hole 33. As a technique for that purpose, a hole having the same size as or larger than the through hole 33 is provided in the brazing filler metal 10, and the brazing filler metal 10 is arranged so that the center of the provided hole is aligned with the center of the through hole 33. That is, the hard brazing material 10 is arranged so as not to be seen when viewed from the laser beam irradiation side during assembly. By doing so, the surface of the conductor pattern 52a can be reliably heated with laser light, so that the temperature difference between the electrode terminal 3 and the conductor pattern 52a can be reliably reduced.
By comprising in this way, the electrode terminal 3 and the conductor pattern 52a can be heated more uniformly with a laser beam.
 一方、貫通孔33内に予め硬ろう材10を供給した場合、次のように作用する。つまり、レーザー光の加熱により、先に硬ろう材10が溶融する。溶融した硬ろう材10は、導体パターン52aが硬ろう材10の融点に達するまでは、導体パターン52aには濡れ広がらず、硬ろう材10の表面張力によって貫通孔33の周囲に集まる。よって、レーザー光による導体パターン52aの加熱を妨げない。加えて、導体パターン52aの表面温度が硬ろう材10の融点に達すると、硬ろう材10は、濡れ広がって貫通孔33内に入り込み、通電経路及び放熱経路が小さくなるのを防ぐことができる。さらに加熱中は硬ろう材10は溶融しており、ボイドとなる気体が貫通孔33から抜けることも妨げないため、より好ましい。 On the other hand, when the brazing filler metal 10 is supplied into the through-hole 33 in advance, it operates as follows. That is, the brazing filler metal 10 is first melted by the heating of the laser beam. Until the conductive pattern 52a reaches the melting point of the brazing filler metal 10, the molten brazing filler metal 10 does not wet and spread on the conductive pattern 52a, but gathers around the through holes 33 due to the surface tension of the brazing filler metal 10. Therefore, heating of the conductor pattern 52a by laser light is not hindered. In addition, when the surface temperature of the conductor pattern 52a reaches the melting point of the brazing filler metal 10, the brazing filler metal 10 can be prevented from spreading and getting into the through-hole 33, and reducing the energization path and the heat dissipation path. . Further, the brazing filler metal 10 is melted during heating, and it is more preferable because it does not prevent the voiding gas from coming out of the through hole 33.
 また、貫通孔33は、図11Aに示すように、電極端子3内に複数設けてもよい。複数設けることで、貫通孔33を接合面3j内に均等に配置でき、より効率的に接合部31内のボイド34を低減することができ、より好ましい。このとき、レーザー光の焦点位置が偏ると温度に偏りが生じるため、接合面3j内の温度均一化の点から、レーザー光の焦点位置は、接合面3jの中央にあるのが好ましい。そのため、電極端子3に複数の貫通孔33を設ける場合には、焦点位置を中心とした同心円状に均等に貫通孔33を設けるのが好ましい。 Further, a plurality of through holes 33 may be provided in the electrode terminal 3 as shown in FIG. 11A. By providing a plurality, it is more preferable that the through holes 33 can be evenly arranged in the joint surface 3j, and the voids 34 in the joint portion 31 can be more efficiently reduced. At this time, if the focal position of the laser beam is deviated, the temperature is also deviated, so that the focal position of the laser beam is preferably at the center of the bonding surface 3j from the viewpoint of uniform temperature in the bonding surface 3j. Therefore, when a plurality of through holes 33 are provided in the electrode terminal 3, it is preferable to provide the through holes 33 evenly in a concentric manner with the focal point as the center.
 さらにまた、図11Bに示すように貫通孔33は、孔ではなく溝状に形成してもよい。尚、この溝は、電極端子3の厚み方向において電極端子3を欠損させた欠損部の一例に相当する。また溝は、電極端子3の先端3c(図13)から電極端子3の曲げ部の方へ延在する。よって電極端子3の先端3cは、上記溝によって分割されている。
 この場合、溝の延在方向に沿う両壁間の距離(溝幅)が、硬ろう材10が形成するフィレットの距離の2倍以下であれば、溶融した硬ろう材10が溝内に濡れ広がることができる。よって、通電経路及び放熱経路が小さくなることなく、電極端子3と導体パターン52aとの温度差を小さくする効果、及び、接合面3j内のボイド34を低減する効果を、共に得ることができる。
Furthermore, as shown in FIG. 11B, the through hole 33 may be formed in a groove shape instead of a hole. In addition, this groove | channel is corresponded to an example of the defect | deletion part which lost the electrode terminal 3 in the thickness direction of the electrode terminal 3. FIG. The groove extends from the tip 3c of the electrode terminal 3 (FIG. 13) toward the bent portion of the electrode terminal 3. Therefore, the tip 3c of the electrode terminal 3 is divided by the groove.
