WO2017208646A1 - Sensor device and sensor correcting method - Google Patents
Sensor device and sensor correcting method Download PDFInfo
- Publication number
- WO2017208646A1 WO2017208646A1 PCT/JP2017/015349 JP2017015349W WO2017208646A1 WO 2017208646 A1 WO2017208646 A1 WO 2017208646A1 JP 2017015349 W JP2017015349 W JP 2017015349W WO 2017208646 A1 WO2017208646 A1 WO 2017208646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- correction
- unit
- measurement object
- processing unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
Definitions
- the technology disclosed herein relates to a sensor device and a sensor correction method.
- the piezoelectric element has a specific frequency characteristic (for example, a resonance frequency), and the specific frequency characteristic depends on the mass of the piezoelectric element. If the frequency characteristics of the piezoelectric elements are different, the detection accuracy of the sensor varies. Therefore, the piezoelectric element is required to be manufactured with high accuracy so that individual differences are reduced.
- a specific frequency characteristic for example, a resonance frequency
- the detection accuracy of the sensor may vary due to other factors.
- the technology disclosed herein has been made in view of such a point, and its object is to reduce the variation in detection accuracy of each sensor.
- the sensor device disclosed herein includes a sensor that is attached to a measurement object and detects vibration of the measurement object, and a correction unit that corrects a detection result from the sensor, and the correction unit includes the detection result. Is corrected according to the mounting method of the sensor.
- the sensor correction method disclosed herein includes a step of detecting vibration of a measurement object by a sensor attached to the measurement object, and a detection result from the sensor is corrected according to the sensor attachment method. And the process of carrying out.
- the “sensor detection result” includes not only a detection signal output from the sensor but also a detection signal processed after that and a value obtained from the detection signal.
- FIG. 1 is a front view showing a schematic configuration of the sensor device.
- FIG. 2 is a longitudinal sectional view of the sensor body.
- FIG. 3 is a longitudinal sectional view of the sensor attached by the first attachment method.
- FIG. 4 is a front view of the sensor attached by the second attachment method.
- FIG. 5 is a front view of the sensor attached by the third attachment method.
- FIG. 6 is a block diagram of the processing unit.
- FIG. 7 is a front view illustrating a schematic configuration of the sensor device according to the second embodiment.
- FIG. 8 is a block diagram of a processing unit and a server in the sensor device according to the third embodiment.
- FIG. 1 is a front view illustrating a schematic configuration of the sensor device 100.
- the sensor device 100 is a so-called contact-type sensor that detects a physical quantity of a measurement object in contact with the measurement object.
- the measurement object is a steam trap
- the physical quantity is vibration and temperature of the steam trap.
- the sensor device 100 includes a sensor 2, a processing unit 5, and a connecting pipe 4 that connects the sensor 2 and the processing unit 5.
- the sensor 2, the processing unit 5, and the connecting pipe 4 are arranged along a predetermined axis X, and the sensor device 100 is formed in a rod shape as a whole.
- the sensor 2 and the connection pipe 4 are connected by a union nut 42.
- the processing unit 5 and the connection pipe 4 are connected by a union nut 41.
- the sensor device 100 is usually installed such that the axis X is oriented vertically, the sensor 2 is located below, and the processing unit 5 is located above.
- the processing unit 5 is referred to as the upper side
- the sensor 2 is referred to as the lower side.
- FIG. 2 is a longitudinal sectional view of the sensor 2.
- the sensor 2 has a piezoelectric element and detects the vibration of the measurement object.
- the sensor 2 includes a casing 10, a vibration detection mechanism 20 that detects (measures) the vibration of the measurement object, and a temperature detection mechanism 30 that detects (measures) the temperature of the measurement object.
- the vibration detection mechanism 20 and the temperature detection mechanism 30 are accommodated in the casing 10.
- the casing 10 is formed in a substantially cylindrical shape, and is arranged so that the axis coincides with the axis X.
- a step 10f is provided inside the casing 10, and the inner diameter of the upper portion 10a of the casing 10 is larger than the inner diameter of the lower portion 10b.
- a male screw 10 c into which the union nut 42 is screwed is formed on the outer peripheral surface of the upper portion 10 a of the casing 10.
- a male screw 10 e is formed on the outer peripheral surface of the lower portion 10 b of the casing 10.
- a lower end 10 g that is one end in the axis X direction of the casing 10 is in contact with the measurement object when the sensor device 100 is installed.
- the vibration detection mechanism 20 includes a detection needle 21, a holder 22, a first piezoelectric element 25a, a second piezoelectric element 25b, a first electrode plate 26a, a second electrode plate 26b, a weight 27, and a disc spring 28. And a cap 29.
- the detection needle 21 is an elongated rod-like member.
- the detection needle 21 is arranged so that the axis coincides with the axis X.
- the tip (lower end) of the detection needle 21 protrudes downward from the lower end 10 g of the casing 10.
- the detection needle 21 transmits the vibration of the measurement object to the first piezoelectric element 25a and the second piezoelectric element 25b.
- the detection needle 21 is an example of a transmission unit.
- the holder 22 includes an inner metal holder 23 and an outer resin holder 24 that accommodates the metal holder 23. Both the metal holder 23 and the resin holder 24 are formed in a substantially cylindrical shape, and are arranged so that the axis coincides with the axis X.
- the metal holder 23 is opened upward, while a bottom wall 23 a is provided at the lower part of the metal holder 23.
- An insertion hole 23b is formed in the bottom wall 23a.
- the detection needle 21 is inserted into the insertion hole 23 b, and the detection needle 21 protrudes downward from the metal holder 23.
- the upper end of the detection needle 21 is locked to the bottom wall 23 a so that the detection needle 21 does not fall out of the metal holder 23.
- the first piezoelectric element 25a, the first electrode plate 26a, the second piezoelectric element 25b, the second electrode plate 26b, the weight 27, the disc spring 28, and the cap 29 are in contact with each other in order from the bottom. Is arranged in.
- the first piezoelectric element 25 a is in contact with the upper end of the detection needle 21.
- two signal lines (not shown) are connected to the first electrode plate 26a and the second electrode plate 26b.
- the two signal lines are wired from the sensor 2 through the connection pipe 4 to the processing unit 5.
- the cap 29 is a disk-shaped member having a male screw formed on the outer peripheral surface. On the inner peripheral surface of the upper end portion of the metal holder 23, a female screw is formed. The cap 29 is screwed to the upper end portion of the metal holder 23. The cap 29 presses the disc spring 28 downward by the tightening force, and the disc spring 28 presses the first piezoelectric element 25a, the second piezoelectric element 25b, and the like to the detection needle 21 through the weight 27 by the biasing force.
- the first piezoelectric element 25a and the second piezoelectric element 25b are pressed against the detection needle 21 with a predetermined force (initial pressing force) by the weight 27, the disc spring 28, and the like.
- a predetermined force initial pressing force
- the disturbances can be absorbed and the influence of the disturbances can be reduced.
- the resin holder 24 is opened upward, while a bottom wall 24 a is provided at the lower part of the resin holder 24.
- An insertion hole 24b is formed in the bottom wall 24a.
- a metal holder 23 is press-fitted into the resin holder 24.
- the detection needle 21 is inserted into the insertion hole 24b, and the detection needle 21 protrudes downward from the resin holder 24.
- the holder 22 is accommodated in the upper part 10 a of the casing 10, and the detection needle 21 protruding downward from the holder 22 is accommodated in the lower part 10 b of the casing 10.
- the coil spring 11 is disposed above the holder 22.
- the holder 22 is urged downward by the coil spring 11.
- a groove 10d is formed on the inner peripheral surface of the upper end portion of the casing 10, and a snap ring 12 is fitted in the groove 10d.
- One end of the coil spring 11 is supported by the snap ring 12.
- the other end of the coil spring 11 is in contact with the upper end surface of the resin holder 24.
- the coil spring 11 urges the resin holder 24 (holder 22) downward, and presses the resin holder 24 against the step 10f in the casing 10. In this state, the tip of the detection needle 21 slightly protrudes from the lower end 10 g of the casing 10.
- the temperature detection mechanism 30 includes a contact plate 31 (heat transfer plate) and a holding member 32.
- the contact plate 31 is a substantially annular plate member having an opening at the center.
- the holding member 32 is formed in a substantially cylindrical shape having a through hole 33 in the center, and is inserted into the lower end portion of the casing 10. The contact plate 31 is held at the tip of the holding member 32.
- the holding member 32 is formed with two arrangement holes 34 and 35 for arranging a thermocouple so as to extend in the axial direction.
- a thermocouple (not shown) is arranged in each of the arrangement holes 34 and 35. One end of each thermocouple is connected to the contact plate 31, and the other end is connected to the processing unit 5 through the connection pipe 4.
- the coil spring 13 is disposed above the holding member 32.
- One end of the coil spring 13 is held by a holder 22 (resin holder 24).
- the other end of the coil spring 13 is in contact with the holding member 32.
- the coil spring 13 biases the holding member 32 downward, so that the contact plate 31 protrudes slightly below the lower end 10 g of the casing 10. That is, the contact plate 31 protrudes from the lower end 10 g of the casing 10, and the detection needle 21 further protrudes from the contact plate 31.
- the contact plate 31 contacts the measurement object.
- the sensor 2 is attached to the measurement object by various methods. Hereinafter, a method for attaching the sensor 2 will be described.
- FIG. 3 is a longitudinal sectional view of the sensor 2 attached by the first attachment method.
- the sensor 2 is attached to the attachment seat 91 of the measurement object 90.
- the mounting seat 91 is formed, for example, in a steam trap casing.
- the mounting seat 91 is formed in a boss shape and has a bottomed installation hole 92. On the inner peripheral surface of the installation hole 92, a female screw is formed.
- the sensor 2 is screwed to the measuring object 90 by screwing the lower part 10b of the casing 10 into the installation hole 92. At this time, the casing 10 is tightened with a predetermined tightening torque by a torque wrench or the like.
- the tip of the detection needle 21 and the contact plate 31 protrude below the lower end 10g.
- the detection needle 21 can move upward with respect to the casing 10 against the biasing force of the coil spring 11, and the contact plate 31 moves upward with respect to the casing 10 against the biasing force of the coil spring 13. Is possible. Therefore, when the lower end 10 g of the casing 10 contacts the bottom of the installation hole 92, the tip of the detection needle 21 and the contact plate 31 are flush with the lower end 10 g of the casing 10 and contact the bottom of the installation hole 92. Yes.
- the detection needle 21 and the contact plate 31 are in contact with the bottom of the installation hole 92, and the vibration and temperature of the measurement object 90 are detected.
- FIG. 4 is a front view of the sensor 2 attached by the second attachment method.
- the sensor 2 is attached to the measurement object 90 via the clamp 6.
- the clamp 6 includes a holding member 61 that holds the sensor 2, a pair of holding members 62 and 62 connected to the holding member 61, and a fastening member 63 that fastens the holding members 62 and 62.
- a mounting hole 64 is formed through the center of the holding member 61.
- a female screw is formed in the mounting hole 64.
- the sensor 2 is screwed to the holding member 61 when the lower portion 10 b of the casing 10 is screwed into the mounting hole 64.
- the lower part 10 b penetrates the holding member 61.
- the holding members 62 and 62 are connected to both ends of the holding member 61 in a rotatable state.
- the pair of sandwiching members 62 and 62 are configured such that the distance between the end connected to the holding member 61 and the end opposite to the end (hereinafter referred to as “free end”) can be changed.
- Each holding member 62 is formed with a contact portion 62a that comes into contact with the measurement object 90 when attached.
- the fastening member 63 has a bolt 63a inserted into an insertion hole formed in the free ends of the pair of holding members 62, 62, and a nut 63b screwed into the bolt 63a.
- the distance between the free ends of the holding members 62 and 62 is adjusted by the tightening degree of the nut 63b.
- the clamp 6 is attached to an inlet portion of a steam trap as the measurement object 90.
- the inlet portion is formed in a circular tube shape.
- the sensor 2 is screwed to the holding member 61.
- the clamping member 63 removed from the sandwiching members 62, 62, the measurement object 90 is sandwiched between the sandwiching members 62, 62.
- the lower end 10g of the sensor 2 and the contact portions 62a and 62a of the holding members 62 and 62 are in contact with the inlet portion.
- the fastening member 63 is attached to the holding members 62 and 62, and the nut 63b is fastened.