In this case, if the distance (groove width) between both walls along the extending direction of the groove is not more than twice the distance of the fillet formed by the brazing filler metal 10, the molten brazing filler metal 10 gets wet in the groove. Can spread. Therefore, both the effect of reducing the temperature difference between the electrode terminal 3 and the conductor pattern 52a and the effect of reducing the void 34 in the joint surface 3j can be obtained without reducing the energization path and the heat dissipation path.
 また溝幅を狭くすることで、硬ろう材10の供給に偏りが生じて溝の先端まで硬ろう材10が供給されていない場合でも、毛細管現象により硬ろう材10が溝の先端部まで濡れ広がる。よって、硬ろう材10の供給位置、あるいは供給量のバラつきに左右されず、均一に硬ろう材10を接合面内に濡れ広がらせることができる。 Further, by reducing the groove width, even when the supply of the brazing filler metal 10 is biased and the brazing filler metal 10 is not supplied to the tip of the groove, the brazing filler metal 10 is wetted to the tip of the groove by capillary action. spread. Therefore, the brazing filler metal 10 can be uniformly spread in the joining surface regardless of the supply position of the brazing filler metal 10 or the variation in the supply amount.
 さらにまた、図12Aに示すように、電極端子3の貫通孔33の側壁がハの字形状であれば、ハの字の根元33a側(硬ろう材10に接触している側)の温度がハの字の先端33b側(電極端子3の表面3a側)と比較して低くなると考えられる。よって、硬ろう材10の這い上がり(溶融した硬ろう材10が電極端子3の壁面を伝って電極端子3の接合面3jと対向する表面3a側まで濡れ広がる状態)を抑制する効果が得られるため好ましい。これは、電極端子3側の温度が導体パターン52a側より早く上昇した場合には、硬ろう材10が濡れ広がる方向は、電極端子3の方へしかなくたるため、這い上がり易いためである。これは、図12Bに示す逆階段形状(電極端子3の硬ろう材10と接触する面側がザグリ形状)であっても、硬ろう材10に接触している側の温度が電極端子3の表面3aと比較して低くなると考えられるため、同様の硬ろう材10の電極端子3側への這い上がりを抑制する効果を得ることができる。
 また、ハの字形状、逆階段形状のどちらでも、硬ろう材10内のボイドをより抜き易くなる効果を得ることができる。尚、貫通孔33の壁面が斜面で段差がない分、ハの字形状の方がボイド抜きの効果は大きい。
Furthermore, as shown in FIG. 12A, if the side wall of the through-hole 33 of the electrode terminal 3 is a square shape, the temperature at the root 33a side (the side in contact with the brazing filler metal 10) of the square shape is This is considered to be lower than the tip 33b side of the C shape (the surface 3a side of the electrode terminal 3). Therefore, it is possible to obtain an effect of suppressing creeping of the brazing filler metal 10 (a state in which the molten brazing filler metal 10 is wet and spreads to the surface 3a side facing the bonding surface 3j of the electrode terminal 3 through the wall surface of the electrode terminal 3). Therefore, it is preferable. This is because, when the temperature on the electrode terminal 3 side rises faster than the conductor pattern 52a side, the direction in which the brazing filler metal 10 spreads out is only toward the electrode terminal 3, so that it tends to creep up. This is because the temperature on the side in contact with the brazing filler metal 10 is the surface of the electrode terminal 3 even if the reverse staircase shape shown in FIG. 12B (the side of the electrode terminal 3 in contact with the brazing filler metal 10 has a counterbore shape). Since it is thought that it becomes low compared with 3a, the effect which suppresses the creeping to the electrode terminal 3 side of the same brazing filler metal 10 can be acquired.
Moreover, the effect which becomes easy to remove the void in the hard soldering | brazing | wax material 10 can be acquired by any of a square shape and a reverse staircase shape. In addition, since the wall surface of the through-hole 33 is an inclined surface and there is no level | step difference, the effect of void removal is larger in the C shape.
 従来のはんだ付けを用いた方法では、電極端子3が変形する程の加圧が無くともはんだ付けは可能である。一方、本実施の形態のように硬ろう材10を用いる場合、電極端子3-硬ろう材10間、硬ろう材10-導体パターン52a間の2ヶ所の接触熱抵抗を低減するため、導体パターン52aに対して電極端子3を加圧する必要がある。このとき、図13に示す電極端子3の先端3cと根元3dとを治具によって加圧した状態でレーザー光を電極端子3へ照射した場合、電極端子3の熱膨張により、図13に示すような電極端子3の変形が生じ、ろう付け後もその変形が残った状態となる。
 このような変形は、電極端子3の先端3cが薄いほど変形量が大きいため、電極端子3を厚くすることで変形量を抑制することができる。また、電極端子3に貫通孔33を設けて、レーザー光の焦点位置を貫通孔33の位置に設定することで、上述した通り、電極端子3の加熱温度を抑えることができ、加熱による電極端子3の変形も同様に抑制することができる。
In the conventional method using soldering, soldering is possible even without applying pressure to the extent that the electrode terminal 3 is deformed. On the other hand, when the brazing filler metal 10 is used as in the present embodiment, the conductor pattern is reduced in order to reduce the contact thermal resistance between the electrode terminal 3 and the brazing filler metal 10 and between the brazing filler metal 10 and the conductor pattern 52a. It is necessary to pressurize the electrode terminal 3 against 52a. At this time, when the electrode terminal 3 is irradiated with laser light with the tip 3c and the root 3d of the electrode terminal 3 shown in FIG. The electrode terminal 3 is deformed, and the deformation remains after brazing.
Since the deformation is larger as the tip 3c of the electrode terminal 3 is thinner, the deformation can be suppressed by making the electrode terminal 3 thicker. Moreover, by providing the electrode terminal 3 with the through hole 33 and setting the focal position of the laser beam to the position of the through hole 33, the heating temperature of the electrode terminal 3 can be suppressed as described above, and the electrode terminal by heating The deformation of 3 can be similarly suppressed.
 また、実施の形態1-4にて説明したような、電極端子3の表面3aと導体パターン52aとを同時にレーザー光で加熱する形態においては、電極端子3と導体パターン52aとの配置を、以下のような関係にするのが好ましい。
 即ち、例えば図2Aに示すように、電極端子3の接合部31に対して非接合部32が折り曲げられてz方向に沿って延在している形態において、図3Aに示すように電極端子3の表面3aに対してz方向に沿ってレーザー光を照射した場合、照射されるレーザー光の一部は、非接合部32にも照射されている。よって、電極端子3において非接合部32の下方部分3e(図15A)は、非接合部32によってレーザー光が遮られていることから、非常に厳格に見ると、下方部分3eは、加熱が不十分になる場合もある。一方、電極端子3における下方部分3e以外の接合部31は、レーザー光によって加熱されるため、硬ろう材10の融点以上まで加熱される。溶融した硬ろう材10は、硬ろう材10の融点以上に加熱された部分に濡れ広がるため、接合部31の殆どの部分では、硬ろう材10は濡れ広がるが、導体パターン52aにおいて下方部分3eに対応した部分では、硬ろう材10が濡れ広がらず、フィレットが形成されない場合も生じる。そのような場合、図15Aに示すように、下方部分3eでは、硬ろう材10は、電極端子3の外側へ広がらず、硬ろう材10と電極端子3との接触角(濡れ角)が90°未満になる、電極端子3の先端3cとは逆のフィレット形状が形成される。即ち、電極端子3の曲げ部に対応した電極端子3における下方部分3eでは、硬ろう材10と当該電極端子3との接触角は、当該電極端子3における下方部分3e以外の部分での接触角に比べて小さい。
In the embodiment in which the surface 3a of the electrode terminal 3 and the conductor pattern 52a are simultaneously heated with laser light as described in the embodiment 1-4, the arrangement of the electrode terminal 3 and the conductor pattern 52a is as follows. It is preferable that the relationship is as follows.
That is, for example, as shown in FIG. 2A, in a form in which the non-joining portion 32 is bent with respect to the joining portion 31 of the electrode terminal 3 and extends along the z direction, as shown in FIG. When the laser beam is irradiated along the z direction with respect to the surface 3a, a part of the irradiated laser beam is also irradiated to the non-joint portion 32. Therefore, in the electrode terminal 3, the lower portion 3 e (FIG. 15A) of the non-joining portion 32 is blocked by the non-joining portion 32, so that the lower portion 3 e is not heated when viewed very strictly. It may be enough. On the other hand, the joint portions 31 other than the lower portion 3e in the electrode terminal 3 are heated to a temperature equal to or higher than the melting point of the brazing filler metal 10 because they are heated by the laser beam. Since the molten brazing filler metal 10 wets and spreads in the portion heated to the melting point of the brazing filler metal 10 or higher, the brazing filler metal 10 wets and spreads in most parts of the joint portion 31, but in the conductor pattern 52a, the lower portion 3e. In the part corresponding to, the brazing filler metal 10 does not spread and fillets may not be formed. In such a case, as shown in FIG. 15A, in the lower portion 3e, the brazing filler metal 10 does not spread to the outside of the electrode terminal 3, and the contact angle (wetting angle) between the brazing filler metal 10 and the electrode terminal 3 is 90. A fillet shape opposite to the tip 3c of the electrode terminal 3 is formed. That is, in the lower part 3 e of the electrode terminal 3 corresponding to the bent part of the electrode terminal 3, the contact angle between the brazing filler metal 10 and the electrode terminal 3 is the contact angle in the part other than the lower part 3 e of the electrode terminal 3. Smaller than
 このような状況を利用して、図15Aに示すように、導体パターン52aの端52aE側へ下方部分3eを配向することで、絶縁基材51の損傷を防止することが可能になる。以下に詳しく説明する。 Using such a situation, as shown in FIG. 15A, the lower portion 3e is oriented toward the end 52aE side of the conductor pattern 52a, thereby making it possible to prevent the insulating base material 51 from being damaged. This will be described in detail below.