- the clamp 6 is fixed in a state where the lower end 10g and the contact portions 62a and 62a are in contact with the inlet portion. At this time, the nut 63b is tightened with a predetermined tightening torque by a torque wrench or the like. Thus, the sensor 2 is attached to the measurement object 90 via the clamp 6.
- FIG. 5 is a front view of the sensor 2 attached by the third attachment method.
- the sensor 2 is attached to the measurement object 90 via the band 7.
- the band 7 includes a band main body 71, a mounting nut 72 provided on the band main body 71 to which the sensor device 100 is attached, and a fastening member 73 that tightens the band main body 71.
- the band body 71 has a divided structure of a first divided body 74 and a second divided body 75.
- Each of the first divided body 74 and the second divided body 75 is a metal plate-like member, and is curved in a substantially semicircular shape.
- One end of the first divided body 74 and one end of the second divided body 75 are connected.
- the other end of the first divided body 74 and the other end of the second divided body 75 are free ends.
- the first divided body 74 and the second divided body 75 are formed in a substantially annular shape as a whole.
- the mounting nut 72 is fixed to the first divided body 74.
- the mounting nut 72 is formed with a through hole 72a having a female screw.
- a through hole communicating with the through hole 72a is formed in a portion of the first divided body 74 where the mounting nut 72 is provided.
- the sensor 2 is screwed to the mounting nut 72 by screwing the lower part 10b of the casing 10 into the through hole 72a.
- the lower part 10 b passes through the mounting nut 72 and the first divided body 74.
- the fastening member 73 has a bolt 73a inserted into an insertion hole formed in the free ends of the first divided body 74 and the second divided body 75, and a nut 73b screwed into the bolt 73a. The distance between the free ends of the first divided body 74 and the second divided body 75 is adjusted by the tightening degree of the nut 73b.
- the band 7 is attached to, for example, an inlet portion of a steam trap as the measurement object 90.
- the inlet portion is formed in a circular tube shape.
- the sensor 2 is screwed to the mounting nut 72. With the fastening member 73 removed from the first divided body 74 and the second divided body 75, the measurement object 90 is sandwiched between the first divided body 74 and the second divided body 75. Thereafter, the fastening member 73 is attached to the first divided body 74 and the second divided body 75, and the nut 73b is tightened. At this time, the nut 73b is tightened with a predetermined tightening torque by a torque wrench or the like. Thereby, the band 7 is fixed to the measuring object 90 with the lower end 10g of the sensor 2 in contact with the inlet. Thus, the sensor 2 is attached to the measurement object 90 via the band 7.
- FIG. 6 is a block diagram of the processing unit 5.
- the processing unit 5 processes the detection signal from the sensor 2 and transmits / receives a signal to / from an external device.
- the processing unit 5 determines the vibration processing unit 51 that processes the detection signal from the vibration detection mechanism 20, the temperature processing unit 52 that processes the detection signal from the temperature detection mechanism 30, the memory 53, and the state of the measurement object.
- the vibration processing unit 51 includes a filter 57, an amplifier 58, an A / D conversion unit 59, an output calculation unit 510, and a correction unit 511.
- the filter 57 is a band-pass filter, and cuts frequency components other than a predetermined frequency band in the output signal from the vibration detection mechanism 20.
- the predetermined frequency band is set according to the vibration that can occur in the measurement object.
- the amplifier 58 amplifies the signal processed by the filter 57.
- the A / D converter 59 converts the signal amplified by the amplifier 58 into a digital signal.
- the output calculation unit 510 performs various processes on the digital signal from the A / D conversion unit 59 to calculate an index indicating the magnitude of vibration (hereinafter referred to as “vibration level”). Any index can be adopted as the vibration level as long as it indicates the magnitude of vibration.
- the vibration level may simply be the maximum amplitude of the digital signal, and may be a maximum amplitude, an average amplitude, an integral value, or the like after the digital signal is subjected to rectification processing, root mean square processing, or the like. Also good.
- the correction unit 511 corrects the vibration level using the correction data.
- the correction data is stored in the memory 53. Details of the correction by the correction unit 511 will be described later.
- the temperature processing unit 52 appropriately processes the detection signal from the temperature detection mechanism 30 so that the determination unit 54 can process it. In the present disclosure, details thereof are omitted.
- the memory 53 stores programs and data necessary for processing in the processing unit 5.
- the memory 53 stores correction data.
- the memory 53 is an example of a storage unit.
- the determination unit 54 determines the state of the measurement object based on the signal processed by the vibration processing unit 51 and / or the signal processed by the temperature processing unit 52.
- the determination unit 54 determines the state of the steam trap that is the measurement target based on the vibration level obtained by the vibration processing unit 51. Specifically, the vibration level is low when steam trap steam leakage has not occurred, and the vibration level increases when steam trap steam leak occurs. Therefore, the determination unit 54 determines that there is no steam leak in the steam trap when the vibration level is equal to or lower than the predetermined determination level, and determines that there is steam leak in the steam trap when the vibration level is higher than the determination level.
- the determination unit 54 determines the state of the steam trap based on the signal processed by the temperature processing unit 52. Specifically, the temperature of the steam trap becomes a value close to the saturation temperature of the vapor pressure when the drain is appropriately distributed, and decreases when the drain is retained. The determination unit 54 determines that there is no retention of drain when the temperature of the steam trap is equal to or higher than a predetermined determination temperature, and determines that there is retention of drain when the temperature of the steam trap is lower than the determination temperature.
- the communication unit 55 transmits and receives signals to and from external devices by wireless communication. For example, the communication unit 55 transmits the determination result by the determination unit 54 to the external device.
- the input unit 56 inputs various settings necessary for the processing of the processing unit 5.
- the input unit 56 stores setting information received from an external device via the communication unit 55 in the memory 53.
- ⁇ Sensor correction method> Hereinafter, the correction of the sensor 2 will be described in detail.
- the detection result (for example, vibration level) of the sensor 2 may vary depending on the mounting method. Specifically, since the pressing force and stability of the sensor 2 with respect to the measurement object 90 differ depending on the attachment method, the detection result of the sensor 2 may vary even if the magnitude of the vibration of the measurement object 90 is the same. For example, among the first to third attachment methods described above, the first attachment method can attach the sensor 2 most firmly and stably, and the detected vibration level is the smallest. On the other hand, since the pressing force of the third attachment method is the smallest and the attachment stability is low, the detected vibration level is the largest.
- the correction unit 511 corrects the vibration level of the sensor 2 according to the mounting method.
- the memory 53 stores correction data corresponding to the attachment method.
- the correction data is a coefficient that is multiplied by the vibration level. For example, the coefficient C1 of the first attachment method is the largest, the coefficient C3 of the third attachment method is the smallest, and the coefficient of the second attachment method is between them.
- the processing unit 5 receives an actual mounting method (including data indicating the mounting method; the same applies hereinafter) of the sensor 2 from the server 8 as an external device.
- the server 8 manages the mounting method of the sensor 2.
- the processing unit 5 receives the mounting method of the sensor 2 from the server 8 at the time of initial setting or the like and stores it in the memory 53.
- Processing unit 5 reads the detection signal from sensor 2. This step corresponds to a step of detecting the vibration of the measurement object with a sensor attached to the measurement object. Then, the processing unit 5 performs filter processing, amplification processing, and A / D conversion on the detection signal to obtain a vibration level.
- the correction unit 511 selects the corresponding correction data from the memory 53 according to the mounting method of the sensor 2 stored in the memory 53.
- the correction unit 511 corrects the vibration level by multiplying the selected correction data by the vibration level obtained by the output calculation unit 510.
- This step corresponds to the step of correcting the detection signal from the sensor in accordance with the sensor mounting method. Thereby, the variation of the vibration level resulting from the attachment method is reduced. As a result, the accuracy of determination by the determination unit 54 can also be improved.
- the actual mounting method of the sensor 2 is input from the server 8 to the processing unit 5.
- the input of the attachment method is not limited from the server 8.
- the input unit 56 may be configured such that a PC or the like can be connected, and an attachment method may be input from the PC or the like via the input unit 56 by a user input operation or the like when the sensor device 100 is initially set.
- the input unit 56 is a user interface that can be input by the user, and the attachment method may be input by the user operating the input unit 56.
- the input unit 56 is a switch capable of selecting an attachment method, and the user may input the attachment method by switching the switch to a state corresponding to the attachment method. That is, any input method can be adopted as long as the attachment method of the sensor 2 can be input to the processing unit 5.
- the sensor device 100 includes the sensor 2 that is attached to the measurement object 90 and detects the vibration of the measurement object 90, and the correction unit 511 that corrects the detection result from the sensor 2, and the correction unit 511. Corrects the detection result in accordance with the mounting method of the sensor 2.
- the vibration of the measurement object 90 is detected by the sensor 2 attached to the measurement object 90, and the detection result from the sensor 2 is corrected according to the attachment method of the sensor 2. Process.
- the correction unit 511 corrects the detection result with correction data set according to the attachment method of the sensor 2.
- the sensor device 100 holds correction data corresponding to the mounting method of the sensor 2. Therefore, the detection result of the sensor 2 of various attachment methods can be corrected by changing the correction data.
- the sensor device 100 further includes a memory 53 that stores a plurality of correction data corresponding to different mounting methods of the sensor 2, and the correction unit 511 includes the correction data of the sensor 2 among the plurality of correction data stored in the memory 53. Select the correction data corresponding to the mounting method.
- the memory 53 stores a plurality of correction data corresponding to different mounting methods of the sensor 2. Therefore, by changing the selection of the correction data, the detection signal of the sensor 2 can be easily corrected corresponding to various attachment methods of the sensor 2.
- FIG. 7 is a front view illustrating a schematic configuration of the sensor device 200 according to the second embodiment.
- the sensor device 200 is different from the sensor device 100 in that it includes a server 208. That is, in the sensor device 100, all the elements are packaged into one and physically integrated, whereas the sensor device 200 includes some elements (specifically, the server 208). It is physically separated from other elements packaged in one (specifically, sensor 2, connecting pipe 4 and processing unit 5). Therefore, the sensor device 200 will be described mainly with respect to parts different from the sensor device 100, and the same reference numerals are given to the same components as the sensor device 100, and the description thereof will be omitted.
- the sensor device 200 includes a sensor 2, a processing unit 5, a connecting pipe 4 that connects the sensor 2 and the processing unit 5, and a server 208.
- the server 208 stores correction data corresponding to the mounting method of the sensor 2. That is, the aforementioned correction coefficients C1, C2, and C3 are stored in the server 208.
- the memory 53 of the processing unit 5 stores the sensor 2 mounting method (including data indicating the mounting method; the same applies hereinafter). This attachment method is input to the processing unit 5 at the time of shipment or initial setting.
- the process part 5 transmits the attachment method memorize
- the server 208 receives the attachment method from the processing unit 5, the server 208 returns correction data corresponding to the attachment method, that is, any one of the correction coefficients C 1, C 2, and C 3 to the processing unit 5.
- the processing unit 5 stores the correction data in the memory 53.
- the correction unit 511 corrects the vibration level obtained by the output calculation unit 510 with the correction data stored in the memory 53.
- a plurality of correction data corresponding to various attachment methods of the sensor 2 are stored in the memory 53.
- amendment part 511 selects the correction data corresponding to the attachment method of the sensor 2 from the inside.
- a plurality of correction data corresponding to various attachment methods of the sensor 2 are stored in the server 208.
- the server 208 transmits correction data corresponding to the attachment method to the processing unit 5. That is, the memory 53 stores only correction data corresponding to the mounting method of the sensor 2 among the plurality of correction data.
- the sensor device 200 can correct the detection result from the sensor 2 in accordance with the mounting method of the sensor 2, and as a result, variation in the detection result due to the mounting method can be reduced. it can.
- the correction data is collectively managed by the server 208. Therefore, when the correction data is updated, the data held by the server 208 may be updated, and the update process is simplified.
- FIG. 8 is a block diagram of the processing unit 305 and the server 308 in the sensor device 300 according to the third embodiment.
- the sensor device 300 is the same as the sensor device 200 in that it includes a server 308, and is different from the sensor device 100.
- the sensor device 300 is different from the sensor device 200 in that the server 308 corrects the detection signal from the sensor 2. Therefore, the sensor device 300 will be described mainly with respect to parts different from the sensor device 100 and the sensor device 200, and the same reference numerals are given to the same components as the sensor device 100 and the sensor device 200, and the description thereof will be omitted.
- the sensor device 300 includes a sensor 2, a processing unit 305, a connecting pipe 4 that connects the sensor 2 and the processing unit 305, and a server 308.
- a sensor 2 a processing unit 305
- a connecting pipe 4 that connects the sensor 2 and the processing unit 305
- server 308 a server 308.
- illustration of the sensor 2 and the connecting pipe 4 is omitted.
- the appearances of the sensor 2, the processing unit 305, and the connecting pipe 4 are the same as those in the first and second embodiments.
- the processing unit 305 includes a vibration processing unit 351, a temperature processing unit 52, a memory 53, a communication unit 55 that communicates with an external device, and an input unit 56 that inputs various settings.
- the vibration processing unit 351 includes a filter 57, an amplifier 58, an A / D conversion unit 59, and an output calculation unit 510.
- the processing unit 305 does not include the determination unit 54 and the correction unit 511.
- the memory 53 stores programs and data necessary for processing by the processing unit 305, but does not store correction data. In other words, the processing unit 305 performs only the calculation of the vibration level.
- the processing unit 305 transmits the obtained vibration level to the server 308 via the communication unit 55. Note that the processing unit 305 also transmits a signal processed by the temperature processing unit 52 to the server 308 via the communication unit 55.
- the server 308 includes a communication unit 381, a storage 382, a correction unit 383, and a determination unit 384.
- the communication unit 381 transmits and receives signals by wireless communication with an external device. For example, the communication unit 381 receives the vibration level transmitted from the processing unit 305.
- the storage 382 stores programs and data necessary for processing by the server 308. For example, the storage 382 stores a plurality of correction data corresponding to a plurality of attachment methods of the sensor 2. Further, the storage 382 stores the actual attachment method of each of the plurality of sensors 2.
- the storage 382 is an example of a storage unit.
- the correction unit 383 has the same function as the correction unit 511. That is, the correction unit 383 corrects the vibration level using the correction data.
- the correction unit 383 receives the vibration level from the processing unit 305, the correction unit 383 reads out the mounting method of the sensor 2 corresponding to the vibration level (including data indicating the mounting method; the same applies hereinafter) from the storage 382, and the mounting method is used.
- Corresponding correction data ie, correction coefficient
- the correction unit 383 corrects the vibration level with the read correction data.
- the determination unit 384 has the same function as the determination unit 54. That is, the determination unit 384 determines the state of the measurement object based on the corrected vibration level and / or the signal processed by the temperature processing unit 52.
- the server 308 holds the correction data, and the server 308 corrects the detection signal of the sensor 2 using the correction data. Thereby, the process of the process part 305 is simplified.
- the processing unit 305 calculates the vibration level, but the server 308 may calculate the vibration level. That is, the processing unit 305 may perform processing until the detection signal from the sensor 2 is A / D converted, and output the processed digital signal to the server 308.
- the measurement object 90 is not limited to a steam trap.
- the configuration of the sensor device 100 is not limited to the above-described configuration.
- the sensor 2 and the processing unit 5 may be coupled without using the connection pipe 4.
- the sensor device 100 detects temperature and vibration, but may not detect the temperature detection mechanism 30 and may detect only vibration.
- the attachment of the sensor device 100 to the measurement object is not limited to the first to third attachment methods. Any attachment method can be adopted as long as the sensor 2 can be attached to the measurement object.
- the configuration of the sensor 2 is not limited to the configuration described above.
- the number of piezoelectric elements need not be two, but may be one, or three or more.
- the detection needle 21, the weight 27, the disc spring 28, and the like are not essential, and any configuration can be adopted as long as the vibration of the measurement target is input to the piezoelectric element.
- the sensor devices 100, 200, and 300 determine the state of the measurement object, but are not limited thereto. That is, the sensor devices 100, 200, and 300 may be configured to correct the detection result from the sensor 2 in accordance with the attachment method of the sensor 2.
- the processing units 5 and 305 may be connected to an external device (for example, the servers 8, 208, and 308) by wire instead of wirelessly.
- an external device for example, the servers 8, 208, and 308
- the correction of the detection result (for example, vibration level) of the sensor 2 is not limited to the multiplication of the correction coefficient.
- any correction method can be adopted.
- the detection result of the sensor 2 may be corrected using a correction formula set for each attachment method.
- the correction coefficient described above is constant regardless of the magnitude of the vibration level, but the correction formula is a function with the vibration level as a variable (for example, it increases as the vibration level increases), and the value of the correction formula is It fluctuates according to the vibration level. That is, the value of the correction formula is determined by the vibration level from the sensor 2, and the vibration level is corrected by multiplying the value of the correction formula by the vibration level.
- the technique disclosed herein is useful for the sensor device and the sensor correction method.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
A sensor device 100 is provided with: a sensor 2 that is attached to an object to be measured 90 and that detects vibrations of the object to be measured 90; and a correction unit 511 that corrects a detection result from the sensor 2. The correction unit 511 corrects the detection result according to an attachment method of the sensor 2.
Description
ここに開示された技術は、センサ装置及びセンサの補正方法に関する。
The technology disclosed herein relates to a sensor device and a sensor correction method.
従来より、特許文献1に開示されているような圧電素子を有し、測定対象物の振動を検出するセンサが知られている。
Conventionally, a sensor having a piezoelectric element as disclosed in Patent Document 1 and detecting vibration of a measurement object is known.
ところで、圧電素子は、固有の周波数特性(例えば、共振周波数)を有しており、固有の周波数特性は、圧電素子の質量等に依存する。圧電素子の周波数特性が異なれば、センサの検出精度にバラツキが生じる。そのため、圧電素子は、個体差が小さくなるように高い精度で製造されることが求められる。
Incidentally, the piezoelectric element has a specific frequency characteristic (for example, a resonance frequency), and the specific frequency characteristic depends on the mass of the piezoelectric element. If the frequency characteristics of the piezoelectric elements are different, the detection accuracy of the sensor varies. Therefore, the piezoelectric element is required to be manufactured with high accuracy so that individual differences are reduced.
しかしながら、圧電素子の周波数特性の個体差を小さくしたとしても、それ以外の要因によりセンサの検出精度にバラツキが生じる場合がある。
However, even if the individual differences in the frequency characteristics of the piezoelectric elements are reduced, the detection accuracy of the sensor may vary due to other factors.
ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、センサごとの検出精度のバラツキを低減することにある。
The technology disclosed herein has been made in view of such a point, and its object is to reduce the variation in detection accuracy of each sensor.
ここに開示されたセンサ装置は、測定対象物に取り付けられ、測定対象物の振動を検出するセンサと、前記センサからの検出結果を補正する補正部とを備え、前記補正部は、前記検出結果を前記センサの取付方法に応じて補正するものとする。
The sensor device disclosed herein includes a sensor that is attached to a measurement object and detects vibration of the measurement object, and a correction unit that corrects a detection result from the sensor, and the correction unit includes the detection result. Is corrected according to the mounting method of the sensor.
また、ここに開示されたセンサの補正方法は、測定対象物の振動を、測定対象物に取り付けられたセンサによって検出する工程と、前記センサからの検出結果を前記センサの取付方法に応じて補正する工程とを含むものとする。
The sensor correction method disclosed herein includes a step of detecting vibration of a measurement object by a sensor attached to the measurement object, and a detection result from the sensor is corrected according to the sensor attachment method. And the process of carrying out.
ここで、「センサの検出結果」とは、センサから出力されたままの検出信号だけでなく、その後に処理が施された検出信号や検出信号から求められた値も含む。
Here, the “sensor detection result” includes not only a detection signal output from the sensor but also a detection signal processed after that and a value obtained from the detection signal.
ここに開示されたセンサ装置によれば、センサごとの検出精度のバラツキを低減することができる。
According to the sensor device disclosed herein, it is possible to reduce variations in detection accuracy for each sensor.
また、ここに開示されたセンサの補正方法によれば、センサごとの検出精度のバラツキを低減することができる。
Further, according to the sensor correction method disclosed herein, it is possible to reduce variations in detection accuracy for each sensor.
以下、例示的な実施形態を図面に基づいて詳細に説明する。
《実施形態1》
図1は、センサ装置100の概略構成を示す正面図である。センサ装置100は、測定対象物に接触した状態で測定対象物の物理量を検出する、いわゆる接触タイプのセンサである。例えば、測定対象物は、スチームトラップであり、物理量は、スチームトラップの振動及び温度である。 Hereinafter, exemplary embodiments will be described in detail with reference to the drawings.
Embodiment 1
FIG. 1 is a front view illustrating a schematic configuration of thesensor device 100. The sensor device 100 is a so-called contact-type sensor that detects a physical quantity of a measurement object in contact with the measurement object. For example, the measurement object is a steam trap, and the physical quantity is vibration and temperature of the steam trap.
《実施形態1》
図1は、センサ装置100の概略構成を示す正面図である。センサ装置100は、測定対象物に接触した状態で測定対象物の物理量を検出する、いわゆる接触タイプのセンサである。例えば、測定対象物は、スチームトラップであり、物理量は、スチームトラップの振動及び温度である。 Hereinafter, exemplary embodiments will be described in detail with reference to the drawings.
Embodiment 1
FIG. 1 is a front view illustrating a schematic configuration of the
図1に示すように、センサ装置100は、センサ2と、処理部5と、センサ2と処理部5とを接続する接続管4とを備えている。センサ2、処理部5及び接続管4は、所定の軸Xに沿って配列されており、センサ装置100は、全体として棒状に形成されている。センサ2と接続管4とは、ユニオンナット42によって連結されている。処理部5と接続管4とは、ユニオンナット41によって連結されている。
As shown in FIG. 1, the sensor device 100 includes a sensor 2, a processing unit 5, and a connecting pipe 4 that connects the sensor 2 and the processing unit 5. The sensor 2, the processing unit 5, and the connecting pipe 4 are arranged along a predetermined axis X, and the sensor device 100 is formed in a rod shape as a whole. The sensor 2 and the connection pipe 4 are connected by a union nut 42. The processing unit 5 and the connection pipe 4 are connected by a union nut 41.
センサ装置100は、通常、軸Xが鉛直方向を向き且つ、センサ2が下方、処理部5が上方に位置するように設置される。以下では、処理部5の方を上方とし、センサ2の方を下方として、説明する。
The sensor device 100 is usually installed such that the axis X is oriented vertically, the sensor 2 is located below, and the processing unit 5 is located above. In the following description, the processing unit 5 is referred to as the upper side, and the sensor 2 is referred to as the lower side.
〈センサ本体の構成〉
図2は、センサ2の縦断面図である。センサ2は、圧電素子を有し、測定対象物の振動を検出する。具体的には、センサ2は、ケーシング10と、測定対象物の振動を検出(測定)する振動検出機構20と、測定対象物の温度を検出(測定)する温度検出機構30とを備えている。振動検出機構20及び温度検出機構30は、ケーシング10に収容されている。 <Configuration of sensor body>
FIG. 2 is a longitudinal sectional view of thesensor 2. The sensor 2 has a piezoelectric element and detects the vibration of the measurement object. Specifically, the sensor 2 includes a casing 10, a vibration detection mechanism 20 that detects (measures) the vibration of the measurement object, and a temperature detection mechanism 30 that detects (measures) the temperature of the measurement object. . The vibration detection mechanism 20 and the temperature detection mechanism 30 are accommodated in the casing 10.
図2は、センサ2の縦断面図である。センサ2は、圧電素子を有し、測定対象物の振動を検出する。具体的には、センサ2は、ケーシング10と、測定対象物の振動を検出(測定)する振動検出機構20と、測定対象物の温度を検出(測定)する温度検出機構30とを備えている。振動検出機構20及び温度検出機構30は、ケーシング10に収容されている。 <Configuration of sensor body>
FIG. 2 is a longitudinal sectional view of the
ケーシング10は、略円筒状に形成され、軸心が軸Xに一致するように配置されている。ケーシング10の内部には段差10fが設けられており、ケーシング10の上部10aの内径は、下部10bの内径に比べて大きくなっている。ケーシング10の上部10aの外周面には、ユニオンナット42が螺合する雄ネジ10cが形成されている。ケーシング10の下部10bの外周面には、雄ネジ10eが形成されている。ケーシング10のうち軸X方向の一端である下端10gは、センサ装置100の設置時に測定対象物に接触する。
The casing 10 is formed in a substantially cylindrical shape, and is arranged so that the axis coincides with the axis X. A step 10f is provided inside the casing 10, and the inner diameter of the upper portion 10a of the casing 10 is larger than the inner diameter of the lower portion 10b. A male screw 10 c into which the union nut 42 is screwed is formed on the outer peripheral surface of the upper portion 10 a of the casing 10. A male screw 10 e is formed on the outer peripheral surface of the lower portion 10 b of the casing 10. A lower end 10 g that is one end in the axis X direction of the casing 10 is in contact with the measurement object when the sensor device 100 is installed.