 例えば、図15Aの図示とは逆向きに、電極端子3の先端3cの端面3cEと、導体パターン52aの端52aEとをx方向において同位置に配置して、電極端子3の上方からz方向においてレーザー光を照射した場合には、先端3cは、レーザー光が照射され加熱される。よって、硬ろう材10は、先端3cの端面3cE及び導体パターン52aの端52aEまで濡れ広がる。その結果、絶縁基板5と硬ろう材10との線膨張係数差によって、導体パターン52aが引っ張られ、導体パターン52aの端52aEから絶縁基材51が損傷することも考えられる。 For example, the end surface 3cE of the tip 3c of the electrode terminal 3 and the end 52aE of the conductor pattern 52a are arranged at the same position in the x direction in the direction opposite to that shown in FIG. When the laser beam is irradiated, the tip 3c is irradiated with the laser beam and heated. Therefore, the brazing filler metal 10 wets and spreads to the end surface 3cE of the tip 3c and the end 52aE of the conductor pattern 52a. As a result, the conductor pattern 52a is pulled by the difference in linear expansion coefficient between the insulating substrate 5 and the brazing filler metal 10, and the insulating base material 51 may be damaged from the end 52aE of the conductor pattern 52a.
 一方、図15Aに示すように、導体パターン52aの端52aE側に、電極端子3における下方部分3eを配向することで、上述したように下方部分3eの加熱は抑制される。よって、導体パターン52aの端52aE側の温度は、硬ろう材10の融点までは上昇せず、硬ろう材10は、導体パターン52aの端まで濡れ拡がらない。したがって、絶縁基板5と硬ろう材10との線膨張係数差によって、絶縁基材51が損傷することを防止することができる。 On the other hand, as shown in FIG. 15A, by orienting the lower portion 3e of the electrode terminal 3 on the end 52aE side of the conductor pattern 52a, the heating of the lower portion 3e is suppressed as described above. Therefore, the temperature on the end 52aE side of the conductor pattern 52a does not rise to the melting point of the brazing filler metal 10, and the brazing filler metal 10 does not spread to the end of the conductor pattern 52a. Therefore, it is possible to prevent the insulating base material 51 from being damaged due to a difference in linear expansion coefficient between the insulating substrate 5 and the brazing filler metal 10.
 その結果、従来のようなはんだを用いた接合に比べて、硬ろう材10を用いることで、導体パターン52aの端側52aE側に、より近づけて電極端子3を配置することが可能となる。よって、電極端子3の接合に必要な導体パターン52aのサイズを従来に比べて小さくすることができ、ひいては、電力用半導体装置全体をより小型化することが可能になる。 As a result, it is possible to place the electrode terminal 3 closer to the end side 52aE side of the conductor pattern 52a by using the brazing filler metal 10 as compared with the conventional joining using solder. Therefore, the size of the conductor pattern 52a required for joining the electrode terminals 3 can be reduced as compared with the conventional case, and as a result, the entire power semiconductor device can be further reduced.
 実施の形態5.
 図16は、実施の形態5における電力用半導体装置105の概略構成を部分断面図で示している。本実施の形態5における電力用半導体装置105も、基本的に実施の形態1における電力用半導体装置101の構成と同じ構成を有するが、以下の点で相違する。よってここでは、主に相違点について説明を行い、同じ構成部分についてはその説明を省略する。尚、図16は、電力用半導体装置105における電極端子3の接合箇所のみを図示し、その他の構成部分については図示を省略している。
Embodiment 5 FIG.
FIG. 16 is a partial cross-sectional view showing a schematic configuration of power semiconductor device 105 in the fifth embodiment. The power semiconductor device 105 according to the fifth embodiment also basically has the same configuration as that of the power semiconductor device 101 according to the first embodiment, but differs in the following points. Therefore, here, mainly the differences will be described, and the description of the same components will be omitted. Note that FIG. 16 illustrates only the joint portion of the electrode terminal 3 in the power semiconductor device 105, and the other components are not illustrated.
 実施の形態1では、レーザー光の加熱による電極端子3と導体パターン52aとの温度差を小さくするために、電極端子3の厚さを導体パターン52aの厚さよりも大きく構成して、電極端子3の単位面積あたりの熱容量を導体パターン52aよりも大きくすることを述べた。また、実施の形態4では、硬ろう材を用いる場合、電極端子3-硬ろう材10間、硬ろう材10-導体パターン52a間の2ヵ所の接触熱抵抗を低減するため、導体パターン52aに対して電極端子3を加圧する必要がある点、電極端子3の先端3c(図13)と根元3d(図13)とを治具によって加圧した状態でレーザー光を電極端子3へ照射した場合、電極端子3の熱膨張により、電極端子3の変形が生じ、ろう付け後もその変形が残った状態となる点、を述べた。 In the first embodiment, in order to reduce the temperature difference between the electrode terminal 3 and the conductor pattern 52a due to heating of the laser beam, the electrode terminal 3 is configured to have a thickness larger than the thickness of the conductor pattern 52a. It has been described that the heat capacity per unit area is made larger than that of the conductor pattern 52a. In the fourth embodiment, when a brazing filler metal is used, in order to reduce contact thermal resistance at two locations between the electrode terminal 3 and the brazing filler metal 10 and between the brazing filler metal 10 and the conductor pattern 52a, the conductor pattern 52a is used. On the other hand, it is necessary to pressurize the electrode terminal 3, and when the tip 3 c (FIG. 13) and the root 3 d (FIG. 13) of the electrode terminal 3 are pressed with a jig, laser light is applied to the electrode terminal 3. It has been described that the electrode terminal 3 is deformed by thermal expansion of the electrode terminal 3 and remains deformed after brazing.
 実施の形態5における電力用半導体装置105は、実施の形態4で説明した加圧について治具を用いることなく実行可能とする押圧構造を有する。この押圧構造にて、強制的に電極端子3を導体パターン52aに対して押圧する。
 例えば図16に示すように、電極端子3において導体パターン52aと接合しない部分である立上がり部36に対して押圧構造を形成して、電極端子3に弾力性(バネ性)を持たせて、強制的に電極端子3を導体パターン52aに対して押圧した状態で設置する。図16では、押圧構造の一例として、立上がり部36を例えばV字形の湾曲形状としている。
The power semiconductor device 105 in the fifth embodiment has a pressing structure that enables the pressing described in the fourth embodiment to be performed without using a jig. With this pressing structure, the electrode terminal 3 is forcibly pressed against the conductor pattern 52a.
For example, as shown in FIG. 16, a pressing structure is formed on the rising portion 36 that is not joined to the conductor pattern 52 a in the electrode terminal 3, and the electrode terminal 3 is given elasticity (spring property) to force In particular, the electrode terminal 3 is installed while being pressed against the conductor pattern 52a. In FIG. 16, as an example of the pressing structure, the rising portion 36 has, for example, a V-shaped curved shape.
 このような構造を採ることで、別途、治具を用いずとも、電極端子3自身の弾性力によって電極端子3を導体パターン52aに加圧することができる。よって、電極端子3-硬ろう材10間、硬ろう材10-導体パターン52a間の2箇所の接触熱抵抗を低減することが可能になる。 By adopting such a structure, the electrode terminal 3 can be pressed against the conductor pattern 52a by the elastic force of the electrode terminal 3 itself without using a separate jig. Therefore, it is possible to reduce the contact thermal resistance at two locations between the electrode terminal 3 and the hard solder material 10 and between the hard solder material 10 and the conductor pattern 52a.
 また上述の押圧構造を採ることで、電極端子3を加圧するための治具によって電極端子3の配置位置が制約されることもなくなるため、電極端子3の配置の自由度が向上する効果も得ることができる。尚、電極端子3の立上がり部36における押圧構造は、電極端子3の表面3aに対するレーザー光照射を妨げない位置に設ける必要がある。
 また電極端子3の立上がり部36における押圧構造は、上述の湾曲形状に限定されず、例えば図17A及び図17Bに示すように、U字形の湾曲形状、S字形の湾曲形状等であってもよい。
Further, by adopting the above-described pressing structure, the arrangement position of the electrode terminal 3 is not restricted by the jig for pressurizing the electrode terminal 3, so that the degree of freedom of arrangement of the electrode terminal 3 is improved. be able to. The pressing structure at the rising portion 36 of the electrode terminal 3 needs to be provided at a position that does not hinder laser light irradiation on the surface 3 a of the electrode terminal 3.
Moreover, the pressing structure in the rising part 36 of the electrode terminal 3 is not limited to the above-mentioned curved shape, For example, as shown to FIG. 17A and FIG. 17B, a U-shaped curved shape, an S-shaped curved shape, etc. may be sufficient. .
 さらにまた、押圧構造は、電極端子3自身に形成するものに限定されない。例えば、電極端子3がケース12で支持されている場合には、図18に示すように、電極端子3の先端3cを導体パターン52aへ押圧可能にする押圧部材12Aをケース12の一部として、ケース12と一体に作製することもできる。このように、押圧構造は、電極端子3及びケース12の少なくとも一方に設けることができる。ケース12は、例えば射出成型等で作製することで、複雑な形状であっても従来のケースと同じ工程で作製可能であることから、押圧部材12Aもケース12と一体で成型することができる。
 このような構造にあっては、電極端子3自身に上述のような押圧構造を形成することなく、治具も用いずに電極端子3を加圧することが可能になる。したがって電力用半導体装置105の製造コストを低減することができる。
Furthermore, the pressing structure is not limited to that formed on the electrode terminal 3 itself. For example, when the electrode terminal 3 is supported by the case 12, as shown in FIG. 18, the pressing member 12 </ b> A that enables the tip 3 c of the electrode terminal 3 to be pressed against the conductor pattern 52 a is used as a part of the case 12. It can also be produced integrally with the case 12. Thus, the pressing structure can be provided on at least one of the electrode terminal 3 and the case 12. For example, the case 12 can be manufactured by injection molding or the like, and can be manufactured in the same process as the conventional case even if it has a complicated shape. Therefore, the pressing member 12A can also be formed integrally with the case 12.