振動検出機構20は、検出針21と、ホルダ22と、第1圧電素子25aと、第2圧電素子25bと、第1電極板26aと、第2電極板26bと、ウエイト27と、皿バネ28と、キャップ29とを備えている。
The vibration detection mechanism 20 includes a detection needle 21, a holder 22, a first piezoelectric element 25a, a second piezoelectric element 25b, a first electrode plate 26a, a second electrode plate 26b, a weight 27, and a disc spring 28. And a cap 29.
検出針21は、細長い棒状の部材である。検出針21は、軸心が軸Xと一致するように配置されている。検出針21の先端(下端)は、ケーシング10の下端10gから下方に突出している。センサ装置100が測定対象物に取り付けられたときに、検出針21は、測定対象物に接触する。検出針21は、測定対象物の振動を第1圧電素子25a及び第2圧電素子25bに伝える。検出針21は、伝達部の一例である。
The detection needle 21 is an elongated rod-like member. The detection needle 21 is arranged so that the axis coincides with the axis X. The tip (lower end) of the detection needle 21 protrudes downward from the lower end 10 g of the casing 10. When the sensor device 100 is attached to the measurement object, the detection needle 21 contacts the measurement object. The detection needle 21 transmits the vibration of the measurement object to the first piezoelectric element 25a and the second piezoelectric element 25b. The detection needle 21 is an example of a transmission unit.
ホルダ22は、内側の金属製ホルダ23と、該金属製ホルダ23を収容する外側の樹脂製ホルダ24とを含んでいる。金属製ホルダ23および樹脂製ホルダ24は、何れも、略円筒状に形成され、軸心が軸Xと一致するように配置されている。
The holder 22 includes an inner metal holder 23 and an outer resin holder 24 that accommodates the metal holder 23. Both the metal holder 23 and the resin holder 24 are formed in a substantially cylindrical shape, and are arranged so that the axis coincides with the axis X.
金属製ホルダ23は、上方に開放されている一方、金属製ホルダ23の下部には底壁23aが設けられている。底壁23aには、挿入孔23bが形成されている。挿入孔23bには検出針21が挿入され、金属製ホルダ23から下方に検出針21が突出している。検出針21の上端部は、底壁23aに係止しており、検出針21が金属製ホルダ23から抜け落ちないようになっている。
The metal holder 23 is opened upward, while a bottom wall 23 a is provided at the lower part of the metal holder 23. An insertion hole 23b is formed in the bottom wall 23a. The detection needle 21 is inserted into the insertion hole 23 b, and the detection needle 21 protrudes downward from the metal holder 23. The upper end of the detection needle 21 is locked to the bottom wall 23 a so that the detection needle 21 does not fall out of the metal holder 23.
金属製ホルダ23内においては、下方から順に、第1圧電素子25a、第1電極板26a、第2圧電素子25b、第2電極板26b、ウエイト27、皿バネ28及びキャップ29が互いに接した状態で配置されている。第1圧電素子25aは、検出針21の上端に接している。
In the metal holder 23, the first piezoelectric element 25a, the first electrode plate 26a, the second piezoelectric element 25b, the second electrode plate 26b, the weight 27, the disc spring 28, and the cap 29 are in contact with each other in order from the bottom. Is arranged in. The first piezoelectric element 25 a is in contact with the upper end of the detection needle 21.
尚、第1電極板26a及び第2電極板26bには、2本の信号線(図示省略)が接続されている。2本の信号線は、センサ2から接続管4内を通って処理部5内まで配線されている。
Incidentally, two signal lines (not shown) are connected to the first electrode plate 26a and the second electrode plate 26b. The two signal lines are wired from the sensor 2 through the connection pipe 4 to the processing unit 5.
キャップ29は、皿バネ28の上に2つ配置されている。キャップ29は、外周面に雄ネジが形成された円板状の部材である。金属製ホルダ23の上端部の内周面には、雌ネジが形成されている。キャップ29は、金属製ホルダ23の上端部に螺合される。キャップ29は、その締め付け力によって皿バネ28を下方に押圧し、皿バネ28は、その付勢力によってウエイト27を介して第1圧電素子25a及び第2圧電素子25b等を検出針21に押し付ける。
Two caps 29 are arranged on the disc spring 28. The cap 29 is a disk-shaped member having a male screw formed on the outer peripheral surface. On the inner peripheral surface of the upper end portion of the metal holder 23, a female screw is formed. The cap 29 is screwed to the upper end portion of the metal holder 23. The cap 29 presses the disc spring 28 downward by the tightening force, and the disc spring 28 presses the first piezoelectric element 25a, the second piezoelectric element 25b, and the like to the detection needle 21 through the weight 27 by the biasing force.
こうして、第1圧電素子25a及び第2圧電素子25bがウエイト27及び皿バネ28等によって検出針21に所定の力(初期押付け力)で押し付けられる。これにより、測定対象物以外の振動や力が外乱として第1圧電素子25a及び第2圧電素子25bに作用しても、その外乱を吸収することができ、外乱による影響を低減することができる。
Thus, the first piezoelectric element 25a and the second piezoelectric element 25b are pressed against the detection needle 21 with a predetermined force (initial pressing force) by the weight 27, the disc spring 28, and the like. As a result, even if vibrations or forces other than the measurement object act on the first piezoelectric element 25a and the second piezoelectric element 25b as disturbances, the disturbances can be absorbed and the influence of the disturbances can be reduced.
樹脂製ホルダ24は、上方に開放されている一方、樹脂製ホルダ24の下部には底壁24aが設けられている。底壁24aには、挿入孔24bが形成されている。樹脂製ホルダ24には、金属製ホルダ23が圧入されている。挿入孔24bには検出針21が挿入され、樹脂製ホルダ24から下方に検出針21が突出している。
The resin holder 24 is opened upward, while a bottom wall 24 a is provided at the lower part of the resin holder 24. An insertion hole 24b is formed in the bottom wall 24a. A metal holder 23 is press-fitted into the resin holder 24. The detection needle 21 is inserted into the insertion hole 24b, and the detection needle 21 protrudes downward from the resin holder 24.
ホルダ22は、ケーシング10の上部10aに収容され、ホルダ22から下方に突出する検出針21は、ケーシング10の下部10bに収容される。
The holder 22 is accommodated in the upper part 10 a of the casing 10, and the detection needle 21 protruding downward from the holder 22 is accommodated in the lower part 10 b of the casing 10.
ケーシング10内において、ホルダ22の上方にはコイルバネ11が配置されている。ホルダ22は、コイルバネ11によって下方に付勢されている。ケーシング10の上端部の内周面には、溝10dが形成され、該溝10dにスナップリング12がはめ込まれている。コイルバネ11の一端は、スナップリング12に支持されている。コイルバネ11の他端は、樹脂製ホルダ24の上端面に接している。コイルバネ11は、樹脂製ホルダ24(ホルダ22)を下方へ付勢し、樹脂製ホルダ24をケーシング10内の段差10fに押しつけている。この状態において、検出針21の先端は、ケーシング10の下端10gから少し突出している。
In the casing 10, the coil spring 11 is disposed above the holder 22. The holder 22 is urged downward by the coil spring 11. A groove 10d is formed on the inner peripheral surface of the upper end portion of the casing 10, and a snap ring 12 is fitted in the groove 10d. One end of the coil spring 11 is supported by the snap ring 12. The other end of the coil spring 11 is in contact with the upper end surface of the resin holder 24. The coil spring 11 urges the resin holder 24 (holder 22) downward, and presses the resin holder 24 against the step 10f in the casing 10. In this state, the tip of the detection needle 21 slightly protrudes from the lower end 10 g of the casing 10.
温度検出機構30は、接触板31(伝熱板)と、保持部材32とを備えている。接触板31は、中央に開口を有する略環状の板部材である。保持部材32は、中央に貫通孔33を有する略円筒状に形成され、ケーシング10の下端部に挿入されている。接触板31は、保持部材32の先端に保持されている。
The temperature detection mechanism 30 includes a contact plate 31 (heat transfer plate) and a holding member 32. The contact plate 31 is a substantially annular plate member having an opening at the center. The holding member 32 is formed in a substantially cylindrical shape having a through hole 33 in the center, and is inserted into the lower end portion of the casing 10. The contact plate 31 is held at the tip of the holding member 32.
保持部材32には、貫通孔33以外に、熱電対を配置するための2つの配置孔34,35がそれぞれ軸方向に延びるように形成されている。配置孔34,35のそれぞれに、熱電対(図示省略)が配置される。各熱電対の一端は、接触板31に接続され、他端は、接続管4を通って処理部5に接続されている。
In addition to the through-hole 33, the holding member 32 is formed with two arrangement holes 34 and 35 for arranging a thermocouple so as to extend in the axial direction. A thermocouple (not shown) is arranged in each of the arrangement holes 34 and 35. One end of each thermocouple is connected to the contact plate 31, and the other end is connected to the processing unit 5 through the connection pipe 4.
ケーシング10内において、保持部材32の上方には、コイルバネ13が配置されている。コイルバネ13の一端は、ホルダ22(樹脂製ホルダ24)に保持されている。コイルバネ13の他端は、保持部材32に接している。コイルバネ13は、保持部材32を下方へ付勢しており、これにより、接触板31は、ケーシング10の下端10gよりも下方に少し突出している。つまり、ケーシング10の下端10gからは、接触板31が突出しており、接触板31から検出針21がさらに突出している。センサ装置100が測定対象物に取り付けられたときに、接触板31は、測定対象物に接触する。
In the casing 10, the coil spring 13 is disposed above the holding member 32. One end of the coil spring 13 is held by a holder 22 (resin holder 24). The other end of the coil spring 13 is in contact with the holding member 32. The coil spring 13 biases the holding member 32 downward, so that the contact plate 31 protrudes slightly below the lower end 10 g of the casing 10. That is, the contact plate 31 protrudes from the lower end 10 g of the casing 10, and the detection needle 21 further protrudes from the contact plate 31. When the sensor device 100 is attached to the measurement object, the contact plate 31 contacts the measurement object.
<センサの取付>
センサ2は、測定対象物に様々な方法で取り付けられる。以下、センサ2の取付方法について説明する。 <Mounting the sensor>
Thesensor 2 is attached to the measurement object by various methods. Hereinafter, a method for attaching the sensor 2 will be described.
センサ2は、測定対象物に様々な方法で取り付けられる。以下、センサ2の取付方法について説明する。 <Mounting the sensor>
The
まず、センサ2の第1取付方法について説明する。図3は、第1取付方法によって取り付けられたセンサ2の縦断面図である。例えば、センサ2は、測定対象物90の取付座91に取り付けられる。取付座91は、例えば、スチームトラップのケーシングに形成されている。取付座91は、ボス状に形成され、有底の設置孔92を有している。設置孔92の内周面には、雌ネジが形成されている。
First, the first mounting method of the sensor 2 will be described. FIG. 3 is a longitudinal sectional view of the sensor 2 attached by the first attachment method. For example, the sensor 2 is attached to the attachment seat 91 of the measurement object 90. The mounting seat 91 is formed, for example, in a steam trap casing. The mounting seat 91 is formed in a boss shape and has a bottomed installation hole 92. On the inner peripheral surface of the installation hole 92, a female screw is formed.
センサ2は、ケーシング10の下部10bを設置孔92に螺合させることによって測定対象物90にネジ締結される。このとき、ケーシング10は、トルクレンチ等によって所定の締め付けトルクで締め付けられる。
The sensor 2 is screwed to the measuring object 90 by screwing the lower part 10b of the casing 10 into the installation hole 92. At this time, the casing 10 is tightened with a predetermined tightening torque by a torque wrench or the like.
センサ2の通常状態においては、検出針21の先端及び接触板31が下端10gよりも下方に突出している。しかし、検出針21は、コイルバネ11の付勢力に抗してケーシング10に対して上方へ移動可能であり、接触板31は、コイルバネ13の付勢力に抗してケーシング10に対して上方へ移動可能である。そのため、ケーシング10の下端10gが設置孔92の底に接触するときには、検出針21の先端及び接触板31は、ケーシング10の下端10gと面一になって、設置孔92の底に接触している。
In the normal state of the sensor 2, the tip of the detection needle 21 and the contact plate 31 protrude below the lower end 10g. However, the detection needle 21 can move upward with respect to the casing 10 against the biasing force of the coil spring 11, and the contact plate 31 moves upward with respect to the casing 10 against the biasing force of the coil spring 13. Is possible. Therefore, when the lower end 10 g of the casing 10 contacts the bottom of the installation hole 92, the tip of the detection needle 21 and the contact plate 31 are flush with the lower end 10 g of the casing 10 and contact the bottom of the installation hole 92. Yes.
こうして、センサ2が測定対象物90に取り付けられた状態においては、検出針21及び接触板31が設置孔92の底に接触しており、それぞれ測定対象物90の振動及び温度を検出する。
Thus, in a state where the sensor 2 is attached to the measurement object 90, the detection needle 21 and the contact plate 31 are in contact with the bottom of the installation hole 92, and the vibration and temperature of the measurement object 90 are detected.
次に、センサ2の第2取付方法について説明する。図4は、第2取付方法によって取り付けられたセンサ2の正面図である。センサ2は、クランプ6を介して測定対象物90に取り付けられる。
Next, the second mounting method of the sensor 2 will be described. FIG. 4 is a front view of the sensor 2 attached by the second attachment method. The sensor 2 is attached to the measurement object 90 via the clamp 6.
クランプ6は、センサ2を保持する保持部材61と、保持部材61に連結された一対の狭持部材62,62と、狭持部材62,62を締め付ける締め付け部材63とを有している。
The clamp 6 includes a holding member 61 that holds the sensor 2, a pair of holding members 62 and 62 connected to the holding member 61, and a fastening member 63 that fastens the holding members 62 and 62.
保持部材61の中央には、取付孔64が貫通形成されている。取付孔64には雌ネジが形成されている。センサ2は、ケーシング10の下部10bが取付孔64に螺合されることによって保持部材61にネジ締結される。下部10bは、保持部材61を貫通している。
A mounting hole 64 is formed through the center of the holding member 61. A female screw is formed in the mounting hole 64. The sensor 2 is screwed to the holding member 61 when the lower portion 10 b of the casing 10 is screwed into the mounting hole 64. The lower part 10 b penetrates the holding member 61.
狭持部材62,62は、保持部材61の両端部に回転可能な状態で連結されている。つまり、一対の狭持部材62,62は、保持部材61に連結された端部と反対側の端部(以下、「自由端部」という)間の距離が変更可能に構成されている。各狭持部材62には、取付時に測定対象物90と接触する接触部62aが形成されている。
The holding members 62 and 62 are connected to both ends of the holding member 61 in a rotatable state. In other words, the pair of sandwiching members 62 and 62 are configured such that the distance between the end connected to the holding member 61 and the end opposite to the end (hereinafter referred to as “free end”) can be changed. Each holding member 62 is formed with a contact portion 62a that comes into contact with the measurement object 90 when attached.
締め付け部材63は、一対の狭持部材62,62の自由端部に形成された挿入孔に挿入されるボルト63aと、ボルト63aに螺合されるナット63bとを有している。ナット63bの締め付け具合により、狭持部材62,62の自由端部間の距離が調整される。
The fastening member 63 has a bolt 63a inserted into an insertion hole formed in the free ends of the pair of holding members 62, 62, and a nut 63b screwed into the bolt 63a. The distance between the free ends of the holding members 62 and 62 is adjusted by the tightening degree of the nut 63b.
クランプ6は、測定対象物90としてのスチームトラップの入口部に取り付けられる。入口部は、円管状に形成されている。まず、センサ2が保持部材61にネジ締結される。締め付け部材63が狭持部材62,62から取り外された状態で、狭持部材62,62で測定対象物90を挟み込む。このとき、センサ2の下端10g及び狭持部材62,62の接触部62a,62aの3点が入口部に接触している。その後、締め付け部材63を狭持部材62,62に装着し、ナット63bを締め付ける。これにより、クランプ6は、下端10g及び接触部62a,62aが入口部に接触した状態で固定される。このとき、ナット63bは、トルクレンチ等によって所定の締め付けトルクで締め付けられる。こうして、センサ2は、クランプ6を介して測定対象物90に取り付けられる。
The clamp 6 is attached to an inlet portion of a steam trap as the measurement object 90. The inlet portion is formed in a circular tube shape. First, the sensor 2 is screwed to the holding member 61. With the clamping member 63 removed from the sandwiching members 62, 62, the measurement object 90 is sandwiched between the sandwiching members 62, 62. At this time, the lower end 10g of the sensor 2 and the contact portions 62a and 62a of the holding members 62 and 62 are in contact with the inlet portion. Thereafter, the fastening member 63 is attached to the holding members 62 and 62, and the nut 63b is fastened. Accordingly, the clamp 6 is fixed in a state where the lower end 10g and the contact portions 62a and 62a are in contact with the inlet portion. At this time, the nut 63b is tightened with a predetermined tightening torque by a torque wrench or the like. Thus, the sensor 2 is attached to the measurement object 90 via the clamp 6.
次に、センサ2の第3取付方法について説明する。図5は、第3取付方法によって取り付けられたセンサ2の正面図である。センサ2は、バンド7を介して測定対象物90に取り付けられる。
Next, the third mounting method of the sensor 2 will be described. FIG. 5 is a front view of the sensor 2 attached by the third attachment method. The sensor 2 is attached to the measurement object 90 via the band 7.
バンド7は、バンド本体71と、バンド本体71に設けられ、センサ装置100が取り付けられる取付ナット72と、バンド本体71を締め付ける締め付け部材73とを有している。
The band 7 includes a band main body 71, a mounting nut 72 provided on the band main body 71 to which the sensor device 100 is attached, and a fastening member 73 that tightens the band main body 71.
バンド本体71は、第1分割体74と、第2分割体75との分割構造となっている。第1分割体74及び第2分割体75のそれぞれは、金属製の板状の部材であって、略半円形状に湾曲している。第1分割体74の一端部と第2分割体75の一端部とが連結されている。第1分割体74の他端部と第2分割体75の他端部は、それぞれ自由端となっている。第1分割体74及び第2分割体75は、全体として略円環状に形成されている。
The band body 71 has a divided structure of a first divided body 74 and a second divided body 75. Each of the first divided body 74 and the second divided body 75 is a metal plate-like member, and is curved in a substantially semicircular shape. One end of the first divided body 74 and one end of the second divided body 75 are connected. The other end of the first divided body 74 and the other end of the second divided body 75 are free ends. The first divided body 74 and the second divided body 75 are formed in a substantially annular shape as a whole.
取付ナット72は、第1分割体74に固定されている。取付ナット72には、雌ネジを有する貫通孔72aが形成されている。第1分割体74のうち取付ナット72が設けられた部分には、貫通孔72aと連通する貫通孔が形成されている。センサ2は、ケーシング10の下部10bが貫通孔72aに螺合されることによって取付ナット72にネジ締結される。下部10bは、取付ナット72及び第1分割体74を貫通している。
The mounting nut 72 is fixed to the first divided body 74. The mounting nut 72 is formed with a through hole 72a having a female screw. A through hole communicating with the through hole 72a is formed in a portion of the first divided body 74 where the mounting nut 72 is provided. The sensor 2 is screwed to the mounting nut 72 by screwing the lower part 10b of the casing 10 into the through hole 72a. The lower part 10 b passes through the mounting nut 72 and the first divided body 74.
締め付け部材73は、第1分割体74及び第2分割体75の自由端部に形成された挿入孔に挿入されるボルト73aと、ボルト73aに螺合されるナット73bとを有している。ナット73bの締め付け具合により、第1分割体74及び第2分割体75の自由端部間の距離が調整される。
The fastening member 73 has a bolt 73a inserted into an insertion hole formed in the free ends of the first divided body 74 and the second divided body 75, and a nut 73b screwed into the bolt 73a. The distance between the free ends of the first divided body 74 and the second divided body 75 is adjusted by the tightening degree of the nut 73b.
バンド7は、例えば、測定対象物90としてのスチームトラップの入口部に取り付けられる。入口部は、円管状に形成されている。まず、センサ2が取付ナット72にネジ締結される。締め付け部材73が第1分割体74及び第2分割体75から取り外された状態で、第1分割体74及び第2分割体75で測定対象物90を挟み込む。その後、締め付け部材73を第1分割体74及び第2分割体75に装着し、ナット73bを締め付ける。このとき、ナット73bは、トルクレンチ等によって所定の締め付けトルクで締め付けられる。これにより、バンド7は、センサ2の下端10gが入口部に接触した状態で測定対象物90に固定される。こうして、センサ2は、バンド7を介して測定対象物90に取り付けられる。
The band 7 is attached to, for example, an inlet portion of a steam trap as the measurement object 90. The inlet portion is formed in a circular tube shape. First, the sensor 2 is screwed to the mounting nut 72. With the fastening member 73 removed from the first divided body 74 and the second divided body 75, the measurement object 90 is sandwiched between the first divided body 74 and the second divided body 75. Thereafter, the fastening member 73 is attached to the first divided body 74 and the second divided body 75, and the nut 73b is tightened. At this time, the nut 73b is tightened with a predetermined tightening torque by a torque wrench or the like. Thereby, the band 7 is fixed to the measuring object 90 with the lower end 10g of the sensor 2 in contact with the inlet. Thus, the sensor 2 is attached to the measurement object 90 via the band 7.
<処理部の構成>
図6は、処理部5のブロック図である。処理部5は、センサ2からの検出信号を処理すると共に、外部機器と信号の送受信を行う。処理部5は、振動検出機構20からの検出信号を処理する振動処理部51と、温度検出機構30からの検出信号を処理する温度処理部52と、メモリ53と、測定対象物の状態を判定する判定部54と、外部機器と通信する通信部55と、各種の設定を入力する入力部56とを有している。 <Configuration of processing unit>
FIG. 6 is a block diagram of theprocessing unit 5. The processing unit 5 processes the detection signal from the sensor 2 and transmits / receives a signal to / from an external device. The processing unit 5 determines the vibration processing unit 51 that processes the detection signal from the vibration detection mechanism 20, the temperature processing unit 52 that processes the detection signal from the temperature detection mechanism 30, the memory 53, and the state of the measurement object. Determination unit 54, a communication unit 55 that communicates with an external device, and an input unit 56 that inputs various settings.
図6は、処理部5のブロック図である。処理部5は、センサ2からの検出信号を処理すると共に、外部機器と信号の送受信を行う。処理部5は、振動検出機構20からの検出信号を処理する振動処理部51と、温度検出機構30からの検出信号を処理する温度処理部52と、メモリ53と、測定対象物の状態を判定する判定部54と、外部機器と通信する通信部55と、各種の設定を入力する入力部56とを有している。 <Configuration of processing unit>
FIG. 6 is a block diagram of the
振動処理部51は、フィルタ57と、増幅器58と、A/D変換部59と、出力算出部510と、補正部511とを有している。
The vibration processing unit 51 includes a filter 57, an amplifier 58, an A / D conversion unit 59, an output calculation unit 510, and a correction unit 511.
フィルタ57は、バンドパスフィルタであって、振動検出機構20からの出力信号のうち、所定の周波数帯域以外の周波数成分をカットする。所定の周波数帯域は、測定対象物に生じ得る振動に応じて設定されている。
The filter 57 is a band-pass filter, and cuts frequency components other than a predetermined frequency band in the output signal from the vibration detection mechanism 20. The predetermined frequency band is set according to the vibration that can occur in the measurement object.
増幅器58は、フィルタ57により処理された信号を増幅する。A/D変換部59は、増幅器58により増幅された信号をデジタル信号に変換する。
The amplifier 58 amplifies the signal processed by the filter 57. The A / D converter 59 converts the signal amplified by the amplifier 58 into a digital signal.
出力算出部510は、A/D変換部59からのデジタル信号に種々の処理を施して、振動の大きさを示す指標(以下、「振動レベル」と称する)を算出する。振動レベルは、振動の大きさを示す限り、任意の指標が採用され得る。例えば、振動レベルは、単純に前記デジタル信号の最大振幅であってもよく、前記デジタル信号に整流処理や二乗平均平方根処理等を施した後の最大振幅、平均振幅、若しくは積分値等であってもよい。
The output calculation unit 510 performs various processes on the digital signal from the A / D conversion unit 59 to calculate an index indicating the magnitude of vibration (hereinafter referred to as “vibration level”). Any index can be adopted as the vibration level as long as it indicates the magnitude of vibration. For example, the vibration level may simply be the maximum amplitude of the digital signal, and may be a maximum amplitude, an average amplitude, an integral value, or the like after the digital signal is subjected to rectification processing, root mean square processing, or the like. Also good.
補正部511は、振動レベルを補正データを用いて補正する。補正データは、メモリ53に記憶されている。補正部511による補正の詳細については後述する。
The correction unit 511 corrects the vibration level using the correction data. The correction data is stored in the memory 53. Details of the correction by the correction unit 511 will be described later.
温度処理部52は、温度検出機構30からの検出信号を、判定部54で処理できるように適宜処理する。本開示では、その詳細については割愛する。
The temperature processing unit 52 appropriately processes the detection signal from the temperature detection mechanism 30 so that the determination unit 54 can process it. In the present disclosure, details thereof are omitted.
メモリ53は、処理部5での処理に必要なプログラム及びデータ等を記憶している。例えば、メモリ53は、補正データを記憶している。メモリ53は、記憶部の一例である。
The memory 53 stores programs and data necessary for processing in the processing unit 5. For example, the memory 53 stores correction data. The memory 53 is an example of a storage unit.
判定部54は、振動処理部51により処理された信号及び/又は温度処理部52により処理された信号に基づいて測定対象物の状態を判定する。
The determination unit 54 determines the state of the measurement object based on the signal processed by the vibration processing unit 51 and / or the signal processed by the temperature processing unit 52.
例えば、判定部54は、振動処理部51により求められた振動レベルに基づいて、測定対象物であるスチームトラップの状態を判定する。具体的には、スチームトラップの蒸気漏れが発生していない場合には、振動レベルが低く、スチームトラップの蒸気漏れが発生すると、振動レベルは高くなる。そこで、判定部54は、振動レベルが所定の判定レベル以下の場合にはスチームトラップの蒸気漏れ無しと判定し、振動レベルが前記判定レベルより大きい場合にはスチームトラップの蒸気漏れ有りと判定する。
For example, the determination unit 54 determines the state of the steam trap that is the measurement target based on the vibration level obtained by the vibration processing unit 51. Specifically, the vibration level is low when steam trap steam leakage has not occurred, and the vibration level increases when steam trap steam leak occurs. Therefore, the determination unit 54 determines that there is no steam leak in the steam trap when the vibration level is equal to or lower than the predetermined determination level, and determines that there is steam leak in the steam trap when the vibration level is higher than the determination level.
また、判定部54は、温度処理部52により処理された信号に基づいて、スチームトラップの状態を判定する。具体的には、スチームトラップの温度は、ドレンが適切に流通している場合には、蒸気圧力の飽和温度に近い値となる一方、ドレンが滞留している場合には低下してしまう。判定部54は、スチームトラップの温度が所定の判定温度以上の場合にはドレンの滞留無しと判定し、スチームトラップの温度が前記判定温度未満の場合にはドレンの滞留有りと判定する。
Further, the determination unit 54 determines the state of the steam trap based on the signal processed by the temperature processing unit 52. Specifically, the temperature of the steam trap becomes a value close to the saturation temperature of the vapor pressure when the drain is appropriately distributed, and decreases when the drain is retained. The determination unit 54 determines that there is no retention of drain when the temperature of the steam trap is equal to or higher than a predetermined determination temperature, and determines that there is retention of drain when the temperature of the steam trap is lower than the determination temperature.
通信部55は、外部機器と無線通信により信号の送受信を行う。例えば、通信部55は、判定部54による判定結果を外部機器に送信する。
The communication unit 55 transmits and receives signals to and from external devices by wireless communication. For example, the communication unit 55 transmits the determination result by the determination unit 54 to the external device.
入力部56は、処理部5の処理に必要な各種設定の入力を行う。例えば、入力部56は、通信部55を介して外部機器から受信した設定情報をメモリ53に記憶させる。
<センサの補正方法>
以下、センサ2の補正について詳述する。 Theinput unit 56 inputs various settings necessary for the processing of the processing unit 5. For example, the input unit 56 stores setting information received from an external device via the communication unit 55 in the memory 53.
<Sensor correction method>
Hereinafter, the correction of thesensor 2 will be described in detail.
<センサの補正方法>
以下、センサ2の補正について詳述する。 The
<Sensor correction method>
Hereinafter, the correction of the
センサ2は、前述のように様々な取付方法がある。センサ2の検出結果(例えば、振動レベル)は、取付方法によって変動する場合がある。詳しくは、取付方法によって、センサ2の測定対象物90に対する押し付け力や安定性が異なるので、測定対象物90の振動の大きさが同じであってもセンサ2の検出結果にバラツキが生じ得る。例えば、前述の第1~第3取付方法の中では、第1取付方法がセンサ2を最も強固に且つ安定的に取り付けでき、検出される振動レベルが最も小さくなる。それに対し、第3取付方法の押し付け力が最も小さく且つ取付の安定性も低いので、検出される振動レベルが最も大きくなる。
Sensor 2 has various mounting methods as described above. The detection result (for example, vibration level) of the sensor 2 may vary depending on the mounting method. Specifically, since the pressing force and stability of the sensor 2 with respect to the measurement object 90 differ depending on the attachment method, the detection result of the sensor 2 may vary even if the magnitude of the vibration of the measurement object 90 is the same. For example, among the first to third attachment methods described above, the first attachment method can attach the sensor 2 most firmly and stably, and the detected vibration level is the smallest. On the other hand, since the pressing force of the third attachment method is the smallest and the attachment stability is low, the detected vibration level is the largest.
そこで、補正部511は、センサ2の振動レベルを取付方法に応じて補正する。メモリ53には、取付方法に応じた補正データが記憶されている。補正データは、振動レベルに掛け合わされる係数である。例えば、第1取付方法の係数C1が最も大きく、第3取付方法の係数C3が最も小さく、第2取付方法の係数がそれらの中間である。
Therefore, the correction unit 511 corrects the vibration level of the sensor 2 according to the mounting method. The memory 53 stores correction data corresponding to the attachment method. The correction data is a coefficient that is multiplied by the vibration level. For example, the coefficient C1 of the first attachment method is the largest, the coefficient C3 of the third attachment method is the smallest, and the coefficient of the second attachment method is between them.
また、処理部5は、外部機器としてのサーバ8から、センサ2の実際の取付方法(取付方法を示すデータを含む。以下同様。)を受信する。サーバ8は、センサ2の取付方法を管理している。処理部5は、初期設定時等にセンサ2の取付方法をサーバ8から受け取り、メモリ53に記憶しておく。
Further, the processing unit 5 receives an actual mounting method (including data indicating the mounting method; the same applies hereinafter) of the sensor 2 from the server 8 as an external device. The server 8 manages the mounting method of the sensor 2. The processing unit 5 receives the mounting method of the sensor 2 from the server 8 at the time of initial setting or the like and stores it in the memory 53.
処理部5は、センサ2から検出信号を読み込む。この工程が、測定対象物の振動を、測定対象物に取り付けられたセンサによって検出する工程に相当する。そして、処理部5は、検出信号にフィルタ処理、増幅処理、A/D変換を施し、振動レベルを求める。
Processing unit 5 reads the detection signal from sensor 2. This step corresponds to a step of detecting the vibration of the measurement object with a sensor attached to the measurement object. Then, the processing unit 5 performs filter processing, amplification processing, and A / D conversion on the detection signal to obtain a vibration level.
その後、補正部511は、メモリ53に記憶されたセンサ2の取付方法に応じて、対応する補正データをメモリ53の中から選択する。補正部511は、出力算出部510が求めた振動レベルに選択した補正データを掛け合わせ、振動レベルを補正する。この工程が、センサからの検出信号をセンサの取付方法に応じて補正する工程に相当する。これにより、取付方法に起因する振動レベルのバラツキが低減される。ひいては、判定部54による判定の精度も向上させることができる。
Thereafter, the correction unit 511 selects the corresponding correction data from the memory 53 according to the mounting method of the sensor 2 stored in the memory 53. The correction unit 511 corrects the vibration level by multiplying the selected correction data by the vibration level obtained by the output calculation unit 510. This step corresponds to the step of correcting the detection signal from the sensor in accordance with the sensor mounting method. Thereby, the variation of the vibration level resulting from the attachment method is reduced. As a result, the accuracy of determination by the determination unit 54 can also be improved.
尚、以上の説明では、センサ2の実際の取付方法がサーバ8から処理部5に入力されている。しかし、取付方法の入力は、サーバ8からに限られない。例えば、入力部56はPC等が接続可能に構成されており、センサ装置100の初期設定時等にユーザの入力操作によってPC等から入力部56を介して取付方法が入力されてもよい。あるいは、入力部56は、ユーザの入力操作が可能なユーザインターフェースであり、ユーザが入力部56を操作することによって取付方法が入力されてもよい。または、入力部56は、取付方法を選択可能なスイッチであり、ユーザが該スイッチを取付方法に対応する状態に切替操作することによって取付方法が入力されてもよい。つまり、センサ2の取付方法を処理部5に入力できる限りは、任意の入力方法が採用され得る。
In the above description, the actual mounting method of the sensor 2 is input from the server 8 to the processing unit 5. However, the input of the attachment method is not limited from the server 8. For example, the input unit 56 may be configured such that a PC or the like can be connected, and an attachment method may be input from the PC or the like via the input unit 56 by a user input operation or the like when the sensor device 100 is initially set. Alternatively, the input unit 56 is a user interface that can be input by the user, and the attachment method may be input by the user operating the input unit 56. Alternatively, the input unit 56 is a switch capable of selecting an attachment method, and the user may input the attachment method by switching the switch to a state corresponding to the attachment method. That is, any input method can be adopted as long as the attachment method of the sensor 2 can be input to the processing unit 5.
以上のように、センサ装置100は、測定対象物90に取り付けられ、測定対象物90の振動を検出するセンサ2と、センサ2からの検出結果を補正する補正部511とを備え、補正部511は、検出結果をセンサ2の取付方法に応じて補正する。
As described above, the sensor device 100 includes the sensor 2 that is attached to the measurement object 90 and detects the vibration of the measurement object 90, and the correction unit 511 that corrects the detection result from the sensor 2, and the correction unit 511. Corrects the detection result in accordance with the mounting method of the sensor 2.
換言すると、センサの補正方法は、測定対象物90の振動を、測定対象物90に取り付けられたセンサ2によって検出する工程と、センサ2からの検出結果をセンサ2の取付方法に応じて補正する工程とを含む。
In other words, in the sensor correction method, the vibration of the measurement object 90 is detected by the sensor 2 attached to the measurement object 90, and the detection result from the sensor 2 is corrected according to the attachment method of the sensor 2. Process.
この構成によれば、センサ2からの検出結果が補正部511によってセンサ2の取付方法に応じて補正されるので、取付方法に起因するセンサ2の検出結果のバラツキを低減することができる。
According to this configuration, since the detection result from the sensor 2 is corrected by the correction unit 511 in accordance with the mounting method of the sensor 2, variations in the detection result of the sensor 2 due to the mounting method can be reduced.
具体的には、補正部511は、センサ2の取付方法に応じて設定された補正データによって検出結果を補正する。
Specifically, the correction unit 511 corrects the detection result with correction data set according to the attachment method of the sensor 2.
つまり、センサ装置100は、センサ2の取付方法に応じた補正データを保持している。そのため、補正データを変更することによって、様々な取付方法のセンサ2の検出結果を補正することができる。
That is, the sensor device 100 holds correction data corresponding to the mounting method of the sensor 2. Therefore, the detection result of the sensor 2 of various attachment methods can be corrected by changing the correction data.
また、センサ装置100は、センサ2の異なる取付方法に対応する複数の補正データを記憶するメモリ53をさらに備え、補正部511は、メモリ53に記憶された複数の補正データの中からセンサ2の取付方法に対応する補正データを選択する。
The sensor device 100 further includes a memory 53 that stores a plurality of correction data corresponding to different mounting methods of the sensor 2, and the correction unit 511 includes the correction data of the sensor 2 among the plurality of correction data stored in the memory 53. Select the correction data corresponding to the mounting method.
この構成によれば、メモリ53には、センサ2の異なる取付方法に対応する複数の補正データが記憶されている。そのため、補正データの選択を変更することによって、センサ2の様々な取付方法に対応してセンサ2の検出信号を容易に補正することができる。
According to this configuration, the memory 53 stores a plurality of correction data corresponding to different mounting methods of the sensor 2. Therefore, by changing the selection of the correction data, the detection signal of the sensor 2 can be easily corrected corresponding to various attachment methods of the sensor 2.
《実施形態2》
続いて、実施形態2に係るセンサ装置200について説明する。図7は、実施形態2に係るセンサ装置200の概略構成を示す正面図である。 <<Embodiment 2 >>
Next, thesensor device 200 according to the second embodiment will be described. FIG. 7 is a front view illustrating a schematic configuration of the sensor device 200 according to the second embodiment.
続いて、実施形態2に係るセンサ装置200について説明する。図7は、実施形態2に係るセンサ装置200の概略構成を示す正面図である。 <<
Next, the
センサ装置200は、サーバ208を含んでいる点でセンサ装置100と異なる。つまり、センサ装置100は、全ての要素が1つにパッケージ化されて、物理的に一体化されているのに対し、センサ装置200は、一部の要素(具体的には、サーバ208)が1つにパッケージ化された他の要素(具体的には、センサ2、接続管4及び処理部5)から物理的に分離されている。そこで、センサ装置200のうち、センサ装置100と異なる部分を中心に説明し、センサ装置100と同様の構成には同様の符号を付して、説明を省略する。
The sensor device 200 is different from the sensor device 100 in that it includes a server 208. That is, in the sensor device 100, all the elements are packaged into one and physically integrated, whereas the sensor device 200 includes some elements (specifically, the server 208). It is physically separated from other elements packaged in one (specifically, sensor 2, connecting pipe 4 and processing unit 5). Therefore, the sensor device 200 will be described mainly with respect to parts different from the sensor device 100, and the same reference numerals are given to the same components as the sensor device 100, and the description thereof will be omitted.
センサ装置200は、センサ2と、処理部5と、センサ2と処理部5とを接続する接続管4と、サーバ208とを備えている。
The sensor device 200 includes a sensor 2, a processing unit 5, a connecting pipe 4 that connects the sensor 2 and the processing unit 5, and a server 208.
サーバ208には、センサ2の取付方法に応じた補正データが記憶されている。すなわち、前述の補正係数C1,C2,C3は、サーバ208に記憶されている。
The server 208 stores correction data corresponding to the mounting method of the sensor 2. That is, the aforementioned correction coefficients C1, C2, and C3 are stored in the server 208.
一方、処理部5のメモリ53には、センサ2の取付方法(取付方法を示すデータを含む。以下同様。)が記憶されている。この取付方法は、出荷時や初期設定時に処理部5に入力される。
On the other hand, the memory 53 of the processing unit 5 stores the sensor 2 mounting method (including data indicating the mounting method; the same applies hereinafter). This attachment method is input to the processing unit 5 at the time of shipment or initial setting.
そして、処理部5は、メモリ53に記憶された取付方法を、通信部55を介してサーバ208に送信する。サーバ208は、処理部5から取付方法を受信すると、取付方法に応じた補正データ、即ち、補正係数C1,C2,C3の何れかを処理部5に返信する。処理部5は、補正データを受信すると、補正データをメモリ53に記憶する。
And the process part 5 transmits the attachment method memorize | stored in the memory 53 to the server 208 via the communication part 55. FIG. When the server 208 receives the attachment method from the processing unit 5, the server 208 returns correction data corresponding to the attachment method, that is, any one of the correction coefficients C 1, C 2, and C 3 to the processing unit 5. When receiving the correction data, the processing unit 5 stores the correction data in the memory 53.
補正部511は、出力算出部510が求めた振動レベルをメモリ53に記憶された補正データによって補正する。
The correction unit 511 corrects the vibration level obtained by the output calculation unit 510 with the correction data stored in the memory 53.
センサ装置100では、センサ2の様々な取付方法に対応する複数の補正データがメモリ53に記憶されている。そして、補正部511がその中からセンサ2の取付方法に対応する補正データを選択する。それに対し、センサ装置200では、センサ2の様々な取付方法に対応する複数の補正データがサーバ208に記憶されている。そして、サーバ208が取付方法に対応する補正データを処理部5に送信する。つまり、メモリ53には、複数の補正データのうちセンサ2の取付方法に対応する補正データだけが記憶されている。
In the sensor device 100, a plurality of correction data corresponding to various attachment methods of the sensor 2 are stored in the memory 53. And the correction | amendment part 511 selects the correction data corresponding to the attachment method of the sensor 2 from the inside. On the other hand, in the sensor device 200, a plurality of correction data corresponding to various attachment methods of the sensor 2 are stored in the server 208. Then, the server 208 transmits correction data corresponding to the attachment method to the processing unit 5. That is, the memory 53 stores only correction data corresponding to the mounting method of the sensor 2 among the plurality of correction data.
このような構成においても、センサ装置200は、センサ2からの検出結果をセンサ2の取付方法に応じて補正することができ、その結果、取付方法に起因する検出結果のバラツキが低減することができる。
Even in such a configuration, the sensor device 200 can correct the detection result from the sensor 2 in accordance with the mounting method of the sensor 2, and as a result, variation in the detection result due to the mounting method can be reduced. it can.
また、センサ装置200においては、補正データがサーバ208によって一括管理されているので、補正データを更新する際にはサーバ208が保持するデータを更新すればよく、更新の処理が簡素化される。
Further, in the sensor device 200, the correction data is collectively managed by the server 208. Therefore, when the correction data is updated, the data held by the server 208 may be updated, and the update process is simplified.
《実施形態3》
続いて、実施形態3に係るセンサ装置300について説明する。図8は、実施形態3に係るセンサ装置300における処理部305及びサーバ308のブロック図である。 << Embodiment 3 >>
Next, thesensor device 300 according to the third embodiment will be described. FIG. 8 is a block diagram of the processing unit 305 and the server 308 in the sensor device 300 according to the third embodiment.
続いて、実施形態3に係るセンサ装置300について説明する。図8は、実施形態3に係るセンサ装置300における処理部305及びサーバ308のブロック図である。 << Embodiment 3 >>
Next, the
センサ装置300は、サーバ308を含んでいる点でセンサ装置200と同様であり、センサ装置100と異なる。センサ装置300は、センサ2からの検出信号をサーバ308が補正する点でセンサ装置200と異なる。そこで、センサ装置300のうち、センサ装置100及びセンサ装置200と異なる部分を中心に説明し、センサ装置100及びセンサ装置200と同様の構成には同様の符号を付して、説明を省略する。
The sensor device 300 is the same as the sensor device 200 in that it includes a server 308, and is different from the sensor device 100. The sensor device 300 is different from the sensor device 200 in that the server 308 corrects the detection signal from the sensor 2. Therefore, the sensor device 300 will be described mainly with respect to parts different from the sensor device 100 and the sensor device 200, and the same reference numerals are given to the same components as the sensor device 100 and the sensor device 200, and the description thereof will be omitted.
センサ装置300は、センサ2と、処理部305と、センサ2と処理部305とを接続する接続管4と、サーバ308とを備えている。尚、図8においては、センサ2、接続管4の図示を省略している。センサ2、処理部305及び接続管4の外観は、実施形態1及び2と同様である。
The sensor device 300 includes a sensor 2, a processing unit 305, a connecting pipe 4 that connects the sensor 2 and the processing unit 305, and a server 308. In FIG. 8, illustration of the sensor 2 and the connecting pipe 4 is omitted. The appearances of the sensor 2, the processing unit 305, and the connecting pipe 4 are the same as those in the first and second embodiments.
処理部305は、振動処理部351と、温度処理部52と、メモリ53と、外部機器と通信する通信部55と、各種の設定を入力する入力部56とを有している。
The processing unit 305 includes a vibration processing unit 351, a temperature processing unit 52, a memory 53, a communication unit 55 that communicates with an external device, and an input unit 56 that inputs various settings.
振動処理部351は、フィルタ57と、増幅器58と、A/D変換部59と、出力算出部510とを有している。処理部305は、判定部54及び補正部511を含んでいない。また、メモリ53には、処理部305での処理に必要なプログラム及びデータ等が記憶されているものの、補正データは記憶されていない。つまり、処理部305が行うのは、振動レベルの算出までである。処理部305は、求めた振動レベルを通信部55を介してサーバ308に送信する。尚、処理部305は、温度処理部52により処理された信号も通信部55を介してサーバ308に送信する。
The vibration processing unit 351 includes a filter 57, an amplifier 58, an A / D conversion unit 59, and an output calculation unit 510. The processing unit 305 does not include the determination unit 54 and the correction unit 511. The memory 53 stores programs and data necessary for processing by the processing unit 305, but does not store correction data. In other words, the processing unit 305 performs only the calculation of the vibration level. The processing unit 305 transmits the obtained vibration level to the server 308 via the communication unit 55. Note that the processing unit 305 also transmits a signal processed by the temperature processing unit 52 to the server 308 via the communication unit 55.
サーバ308は、通信部381と、ストレージ382と、補正部383と、判定部384とを有している。
The server 308 includes a communication unit 381, a storage 382, a correction unit 383, and a determination unit 384.
通信部381は、外部機器と無線通信により信号の送受信を行う。例えば、通信部381は、処理部305から送信された振動レベルを受信する。
The communication unit 381 transmits and receives signals by wireless communication with an external device. For example, the communication unit 381 receives the vibration level transmitted from the processing unit 305.
ストレージ382は、サーバ308での処理に必要なプログラム及びデータ等を記憶している。例えば、ストレージ382は、センサ2の複数の取付方法に応じた複数の補正データを記憶している。また、ストレージ382は、複数のセンサ2のそれぞれの実際の取付方法を記憶している。ストレージ382は、記憶部の一例である。
The storage 382 stores programs and data necessary for processing by the server 308. For example, the storage 382 stores a plurality of correction data corresponding to a plurality of attachment methods of the sensor 2. Further, the storage 382 stores the actual attachment method of each of the plurality of sensors 2. The storage 382 is an example of a storage unit.
補正部383は、補正部511と同様の機能を有する。すなわち、補正部383は、補正データを用いて振動レベルを補正する。補正部383は、処理部305から振動レベルを受信すると、該振動レベルに対応するセンサ2の取付方法(取付方法を示すデータを含む。以下同様。)をストレージ382から読み出すと共に、該取付方法に対応する補正データ(即ち、補正係数)をストレージ382から読み出す。そして、補正部383は、振動レベルを読み出した補正データによって補正する。
The correction unit 383 has the same function as the correction unit 511. That is, the correction unit 383 corrects the vibration level using the correction data. When the correction unit 383 receives the vibration level from the processing unit 305, the correction unit 383 reads out the mounting method of the sensor 2 corresponding to the vibration level (including data indicating the mounting method; the same applies hereinafter) from the storage 382, and the mounting method is used. Corresponding correction data (ie, correction coefficient) is read from the storage 382. Then, the correction unit 383 corrects the vibration level with the read correction data.
判定部384は、判定部54と同様の機能を有する。すなわち、判定部384は、補正された振動レベル及び/又は温度処理部52により処理された信号に基づいて測定対象物の状態を判定する。
The determination unit 384 has the same function as the determination unit 54. That is, the determination unit 384 determines the state of the measurement object based on the corrected vibration level and / or the signal processed by the temperature processing unit 52.
このように、センサ装置300では、サーバ308が補正データを保持しており、センサ2の検出信号をサーバ308が補正データを用いて補正する。これにより、処理部305の処理が簡素化される。
As described above, in the sensor device 300, the server 308 holds the correction data, and the server 308 corrects the detection signal of the sensor 2 using the correction data. Thereby, the process of the process part 305 is simplified.
尚、処理部305は、振動レベルを算出しているが、サーバ308が振動レベルの算出を行ってもよい。つまり、処理部305は、センサ2からの検出信号をA/D変換するまでの処理を行い、処理後のデジタル信号をサーバ308に出力してもよい。
The processing unit 305 calculates the vibration level, but the server 308 may calculate the vibration level. That is, the processing unit 305 may perform processing until the detection signal from the sensor 2 is A / D converted, and output the processed digital signal to the server 308.
《その他の実施形態》
以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 << Other Embodiments >>
As described above, the embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated by the said embodiment and it can also be set as a new embodiment. In addition, among the components described in the attached drawings and detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the technology. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 << Other Embodiments >>
As described above, the embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated by the said embodiment and it can also be set as a new embodiment. In addition, among the components described in the attached drawings and detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the technology. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
前記実施形態について、以下のような構成としてもよい。
The above-described embodiment may be configured as follows.
例えば、測定対象物90は、スチームトラップに限られない。
For example, the measurement object 90 is not limited to a steam trap.
センサ装置100の構成は、前述の構成に限られない。例えば、センサ装置100では、センサ2と処理部5とが接続管4を介さずに連結されていてもよい。センサ装置100は、温度及び振動を検出しているが、温度検出機構30を有さず、振動のみを検出してもよい。
The configuration of the sensor device 100 is not limited to the above-described configuration. For example, in the sensor device 100, the sensor 2 and the processing unit 5 may be coupled without using the connection pipe 4. The sensor device 100 detects temperature and vibration, but may not detect the temperature detection mechanism 30 and may detect only vibration.
センサ装置100の測定対象物への取付は、前記第1~第3取付方法に限られない。センサ2を測定対象物に取り付けることができる限りは、任意の取付方法を採用し得る。
The attachment of the sensor device 100 to the measurement object is not limited to the first to third attachment methods. Any attachment method can be adopted as long as the sensor 2 can be attached to the measurement object.
センサ2の構成は、前述の構成に限られない。例えば、圧電素子の個数は、2つである必要はなく、1つ、又は3つ以上であってもよい。また、センサ2において検出針21、ウエイト27及び皿バネ28等は必須ではなく、測定対象物の振動が圧電素子に入力される構成であれば、任意の構成を採用し得る。
The configuration of the sensor 2 is not limited to the configuration described above. For example, the number of piezoelectric elements need not be two, but may be one, or three or more. In the sensor 2, the detection needle 21, the weight 27, the disc spring 28, and the like are not essential, and any configuration can be adopted as long as the vibration of the measurement target is input to the piezoelectric element.
センサ装置100,200,300は、測定対象物の状態を判定しているが、これに限られるものではない。つまり、センサ装置100,200,300は、センサ2からの検出結果をセンサ2の取付方法に応じて補正するところまでを行う構成であってもよい。
The sensor devices 100, 200, and 300 determine the state of the measurement object, but are not limited thereto. That is, the sensor devices 100, 200, and 300 may be configured to correct the detection result from the sensor 2 in accordance with the attachment method of the sensor 2.
処理部5,305は、外部機器(例えば、サーバ8,208,308)と無線ではなく、有線で接続されてもよい。
The processing units 5 and 305 may be connected to an external device (for example, the servers 8, 208, and 308) by wire instead of wirelessly.
また、センサ2の検出結果(例えば、振動レベル)の補正は、補正係数を掛け合わせるものに限られない。センサ2の検出結果をセンサ2の取付方法に応じて補正できる限りは、任意の補正方法を採用し得る。例えば、取付方法ごとに設定された補正式を用いて、センサ2の検出結果を補正してもよい。前述の補正係数は、振動レベルの大きさにかかわらず一定であるが、補正式は、振動レベルを変数とする関数(例えば、振動レベルが大きくなるほど大きくなる)であり、補正式の値は、振動レベルに応じて変動する。つまり、センサ2からの振動レベルによって補正式の値が決まり、補正式の値を振動レベルに掛け合わせることによって振動レベルが補正される。
Further, the correction of the detection result (for example, vibration level) of the sensor 2 is not limited to the multiplication of the correction coefficient. As long as the detection result of the sensor 2 can be corrected according to the attachment method of the sensor 2, any correction method can be adopted. For example, the detection result of the sensor 2 may be corrected using a correction formula set for each attachment method. The correction coefficient described above is constant regardless of the magnitude of the vibration level, but the correction formula is a function with the vibration level as a variable (for example, it increases as the vibration level increases), and the value of the correction formula is It fluctuates according to the vibration level. That is, the value of the correction formula is determined by the vibration level from the sensor 2, and the vibration level is corrected by multiplying the value of the correction formula by the vibration level.
以上説明したように、ここに開示された技術は、センサ装置及びセンサの補正方法について有用である。
As described above, the technique disclosed herein is useful for the sensor device and the sensor correction method.
100,200,300 センサ装置
2 センサ
53 メモリ(記憶部)
511,383 補正部
90 測定対象物
382 ストレージ(記憶部)
100, 200, 300Sensor device 2 Sensor 53 Memory (storage unit)
511, 383Correction unit 90 Measurement object 382 Storage (storage unit)
2 センサ
53 メモリ(記憶部)
511,383 補正部
90 測定対象物
382 ストレージ(記憶部)
100, 200, 300
511, 383
Claims (4)
- 測定対象物に取り付けられ、測定対象物の振動を検出するセンサと、
前記センサからの検出結果を補正する補正部とを備え、
前記補正部は、前記検出結果を前記センサの取付方法に応じて補正することを特徴とするセンサ装置。 A sensor that is attached to the measurement object and detects vibration of the measurement object;
A correction unit for correcting a detection result from the sensor,
The said correction | amendment part correct | amends the said detection result according to the attachment method of the said sensor, The sensor apparatus characterized by the above-mentioned. - 請求項1に記載のセンサ装置において、
前記補正部は、前記センサの取付方法に応じて設定された補正データによって前記検出結果を補正することを特徴とするセンサ装置。 The sensor device according to claim 1,
The sensor unit, wherein the correction unit corrects the detection result with correction data set in accordance with a mounting method of the sensor. - 請求項1又は2に記載のセンサ装置において、
前記センサの異なる取付方法に対応する複数の補正データを記憶する記憶部をさらに備え、
前記補正部は、前記記憶部に記憶された複数の前記補正データの中から前記センサの取付方法に対応する補正データを選択することを特徴とするセンサ装置。 The sensor device according to claim 1 or 2,
A storage unit for storing a plurality of correction data corresponding to different mounting methods of the sensor;
The sensor unit is characterized by selecting correction data corresponding to an attachment method of the sensor from a plurality of the correction data stored in the storage unit. - 測定対象物の振動を、測定対象物に取り付けられたセンサによって検出する工程と、
前記センサからの検出結果を前記センサの取付方法に応じて補正する工程とを含むことを特徴とするセンサの補正方法。 Detecting the vibration of the measurement object by a sensor attached to the measurement object;
And a step of correcting a detection result from the sensor in accordance with a mounting method of the sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017544683A JP6276484B1 (en) | 2016-06-03 | 2017-04-14 | Sensor device and sensor correction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-112180 | 2016-06-03 | ||
JP2016112180 | 2016-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017208646A1 true WO2017208646A1 (en) | 2017-12-07 |
Family
ID=60479283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015349 WO2017208646A1 (en) | 2016-06-03 | 2017-04-14 | Sensor device and sensor correcting method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6276484B1 (en) |
WO (1) | WO2017208646A1 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5135151U (en) * | 1974-09-06 | 1976-03-16 | ||
JPS5561258A (en) * | 1978-10-30 | 1980-05-08 | Toshiba Corp | Apparatus for monitoring vibration at end of stator winding for rotary electric machine |
JPS59190473A (en) * | 1983-04-11 | 1984-10-29 | Nissan Motor Co Ltd | Detecting device of fuel injection timing in diesel engine |
JPS6284719U (en) * | 1985-11-15 | 1987-05-29 | ||
JPH05187604A (en) * | 1992-01-14 | 1993-07-27 | Kyushu Electric Power Co Inc | Boiler tube leakage inspection method and device thereof |
JPH11316881A (en) * | 1998-03-06 | 1999-11-16 | Omron Corp | Burglarproof sensor |
JP2000121425A (en) * | 1998-10-15 | 2000-04-28 | Tlv Co Ltd | Vibrating state detecting device |
JP2003042835A (en) * | 2001-07-30 | 2003-02-13 | Nsk Ltd | Sensor and bearing apparatus having the same |
JP2010043951A (en) * | 2008-08-12 | 2010-02-25 | Tlv Co Ltd | Valves operating state detector |
JP2010043950A (en) * | 2008-08-12 | 2010-02-25 | Tlv Co Ltd | Valves operating state detector |
JP2012208083A (en) * | 2011-03-30 | 2012-10-25 | Anritsu Sanki System Co Ltd | Measuring apparatus |
JP2014228471A (en) * | 2013-05-24 | 2014-12-08 | 能美防災株式会社 | Structure degradation diagnostic system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0755553A (en) * | 1993-08-12 | 1995-03-03 | Toshiba Corp | Measuring instrument |
JPH11173833A (en) * | 1997-12-09 | 1999-07-02 | Canon Inc | Automatic recognition equipment for component, and electronic apparatus using the same |
-
2017
- 2017-04-14 JP JP2017544683A patent/JP6276484B1/en active Active
- 2017-04-14 WO PCT/JP2017/015349 patent/WO2017208646A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5135151U (en) * | 1974-09-06 | 1976-03-16 | ||
JPS5561258A (en) * | 1978-10-30 | 1980-05-08 | Toshiba Corp | Apparatus for monitoring vibration at end of stator winding for rotary electric machine |
JPS59190473A (en) * | 1983-04-11 | 1984-10-29 | Nissan Motor Co Ltd | Detecting device of fuel injection timing in diesel engine |
JPS6284719U (en) * | 1985-11-15 | 1987-05-29 | ||
JPH05187604A (en) * | 1992-01-14 | 1993-07-27 | Kyushu Electric Power Co Inc | Boiler tube leakage inspection method and device thereof |
JPH11316881A (en) * | 1998-03-06 | 1999-11-16 | Omron Corp | Burglarproof sensor |
JP2000121425A (en) * | 1998-10-15 | 2000-04-28 | Tlv Co Ltd | Vibrating state detecting device |
JP2003042835A (en) * | 2001-07-30 | 2003-02-13 | Nsk Ltd | Sensor and bearing apparatus having the same |
JP2010043951A (en) * | 2008-08-12 | 2010-02-25 | Tlv Co Ltd | Valves operating state detector |
JP2010043950A (en) * | 2008-08-12 | 2010-02-25 | Tlv Co Ltd | Valves operating state detector |
JP2012208083A (en) * | 2011-03-30 | 2012-10-25 | Anritsu Sanki System Co Ltd | Measuring apparatus |
JP2014228471A (en) * | 2013-05-24 | 2014-12-08 | 能美防災株式会社 | Structure degradation diagnostic system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017208646A1 (en) | 2018-06-14 |
JP6276484B1 (en) | 2018-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6568596B2 (en) | Sensor device and sensor correction method | |
JP6090742B2 (en) | Pressure detection device | |
EP3088859B1 (en) | Pressure measurement device | |
US10989588B2 (en) | Sensor device | |
JP2009250969A (en) | Pressure sensor assembly for measuring absolute pressure | |
US9316551B2 (en) | Torque insensitive header assembly | |
JP6427421B2 (en) | Sensor device | |
JP2010107500A (en) | Pressure detection apparatus | |
US20170184444A1 (en) | Sensor device | |
JP6276484B1 (en) | Sensor device and sensor correction method | |
WO2022198984A1 (en) | Sensor control method and apparatus, and terminal device and storage medium | |
KR20190072581A (en) | Sensorless integrated connection member | |
JP6905906B2 (en) | Vibration detector | |
JP2010043950A (en) | Valves operating state detector | |
JP6754218B2 (en) | Sensor device and its installation confirmation method | |
US20080127750A1 (en) | Reducing strain level in torque sensing system | |
RU196040U1 (en) | Acoustic signal receiving device for diagnosing the state of the controlled object | |
RU2008118191A (en) | METHOD FOR MONITORING CHANGES OF DEBIT LEVELS OF SOLID INCLUSIONS AND DROP MOISTURE IN A GAS FLOW IN A PIPELINE, ACOUSTIC SENSOR, EMISSION RESONANCE TYPE FOR ITS IMPLEMENTATION AND METHOD OF CALIBRATION | |
US10718682B2 (en) | Method for calibrating at least one sensor, in particular a pressure sensor, having at least one signal-conducting connection to at least one signal converter | |
JP2021183913A (en) | Sensor device | |
CN109959394B (en) | Processing device, mobile device and method for calibrating sensor output signals of a sensor | |
SU1081448A1 (en) | Absolute pressure pickup | |
JP2009229329A (en) | Output correction device for cylinder pressure sensor and cylinder pressure detecting device provided therewith | |
JP2016121955A (en) | Combustion pressure sensor | |
JPWO2019003692A1 (en) | Sensor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017544683 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806206 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806206 Country of ref document: EP Kind code of ref document: A1 |