In such a structure, it is possible to press the electrode terminal 3 without using a jig without forming the above-described pressing structure on the electrode terminal 3 itself. Therefore, the manufacturing cost of the power semiconductor device 105 can be reduced.
 このとき、ケース12は、熱可塑性樹脂等の耐熱温度の低いプラスチック材等で構成されているため、押圧部材12Aは、レーザー光の加熱によって溶融あるいは変形等が生じない位置にて電極端子3を押圧する必要がある。
 また、レーザー光による電極端子3の発熱によってケース12全体、特に押圧部材12Aが溶融、変形するのを防ぐため、電極端子3に対する押圧部材12Aの加圧面は小さいほうが好ましく、特に突起のような一点で加圧できる形状であれば、より好ましい。
At this time, since the case 12 is made of a plastic material having a low heat-resistant temperature such as a thermoplastic resin, the pressing member 12A has the electrode terminal 3 placed at a position where the laser beam is not melted or deformed. It is necessary to press.
Further, in order to prevent the entire case 12, particularly the pressing member 12 </ b> A, from being melted and deformed by the heat generation of the electrode terminal 3 due to the laser beam, the pressing surface of the pressing member 12 </ b> A with respect to the electrode terminal 3 is preferably small, particularly one point like a protrusion If it is the shape which can pressurize with, it is more preferable.
 上述した各実施の形態を組み合わせた構成を採ることも可能であり、また、異なる実施の形態に示される構成部分同士を組み合わせることも可能である。これにより、それぞれの有する効果を奏するように構成することができる。 It is also possible to adopt a configuration in which the above-described embodiments are combined, and it is also possible to combine components shown in different embodiments. Thereby, it can comprise so that there may exist each effect.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形及び修正は明白である。そのような変形及び修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 又、2016年6月1日に出願された、日本国特許出願No.特願2016-110084号、及び、2016年11月24日に出願された、日本国特許出願No.特願2016-227966号における、それぞれの明細書、図面、特許請求の範囲、及び要約書の開示内容の全ては、参考として本明細書中に編入されるものである。
Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as long as they do not depart from the scope of the present invention.
In addition, Japanese Patent Application No. Japanese Patent Application No. 2016-110084 and Japanese Patent Application No. 1 filed on Nov. 24, 2016. The entire disclosure of each specification, drawings, claims, and abstract in Japanese Patent Application No. 2016-227966 is incorporated herein by reference.
 1 電力用半導体素子、3 電極端子、3j 接合面、5 絶縁基板、
 6 放熱部材、8、9 はんだ、10 硬ろう材、12 ケース、
 31 接合部、32 非接合部、33 貫通孔、34 ボイド、
 42 レーザー装置、43 制御装置、
 51 絶縁基材、52a、52b 導体パターン、
 101、102、104、105 電力用半導体装置。
1 power semiconductor element, 3 electrode terminal, 3j bonding surface, 5 insulating substrate,
6 Heat dissipation member, 8, 9 Solder, 10 Hard brazing material, 12 Case,
31 joints, 32 non-joints, 33 through holes, 34 voids,
42 laser equipment, 43 control equipment,
51 Insulating base material, 52a, 52b Conductor pattern,
101, 102, 104, 105 Power semiconductor devices.

Claims (17)

  1.  絶縁基材の両面に導体パターンを有する絶縁基板と、
     上記絶縁基板における一方の導体パターンに実装された半導体素子と、
     上記一方の導体パターンに対して接合材を介して接合した電極端子と、を備えた半導体装置において、
     上記接合材は硬ろう材であって、
     上記電極端子は、上記一方の導体パターンにおける単位面積当たりの熱容量よりも大きい単位面積当たりの熱容量を有する、
    半導体装置。
    An insulating substrate having a conductor pattern on both sides of the insulating base;
    A semiconductor element mounted on one conductor pattern on the insulating substrate;
    In a semiconductor device comprising: an electrode terminal bonded to the one conductor pattern via a bonding material;
    The bonding material is a hard brazing material,
    The electrode terminal has a heat capacity per unit area larger than the heat capacity per unit area in the one conductor pattern.
    Semiconductor device.
  2.  絶縁基材の両面に導体パターンを有する絶縁基板と、
     上記絶縁基板における一方の導体パターンに実装された半導体素子と、
     上記一方の導体パターンに対して接合材を介して接合した電極端子と、を備えた半導体装置において、
     上記接合材は硬ろう材であって、
     上記電極端子は、上記一方の導体パターンの厚みを超える厚さを有する、
    半導体装置。
    An insulating substrate having a conductor pattern on both sides of the insulating base;
    A semiconductor element mounted on one conductor pattern on the insulating substrate;
    In a semiconductor device comprising: an electrode terminal bonded to the one conductor pattern via a bonding material;
    The bonding material is a hard brazing material,
    The electrode terminal has a thickness exceeding the thickness of the one conductor pattern,
    Semiconductor device.
  3.  絶縁基材の両面に導体パターンを有する絶縁基板と、
     上記絶縁基板における一方の導体パターンに実装された半導体素子と、
     上記一方の導体パターンに対して接合材を介して接合した電極端子と、を備えた半導体装置において、
     上記接合材は硬ろう材であって、
     上記電極端子は、上記一方の導体パターンに上記硬ろう材で接合した、第1断面積を有する接合部と、上記第1断面積よりも大きい第2断面積を有する非接合部とを有する、
    半導体装置。
    An insulating substrate having a conductor pattern on both sides of the insulating base;
    A semiconductor element mounted on one conductor pattern on the insulating substrate;
    In a semiconductor device comprising: an electrode terminal bonded to the one conductor pattern via a bonding material;
    The bonding material is a hard brazing material,
    The electrode terminal has a joint portion having a first cross-sectional area and a non-joint portion having a second cross-sectional area larger than the first cross-sectional area, which are joined to the one conductor pattern by the brazing material.
    Semiconductor device.
  4.  上記電極端子の材料は、上記導体パターンの材料と同じである、請求項1から3のいずれか1項に記載の半導体装置。 4. The semiconductor device according to claim 1, wherein a material of the electrode terminal is the same as a material of the conductor pattern.
  5.  上記電極端子の材料は銅である、請求項1から4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein a material of the electrode terminal is copper.
  6.  上記導体パターンに対して上記硬ろう材を介して接合された上記電極端子は、厚み方向に欠損した欠損部を有する、請求項1から3のいずれか1項に記載の半導体装置。 4. The semiconductor device according to claim 1, wherein the electrode terminal joined to the conductor pattern via the brazing filler metal has a defect portion that is missing in a thickness direction. 5.
  7.  上記欠損部は貫通孔である、請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the defect portion is a through hole.
  8.  上記欠損部は、上記電極端子の先端から上記電極端子の曲げ部の方へ延在する溝である、請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the defect portion is a groove extending from a tip of the electrode terminal toward a bent portion of the electrode terminal.
  9.  上記欠損部には上記硬ろう材が充填されている、請求項6から8のいずれか1項に記載の半導体装置。 9. The semiconductor device according to claim 6, wherein the defect portion is filled with the hard soldering material.
  10.  絶縁基材の両面に導体パターンを有する絶縁基板と、上記絶縁基板における一方の導体パターンに実装された半導体素子と、電極端子と、を備える半導体装置の製造方法であって、
     上記一方の導体パターンに対して硬ろう材を設け、
     上記一方の導体パターンに対して上記硬ろう材を挟んで上記電極端子を配置し、
     上記硬ろう材に対応する上記電極端子の表面に電磁波を照射して上記電極端子を加熱する、
    半導体装置の製造方法。
    An insulating substrate having a conductor pattern on both surfaces of an insulating base, a semiconductor element mounted on one conductor pattern in the insulating substrate, and an electrode terminal, and a method for manufacturing a semiconductor device,
    A hard brazing material is provided for the one conductor pattern,
    The electrode terminal is arranged with the brazing material sandwiched between the one conductor pattern,
    Irradiating the surface of the electrode terminal corresponding to the brazing filler metal with an electromagnetic wave to heat the electrode terminal;
    A method for manufacturing a semiconductor device.
  11.  上記電磁波は、レーザー光である、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the electromagnetic wave is a laser beam.
  12.  上記電磁波は、電子ビームである、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the electromagnetic wave is an electron beam.
  13.  上記硬ろう材に対応する上記電極端子の一部は欠損しており、この欠損部を含む上記電極端子の表面に上記電磁波を照射して上記電極端子を加熱する、請求項10から12のいずれか1項に記載の製造方法。 A part of the electrode terminal corresponding to the brazing filler metal is deficient, and the surface of the electrode terminal including the deficient part is irradiated with the electromagnetic wave to heat the electrode terminal. The production method according to claim 1.
  14.  上記電極端子の厚みは、上記導体パターンの厚みの2倍以上である、請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the thickness of the electrode terminal is at least twice the thickness of the conductor pattern.
  15.  上記電極端子の断面積は、上記電極端子と対向する部分における上記導体パターンの断面積の2倍以上である、請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein a cross-sectional area of the electrode terminal is twice or more a cross-sectional area of the conductor pattern in a portion facing the electrode terminal.
  16.  上記電極端子の曲げ部に対応した上記電極端子における下方部分では、上記硬ろう材と当該電極端子との接触角は、当該電極端子における上記下方部分以外の部分での接触角に比べて小さい、請求項1から3のいずれか1項に記載の半導体装置。 In the lower part of the electrode terminal corresponding to the bent part of the electrode terminal, the contact angle between the brazing filler metal and the electrode terminal is smaller than the contact angle in the part other than the lower part of the electrode terminal. The semiconductor device according to claim 1.
  17.  上記電極端子を支持するケースと、
     上記電極端子及び上記ケースの少なくとも一方に設けられ、上記導体パターンに対して上記電極端子を加圧する押圧構造と、をさらに備えた、請求項1から3のいずれか1項に記載の半導体装置。
    A case for supporting the electrode terminal;
    4. The semiconductor device according to claim 1, further comprising: a pressing structure that is provided on at least one of the electrode terminal and the case and presses the electrode terminal against the conductor pattern. 5.
PCT/JP2017/019414 2016-06-01 2017-05-24 Semiconductor device and method for manufacturing same WO2017208941A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016110084 2016-06-01
JP2016-110084 2016-06-01
JP2016227966A JP2019133965A (en) 2016-06-01 2016-11-24 Semiconductor device and manufacturing method thereof
JP2016-227966 2016-11-24

Publications (1)

Publication Number Publication Date
WO2017208941A1 true WO2017208941A1 (en) 2017-12-07

Family

ID=60477488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019414 WO2017208941A1 (en) 2016-06-01 2017-05-24 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017208941A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978787A (en) * 1982-10-27 1984-05-07 Hitachi Ltd Welding method of fine wire
JPS59177951A (en) * 1983-03-29 1984-10-08 Toshiba Corp Semiconductor device
JPS6420633A (en) * 1987-07-15 1989-01-24 Nec Corp Manufacture of semiconductor device
JPH08162595A (en) * 1994-12-06 1996-06-21 Mitsui High Tec Inc Manufacture of composite lead frame
JP2002100848A (en) * 2000-09-22 2002-04-05 Toshiba Corp Ceramic circuit board with terminal
JP2007227893A (en) * 2006-01-24 2007-09-06 Nec Electronics Corp Semiconductor device manufacturing method
JP2009105266A (en) * 2007-10-24 2009-05-14 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor apparatus
JP2012252935A (en) * 2011-06-06 2012-12-20 Mitsubishi Electric Corp Semiconductor device for electricity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978787A (en) * 1982-10-27 1984-05-07 Hitachi Ltd Welding method of fine wire
JPS59177951A (en) * 1983-03-29 1984-10-08 Toshiba Corp Semiconductor device
JPS6420633A (en) * 1987-07-15 1989-01-24 Nec Corp Manufacture of semiconductor device
JPH08162595A (en) * 1994-12-06 1996-06-21 Mitsui High Tec Inc Manufacture of composite lead frame
JP2002100848A (en) * 2000-09-22 2002-04-05 Toshiba Corp Ceramic circuit board with terminal
JP2007227893A (en) * 2006-01-24 2007-09-06 Nec Electronics Corp Semiconductor device manufacturing method
JP2009105266A (en) * 2007-10-24 2009-05-14 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor apparatus
JP2012252935A (en) * 2011-06-06 2012-12-20 Mitsubishi Electric Corp Semiconductor device for electricity

Similar Documents

Publication Publication Date Title
JP6602480B2 (en) Semiconductor device
JP4940743B2 (en) Semiconductor device
JP4894528B2 (en) Wiring bonding method of semiconductor element
JP4078993B2 (en) Semiconductor device
JP2015119072A (en) Laser welding method, laser welding jig, and semiconductor device
JP5239291B2 (en) Semiconductor device and manufacturing method thereof
WO2017195625A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6522241B2 (en) Power semiconductor device and method of manufacturing power semiconductor device
JP4765853B2 (en) Manufacturing method of semiconductor device
JP4775327B2 (en) Manufacturing method of semiconductor device
JP2007157863A (en) Power semiconductor device, and method of manufacturing same
JP4764983B2 (en) Manufacturing method of semiconductor device
JP2007281274A (en) Semiconductor device
JP2009105266A (en) Method of manufacturing semiconductor apparatus
JP2019133965A (en) Semiconductor device and manufacturing method thereof
US20140084438A1 (en) Semiconductor device and method of manufacturing same
JP5916651B2 (en) Method for manufacturing power semiconductor device
JP2008205058A (en) Semiconductor device
JP2006339174A (en) Semiconductor device
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP6091443B2 (en) Semiconductor module
JP4620566B2 (en) Semiconductor device and manufacturing method thereof
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP2020013866A (en) Manufacturing method for power semiconductor device
WO2017208941A1 (en) Semiconductor device and method for manufacturing same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806498

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP