WO2017208596A1 - Surgical instrument - Google Patents

Surgical instrument Download PDF

Info

Publication number
WO2017208596A1
WO2017208596A1 PCT/JP2017/012579 JP2017012579W WO2017208596A1 WO 2017208596 A1 WO2017208596 A1 WO 2017208596A1 JP 2017012579 W JP2017012579 W JP 2017012579W WO 2017208596 A1 WO2017208596 A1 WO 2017208596A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light emitting
light
layer
emission
Prior art date
Application number
PCT/JP2017/012579
Other languages
French (fr)
Japanese (ja)
Inventor
和央 吉田
雄史 小野
敦 今村
智博 内田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018520678A priority Critical patent/JP7011583B2/en
Publication of WO2017208596A1 publication Critical patent/WO2017208596A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B42/00Surgical gloves; Finger-stalls specially adapted for surgery; Devices for handling or treatment thereof
    • A61B42/10Surgical gloves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a surgical instrument, and more particularly, includes an organic electroluminescence element that reduces the formation of shadows as a light source (shadowless lamp) when inserted into the body during surgery and illuminates the affected area.
  • the present invention relates to a surgical instrument for surgery.
  • the illumination technology applied in the case of surgery and medical procedures is generally overhead illumination.
  • This overhead illumination is often used by a fixture mounted on the operative field or by a fiber optic system attached to the surgeon's head.
  • the conventional overhead lighting system has several problems.
  • For the overhead light source direct exposure of the operative field is required.
  • the illumination may interfere due to a change in the positioning of the patient or the surgeon, and a shadow portion due to the position of the illumination or the like is generated. For this reason, frequent adjustment is required with respect to the position of the lighting device, which places an extra burden on the surgeon performing the operation and results in blocking the flow of the operation.
  • overhead illumination is often insufficient for surgery in relatively deep cavities, and in such cases, illumination with more focused irradiation light is required.
  • the head-mounted optical fiber system is currently used only for more limited operations.
  • the lighting device described above has many problems.
  • an optical cord is connected to the head-mounted optical fiber system, which limits the degree of freedom of movement in the operating room.
  • this method has a problem that, when used for a long time, it involves fatigue of the head and neck that are wearing parts.
  • a surgical illumination device that can reach the internal region of the human body incised by the surgeon.
  • a “retractor” is usually used to open and hold an incision during surgery.
  • the retractor is inserted into a patient's incision and used to widen the affected area.
  • a method of treating the wound retractor by adding illumination means is known.
  • an optical fiber cable is directly attached to the uppermost surface of the retractor used in the operation, and a high-intensity light source is provided at the distal end of the retractor via this optical fiber.
  • a retractor including an LED module capable of illuminating a surgical region in a body cavity with a large amount of light and in a wide range has been disclosed (for example, see Patent Document 2).
  • an LED as a surface illumination means is provided at the tip of a retractor blade used for opening and holding an incision.
  • the LED or organic electroluminescent element which is a surface light emitter provided in the retractor disclosed in Patent Document 3, is attached to the light emitting surface during surgery when the retractor is inserted into the body.
  • the emission spectrum of these surface illuminants changes, the color tone of the affected area that is the subject of surgery changes, in many cases by shifting to the red system (blue and green spectrum drop), This will hinder accurate color tone judgment of the lesioned part and decrease the sharpness of the light irradiation part. Therefore, development of a method capable of instantaneously correcting the emission spectrum to an appropriate color tone even when blood adheres to the surface light emitter is desired.
  • a surgical light using an organic electroluminescence element as a surface light emitter that can be illuminated with a small, simple configuration and uniform brightness is disclosed (for example, a patent).
  • Reference 4 the light-emitting surface of the organic electroluminescence element is made concave, thereby preventing a shadow from being generated by an operator during dental treatment or surgery.
  • the method described in Patent Document 4 plays a role as overhead illumination, and no specific description as a light source to be inserted into the body is made.
  • the present invention has been made in view of the above problems, and the problem to be solved is to correct an emission spectrum that has changed due to adhesion of blood or the like to a light-emitting surface with an illumination light source for surgery. It is an object of the present invention to provide a surgical instrument having as a light source a surface-emitting type surgical light organic electroluminescence element capable of improving the workability of surgery under an emission spectrum.
  • the present inventor has quickly adjusted an emission spectrum that has been changed due to adhesion of blood or the like to the light emitting surface of the organic electroluminescence element by adjusting the drive current to obtain an appropriate emission spectrum. It was found that a surgical surgical instrument equipped with a surgical light organic electroluminescence element capable of realizing stable color tone illumination and improving the workability of surgery can be obtained. It came.
  • a surgical instrument equipped with a surface-emitting light source that is inserted into the body and used during surgery is an organic electroluminescence element
  • the surgical instrument according to claim 1 wherein the emission spectrum of the organic electroluminescence element satisfies a condition defined by the following formula (1) with respect to a change in an applied drive current.
  • the organic electroluminescence device includes a light emitting unit including a pair of electrodes and at least an organic layer sandwiched between the electrode pair on a base material, and the base material is a flexible base material.
  • the instrument to be inserted and used in the body is a surgical glove, and the organic electroluminescence element is disposed on each finger or upper part of the surgical glove.
  • the operability of surgery can be improved under an appropriate emission spectrum by quickly correcting the emission spectrum changed due to adhesion of blood or the like with an illumination light source for surgery.
  • a surgical instrument having an organic electroluminescence element as a light source as a light source can be provided.
  • the intensity change ratio of the blue and red wavelength peaks after the current change is larger in blue than red, that is, Ib / Ibo> Ir / Iro.
  • This is preferably a flexible shape that can be easily incorporated into the body, for example, a shape that can be easily applied to a device such as a retractor or a glove that can be worn by a surgeon, from the viewpoint of further exerting the effect. .
  • a toning method capable of independently driving and controlling the blue light emission layer is used to correct the spectral change that occurs during blood adhesion by increasing the blue light emission intensity by adjusting the current during surgery. Can do.
  • the distance between the anode as the first electrode and the cathode as the second electrode is increased.
  • the cathode as the second electrode is made of a metal material having a film thickness of 100 nm or more, and the surface is rough. Therefore, if the film thickness between the anode and the cathode is thin, leakage occurs, causing abnormal heat generation. Become.
  • the organic electroluminescence element applied to the present invention has a structure in which two or more organic functional layer units are stacked, so that the film thickness between the anode as the first electrode and the cathode as the second electrode is increased. It becomes thicker and it is possible to reduce the concern about abnormal heat generation. This can prevent abnormal heat generation in a flexible light source that has a high risk of leakage due to bending.
  • an organic electroluminescence element can be applied with a large current, and the current efficiency (cd / A) decreases as the luminance increases. Therefore, when used in a high-luminance region, it is possible to suppress heat generation without losing efficiency by dividing and irradiating an arbitrary luminance with a plurality of organic functional layer units rather than driving with a single organic functional layer unit. is there.
  • Sectional drawing which shows an example of the whole structure including the sealing structure of the light emission unit of the organic EL element applicable to this invention
  • Schematic cross-sectional view showing an example of a detailed configuration of an organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked
  • Schematic cross-sectional view showing another example of the configuration of an organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked
  • Schematic cross-sectional view showing another example of the configuration of an organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked
  • Schematic cross-sectional view showing an example of an independently driven (toning method) organic EL element in which three independent light emitting units are stacked
  • Schematic cross-sectional view showing another example of the configuration of an independently driven organic EL element in which three independent light emitting units are sandwiched between a pair of electrodes
  • Top view showing an example of an organic EL element unit in which three
  • the surgical surgical instrument of the present invention is a surgical surgical instrument equipped with a surface-emitting light source that is used by inserting into the body during surgery, wherein the surface-emitting light source is an organic electroluminescent element, and the organic electroluminescent element
  • the surface-emitting light source is an organic electroluminescent element
  • the organic electroluminescent element when the applied drive current is changed, the change in the emission intensity of the blue emission spectrum is larger than the change in the emission intensity of the red emission spectrum.
  • the drive current to be applied to the emission spectrum that has changed due to blood, etc. on the surface it is quickly corrected to an appropriate emission spectrum, thereby realizing stable color tone illumination and operating efficiency of surgery.
  • Surgery with a surface-emitting surgical light organic electroluminescence device that can improve the light source as a light source It is possible to obtain a surgical instrument. This feature is a technical feature common to or corresponding to each claim.
  • a light-emitting unit in which an organic EL element includes a pair of electrodes and at least an organic layer sandwiched between the electrode pairs from the viewpoint that the effects of the present invention can be further expressed.
  • the base material is a flexible base material, so that it can be stably fixed to the blade portion (retraction part) of a retractor having various curved surfaces, and compared with a glass base material or the like. Since there is no fear of damage when subjected to an impact, safety as a surgical instrument for insertion into the body can be ensured.
  • an instrument used by being inserted into the body is a retractor widely used in the medical field, and is provided at the tip of the arm of the retractor.
  • a surface-emitting light source that does not obstruct the operation without occupying a wide area in the incised narrow body by arranging a thin organic EL element having the above spectral characteristics on the surface of the retracted plate. Can be provided.
  • the instrument inserted and used in the body is a surgical glove worn by a doctor, and the surgical glove is organically attached to the finger or palm of the surgical glove.
  • the surface illumination device can be freely moved during the operation with respect to the retractor, and a desired illumination position can be stably illuminated.
  • the organic EL element is a toning type capable of controlling the emission wavelength in that an appropriate emission spectrum can be selected according to the purpose.
  • the organic EL element has a tandem configuration in which two or more light emitting units are stacked, and when blood or the like adheres to the light emitting surface of the organic EL element, a driving current to select and apply a specific light emitting unit is selected. By controlling, it is preferable in that it can be quickly corrected to an optimum emission spectrum.
  • is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
  • the surgical surgical instrument of the present invention is an instrument equipped with a surface-emitting light source that is used by being inserted into the body during surgery, wherein the surface-emitting light source is an organic electroluminescence element, and the organic electroluminescence element is applied By changing the drive current, the characteristics satisfying the condition defined by the following expression (1) are provided.
  • Ibo is the emission intensity of the maximum maximum emission wavelength ( ⁇ B max ) in the blue emission region (400 to 500 nm) before the drive current change
  • Ib is the blue emission region (400 Is the emission intensity of the maximum maximum emission wavelength ( ⁇ B max ) at ⁇ 500 nm)
  • Iro is the emission intensity of the maximum emission wavelength ( ⁇ R max ) in the red emission region (570 to 700 nm) before the drive current change
  • Ir represents the light emission intensity at the maximum maximum light emission wavelength ( ⁇ R max ) in the red light emission region (570 to 700 nm) after the drive current is changed.
  • the range of the ratio value represented by Ib / Ibo is not particularly limited, but is preferably within the range of 1.25 or more and 1.60 or less, and is represented by Ir / Iro.
  • the ratio value is preferably in the range of 1.01 or more and less than 1.25.
  • a surgical surgical instrument such as a retractor
  • a surgical surgical instrument is a surgical surgical instrument that is used to spread a soft tissue at a surgical site, such as an incised skin tissue part.
  • a retractable plate also called a blade or a retractor
  • a surface-emitting light source such as blue light, green light, and red light is adjusted to balance the luminance of light emission, and a white light-emitting organic EL element is attached to the retractable plate, and used as short-distance illumination during surgery.
  • Hemoglobin G present in blood erythrocytes has light absorption in the 400 to 600 nm region, and particularly has strong absorption in the blue light emitting region. As a result, the emission spectrum shifts from the original white light emission to the strong light source of red light as the light emission characteristics. As a result, it is difficult to determine an accurate color tone of the lesion, which is an important diagnostic requirement. In addition, since the ratio of red light (long wavelength) increases, sharpness decreases.
  • the driving current applied to the organic EL element is changed, and the blue light emitting region (400 to 400) before the driving current change is changed.
  • the highest maximum emission wavelength (the ratio of the values of the emission intensity Ib of the largest maximum emission wavelength in the blue light-emitting region after the drive current change to the emission intensity Ibo (400 ⁇ 500nm) ( ⁇ B max) of .lambda.B max) in 500 nm) (Ib / Ibo) is the maximum maximum in the red light emitting region (570 to 700 nm) after the change of the driving current with respect to the light emission intensity Iro at the maximum maximum light emitting wavelength ( ⁇ R max ) in the red light emitting region (570 to 700 nm) before the driving current is changed.
  • FIGS. 1A and 1B are schematic diagrams for explaining a change in an emission spectrum due to blood adhesion in an organic EL element and a compensation method for the changed emission spectrum.
  • (A1) shown in FIG. 1A is a profile of the emission spectrum 1 exhibiting white light emission in the organic EL element (OLED1) before the drive current change, and the maximum light emission intensity in the blue light emission region is Ibo and in the red light emission region.
  • the maximum emission intensity is Iro.
  • (A2) shown in FIG. 1A is a profile of the emission spectrum 2 (indicated by a broken line) when blood (B) adheres to the light emitting surface side of the organic EL element (OLED1) before the drive current change.
  • blue light and green light are absorbed by the influence of red hemoglobin in the blood, resulting in a light emission spectrum having a relatively high red light ratio, which is a characteristic far from the light emission spectrum 1 of the originally required white light emission.
  • the emission spectrum 3 of the organic EL element (OLED2) shown in (B1) of FIG. 1B is the maximum emission in the red emission region as a current condition applied to the organic EL element with respect to the emission spectrum 1 shown in FIG. 1A.
  • the maximum emission intensity Ib in the blue light emitting region is set to be higher, and the emission spectrum condition satisfying “Ib / Ibo> Ir / Iro” defined by the expression (1).
  • the emission spectrum 3 (solid line) is an emission characteristic with a relatively high emission ratio of blue light.
  • the present invention there is no particular limitation as a means for achieving the condition of “Ib / Ibo> Ir / Iro” defined by the formula (1) due to a change in driving current, but as a configuration of the organic EL element, By using an independently driven (toning method) organic EL element in which two or more independent light emitting units are stacked as described later, and by increasing the current applied to the light emitting unit for blue light emission, the blue light emission intensity ( Examples thereof include a method of increasing Ib), a method of increasing the blue light emission time by pulse driving, and the like.
  • a method in which a plurality of types of light emission driving conditions are set in advance, and a condition when blood is not adhered and a condition after blood is appropriately selected according to the situation is also a preferable method.
  • FIG. 2 is a schematic diagram showing an example of a method for explaining an example of means for achieving the condition defined by the expression (1).
  • FIG. 2 shows LUMO-HOMO of ETL (electron transport layer) adjacent to HOST (light emitting layer). Electrons move to LUMO, but when there is a difference between the HOST and ETL LUMO to some extent, specifically when the drive current is increased when it is 0.1 eV or more, the electrons are accumulated in the ETL LUMO before the drive current is increased. Compared to the state A shown in FIG. 2, in the state B where the current shown in FIG. 2 is increased, electrons are more likely to move to the HOST LUMO. Therefore, electrons easily flow, so that recombination of electrons and holes in HOST is performed efficiently, and blue emission intensity can be improved.
  • ETL electron transport layer
  • FIG. 3 is a perspective view showing a state where organic EL elements are mounted on the inner surfaces of a pair of retractors of a retractor that is a typical surgical surgical instrument.
  • the numbers described in parentheses at the end of the constituent elements represent the symbols described in the figures.
  • the retractor (50) includes a pair of first retractor (57A) and second retractor (57B) for locking and holding the incision site when the incision site is expanded.
  • a pair of arms (55A and 55B) provided on the distal end side has a hook-like configuration that can be opened and closed via a hinge portion (54).
  • the pair of arms (55A and 55B) are integrally provided with handles (53A and 53B), respectively.
  • And 53B) are provided with rings (51A and 51B) for inserting fingers.
  • the hinge part (54) is opened so that the distal end side of the arms (55A and 55B) is opened. It rotates around the center.
  • a lock mechanism including a ratchet tooth (52) or the like that can fix the handle (53A and 53B) in an immobile state is provided. .
  • each of the pair of first retractor (57A) and second retractor (57B) provided at the distal ends of the arms (55A and 55B) is opposed to each other.
  • the organic EL element (OLEDa, OLEDb) according to the present invention is mounted on the surface to be performed.
  • the organic EL element is preferably attached to each retractor (57A and 57B) in a detachable state.
  • the retractor (50) shown in FIG. 3 may be handled by a single retractor if it is a small incision, but if the incision is large, a plurality of retractors are arranged at different positions. It may be a method of illuminating.
  • the retractor (50) illustrated in FIG. 3 has a configuration in which the two arms can freely move.
  • the retractor (50) illustrated in FIG. 3 has a configuration in which the two arms can freely move.
  • the retractor according to the present invention may have a plurality of retractor units arranged at different positions.
  • FIG. 4 is a perspective view showing an example of a retractor configured by a plurality of retractor units including the organic EL element according to Embodiment 2 of the present invention.
  • the retractor shown in FIG. 4 shows an example in which three units of a three-joint retractable fixator are arranged in different directions.
  • the first universal retractor unit (60A) has three joints, and a retractor (69) having an organic EL element (OLED) can be arranged at a free position.
  • a retractor (69) having an organic EL element (OLED) can be arranged at a free position.
  • the first universal retractor unit (60A) is fixed to the operating table (59) by the operating table fixing bracket (61).
  • a main body support rod (62) In the upper part of the operating table fixing bracket (61), a main body support rod (62), a third joint freely movable (63), a second arm (64), an elbow joint (65), a first arm (66), It has a first joint freedom (67) and a hook fixing part (68), and a retractor (69A) having an organic EL element (OLED) attached to the tip of the hook fixing part (68). is doing.
  • a second universal retractor unit (60B) and a third universal retractor unit (60C) having the same configuration as the first universal retractor unit (60A) are arranged in a perpendicular direction.
  • the organic EL element When an organic EL element is mounted on a retractor having a curved surface as shown in FIGS. 3 and 4, the organic EL element itself has flexibility and can be fixed in a curved state with respect to the curved surface of the wound part. Is preferred.
  • FIG. 5 is a schematic view showing an example in which a concave organic EL element is provided on a curved retractor surface.
  • FIG. 5 shows a partial structure of the retractor (50) described with reference to FIG. 3, and a retractor (57) having a curved surface structure at the tip of the arm (55) via an arm connecting part (56). And an organic EL element (OLED) in a curved state is mounted on the surface thereof. At this time, the organic EL element is preferably configured to be removable from the retractor (57).
  • OLED organic EL element
  • a cover having sterilization resistance may be attached to the surface portion of the organic EL element.
  • a resin base material having flexibility is used as a base material, or as a material constituting an electrode, it is superior to conventional ITO (indium tin oxide). It is preferable to apply a thin film silver electrode having flexibility, a silver grid, or IZO (indium oxide / zinc oxide).
  • the organic EL device according to the present invention is a preferable mode in addition to the retractor as described in the first and second embodiments, and the specification of the surgical glove worn by the doctor.
  • FIGS. 6A and 6B are perspective views showing an example of a configuration of a surgical glove equipped with an organic EL element according to an embodiment of the present invention.
  • FIG. 6A shows a form in which an organic EL element (OLED) is attached to each fingertip of a surgical glove (71), and FIG. 6B shows an organic EL on the palm or back of the surgical glove (71).
  • OLED organic EL
  • OLED organic EL element
  • FIG. 7 is a cross-sectional view showing an example of the entire configuration including a sealing structure of a light emitting unit of an organic EL element applicable to the present invention.
  • the organic EL element (OLED) shown in FIG. 7 includes a first electrode (3, anode) constituting one of a pair of electrodes on the base material (1), and an organic functional layer group 1 (22) thereon.
  • the organic functional layer unit (4) is composed of the light emitting layer (23) and the organic functional layer group 2 (24).
  • the second electrode (6, cathode) as the other electrode is formed, and the light emitting unit (12) is formed from the first electrode (3) to the second electrode (6). Is configured.
  • only one light emitting unit (12) is shown for convenience, but a structure in which two or more light emitting units (12) are stacked, or a plurality of light emitting units (12) are arranged in parallel. It may be a configuration.
  • an adhesive layer for sealing (13) and a sealing substrate (14) are provided on the second electrode (6) so as to cover at least the light emitting unit (12), and an organic EL element (OLED) ) Is formed.
  • OLED organic EL element
  • the first electrode (3) is formed of a transparent electrode, so that the emitted light (L) emitted from the light emitting point (h) of the light emitting unit (12) is transparent. It can be taken out from the first electrode (3) side which is an electrode.
  • the base material (1) and the sealing substrate (14) are preferably resin base materials that have flexibility and are not likely to be damaged. When a crow base material or the like is applied, the flexibility is insufficient, and there is a great problem when damage is caused during insertion into the body.
  • Requirement B When mounting an organic EL element that is a surface-emitting light source on a surgical instrument, it is preferable that the specification is detachable from a holder (for example, a retractor retractor or a surgical glove).
  • a holder for example, a retractor retractor or a surgical glove.
  • Requirement C Considering that the light source is applied to a surgical instrument, the light emission area is 10 cm 2 or more, the light emission luminance is 1000 cd / m 2 or more, the luminance uniformity [(the minimum value of luminance / (Maximum value of luminance) ⁇ 100 (%)] is preferably 80% or more.
  • Requirement D It is preferable that the emission characteristics are basically white emission, have at least three maximum emission wavelengths, and have color rendering properties.
  • Requirement E The thickness of the organic EL element as the light source part is preferable in that the incision part of the patient can be minimized by adopting a thin configuration of 2 mm or less.
  • the total thickness of the organic layer is preferably 200 nm or more from the viewpoint of suppressing the occurrence of leakage and preventing a sudden loss of light emitting function during surgery.
  • the organic EL element is preferably a toning type capable of controlling the emission wavelength, and further preferably has a tandem configuration in which two or more light emitting units are stacked.
  • Type A which is an example of an organic EL element configuration is a toning type configuration in which a first electrode / first light emitting unit / intermediate electrode / second light emitting unit / second electrode are laminated on a base material, The structure which can perform light emission control of the 1st light emission unit and the 2nd light emission unit independently is mentioned. Specifically, the configuration is illustrated in FIGS. 8 to 10 described later.
  • the first light emitting unit emits blue light
  • a configuration in which the second light emitting unit emits green light and red light is preferable.
  • Type B which is another example of the organic EL element configuration, has a first electrode / first light emitting unit / first intermediate electrode / second light emitting unit / second intermediate electrode / third on the substrate.
  • the first light emitting unit emits blue light.
  • the second light-emitting unit is a green light-emitting layer
  • the third light-emitting unit is a red light-emitting layer
  • the drive current condition applied to each light-emitting unit is set so as to satisfy the condition defined by Equation (1).
  • the method of controlling each independently is preferable.
  • Type C which is another example of the organic EL element configuration, is formed on the base material by the first electrode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / second electrode. Is a non-independent control method in which the first light emitting unit to the third light emitting unit are controlled to emit light under the same conditions, for example.
  • organic EL device configuration Type D
  • a type D which is another example of the organic EL element configuration
  • a method in which a blue light emitting unit, a green light emitting unit, and a red light emitting unit are arranged in parallel on the same plane and each of them can be controlled independently can be mentioned.
  • a blue light emitting unit, a green light emitting unit, and a red light emitting unit are arranged in parallel on the same plane and each of them can be controlled independently One example is as described in FIG.
  • FIG. 8 is a schematic cross-sectional view showing an example of a detailed configuration of an independently driven (toning method) organic EL element in which independent light emitting units corresponding to type A described above are stacked.
  • the organic EL element (OLED) shown in FIG. 8 has two organic functional layer units (4-A and 4-B) between a pair of electrodes (3, 6), and the two organic functional layer units (4 -A and 4-B) is an organic EL element of an independent drive type (toning method) in which an intermediate electrode (15) is arranged and two light emitting units (U1 and U2) are independently formed.
  • a transparent anode (3) is formed on a flexible substrate (1), and a first hole injection layer (HIL1) and a first are formed thereon.
  • HIL1 first hole injection layer
  • ETL1 first electron transport layer
  • ETL1 first electron injection layer
  • ETL1 first electron injection layer
  • ETL1 first electron transport layer
  • ETL1 first electron injection layer
  • ETL1 first electron transport layer
  • ETL1 first electron transport layer
  • ETL1 first electron transport layer
  • ETL1 first electron injection layer
  • ETL1 first electron transport layer
  • EIL1 is laminated to form an organic functional layer unit 1 (4-A)
  • an intermediate electrode (15) is formed on the organic functional layer unit 1 (4-A)
  • an anode (3) and an intermediate electrode (15 ) Are connected by lead wires (11-A) to constitute a first light emitting unit (U1) capable of independent control.
  • a second hole injection layer (HIL2) and a second hole transport layer (HTL2) are laminated on the intermediate electrode (15), and a second light emitting layer (13) is laminated thereon.
  • a second electron transport layer (ETL2) and a second electron injection layer (EIL2) are further laminated thereon to form an organic functional layer unit 2 (4-B), with the cathode (6) as the uppermost layer. Is provided.
  • the intermediate electrode (15) and the cathode (6) are connected by a lead wire (11-B) to constitute a second light emitting unit (U2) capable of independent control.
  • the voltage (V1) is applied between the transparent anode (3) and the intermediate electrode (15) via the lead wire (11-A), whereby the light emitting unit 1 (U1) is mounted.
  • the light emitting unit 2 (U2) is independently driven by applying the voltage (V2) via the lead wire (11-B) between the intermediate electrode (15) and the cathode (6). In either case, emitted light (L) is emitted from the transparent anode (3) side.
  • the first light emitting layer (12) constituting the organic functional layer unit 1 (4-A) is composed of a blue light emitting material as the light emitting material, and the organic functional layer unit 2 (4-B).
  • the second light emitting layer (13) constituting the light emitting material is preferably composed of a green light emitting material and a red light emitting material as the light emitting material.
  • the intermediate electrode (15) is preferably a transparent electrode, and is formed of a thin metal electrode, for example, a thin film silver electrode.
  • the intermediate electrode (15) is used for obtaining an electrical connection. It has an independent connection terminal.
  • FIG. 9 is a diagram showing a simplified configuration of the organic EL element of Embodiment A (type A) shown in FIG. 8, and the basic configuration is the same as FIG. The following description of the structure of the organic EL element will be made using the structure shown in FIG.
  • FIG. 10 is a schematic cross-sectional view showing another example of the configuration of the organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked in the embodiment A (type A).
  • a thin silver electrode (5-1) is formed on the nitrogen atom-containing layer (7) instead of the intermediate electrode (5) described.
  • FIG. 11 shows an organic EL element (OLED) having a tandem structure having three light emitting units (U1, U2 and U3) composed of three organic functional layer units (4-A, 4-B and 4-C). It is a schematic sectional drawing which shows the structure of Embodiment B (type B).
  • OLED organic EL element
  • the first electrode (3) and the second electrode (6) are arranged on the flexible base material (1) in an opposing positional relationship.
  • a configuration example is shown in which the first electrode (3) is an anode that is a transparent electrode, and the second electrode (6) is a cathode.
  • a first light emitting unit composed of each organic functional layer (4-A to 4-C) including a light emitting layer (U1), a second light emitting unit (U2) and a third light emitting unit (U3) are arranged, and an intermediate electrode having an independent connection terminal (not shown) between each light emitting unit.
  • a layer (5-1, 5-2) and a nitrogen atom-containing layer (7-1, 7-2) are arranged.
  • Each of the first electrode (3) and the intermediate electrode layer (5-1) is wired with a lead wire (11-A), and by applying about 2 to 40 V as a drive voltage V1 to each connection terminal,
  • the light emitting unit (U1) emits light.
  • the intermediate electrode layer (5-1) and the intermediate electrode layer (5-2) are wired with lead wires (11-B), and a drive voltage V2 of about 2 to 40 V is applied to each connection terminal.
  • the light emitting unit (U2) emits light.
  • the intermediate electrode layer (5-2) and the second electrode (6) are also wired with lead wires (11-C), and a drive voltage V3 of about 2 to 40 V is applied to each connection terminal.
  • the light emitting unit (U3) emits light.
  • the first electrode (3) that is an anode has a positive polarity and the first electrode that is a cathode.
  • Two electrodes (6) are applied with a negative polarity within a voltage range of 2 to 40V, and the first electrode (3) and the second electrode (5-2) are applied to the intermediate electrode layers (5-1 and 5-2). Apply at an intermediate voltage with 6).
  • the emitted light (L) emitted from the light emitting point (h) of each light emitting unit by application of each driving voltage is taken out from the first electrode (3) side which is a transparent electrode.
  • the light emitted to the second electrode (6) side is reflected by the second electrode (6) surface and similarly extracted from the first electrode (3) side.
  • the light emitting layer constituting the organic functional layer unit (4-A) emits blue light.
  • the light emitting layer that contains the light emitting compound and constitutes the light emitting unit (4-B), and the light emitting layer that constitutes the light emitting unit (4-B) contains the green light emitting compound as the G light emitting unit. It is also possible to realize a white light emission or light emission (toning) of a desired wavelength by appropriately adjusting the drive voltages V1 to V3 by containing a red light emitting compound in the R light emitting unit.
  • FIG. 12 is a schematic cross-sectional view showing a configuration of an embodiment C (type C) which is another example of an organic EL element (EL) having a tandem structure having three light emitting units (U1, U2 and U3).
  • type C is another example of an organic EL element (EL) having a tandem structure having three light emitting units (U1, U2 and U3).
  • FIG. 12 shows an intermediate electrode layer (between the first light emitting unit (U1) and the third light emitting unit (U3)) for the organic EL element having the tandem structure shown in FIG. 11 described above. 5-1 and 5-2) and the nitrogen atom containing layers (7-1 and 7-2) are provided with charge generation layers (15A and 15B), and the first electrode (3) and the second electrode (6 ), A driving voltage V1 is applied, and the first light emitting unit (U1) to the third light emitting unit (U3) emit light at the same time, not independently.
  • 13A and 13B are schematic views showing an example (type D) of a surface emitting light source in which three organic EL elements are arranged in parallel.
  • FIG. 13A is a top view of an organic EL element unit (100), which is a surface-emitting light source in which three organic EL elements are arranged in parallel
  • FIG. 13B is a schematic cross-sectional view showing the arrangement of each constituent member.
  • a blue light emitting organic EL element (OLED-B), a green light emitting organic EL element (OLED-G), and a red light emitting organic EL element are formed on a flexible substrate (105).
  • OLED-R are arranged in parallel and each organic EL element emits a single color alone. A combination of the two emits an intermediate color. Alternatively, three organic EL elements emit light simultaneously. Also good.
  • FIG. 13B is a schematic cross-sectional view of the organic EL element unit (100), in which a driving power supply unit (108) such as a thin battery or a flexible printed circuit (FPC) is disposed on the flexible substrate (105).
  • a driving power supply unit (108) such as a thin battery or a flexible printed circuit (FPC) is disposed on the flexible substrate (105).
  • the blue light-emitting organic EL element (OLED-B), the green light-emitting organic EL element (OLED-G) and the red light-emitting organic EL element (OLED-R) are arranged in parallel through the adhesive layer (107).
  • a surface substrate (102) is provided.
  • Drive power is supplied from the drive power supply unit (108) to each organic EL element via the connection members (106B, 106G, and 106R).
  • a thin battery as the drive power supply unit (108) in terms of being thin as a surgical instrument, having no power supply cord, and improving mobility.
  • JP 2013-157634 A JP 2013-168552 A, JP 2013-177361 A, JP 2013-187221 A, JP 2013-18711 A, and so on.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6107734, US Pat. No. 6,337,492, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393, JP-A 2006-49394, JP-A 2006- No. 49396, JP 2011-96679, JP 2005-340187, JP 47114424, JP 3496681, JP 3884564, JP 4213169, JP 2010-192719.
  • base material There is no restriction
  • the term “flexibility” as used in the present invention refers to a 5 mm diameter ABS resin (acrylonitrile-butadiene-styrene copolymer resin) rod that is repeatedly wound and released 10 times, and then visually confirmed by cracks and chips. This refers to the characteristics that are not damaged.
  • the substrate disposed on the outermost surface (light emission surface side) has a characteristic (light transmittance) that transmits at least light emitted from the organic EL element in a wavelength range of 400 to 800 nm. It is preferable.
  • the light transmittance in the present invention means that the average light transmittance in a wavelength range of 400 to 800 nm is 60% or more, preferably 70% or more, more preferably 80% or more, particularly preferably 90%. That's it.
  • the base material in the configuration in which the light (L) is extracted from the base material side, the base material needs to be a transparent material, and the transparent base material preferably used includes glass, quartz, and a resin base material. Can be mentioned. Furthermore, the resin base material which can give flexibility to an organic EL element and is a flexible base material from a safety viewpoint is preferable.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose.
  • Cellulose esters such as triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate, and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol , Syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, Ether sulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate (abbreviation: PMMA), acrylic and polyarylates, Arton (trade name, Examples include cycloolefin resins such as JSR) and Apel (trade name, manufactured by Mitsui Chemicals).
  • TAC tri
  • resin base materials in terms of cost and availability, it is composed of a resin material such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • the film to be used is preferably used as a flexible resin substrate.
  • the thickness of the resin substrate is preferably a thin film resin substrate in the range of 10 to 500 ⁇ m, more preferably in the range of 30 to 400 ⁇ m, and particularly preferably in the range of 50 to 300 ⁇ m. Is within. If the thickness is 10 ⁇ m, each functional layer constituting the organic EL element can be stably held, and if the thickness is 500 ⁇ m or less, the thermal energy generated during phototherapy is efficiently diffused. It is also preferable in that it can be brought into close contact with the skin even while the patient is wearing clothes.
  • anode constituting the organic EL element examples include metals such as Ag and Au, alloys containing metal as a main component, CuI, indium-tin composite oxide (ITO), and metal oxides such as SnO 2 and ZnO.
  • metals such as Ag and Au
  • alloys containing metal as a main component CuI
  • metal oxides such as SnO 2 and ZnO.
  • a metal or an alloy containing a metal as a main component is preferable, and silver, a thin silver electrode containing silver as a main component, a silver grid electrode, or IZO is more preferable.
  • the silver content is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
  • the transparent anode is preferably a layer composed mainly of silver, but specifically, it may be formed of silver alone or an alloy containing silver (Ag) as a main component. Also good. Examples of such alloys include silver-magnesium (Ag-Mg), silver-copper (Ag-Cu), silver-palladium (Ag-Pd), silver-palladium-copper (Ag-Pd-Cu), silver -Indium (Ag-In) and the like.
  • the anode constituting the organic EL device according to the present invention is a transparent anode composed mainly of silver and having a thickness in the range of 2 to 20 nm.
  • the thickness is preferably in the range of 4 to 12 nm.
  • a thickness of 20 nm or less is preferable in that the absorption component and the reflection component of the transparent anode are kept low and a high light transmittance is maintained.
  • the layer composed mainly of silver means that the silver content in the transparent anode is 60% by mass or more, preferably the silver content is 80% by mass or more, More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
  • “transparent” in the transparent anode according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the transparent anode may have a configuration in which a transparent electrode layer composed mainly of silver is divided into a plurality of layers as necessary.
  • an underlayer is provided at the lower portion from the viewpoint of improving the uniformity of the silver film forming the transparent anode. It is preferable.
  • a base layer It is preferable that it is a layer containing the organic compound which has a nitrogen atom or sulfur atom which interacts with a silver atom, and the transparent layer which has silver as a main component on the said base layer
  • a method of forming the anode is a preferred embodiment.
  • the organic EL device according to the present invention preferably has a structure in which two or more organic functional layer units each composed of an organic functional layer group and a light emitting layer are laminated between an anode and a cathode.
  • an intermediate electrode layer unit having an independent connection terminal for obtaining electrical connection is provided between the two or more organic functional layer units, and the two are separated.
  • a method of constructing a light emitting unit is preferred.
  • the same material as that for forming the first electrode (anode) described above can be used.
  • an underlayer for example, FIG. 10 is preferably provided.
  • a phosphorescent light emitting compound or a fluorescent compound can be used as a light emitting material.
  • a structure containing a phosphorescent light emitting compound as a light emitting material is particularly preferred. preferable.
  • This light-emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emission position is within the layer of the light-emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the total thickness of the light emitting layers is a thickness including the intermediate layer in the case where a non-light emitting intermediate layer exists between the light emitting layers.
  • the light emitting layer as described above is a known thin film such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. It can be formed by a forming method.
  • the light emitting layer may be a mixture of a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • a phosphorescent light emitting material and a fluorescent light emitting material also referred to as a fluorescent dopant or a fluorescent compound
  • a method of containing a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound) and emitting light from the light emitting material is preferable.
  • ⁇ Host compound> As the host compound applied to the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more in the compound contained in a light emitting layer.
  • a known host compound may be used alone, or a plurality of types of host compounds may be used in combination.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound both a fluorescent compound or a fluorescent material
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond is used.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
  • each layer constituting the organic functional layer unit will be described in the order of a charge injection layer, a hole transport layer, an electron transport layer, and a blocking layer.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
  • the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer.
  • the present invention is characterized in that the charge injection layer is disposed adjacent to the transparent electrode. When used in an intermediate electrode, it is sufficient that at least one of the adjacent electron injection layer and hole injection layer satisfies the requirements of the present invention.
  • the hole injection layer is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the driving voltage and improve the luminance of light emission.
  • the organic EL element and its industrialization front line June 30, 1998 “Published by TS Co., Ltd.)”, Chapter 2, “Electrode Materials” (pages 123 to 166) in the second volume.
  • the details of the hole injection layer are also described in JP-A-9-45479, 9-260062, 8-82869, etc., and these compounds can be used for the hole injection layer. it can.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer for lowering the driving voltage and improving the light emission luminance.
  • the cathode is composed of the transparent electrode according to the present invention.
  • the electron injection layer which is provided adjacent to the transparent electrode, see “Organic EL device and its forefront of industrialization” (November 30, 1998, issued by NTS, Inc.). Materials "(pages 123-166).
  • the details of the electron injection layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, etc., and the materials described therein are used for the electron injection layer. It can be preferably used.
  • the electron injection layer is preferably a very thin film, and depending on the constituent materials, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer is composed of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has a function of hole injection or transport or electron barrier property, and may be either organic or inorganic.
  • hole transport material those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can also be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
  • the hole transport material may be a known thin film such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). It can be formed by forming a thin film using a forming means.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed of the above-mentioned materials by, for example, a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • blocking layer examples include a hole blocking layer and an electron blocking layer, which are provided as necessary in addition to the constituent layers of the organic functional layer unit described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the second electrode for example, the cathode is an electrode film that functions to supply holes to the organic functional layer group or the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. . Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
  • the cathode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the second electrode is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic EL element is a double-sided light emitting type in which emitted light (L) is extracted also from the cathode side
  • the cathode is composed of a material having good light transmittance as used in the formation of the anode, Good.
  • sealing means used for sealing the organic EL element include a method of bonding a flexible sealing member, a cathode, and a transparent substrate using a sealing adhesive. Can do.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited unless the light extraction side.
  • a thin film glass plate, a polymer plate, a film, a metal film (metal foil) having flexibility, and the like can be given.
  • the thin film glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the thin board comprised from materials, such as a polycarbonate, an acryl, a polyethylene terephthalate, a polyether sulfide, a polysulfone, can be mentioned.
  • the metal film examples include a metal film composed of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. It is done.
  • the sealing member a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned. Furthermore, the polymer film has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 .multidot.m at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 a Pa) equal to or lower than a temperature of 25 ⁇ 0.5 ° C.
  • water vapor permeability at a relative humidity of 90 ⁇ 2% RH is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase.
  • the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • the organic EL element is transparent in a state that completely covers the light emitting functional layer unit and exposes the terminal portions of the anode (3) as the first electrode and the cathode (6) as the second electrode in the organic EL element.
  • a sealing film can also be provided on the substrate.
  • the sealing material as described above is provided in a state in which the terminal portions of the anode (3) as the first electrode and the cathode (6) as the second electrode in the organic EL element are exposed and at least the light emitting functional layer is covered. It has been.
  • the surgical surgical instrument of the present invention is a shadowless light source capable of quickly correcting an emission spectrum changed due to adhesion of blood or the like with a surgical illumination light source, and improving the workability of surgery under an appropriate emission spectrum.
  • Surgical surgical instrument equipped with an organic EL element that is a light Even if blood adheres during insertion into the body, the drive current can be changed and corrected to an appropriate emission spectrum. Can be attached.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Surgical Instruments (AREA)

Abstract

The present invention addresses the problem of providing a surgical instrument having an organic EL element as a shadowless light source capable of promptly correcting changes in an emission spectrum due to the adhesion of blood or the like and facilitating surgical procedures under an appropriate emission spectrum. A surgical instrument according to the present invention is inserted into a living body for use during surgery, and has an organic EL element as a surface emission light source. The surgican instrument is characterized in that the organic EL element satisfies is characterized by being made to satisfy the condition defined by formula (1) by changing the drive current applied thereto. Formula (1): Ib/Ibo > Ir/Iro (in the formula, Ibo is the maximum emission intensity of blue light emission before the drive current change, Ib is the maximum emission intensity of blue light emission after the drive current change, Iro is the maximum emission intensity of red light emission before the drive current change, and Ir is the maximum emission intensity of red light emission after the drive current change).

Description

外科用手術器具Surgical instruments
 本発明は外科用手術器具に関し、更に詳しくは、手術時に体内に挿入し、患部を照明する際に、影部の形成を低減した有機エレクトロルミネッセンス素子を光源(無影灯)として具備している外科用手術器具に関する。 The present invention relates to a surgical instrument, and more particularly, includes an organic electroluminescence element that reduces the formation of shadows as a light source (shadowless lamp) when inserted into the body during surgery and illuminates the affected area. The present invention relates to a surgical instrument for surgery.
 従来、手術や医学処置の際に適用されている照明技術は、一般に、頭上照明である。この頭上照明は、術野の上に取り付けられた固定具、あるいは、外科医の頭部に装着された光ファイバーシステムから発射される方法が多く用いられている。 Conventionally, the illumination technology applied in the case of surgery and medical procedures is generally overhead illumination. This overhead illumination is often used by a fixture mounted on the operative field or by a fiber optic system attached to the surgeon's head.
 従来の頭上型照明システムは、いくつかの問題を抱えている。頭上光源に対しては、術野の直接的暴露が必要とされているが、患者や外科医の位置取りの変化により、照明が干渉する可能性があり、照明の位置等による影部が生じる。そのため、照明装置の位置に関して頻繁な調整が必要となり、手術をする外科医にとっては余計な負担がかかり、手術の流れを遮る結果となる。加えて、頭上型照明では、比較的深い腔における手術に対しては不十分な場合が多く、そのような場合には、より照射光が絞り込まれた照明が必要とされる。さらに、外科医が光軸上に位置すると、光が術野に届くのを妨げるケースが多く発生する。そのため、頭部装着光ファイバーシステムは、より限定された手術のみに使用されているのが現状である。 The conventional overhead lighting system has several problems. For the overhead light source, direct exposure of the operative field is required. However, the illumination may interfere due to a change in the positioning of the patient or the surgeon, and a shadow portion due to the position of the illumination or the like is generated. For this reason, frequent adjustment is required with respect to the position of the lighting device, which places an extra burden on the surgeon performing the operation and results in blocking the flow of the operation. In addition, overhead illumination is often insufficient for surgery in relatively deep cavities, and in such cases, illumination with more focused irradiation light is required. Furthermore, when the surgeon is positioned on the optical axis, there are many cases where light is prevented from reaching the surgical field. Therefore, the head-mounted optical fiber system is currently used only for more limited operations.
 加えて、上記説明した照明装置でも、多くの問題を抱えている。例えば、頭部装着光ファイバーシステムには光コードが連結されており、手術室における移動の自由度が制限される。また、この方法では、長時間使用した場合、装着部である頭部や頸部の疲労を伴うという課題を抱えている。 In addition, the lighting device described above has many problems. For example, an optical cord is connected to the head-mounted optical fiber system, which limits the degree of freedom of movement in the operating room. In addition, this method has a problem that, when used for a long time, it involves fatigue of the head and neck that are wearing parts.
 近年の外科手術方法においては、外科医が切開した人体の内部領域に到達できる外科的照明装置の開発が求められている。このような外科手術形態においては、通常、手術の際に切開部を開放・保持するため、「開創器」が使用されている。開創器は、患者の切開部に挿入され、患部を広げる目的で使用されている。このような方法では、術野を照らすため、開創器に照明手段を付加して、処置する方法が知られている。例えば、術野を照らすために、手術で使用する開創器の最上面に直接光ファイバーケーブルを取り付け、この光ファイバーを介して、高輝度の光源部を開創器の先端部に設け、術野に対する指向性を有する照明を実現するための開創器照明システムが提案されている(例えば、特許文献1参照。)。ここで提案されている光ファイバーを用いた照明デバイスは、術野を直接照明する技術を提供するものではあるが、装置そのものが大掛かりであり、また点状照明であるため使い勝手が悪い。また、光ファイバー部が、開創器の最上面に配置されるため、手術操作等の邪魔になり、貴重な作業スペースを占有するという問題を有している。 In recent surgical methods, there is a demand for the development of a surgical illumination device that can reach the internal region of the human body incised by the surgeon. In such a surgical operation form, a “retractor” is usually used to open and hold an incision during surgery. The retractor is inserted into a patient's incision and used to widen the affected area. In such a method, in order to illuminate the surgical field, a method of treating the wound retractor by adding illumination means is known. For example, in order to illuminate the surgical field, an optical fiber cable is directly attached to the uppermost surface of the retractor used in the operation, and a high-intensity light source is provided at the distal end of the retractor via this optical fiber. There has been proposed a retractor illumination system for realizing illumination having (see, for example, Patent Document 1). Although the illumination device using the optical fiber proposed here provides a technique for directly illuminating the operative field, the apparatus itself is large-scale, and it is not easy to use because it is a point illumination. Further, since the optical fiber portion is disposed on the uppermost surface of the retractor, there is a problem that it obstructs a surgical operation and occupies a valuable work space.
 上記問題に対し、体腔内の手術領域を、大光量でかつ広範囲に照明することが可能なLEDモジュールを具備した開創器が開示されている(例えば、特許文献2参照。)。特許文献2で開示されている方法によれば、切開部の開放及び保持に用いられる開創器のブレードの先端部に、面照明手段であるLEDを設けた構成である。 In response to the above problem, a retractor including an LED module capable of illuminating a surgical region in a body cavity with a large amount of light and in a wide range has been disclosed (for example, see Patent Document 2). According to the method disclosed in Patent Document 2, an LED as a surface illumination means is provided at the tip of a retractor blade used for opening and holding an incision.
 また、胸腔内の手術に対し、手術部分を確実に照明し、手術操作の確実性を確保する目的で、開創器の固定腕と可動腕のそれぞれから突出した突出片の端部に、対向する位置関係で固体光源を設置する方法が開示されている(例えば、特許文献3参照。)。また、固体光源としてはLEDや有機エレクトロルミネッセンス素子(以下、「有機EL素子」又は「OLED」と略記する。)等が記載されている。 Also, for surgery in the thoracic cavity, facing the end of the protruding piece protruding from each of the fixed arm and movable arm of the retractor for the purpose of illuminating the surgical part reliably and ensuring the reliability of the surgical operation A method of installing a solid light source in a positional relationship has been disclosed (for example, see Patent Document 3). In addition, as solid-state light sources, LEDs, organic electroluminescence elements (hereinafter abbreviated as “organic EL elements” or “OLEDs”), and the like are described.
 しかしながら、面光源としてLEDを適用する場合には、照明部として導光板等の組み入れにより、厚い構成となるため、狭い体内に挿入する場合には、大きな障害となっていた。また、LEDを用いた場合、そのソリッドな構造に起因し、曲面や凹面状といった形状への追従性に乏しいという問題を抱えている。 However, when an LED is applied as a surface light source, a thick structure is obtained by incorporating a light guide plate or the like as an illumination unit, which is a major obstacle when inserted into a narrow body. Moreover, when LED is used, it has the problem that it is poor in the followable | trackability to shapes, such as a curved surface and a concave shape, resulting from the solid structure.
 また、特許文献3で開示されている開創器に具備させる面発光体であるLEDや有機エレクトロルミネッセンス素子は、開創器を体内に挿入した際に、手術中にその発光面に患者の血液が付着するケースが多く、血液の付着により、これら面発光体の発光スペクトルが変化し、手術対象である患部の色調が変化、多くの場合は赤色系(青及び緑スペクトル低下)にシフトすることにより、病変部の正確な色調判断の妨げや光照射部の鮮鋭度の低下を招くことになる。したがって、面発光体に血液が付着しても、発光スペクトルを瞬時に適正な色調に補正することができる方法の開発が望まれている。 In addition, the LED or organic electroluminescent element, which is a surface light emitter provided in the retractor disclosed in Patent Document 3, is attached to the light emitting surface during surgery when the retractor is inserted into the body. In many cases, due to the adhesion of blood, the emission spectrum of these surface illuminants changes, the color tone of the affected area that is the subject of surgery changes, in many cases by shifting to the red system (blue and green spectrum drop), This will hinder accurate color tone judgment of the lesioned part and decrease the sharpness of the light irradiation part. Therefore, development of a method capable of instantaneously correcting the emission spectrum to an appropriate color tone even when blood adheres to the surface light emitter is desired.
 また、無影灯という観点で、小型で単純な構成で、かつ均一な明るさで照明することができる面発光体として有機エレクトロルミネッセンス素子を用いた無影灯が開示されている(例えば、特許文献4参照。)。この方法によれば、有機エレクトロルミネッセンス素子による発光面を凹面上とすることにより、歯科治療や手術時に作業者による影の発生を防止する方法とされている。しかしながら、特許文献4に記載されている方法は、頭上照明としての役割を果たすものであり、体内に挿入する光源としての具体的な記載は一切なされていない。 In addition, from the viewpoint of a surgical light, a surgical light using an organic electroluminescence element as a surface light emitter that can be illuminated with a small, simple configuration and uniform brightness is disclosed (for example, a patent). Reference 4). According to this method, the light-emitting surface of the organic electroluminescence element is made concave, thereby preventing a shadow from being generated by an operator during dental treatment or surgery. However, the method described in Patent Document 4 plays a role as overhead illumination, and no specific description as a light source to be inserted into the body is made.
特開2013-006094号公報JP 2013-006094 A 特開2005-058440号公報JP 2005-058440 A 特開2005-211409号公報Japanese Patent Laid-Open No. 2005-212409 特開2005-322602号公報JP 2005-322602 A
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、手術用の照明光源で、発光面への血液等の付着により変化した発光スペクトルを速やかに補正することにより、適正な発光スペクトル下で、手術の作業性を向上させることができる面発光型の無影灯な有機エレクトロルミネッセンス素子を光源として具備した外科用手術器具を提供することである。 The present invention has been made in view of the above problems, and the problem to be solved is to correct an emission spectrum that has changed due to adhesion of blood or the like to a light-emitting surface with an illumination light source for surgery. It is an object of the present invention to provide a surgical instrument having as a light source a surface-emitting type surgical light organic electroluminescence element capable of improving the workability of surgery under an emission spectrum.
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、有機エレクトロルミネッセンス素子の発光面への血液等の付着により変化した発光スペクトルを、駆動電流を調整することにより、速やかに適正な発光スペクトルに補正し、常に安定した色調の照明を実現でき、手術の作業性を向上させることができる無影灯な有機エレクトロルミネッセンス素子を具備した外科用手術器具を得ることができることを見出し、本発明に至った。 As a result of intensive studies in view of the above problems, the present inventor has quickly adjusted an emission spectrum that has been changed due to adhesion of blood or the like to the light emitting surface of the organic electroluminescence element by adjusting the drive current to obtain an appropriate emission spectrum. It was found that a surgical surgical instrument equipped with a surgical light organic electroluminescence element capable of realizing stable color tone illumination and improving the workability of surgery can be obtained. It came.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.手術時に体内に挿入して使用する、面発光光源を具備した外科用手術器具であって、
 前記面発光光源は有機エレクトロルミネッセンス素子であり、
 前記有機エレクトロルミネッセンス素子の発光スペクトルが、印加する駆動電流の変化に対して、下式(1)で規定する条件を満たすことを特徴とする外科用手術器具。
1. A surgical instrument equipped with a surface-emitting light source that is inserted into the body and used during surgery,
The surface-emitting light source is an organic electroluminescence element,
The surgical instrument according to claim 1, wherein the emission spectrum of the organic electroluminescence element satisfies a condition defined by the following formula (1) with respect to a change in an applied drive current.
 式(1)
   Ib/Ibo>Ir/Iro
〔式中、Iboは駆動電流変化前の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度であり、Ibは駆動電流変化後の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度であり、Iroは駆動電流変化前の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度であり、Irは駆動電流変化後の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度である。〕
 2.前記有機エレクトロルミネッセンス素子が、基材上に一対の電極と、少なくとも当該電極対に挟持された有機物層を含む発光ユニットを備えており、当該基材がフレキシブル性基材であることを特徴とする第1項に記載の外科用手術器具。
Formula (1)
Ib / Ibo> Ir / Iro
[In the formula, Ibo is the light emission intensity of the maximum maximum light emission wavelength (λB max ) in the blue light emission region (400 to 500 nm) before the drive current change, and Ib is the blue light emission region (400 to 500 nm) after the drive current change. Is the emission intensity of the maximum emission wavelength (λB max ), Iro is the emission intensity of the maximum emission wavelength (λR max ) in the red emission region (570 to 700 nm) before the drive current change, and Ir is the drive This is the emission intensity at the maximum maximum emission wavelength (λR max ) in the red emission region (570 to 700 nm) after the current change. ]
2. The organic electroluminescence device includes a light emitting unit including a pair of electrodes and at least an organic layer sandwiched between the electrode pair on a base material, and the base material is a flexible base material. The surgical instrument according to item 1.
 3.前記体内に挿入して使用する器具が開創器であり、当該開創器を構成する開創板に前記有機エレクトロルミネッセンス素子が配置されていることを特徴とする第1項又は第2項に記載の外科用手術器具。 3. The surgical instrument according to claim 1 or 2, wherein the instrument used by being inserted into the body is a retractor, and the organic electroluminescence element is disposed on a retractor plate constituting the retractor. Surgical instruments.
 4.前記体内に挿入して使用する器具が手術用手袋であり、当該手術用手袋の各指部又は甲部に前記有機エレクトロルミネッセンス素子が配置されていることを特徴とする第1項又は第2項に記載の外科用手術器具。 4. The instrument to be inserted and used in the body is a surgical glove, and the organic electroluminescence element is disposed on each finger or upper part of the surgical glove. The surgical surgical instrument described in 1.
 5.前記有機エレクトロルミネッセンス素子が、発光波長を制御することが可能な調色タイプであることを特徴とする第1項から第4項までのいずれか一項に記載の外科用手術器具。 5. The surgical instrument according to any one of claims 1 to 4, wherein the organic electroluminescence element is a toning type capable of controlling a light emission wavelength.
 6.前記有機エレクトロルミネッセンス素子が、2つ以上の発光ユニットを積層したタンデム構成であることを特徴とする第1項から第5項までのいずれか一項に記載の外科用手術器具。 6. The surgical instrument according to any one of claims 1 to 5, wherein the organic electroluminescence element has a tandem configuration in which two or more light emitting units are stacked.
 本発明の上記手段により、手術用の照明光源で、血液等の付着により変化した発光スペクトルを速やかに補正することにより、適正な発光スペクトル下で、手術の作業性を向上させることができる無影灯である有機エレクトロルミネッセンス素子を光源として具備した外科用手術器具を提供することができる。 By means of the above-mentioned means of the present invention, the operability of surgery can be improved under an appropriate emission spectrum by quickly correcting the emission spectrum changed due to adhesion of blood or the like with an illumination light source for surgery. A surgical instrument having an organic electroluminescence element as a light source as a light source can be provided.
 本発明で規定する構成により、上記問題を解決することができたのは、以下の理由によるものと推測している。 It is presumed that the above problem could be solved by the configuration defined in the present invention for the following reason.
 本発明の外科用手術器具においては、電流変化後の青、赤の各波長ピークの強度変化比が、赤に比べて青が大きいこと、つまりをIb/Ibo>Ir/Iroであることを特徴とする。 In the surgical instrument of the present invention, the intensity change ratio of the blue and red wavelength peaks after the current change is larger in blue than red, that is, Ib / Ibo> Ir / Iro. And
 血液は血液中の赤血球のため、赤色である。これは赤血球に含まれるヘモグロビンが長波長よりも、青色の短波長の吸収が大きいためである。また、外科手術において体内に入れる医療器具は血液が付着するケースが多い。その結果、体内で使用する外科用手術器具に具備された光源は、付着した血液の影響で、当初想定した発光スペクトルに対し、青色発光強度が大きく低下する懸念がある。そこで本発明のIb/Ibo>Ir/Iroとすることで、光源の青色発光強度を上げることにより、血液の付着により低下した青色発光強度の補正をすることが可能となる。このことは特に体内に組み込みやすいフレキシブルな形状、例えば、開創器や手袋といった術者が装着するような用具に簡単に適用することができる形状であることが、その効果をより発揮する観点から好ましい。 Blood is red because of red blood cells in the blood. This is because hemoglobin contained in erythrocytes has a greater absorption of blue short wavelength than long wavelength. Also, there are many cases where blood adheres to medical instruments that are inserted into the body during surgery. As a result, there is a concern that the light emission intensity of the light source provided in the surgical instrument used in the body is greatly reduced with respect to the initially assumed emission spectrum due to the influence of blood adhering thereto. Therefore, by setting Ib / Ibo> Ir / Iro according to the present invention, it is possible to correct the blue light emission intensity which has decreased due to blood adhesion by increasing the blue light emission intensity of the light source. This is preferably a flexible shape that can be easily incorporated into the body, for example, a shape that can be easily applied to a device such as a retractor or a glove that can be worn by a surgeon, from the viewpoint of further exerting the effect. .
 また、青色発光強度を上げる方法として、青色発光層を独自に駆動制御できる調色方式とすることで、手術中電流調整により青色発光強度を上げることで、血液付着時に生じるスペクトル変化を補正することができる。 In addition, as a method of increasing the blue light emission intensity, a toning method capable of independently driving and controlling the blue light emission layer is used to correct the spectral change that occurs during blood adhesion by increasing the blue light emission intensity by adjusting the current during surgery. Can do.
 また、有機機能層ユニットを2つ以上積層した構成、すなわちタンデム構成とすることにより、第1電極である陽極と、第2電極である陰極との電極間の距離が長くなる。一般的に、第2電極である陰極は膜厚が100nm以上の金属材料を用いて、表面が荒れているため、この陽極と陰極間の膜厚が薄いとリークがおこり、異常発熱の原因となる。これに対し、本発明に適用する有機エレクトロルミネッセンス素子は、有機機能層ユニットが2つ以上積層した構成とすることにより、第1電極である陽極と、第2電極である陰極間の膜厚が厚くなり、異常発熱の懸念を低くすることが可能となる。このことは曲げることによるリークの懸念が高いフレキシブル光源において、異常発熱を防ぐことができる。 Further, by adopting a configuration in which two or more organic functional layer units are stacked, that is, a tandem configuration, the distance between the anode as the first electrode and the cathode as the second electrode is increased. In general, the cathode as the second electrode is made of a metal material having a film thickness of 100 nm or more, and the surface is rough. Therefore, if the film thickness between the anode and the cathode is thin, leakage occurs, causing abnormal heat generation. Become. On the other hand, the organic electroluminescence element applied to the present invention has a structure in which two or more organic functional layer units are stacked, so that the film thickness between the anode as the first electrode and the cathode as the second electrode is increased. It becomes thicker and it is possible to reduce the concern about abnormal heat generation. This can prevent abnormal heat generation in a flexible light source that has a high risk of leakage due to bending.
 また、一般に有機エレクトロルミネッセンス素子は大電流印可、高輝度になるほど電流効率(cd/A)が低下する。そのため高輝度領域で使用する場合、有機機能層ユニット1つで駆動するよりも複数の有機機能層ユニットで任意の輝度を分割して照射した方が効率を損なわず、発熱を抑えることが可能である。 In general, an organic electroluminescence element can be applied with a large current, and the current efficiency (cd / A) decreases as the luminance increases. Therefore, when used in a high-luminance region, it is possible to suppress heat generation without losing efficiency by dividing and irradiating an arbitrary luminance with a plurality of organic functional layer units rather than driving with a single organic functional layer unit. is there.
駆動電流変化前の有機EL素子における血液付着による発光スペクトルの変化と、変化した発光スペクトルを説明するための模式図Schematic diagram for explaining the emission spectrum change due to blood adhesion in the organic EL element before the drive current change and the changed emission spectrum 駆動電流変化後の有機EL素子における血液付着による発光スペクトルの変化と、変化した発光スペクトルの補償方法を説明するための模式図Schematic diagram for explaining a change in emission spectrum due to blood adhesion in an organic EL element after a change in driving current and a compensation method for the changed emission spectrum 式(1)で規定する条件を達成するための手段の一例を説明するための概略図Schematic for demonstrating an example of the means for achieving the conditions prescribed | regulated by Formula (1) 本発明の実施形態に係る有機EL素子を具備した一対の開創板を有する開創器の一例を示す斜視図The perspective view which shows an example of the retractor which has a pair of retractor board which comprised the organic EL element which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL素子を具備した複数の開創具を有する開創器の一例を示す斜視図The perspective view which shows an example of the retractor which has the several retractor provided with the organic EL element which concerns on embodiment of this invention. 曲面形状の開創具面に凹面形状の有機EL素子を具備した開創器の一例を示す概略図Schematic showing an example of a retractor having a concave organic EL element on a curved retractor surface 本発明の実施形態に係る有機EL素子を指先に具備した手術用手袋の構成の一例を示す斜視図The perspective view which shows an example of a structure of the surgical glove which equipped the organic EL element which concerns on embodiment of this invention in the fingertip 本発明の実施形態に係る有機EL素子を手のひら面に具備した手術用手袋の構成の一例を示す斜視図The perspective view which shows an example of a structure of the surgical glove which comprised the organic EL element which concerns on embodiment of this invention on the palm surface. 本発明に適用可能な有機EL素子の発光ユニットの封止構造を含めた全体構成の一例を示す断面図Sectional drawing which shows an example of the whole structure including the sealing structure of the light emission unit of the organic EL element applicable to this invention 2つの独立した発光ユニットを積層した独立駆動型(調色方式)の有機EL素子の詳細な構成の一例を示す概略断面図Schematic cross-sectional view showing an example of a detailed configuration of an organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked 2つの独立した発光ユニットを積層した独立駆動型(調色方式)の有機EL素子の構成の他の一例を示す概略断面図Schematic cross-sectional view showing another example of the configuration of an organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked 2つの独立した発光ユニットを積層した独立駆動型(調色方式)の有機EL素子の構成の他の一例を示す概略断面図Schematic cross-sectional view showing another example of the configuration of an organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked 3つの独立した発光ユニットを積層した独立駆動型(調色方式)の有機EL素子の一例を示す概略断面図Schematic cross-sectional view showing an example of an independently driven (toning method) organic EL element in which three independent light emitting units are stacked 3つの独立した発光ユニットを一対の電極で挟持した独立駆動型の有機EL素子の構成の他の一例を示す概略断面図Schematic cross-sectional view showing another example of the configuration of an independently driven organic EL element in which three independent light emitting units are sandwiched between a pair of electrodes 3つの有機EL素子を並列配置した有機EL素子ユニットの一例を示す上面図Top view showing an example of an organic EL element unit in which three organic EL elements are arranged in parallel 3つの有機EL素子を並列配置した有機EL素子ユニットの一例を示す断面図Sectional drawing which shows an example of the organic EL element unit which arranged three organic EL elements in parallel
 本発明の外科用手術器具は、手術時に体内に挿入して使用する、面発光光源を具備した外科用手術器具であって、前記面発光光源が有機エレクトロルミネッセンス素子であり、前記有機エレクトロルミネッセンス素子が、印加駆動電流を変化させたときに、赤色発光スペクトルの発光強度の変化巾に対し、青色発光スペクトルの発光強度の変化巾が大きいことを特徴とするものであり、有機エレクトロルミネッセンス素子の発光面への血液等の付着により変化した発光スペクトルを、印加する駆動電流を調整することにより、速やかに適正な発光スペクトルに補正することにより、常に安定した色調の照明を実現し、手術の作業性を向上させることができる面発光型の無影灯な有機エレクトロルミネッセンス素子を光源として具備した外科用手術器具を得ることができる。この特徴は、各請求項に共通する又は対応する技術的特徴である。 The surgical surgical instrument of the present invention is a surgical surgical instrument equipped with a surface-emitting light source that is used by inserting into the body during surgery, wherein the surface-emitting light source is an organic electroluminescent element, and the organic electroluminescent element However, when the applied drive current is changed, the change in the emission intensity of the blue emission spectrum is larger than the change in the emission intensity of the red emission spectrum. By adjusting the drive current to be applied to the emission spectrum that has changed due to blood, etc. on the surface, it is quickly corrected to an appropriate emission spectrum, thereby realizing stable color tone illumination and operating efficiency of surgery. Surgery with a surface-emitting surgical light organic electroluminescence device that can improve the light source as a light source It is possible to obtain a surgical instrument. This feature is a technical feature common to or corresponding to each claim.
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、有機EL素子が、基材上に一対の電極と、少なくとも当該電極対に挟持された有機物層を含む発光ユニットを備え、当該基材がフレキシブル性基材であることにより、様々な曲面を有する開創器のブレード部(開創部)に安定した状態で固定することができ、かつ、ガラス基材等に比較し、衝撃を受けた際の破損の恐れがないため、体内に挿入する外科用手術器具としての安全性を確保することができる。 As an embodiment of the present invention, a light-emitting unit in which an organic EL element includes a pair of electrodes and at least an organic layer sandwiched between the electrode pairs from the viewpoint that the effects of the present invention can be further expressed. And the base material is a flexible base material, so that it can be stably fixed to the blade portion (retraction part) of a retractor having various curved surfaces, and compared with a glass base material or the like. Since there is no fear of damage when subjected to an impact, safety as a surgical instrument for insertion into the body can be ensured.
 また、本発明の外科用手術器具の第1の実施形態として、体内に挿入して使用する器具が、医療分野で広く使用されている開創器であり、当該開創器のアームの先端部に設けられている開創板面に、上記スペクトル特性を備えた薄型の有機EL素子を配置した構成とすることにより、切開した狭い体内で広い場所を占有することなく、手術の妨げにならない面発光光源を提供することができる。 Moreover, as a first embodiment of the surgical surgical instrument of the present invention, an instrument used by being inserted into the body is a retractor widely used in the medical field, and is provided at the tip of the arm of the retractor. A surface-emitting light source that does not obstruct the operation without occupying a wide area in the incised narrow body by arranging a thin organic EL element having the above spectral characteristics on the surface of the retracted plate. Can be provided.
 また、本発明の外科用手術器具の第2の実施形態としては、体内に挿入して使用する器具が、ドクターが装着する手術用手袋であり、当該手術用手袋の指部又は手のひら部に有機EL素子を配置することにより、開創器に対し、面照明装置を手術中に自由に移動させることができ、所望の照明位置を安定して照明することができる。 In addition, as a second embodiment of the surgical surgical instrument of the present invention, the instrument inserted and used in the body is a surgical glove worn by a doctor, and the surgical glove is organically attached to the finger or palm of the surgical glove. By disposing the EL element, the surface illumination device can be freely moved during the operation with respect to the retractor, and a desired illumination position can be stably illuminated.
 また、有機EL素子が、発光波長を制御することが可能な調色タイプであることが、目的に応じた適切な発光スペクトルを選択することができる点で好ましい。 Further, it is preferable that the organic EL element is a toning type capable of controlling the emission wavelength in that an appropriate emission spectrum can be selected according to the purpose.
 また、有機EL素子が、2つ以上の発光ユニットを積層したタンデム構成であることが、血液等が有機EL素子発光面に付着した際に、特定の発光ユニットを選択して印加する駆動電流を制御することにより、最適の発光スペクトルへ速やかに修正することができる点で好ましい。 In addition, the organic EL element has a tandem configuration in which two or more light emitting units are stacked, and when blood or the like adheres to the light emitting surface of the organic EL element, a driving current to select and apply a specific light emitting unit is selected. By controlling, it is preferable in that it can be quickly corrected to an optimum emission spectrum.
 以下、本発明の構成要素、及び本発明を実施するための形態・態様について、その詳細を説明する。なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the details of the components of the present invention and the modes and modes for carrying out the present invention will be described. In the present invention, “˜” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 《外科用手術器具》
 本発明の外科用手術器具は、手術時に体内に挿入して使用する、面発光光源を具備した器具であって、前記面発光光源が有機エレクトロルミネッセンス素子であり、前記有機エレクトロルミネッセンス素子は、印加する駆動電流を変化させることにより、下式(1)で規定する条件を満たす特性を備えていることを特徴とする。
《Surgery instruments》
The surgical surgical instrument of the present invention is an instrument equipped with a surface-emitting light source that is used by being inserted into the body during surgery, wherein the surface-emitting light source is an organic electroluminescence element, and the organic electroluminescence element is applied By changing the drive current, the characteristics satisfying the condition defined by the following expression (1) are provided.
 式(1)
   Ib/Ibo>Ir/Iro
 上記式(1)において、Iboは駆動電流変化前の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度であり、Ibは駆動電流変化後の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度であり、Iroは駆動電流変化前の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度であり、Irは駆動電流変化後の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度を表す。
Formula (1)
Ib / Ibo> Ir / Iro
In the above formula (1), Ibo is the emission intensity of the maximum maximum emission wavelength (λB max ) in the blue emission region (400 to 500 nm) before the drive current change, and Ib is the blue emission region (400 Is the emission intensity of the maximum maximum emission wavelength (λB max ) at ˜500 nm), and Iro is the emission intensity of the maximum emission wavelength (λR max ) in the red emission region (570 to 700 nm) before the drive current change, Ir represents the light emission intensity at the maximum maximum light emission wavelength (λR max ) in the red light emission region (570 to 700 nm) after the drive current is changed.
 本発明において、Ib/Iboで表される比の値の範囲としては、特に制限はないが、1.25以上、1.60以下の範囲内であることが好ましく、Ir/Iroで表される比の値としては、1.01以上、1.25未満の範囲内であることが好ましい。 In the present invention, the range of the ratio value represented by Ib / Ibo is not particularly limited, but is preferably within the range of 1.25 or more and 1.60 or less, and is represented by Ir / Iro. The ratio value is preferably in the range of 1.01 or more and less than 1.25.
 前述のとおり、外科用手術器具、例えば、開創器は手術部位の軟部組織、例えば、切開した皮膚組織部等を広げておくために用いる外科用手術器具であり、多くの器具では、アームの先端に患部を広げるための開創板(ブレード、あるいはリトラクターともいう。)を有している。この開創板に面発光光源、例えば、青色光、緑色光、赤色光の発光輝度バランスを整えて白色発光タイプの有機EL素子を装着させ、手術時の近距離照明として使用する。 As described above, a surgical surgical instrument, such as a retractor, is a surgical surgical instrument that is used to spread a soft tissue at a surgical site, such as an incised skin tissue part. Have a retractable plate (also called a blade or a retractor) for expanding the affected area. A surface-emitting light source such as blue light, green light, and red light is adjusted to balance the luminance of light emission, and a white light-emitting organic EL element is attached to the retractable plate, and used as short-distance illumination during surgery.
 このような有機EL素子を発光光源として具備している外科用手術器具を、切開した体内に挿入する場合、手術中に生じた血液が有機EL素子の発光面に付着する。血液の赤血球中に存在するヘモグロビンGは400~600nmの領域に光吸収を有し、特に、青色発光領域に強い吸収を有している。その結果、発光特性として、本来の白色発光から赤色光の強い光源に発光スペクトルがシフトする。その結果、診断上の重要な要件である病変部の正確な色調を判断することの妨げとなる。また、赤色光(長波長)の比率が高くなるため、鮮鋭度(シャープネス)の低下を招くことにもなる。 When a surgical instrument having such an organic EL element as a light source is inserted into an incised body, blood generated during the operation adheres to the light emitting surface of the organic EL element. Hemoglobin G present in blood erythrocytes has light absorption in the 400 to 600 nm region, and particularly has strong absorption in the blue light emitting region. As a result, the emission spectrum shifts from the original white light emission to the strong light source of red light as the light emission characteristics. As a result, it is difficult to determine an accurate color tone of the lesion, which is an important diagnostic requirement. In addition, since the ratio of red light (long wavelength) increases, sharpness decreases.
 本発明においては、上記問題を解決する方法として、有機EL素子の発光面に血液が付着した際に、有機EL素子に印加する駆動電流を変化させ、駆動電流変化前の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度Iboに対する駆動電流変化後の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度Ibの比の値(Ib/Ibo)を、駆動電流変化前の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度Iroに対する駆動電流変化後の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度Irの比の値(Ir/Iro)より大きく設定し、有機EL素子の発光面に血液が付着した際、赤色発光輝度に対し、相対的に青色発光輝度を高くすることにより、手術中においても、白色発光に近い光源とすることができるものである。 In the present invention, as a method for solving the above problem, when blood adheres to the light emitting surface of the organic EL element, the driving current applied to the organic EL element is changed, and the blue light emitting region (400 to 400) before the driving current change is changed. highest maximum emission wavelength (the ratio of the values of the emission intensity Ib of the largest maximum emission wavelength in the blue light-emitting region after the drive current change to the emission intensity Ibo (400 ~ 500nm) (λB max) of .lambda.B max) in 500 nm) (Ib / Ibo) is the maximum maximum in the red light emitting region (570 to 700 nm) after the change of the driving current with respect to the light emission intensity Iro at the maximum maximum light emitting wavelength (λR max ) in the red light emitting region (570 to 700 nm) before the driving current is changed. It is set larger than the ratio value (Ir / Iro) of the emission intensity Ir of the emission wavelength (λR max ), and blood is applied to the emission surface of the organic EL element. By attaching a blue light emission luminance relatively higher than a red light emission luminance when adhering, a light source close to white light emission can be obtained even during surgery.
 以下、図を交えて、本発明の技術的特徴について説明する。 Hereinafter, the technical features of the present invention will be described with reference to the drawings.
 図1A及び図1Bは、有機EL素子における血液付着による発光スペクトルの変化と、変化した発光スペクトルの補償方法を説明するための模式図である。 1A and 1B are schematic diagrams for explaining a change in an emission spectrum due to blood adhesion in an organic EL element and a compensation method for the changed emission spectrum.
 図1Aで示す(A1)は、駆動電流変化前の有機EL素子(OLED1)において、白色発光を呈している発光スペクトル1のプロファイルであり、青色発光領域における最大発光強度がIbo、赤色発光領域における最大発光強度がIroである。 (A1) shown in FIG. 1A is a profile of the emission spectrum 1 exhibiting white light emission in the organic EL element (OLED1) before the drive current change, and the maximum light emission intensity in the blue light emission region is Ibo and in the red light emission region. The maximum emission intensity is Iro.
 これに対し、図1Aで示す(A2)には、駆動電流変化前の有機EL素子(OLED1)の発光面側に血液(B)が付着した時の発光スペクトル2(破線で表示)のプロファイルであり、血液の赤色のヘモグロビンの影響により、青色光及び緑色光が吸収され、相対的に赤色光比率の高い発光スペクトルとなり、本来必要な白色発光の発光スペクトル1とは大きくかけ離れた特性となる。 On the other hand, (A2) shown in FIG. 1A is a profile of the emission spectrum 2 (indicated by a broken line) when blood (B) adheres to the light emitting surface side of the organic EL element (OLED1) before the drive current change. In addition, blue light and green light are absorbed by the influence of red hemoglobin in the blood, resulting in a light emission spectrum having a relatively high red light ratio, which is a characteristic far from the light emission spectrum 1 of the originally required white light emission.
 これに対し、図1Bの(B1)に示す有機EL素子(OLED2)の発光スペクトル3は、図1Aに示す発光スペクトル1に対し、有機EL素子に印加する電流条件として、赤色発光領域における最大発光強度Irに対し、青色発光領域における最大発光強度Ibをより高くなる条件とし、式(1)で規定する「Ib/Ibo>Ir/Iro」を満たす発光スペクトル条件とする。この発光スペクトル3(実線)は、相対的に青色光の発光比率が高い発光特性である。 On the other hand, the emission spectrum 3 of the organic EL element (OLED2) shown in (B1) of FIG. 1B is the maximum emission in the red emission region as a current condition applied to the organic EL element with respect to the emission spectrum 1 shown in FIG. 1A. With respect to the intensity Ir, the maximum emission intensity Ib in the blue light emitting region is set to be higher, and the emission spectrum condition satisfying “Ib / Ibo> Ir / Iro” defined by the expression (1). The emission spectrum 3 (solid line) is an emission characteristic with a relatively high emission ratio of blue light.
 このような発光特性を有する有機EL素子(OLED2)の発光面に血液(B)が付着することにより、相対的に青色光が吸収された発光スペクトル4となり、この発光スペクトル4は、図1Aの(A1)で示す発光スペクトル1と近似の白色の発光プロファイルとなるため、手術中に面発光体である有機EL素子に血液が付着しても、正確な色調判定を行うことができる。 When blood (B) adheres to the light emitting surface of the organic EL element (OLED 2) having such light emitting characteristics, the light emission spectrum 4 in which blue light is relatively absorbed is obtained. Since the light emission profile approximates to the light emission spectrum 1 shown in (A1), even if blood adheres to the organic EL element that is a surface light emitter during surgery, accurate color tone determination can be performed.
 本発明において、駆動電流の変化により、式(1)で規定する「Ib/Ibo>Ir/Iro」の条件を達成するための手段としては、特に制限はないが、有機EL素子の構成として、後述するような2つ以上の独立した発光ユニットを積層した独立駆動型(調色方式)の有機EL素子を用い、青色発光に係る発光ユニットに印加する電流を高くすることにより、青色発光強度(Ib)を上げる方法、あるいはパルス駆動で青色の発光時間を長くする方法等が挙げられる。 In the present invention, there is no particular limitation as a means for achieving the condition of “Ib / Ibo> Ir / Iro” defined by the formula (1) due to a change in driving current, but as a configuration of the organic EL element, By using an independently driven (toning method) organic EL element in which two or more independent light emitting units are stacked as described later, and by increasing the current applied to the light emitting unit for blue light emission, the blue light emission intensity ( Examples thereof include a method of increasing Ib), a method of increasing the blue light emission time by pulse driving, and the like.
 具体的には、発光駆動条件を予め複数のタイプ設定しておき、血液未付着時の条件と血液付着後の条件を、状況に応じて適宜選択する方法も好ましい方法である。 Specifically, a method in which a plurality of types of light emission driving conditions are set in advance, and a condition when blood is not adhered and a condition after blood is appropriately selected according to the situation is also a preferable method.
 また、下記図2で例示するように、青色発光層(HOST)と隣接する電子輸送層(ELT)とのLUMO差が0.1eV以上となる材料を適用することにより、Ib/Ibo>Ir/Iroの関係を達成することもできる。 Further, as illustrated in FIG. 2 below, by applying a material in which the LUMO difference between the blue light emitting layer (HOST) and the adjacent electron transport layer (ELT) is 0.1 eV or more, Ib / Ibo> Ir / The Iro relationship can also be achieved.
 図2は、式(1)で規定する条件を達成するための手段の一例を説明するため方法の一例を示す概略図である。 FIG. 2 is a schematic diagram showing an example of a method for explaining an example of means for achieving the condition defined by the expression (1).
 図2では、HOST(発光層)と隣接するETL(電子輸送層)のLUMO-HOMOを表している。電子はLUMOに移動するが、HOSTとETLのLUMOの差がある程度あるとき、具体的には0.1eV以上あるときに駆動電流を上げると、電子がETLのLUMOにたまり駆動電流を上げる前の図2で示す状態Aに比べ、図2で示す電流を上げた状態Bでは電子がHOSTのLUMOへ移動しやすくなる。よって電子が流れやすくなることでHOSTでの電子とホールの再結合が効率よく行われ、青の発光強度を向上させることができる。 FIG. 2 shows LUMO-HOMO of ETL (electron transport layer) adjacent to HOST (light emitting layer). Electrons move to LUMO, but when there is a difference between the HOST and ETL LUMO to some extent, specifically when the drive current is increased when it is 0.1 eV or more, the electrons are accumulated in the ETL LUMO before the drive current is increased. Compared to the state A shown in FIG. 2, in the state B where the current shown in FIG. 2 is increased, electrons are more likely to move to the HOST LUMO. Therefore, electrons easily flow, so that recombination of electrons and holes in HOST is performed efficiently, and blue emission intensity can be improved.
 《外科用手術器具への有機EL素子の適用》
 〔実施形態1:有機EL素子を具備した第1の開創器〕
 本発明においては、式(1)で規定する条件を満たす有機EL素子を開創器に装着させる仕様が好ましい実施形態の一つである。
<< Application of organic EL elements to surgical instruments >>
[Embodiment 1: First retractor provided with organic EL element]
In the present invention, a specification in which an organic EL element satisfying the condition defined by the expression (1) is attached to the retractor is one of the preferred embodiments.
 図3は、代表的な外科用手術器具である開創器の一対の開創具の内面側に有機EL素子を装着させている状態を示す斜視図である。なお、以下、各図の説明において、構成要素の末尾に括弧内で記載した数字は、各図に記載の符号を表す。 FIG. 3 is a perspective view showing a state where organic EL elements are mounted on the inner surfaces of a pair of retractors of a retractor that is a typical surgical surgical instrument. Hereinafter, in the description of each figure, the numbers described in parentheses at the end of the constituent elements represent the symbols described in the figures.
 図3に示すように、開創器(50)は、切開部位を押し広げる際に当該切開部位を係止保持するための一対の第1開創具(57A)及び第2開創具(57B)をそれぞれ先端側に備えた一対のアーム(55A及び55B)を、ヒンジ部(54)を介して開閉可能な鋏状の構成を有している。そして、上記一対のアーム(55A及び55B)の開閉操作を行うために、当該一対のアーム(55A及び55B)にはそれぞれハンドル(53A及び53B)が一体に設けられており、この各ハンドル(53A及び53B)の先端部には指を入れるための指輪(51A及び51B)が備えられている。 As shown in FIG. 3, the retractor (50) includes a pair of first retractor (57A) and second retractor (57B) for locking and holding the incision site when the incision site is expanded. A pair of arms (55A and 55B) provided on the distal end side has a hook-like configuration that can be opened and closed via a hinge portion (54). In order to open and close the pair of arms (55A and 55B), the pair of arms (55A and 55B) are integrally provided with handles (53A and 53B), respectively. And 53B) are provided with rings (51A and 51B) for inserting fingers.
 開創器(50)は、指輪(51A及び51B)に指を入れて、ハンドル(53A及び53B)を閉じるように操作すると、アーム(55A及び55B)の先端側が開くように、ヒンジ部(54)を中心として回動するものである。次いで、アーム(55A及び55B)の先端側を開いた状態に保持するため、ハンドル(53A及び53B)を不動状態に固定可能のラチェット歯(52)等から構成されるロック機構が備えられている。 When the retractor (50) puts a finger into the rings (51A and 51B) and operates to close the handles (53A and 53B), the hinge part (54) is opened so that the distal end side of the arms (55A and 55B) is opened. It rotates around the center. Next, in order to hold the distal end side of the arms (55A and 55B) in an open state, a lock mechanism including a ratchet tooth (52) or the like that can fix the handle (53A and 53B) in an immobile state is provided. .
 図3に示すような構成の開創器(50)においては、アーム(55A及び55B)の先端部に設けられている一対の第1開創具(57A)及び第2開創具(57B)のそれぞれ対向する面側に、本発明に係る有機EL素子(OLEDa、OLEDb)が装着されている。有機EL素子は、各開創具(57A及び57B)に対し、脱着可能な状態で装着されていることが好ましい。 In the retractor (50) configured as shown in FIG. 3, each of the pair of first retractor (57A) and second retractor (57B) provided at the distal ends of the arms (55A and 55B) is opposed to each other. The organic EL element (OLEDa, OLEDb) according to the present invention is mounted on the surface to be performed. The organic EL element is preferably attached to each retractor (57A and 57B) in a detachable state.
 図3に記載の開創器(50)は、小さな切開部であれば1つの開創器で対応してもよいが、切開部が大きな場合には、複数個の開創器をそれぞれ異なる位置に配置して照明する方法であってもよい。 The retractor (50) shown in FIG. 3 may be handled by a single retractor if it is a small incision, but if the incision is large, a plurality of retractors are arranged at different positions. It may be a method of illuminating.
 また、図3で例示した開創器(50)では、2つのアームがそれぞれ自由に可動する形態を示したが、例えば、特開2005-58440号公報や特開2005-211409号公報で開示されているような、一方のアームを固定し、他方のアームを可動式とする構成であってもよい。 In addition, the retractor (50) illustrated in FIG. 3 has a configuration in which the two arms can freely move. However, for example, disclosed in Japanese Patent Application Laid-Open No. 2005-58440 and Japanese Patent Application Laid-Open No. 2005-212409. It may be configured such that one arm is fixed and the other arm is movable.
 〔実施形態2:有機EL素子を具備した第2の開創器〕
 本発明に係る開創器としては、異なる位置に配置されている開創器ユニットを複数個有する構成であってもよい。
[Embodiment 2: Second retractor provided with organic EL element]
The retractor according to the present invention may have a plurality of retractor units arranged at different positions.
 図4は、本発明の実施形態2に係る有機EL素子を具備した複数の開創器ユニットにより構成されている開創器の一例を示す斜視図である。 FIG. 4 is a perspective view showing an example of a retractor configured by a plurality of retractor units including the organic EL element according to Embodiment 2 of the present invention.
 図4に示す開創器は、三関節自在開創固定器を、異なる方向に3ユニットを配置した例を示してある。 The retractor shown in FIG. 4 shows an example in which three units of a three-joint retractable fixator are arranged in different directions.
 手術台(59)上に、3つの自在開創固定器ユニット(60A、60B及び60C)が3方向に独立して配置されている。 On the operating table (59), three freely retractable fixator units (60A, 60B and 60C) are independently arranged in three directions.
 第1自在開創固定器ユニット(60A)は、3つの関節部を有し、自由な位置に、有機EL素子(OLED)を有する開創具(69)を配置させることができる。 The first universal retractor unit (60A) has three joints, and a retractor (69) having an organic EL element (OLED) can be arranged at a free position.
 第1自在開創固定器ユニット(60A)は、手術台固定金具(61)により手術台(59)に固定されている。手術台固定金具(61)の上部には、順に、本体支持棒(62)、第3ジョイント自由自在(63)、第2アーム(64)、エルボージョイント(65)、第1アーム(66)、第1ジョイント自由自在(67)及び鈎固定部(68)を有しており、当該鈎固定部(68)の先端に、有機EL素子(OLED)を装着している開創具(69A)を有している。第1自在開創固定器ユニット(60A)と同様の構成の第2自在開創固定器ユニット(60B)及び第3自在開創固定器ユニット(60C)が、直角方向に配置されている。各開創具(69)の先端に装着している有機EL素子(OLED)を手術中に切開した体内に挿入し、患部に無影灯の照明として機能するとともに、手術中に血液等が付着した際に、有機EL素子(OLED)の駆動条件を変化させ、適切な発光スペクトルとなるように調整を行う。 The first universal retractor unit (60A) is fixed to the operating table (59) by the operating table fixing bracket (61). In the upper part of the operating table fixing bracket (61), a main body support rod (62), a third joint freely movable (63), a second arm (64), an elbow joint (65), a first arm (66), It has a first joint freedom (67) and a hook fixing part (68), and a retractor (69A) having an organic EL element (OLED) attached to the tip of the hook fixing part (68). is doing. A second universal retractor unit (60B) and a third universal retractor unit (60C) having the same configuration as the first universal retractor unit (60A) are arranged in a perpendicular direction. An organic EL element (OLED) attached to the tip of each retractor (69) was inserted into the incised body during the operation, and the affected area functioned as an illumination of the surgical light, and blood or the like adhered during the operation. At this time, the drive conditions of the organic EL element (OLED) are changed to make adjustments so that an appropriate emission spectrum is obtained.
 図3及び図4で示すような曲面を有する開創具に有機EL素子を装着させる場合、有機EL素子自身がフレキシブル性を有し、開創部の曲面に対し湾曲した状態で固定できる構成であることが好ましい。 When an organic EL element is mounted on a retractor having a curved surface as shown in FIGS. 3 and 4, the organic EL element itself has flexibility and can be fixed in a curved state with respect to the curved surface of the wound part. Is preferred.
 図5は、曲面形状の開創具面に凹面形状の有機EL素子を具備し一例を示す概略図である。 FIG. 5 is a schematic view showing an example in which a concave organic EL element is provided on a curved retractor surface.
 図5では、図3で説明した開創器(50)の部分構造を示しており、アーム(55)の先端部に、アーム連結部(56)を介して、曲面構造を有する開創具(57)が設けられ、その表面部に湾曲した状態の有機EL素子(OLED)が装着されている。この時、有機EL素子は、開創具(57)に対し、着脱可能な構成とすることが好ましい。 FIG. 5 shows a partial structure of the retractor (50) described with reference to FIG. 3, and a retractor (57) having a curved surface structure at the tip of the arm (55) via an arm connecting part (56). And an organic EL element (OLED) in a curved state is mounted on the surface thereof. At this time, the organic EL element is preferably configured to be removable from the retractor (57).
 また、有機EL素子の表面部には、滅菌処理耐性を有するカバーが装着されていてもよい。 Further, a cover having sterilization resistance may be attached to the surface portion of the organic EL element.
 このような仕様で適用される有機EL素子としては、基材としてフレキシブル性を有する樹脂基材を用いること、あるいは電極を構成する材料として、従来のITO(酸化インジウム・スズ)に対して優れたフレキシブル性を有する薄膜銀電極、銀グリッド、又はIZO(酸化インジウム・酸化亜鉛)を適用することが好ましい。 As an organic EL element applied in such a specification, a resin base material having flexibility is used as a base material, or as a material constituting an electrode, it is superior to conventional ITO (indium tin oxide). It is preferable to apply a thin film silver electrode having flexibility, a silver grid, or IZO (indium oxide / zinc oxide).
 〔実施形態3:有機EL素子を具備した手術用手袋〕
 本発明に係る有機EL素子は、実施形態1及び実施形態2で説明したような開創器に具備させるほか、ドクターが装着している手術用手袋に具備させる仕様も、好ましい態様である。
[Embodiment 3: Surgical gloves equipped with organic EL elements]
The organic EL device according to the present invention is a preferable mode in addition to the retractor as described in the first and second embodiments, and the specification of the surgical glove worn by the doctor.
 図6A及び図6Bは、本発明の実施形態に係る有機EL素子を具備した手術用手袋の構成の一例を示す斜視図である。 6A and 6B are perspective views showing an example of a configuration of a surgical glove equipped with an organic EL element according to an embodiment of the present invention.
 図6Aは、手術用手袋(71)の各指先に有機EL素子(OLED)を装着している形態を示しており、図6Bには、手術用手袋(71)の手のひら又は甲部に有機EL素子(OLED)を装着している形態を示している。 FIG. 6A shows a form in which an organic EL element (OLED) is attached to each fingertip of a surgical glove (71), and FIG. 6B shows an organic EL on the palm or back of the surgical glove (71). The form which has mounted | wore with the element (OLED) is shown.
 いずれの形態においても、装着させる有機EL素子(OLED)はフレキシブル性を備えていることが重要な要件である。 In any form, it is an important requirement that the organic EL element (OLED) to be mounted has flexibility.
 《有機EL素子の構成例》
 次いで、外科用手術器具へ適用する有機EL素子の詳細について、図を交えて説明する。
<< Configuration example of organic EL element >>
Next, details of the organic EL element applied to the surgical instrument will be described with reference to the drawings.
 〔有機EL素子の全体構成〕
 図7は、本発明に適用可能な有機EL素子の発光ユニットの封止構造を含めた全体構成の一例を示す断面図である。
[Overall configuration of organic EL element]
FIG. 7 is a cross-sectional view showing an example of the entire configuration including a sealing structure of a light emitting unit of an organic EL element applicable to the present invention.
 図7に示す有機EL素子(OLED)は、基材(1)上に、一対の電極の一方を構成する第1電極(3、陽極)と、その上に、有機機能層群1(22)、発光層(23)及び有機機能層群2(24)で構成される有機機能層ユニット(4)を有している。この有機機能層ユニット(4)上に、他方の電極である第2電極(6、陰極)が形成されて、第1電極(3)~第2電極(6)までで、発光ユニット(12)を構成している。図7では、便宜上、1つの発光ユニット(12)のみを記載しているが、2つ以上の発光ユニット(12)が積層されている構造、あるいは複数の発光ユニット(12)が並列配置されている構成であってもよい。 The organic EL element (OLED) shown in FIG. 7 includes a first electrode (3, anode) constituting one of a pair of electrodes on the base material (1), and an organic functional layer group 1 (22) thereon. The organic functional layer unit (4) is composed of the light emitting layer (23) and the organic functional layer group 2 (24). On the organic functional layer unit (4), the second electrode (6, cathode) as the other electrode is formed, and the light emitting unit (12) is formed from the first electrode (3) to the second electrode (6). Is configured. In FIG. 7, only one light emitting unit (12) is shown for convenience, but a structure in which two or more light emitting units (12) are stacked, or a plurality of light emitting units (12) are arranged in parallel. It may be a configuration.
 更に、第2電極(6)の上部には、少なくとも発光ユニット(12)を被覆する形態で、封止用接着層(13)及び封止基板(14)が設けられて、有機EL素子(OLED)を形成している。 Furthermore, an adhesive layer for sealing (13) and a sealing substrate (14) are provided on the second electrode (6) so as to cover at least the light emitting unit (12), and an organic EL element (OLED) ) Is formed.
 図7に記載の有機EL素子(OLED)において、第1電極(3)を透明電極で構成することにより、発光ユニット(12)の発光点(h)で発光した発光光(L)を、透明電極である第1電極(3)側より外部に取り出すことができる。 In the organic EL element (OLED) shown in FIG. 7, the first electrode (3) is formed of a transparent electrode, so that the emitted light (L) emitted from the light emitting point (h) of the light emitting unit (12) is transparent. It can be taken out from the first electrode (3) side which is an electrode.
 上記構成の有機EL素子を外科用手術器具に適用する際の好ましい要件A~Gを、以下に列挙する。 Favorable requirements A to G when the organic EL element having the above configuration is applied to a surgical instrument are listed below.
 要件A:基材(1)及び封止基板(14)は、フレキシブル性を有し、破損の恐れがない樹脂基材であることが好ましい。カラス基材等を適用した場合には、フレキシブル性が不十分であり、体内挿入時に破損等を起こした際の問題が大きい。 Requirement A: The base material (1) and the sealing substrate (14) are preferably resin base materials that have flexibility and are not likely to be damaged. When a crow base material or the like is applied, the flexibility is insufficient, and there is a great problem when damage is caused during insertion into the body.
 要件B:面発光光源である有機EL素子を外科用手術器具へ装着する際、保持具(例えば、開創器の開創具あるいは手術用手袋等)に着脱可能な仕様であることが好ましい。 Requirement B: When mounting an organic EL element that is a surface-emitting light source on a surgical instrument, it is preferable that the specification is detachable from a holder (for example, a retractor retractor or a surgical glove).
 要件C:外科用手術器具に適用する光源であることを考慮すると、発光面積は10cm以上であること、発光輝度は1000cd/m以上であること、輝度均一性〔(輝度の最小値/輝度の最大値)×100(%)〕が80%以上であることが好ましい。 Requirement C: Considering that the light source is applied to a surgical instrument, the light emission area is 10 cm 2 or more, the light emission luminance is 1000 cd / m 2 or more, the luminance uniformity [(the minimum value of luminance / (Maximum value of luminance) × 100 (%)] is preferably 80% or more.
 要件D:発光特性としては、基本的には白色発光であり、極大発光波長を少なくとも3つ有し、演色性を備えている仕様であることが好ましい。 Requirement D: It is preferable that the emission characteristics are basically white emission, have at least three maximum emission wavelengths, and have color rendering properties.
 要件E:有機EL素子の光源部としての厚さは,2mm以下の薄型構成とすることにより、患者の切開部を最小限にすることができる点で好ましい。 Requirement E: The thickness of the organic EL element as the light source part is preferable in that the incision part of the patient can be minimized by adopting a thin configuration of 2 mm or less.
 要件F:有機層の総厚は,200nm以上であることが、リークの発生を抑制し、手術中での突然の発光機能の消失を防止することができる点で好ましい。 Requirement F: The total thickness of the organic layer is preferably 200 nm or more from the viewpoint of suppressing the occurrence of leakage and preventing a sudden loss of light emitting function during surgery.
 要件G:有機EL素子は発光波長を制御することが可能な調色タイプであること、更には2つ以上の発光ユニットを積層したタンデム構成であることが好ましい。 Requirement G: The organic EL element is preferably a toning type capable of controlling the emission wavelength, and further preferably has a tandem configuration in which two or more light emitting units are stacked.
 〔複数の発光ユニットを有する有機EL素子の構成〕
 次いで、本発明に好適に用いることができる複数の発光ユニットを有する有機EL素子の構成について説明する。
[Configuration of organic EL element having a plurality of light emitting units]
Next, the configuration of an organic EL element having a plurality of light emitting units that can be suitably used in the present invention will be described.
 (有機EL素子構成:タイプA)
 有機EL素子構成の一例であるタイプAは、基材上に、第1電極/第1の発光ユニット/中間電極/第2の発光ユニット/第2電極が積層させた調色タイプの構成で、第1の発光ユニットと第2の発光ユニットを独立して発光制御することができる構成が挙げられる。具体的には、後述の図8~図10で例示する構成である。このような構成の有機EL素子においては、本発明の式(1)で規定する「Ib/Ibo>Ir/Iro」の関係を確実に満たすためには、第1の発光ユニットを青色発光とし、第2の発光ユニットを緑色発光及び赤色発光とする構成が好ましい。
(Organic EL device configuration: Type A)
Type A which is an example of an organic EL element configuration is a toning type configuration in which a first electrode / first light emitting unit / intermediate electrode / second light emitting unit / second electrode are laminated on a base material, The structure which can perform light emission control of the 1st light emission unit and the 2nd light emission unit independently is mentioned. Specifically, the configuration is illustrated in FIGS. 8 to 10 described later. In the organic EL element having such a configuration, in order to reliably satisfy the relationship of “Ib / Ibo> Ir / Iro” defined by the formula (1) of the present invention, the first light emitting unit emits blue light, A configuration in which the second light emitting unit emits green light and red light is preferable.
 (有機EL素子構成:タイプB)
 有機EL素子構成の他の一例であるタイプBは、基材上に、第1電極/第1の発光ユニット/第1の中間電極/第2の発光ユニット/第2の中間電極/第3の発光ユニット/第2電極という構成で3つの発光ユニットがタンデム型で積層された調色タイプの構成で、例えば、第1の発光ユニット~第3の発光ユニットをそれぞれ独立した条件で発光制御させることができる構成である。具体的には、後述の図11に記載してある構成を例示することができる。このようなタンデム型構成の有機EL素子においては、本発明に係る式(1)で規定する「Ib/Ibo>Ir/Iro」の関係を達成させるためには、第1の発光ユニットを青色発光層、第2の発光ユニットを緑色発光層、第3の発光ユニットを赤色発光層とする構成とし、式(1)で規定する条件を満たすように、それぞれの発光ユニットに印加する駆動電流条件を、それぞれ独立に制御する方法が好ましい。
(Organic EL device configuration: Type B)
Type B, which is another example of the organic EL element configuration, has a first electrode / first light emitting unit / first intermediate electrode / second light emitting unit / second intermediate electrode / third on the substrate. A toning type structure in which three light emitting units are stacked in a tandem configuration with a light emitting unit / second electrode configuration, for example, the first to third light emitting units are controlled to emit light under independent conditions. It is the structure which can do. Specifically, the configuration described in FIG. 11 described later can be exemplified. In the organic EL element having such a tandem configuration, in order to achieve the relationship of “Ib / Ibo> Ir / Iro” defined by the formula (1) according to the present invention, the first light emitting unit emits blue light. And the second light-emitting unit is a green light-emitting layer, the third light-emitting unit is a red light-emitting layer, and the drive current condition applied to each light-emitting unit is set so as to satisfy the condition defined by Equation (1). The method of controlling each independently is preferable.
 (有機EL素子構成:タイプC)
 有機EL素子構成の他の一例であるタイプCは、基材上に、第1電極/第1の発光ユニット/中間層/第2の発光ユニット/中間層/第3の発光ユニット/第2電極がタンデム型で積層された調色タイプの構成で、例えば、第1の発光ユニット~第3の発光ユニットをそれぞれ同一の条件で発光制御させる非独立制御型の方法であり、このような構成で、式(1)で規定する条件を満たすためには、前述の図2で説明したように、青色発光ユニットの構成として、青色発光層(HOST)と隣接する電子輸送層(ELT)とのLUMO差が0.1eV以上となる材料を適用することが好ましい。
(Organic EL device configuration: Type C)
Type C, which is another example of the organic EL element configuration, is formed on the base material by the first electrode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / second electrode. Is a non-independent control method in which the first light emitting unit to the third light emitting unit are controlled to emit light under the same conditions, for example. In order to satisfy the condition defined by the formula (1), as described in FIG. 2 above, as the structure of the blue light emitting unit, the LUMO between the blue light emitting layer (HOST) and the adjacent electron transport layer (ELT). It is preferable to apply a material having a difference of 0.1 eV or more.
 (有機EL素子構成:タイプD)
 有機EL素子構成の他の一例であるタイプDとして、同一平面上に、青色発光ユニット、緑色発光ユニット、赤色発光ユニットを並列配置し、それぞれを独立して制御する方法も挙げることができる。その一例は、後述する図13で説明するとおりである。
(Organic EL device configuration: Type D)
As a type D which is another example of the organic EL element configuration, a method in which a blue light emitting unit, a green light emitting unit, and a red light emitting unit are arranged in parallel on the same plane and each of them can be controlled independently can be mentioned. One example is as described in FIG.
 〔複数の発光ユニットを有する有機EL素子の例示〕
 上記説明した複数の発光ユニットを有する有機EL素子の具体的な構成について、図を交えて説明する。
[Example of organic EL device having a plurality of light emitting units]
A specific configuration of the organic EL element having the plurality of light emitting units described above will be described with reference to the drawings.
 なお、各構成層の構成材料等の詳細については後述する。 The details of the constituent materials of each constituent layer will be described later.
 (実施形態A:2つの発光ユニットを積層した方式)
 図8は、上記説明したタイプAに相当する独立した発光ユニットを積層した独立駆動型(調色方式)の有機EL素子の詳細な構成の一例を示す概略断面図である。
(Embodiment A: A system in which two light emitting units are stacked)
FIG. 8 is a schematic cross-sectional view showing an example of a detailed configuration of an independently driven (toning method) organic EL element in which independent light emitting units corresponding to type A described above are stacked.
 図8に示す有機EL素子(OLED)は、一対の電極(3、6)間に2つの有機機能層ユニット(4-A及び4-B)を有し、当該2つの有機機能層ユニット(4-A及び4-B)間に中間電極(15)を配置し、それぞれの2つの発光ユニット(U1及びU2)を独立して形成している独立駆動型(調色方式)の有機EL素子の構成の一例(実施態様A、タイプA)を示す概略断面図である。 The organic EL element (OLED) shown in FIG. 8 has two organic functional layer units (4-A and 4-B) between a pair of electrodes (3, 6), and the two organic functional layer units (4 -A and 4-B) is an organic EL element of an independent drive type (toning method) in which an intermediate electrode (15) is arranged and two light emitting units (U1 and U2) are independently formed. It is a schematic sectional drawing which shows an example (embodiment A, type A) of a structure.
 図8に示す有機EL素子(OLED)の構成では、フレキシブル基材(1)上に、透明な陽極(3)を形成し、その上に、第1の正孔注入層(HIL1)及び第1の正孔輸送層(HTL1)を積層して、その上に第1の発光層(12)を積層し、更にその上に、第1の電子輸送層(ETL1)及び第1の電子注入層(EIL1)を積層して有機機能層ユニット1(4-A)を構成し、有機機能層ユニット1(4-A)上に中間電極(15)を形成し、陽極(3)と中間電極(15)間をリード線(11-A)で接続して、独立制御が可能な第1の発光ユニット(U1)を構成している。 In the configuration of the organic EL element (OLED) shown in FIG. 8, a transparent anode (3) is formed on a flexible substrate (1), and a first hole injection layer (HIL1) and a first are formed thereon. Of the first electron transport layer (ETL1) and the first electron injection layer (ETL1) and the first electron transport layer (ETL1). EIL1) is laminated to form an organic functional layer unit 1 (4-A), an intermediate electrode (15) is formed on the organic functional layer unit 1 (4-A), and an anode (3) and an intermediate electrode (15 ) Are connected by lead wires (11-A) to constitute a first light emitting unit (U1) capable of independent control.
 次いで、中間電極(15)上に、第2の正孔注入層(HIL2)及び第2の正孔輸送層(HTL2)を積層して、その上に第2の発光層(13)を積層し、更にその上に、第2の電子輸送層(ETL2)及び第2の電子注入層(EIL2)を積層して有機機能層ユニット2(4-B)を構成し、最上層に陰極(6)が設けられている。更に、中間電極(15)と陰極(6)間をリード線(11-B)で接続して、独立制御が可能な第2の発光ユニット(U2)を構成している。 Next, a second hole injection layer (HIL2) and a second hole transport layer (HTL2) are laminated on the intermediate electrode (15), and a second light emitting layer (13) is laminated thereon. Further, a second electron transport layer (ETL2) and a second electron injection layer (EIL2) are further laminated thereon to form an organic functional layer unit 2 (4-B), with the cathode (6) as the uppermost layer. Is provided. Further, the intermediate electrode (15) and the cathode (6) are connected by a lead wire (11-B) to constitute a second light emitting unit (U2) capable of independent control.
 図8に記載の構成では、透明な陽極(3)と中間電極(15)間に、リード線(11-A)を介して電圧(V1)を印加することにより、発光ユニット1(U1)を独立して駆動し、中間電極(15)と陰極(6)の間に、リード線(11-B)を介して電圧(V2)を印加することにより、発光ユニット2(U2)を独立駆動し、いずれも、透明な陽極(3)側から発光光(L)が放射される。 In the configuration shown in FIG. 8, the voltage (V1) is applied between the transparent anode (3) and the intermediate electrode (15) via the lead wire (11-A), whereby the light emitting unit 1 (U1) is mounted. The light emitting unit 2 (U2) is independently driven by applying the voltage (V2) via the lead wire (11-B) between the intermediate electrode (15) and the cathode (6). In either case, emitted light (L) is emitted from the transparent anode (3) side.
 このような構成においては、有機機能層ユニット1(4-A)を構成する第1の発光層(12)は発光材料としては青色発光材料で構成し、有機機能層ユニット2(4-B)を構成する第2の発光層(13)は発光材料として緑色発光材料及び赤色発光材料で構成することが好ましい。 In such a configuration, the first light emitting layer (12) constituting the organic functional layer unit 1 (4-A) is composed of a blue light emitting material as the light emitting material, and the organic functional layer unit 2 (4-B). The second light emitting layer (13) constituting the light emitting material is preferably composed of a green light emitting material and a red light emitting material as the light emitting material.
 また、中間電極(15)としては、透明電極であることが好ましい構成であり、薄膜の金属電極、例えば、薄膜銀電極等で形成し、中間電極(15)は、電気的接続を得るための独立した接続端子を有している。 Further, the intermediate electrode (15) is preferably a transparent electrode, and is formed of a thin metal electrode, for example, a thin film silver electrode. The intermediate electrode (15) is used for obtaining an electrical connection. It has an independent connection terminal.
 図9は、図8で示した実施形態A(タイプA)の有機EL素子の構成を、より簡略化して記載した図であり、基本的な構成は図8と同様である。以降の有機EL素子の構成の説明は、図9で示すような構成を用いて説明する。 FIG. 9 is a diagram showing a simplified configuration of the organic EL element of Embodiment A (type A) shown in FIG. 8, and the basic configuration is the same as FIG. The following description of the structure of the organic EL element will be made using the structure shown in FIG.
 図10は、実施形態A(タイプA)で、2つの独立した発光ユニットを積層した独立駆動型(調色方式)の有機EL素子の構成の他の一例を示す概略断面図で、図9で記載の中間電極(5)に代えて、窒素原子含有層(7)上に薄銀電極(5-1)を形成した例を示してある。 FIG. 10 is a schematic cross-sectional view showing another example of the configuration of the organic EL element of independent drive type (toning method) in which two independent light emitting units are stacked in the embodiment A (type A). In this example, a thin silver electrode (5-1) is formed on the nitrogen atom-containing layer (7) instead of the intermediate electrode (5) described.
 (実施形態B:3つの発光ユニットを積層した独立駆動方式)
 図11は、3つの有機機能層ユニット(4-A、4-B及び4-C)から構成される3つの発光ユニット(U1、U2及びU3)を有するタンデム構造の有機EL素子(OLED)の実施形態B(タイプB)の構成を示す概略断面図である。
(Embodiment B: Independent drive system in which three light emitting units are stacked)
FIG. 11 shows an organic EL element (OLED) having a tandem structure having three light emitting units (U1, U2 and U3) composed of three organic functional layer units (4-A, 4-B and 4-C). It is a schematic sectional drawing which shows the structure of Embodiment B (type B).
 図11において、有機EL素子(OLED)は、フレキシブル基材(1)上に、対向する位置関係で、第1電極(3)と第2電極(6)が配置されている。図11の構成では、第1電極(3)が透明電極である陽極であり、第2電極(6)が陰極である構成例を示してある。 In FIG. 11, in the organic EL element (OLED), the first electrode (3) and the second electrode (6) are arranged on the flexible base material (1) in an opposing positional relationship. In the configuration of FIG. 11, a configuration example is shown in which the first electrode (3) is an anode that is a transparent electrode, and the second electrode (6) is a cathode.
 第1電極(3、陽極)と、第2電極(6、陰極)との間には、発光層を含む各有機機能層(4-A~4-C)から構成される第1の発光ユニット(U1)、第2の発光ユニット(U2)及び第3の発光ユニット(U3)が配置され、各発光ユニットのそれぞれの間には、独立した接続端子(不図示)を有している中間電極層(5-1、5-2)及び窒素原子含有層(7-1、7-2)が配置されている。 Between the first electrode (3, anode) and the second electrode (6, cathode), a first light emitting unit composed of each organic functional layer (4-A to 4-C) including a light emitting layer (U1), a second light emitting unit (U2) and a third light emitting unit (U3) are arranged, and an intermediate electrode having an independent connection terminal (not shown) between each light emitting unit. A layer (5-1, 5-2) and a nitrogen atom-containing layer (7-1, 7-2) are arranged.
 それぞれ、第1電極(3)と中間電極層(5-1)間は、リード線(11-A)で配線され、それぞれの接続端子に駆動電圧V1として2~40V程度を印加することにより、発光ユニット(U1)が発光する。同様に、中間電極層(5-1)と中間電極層(5-2)間は、リード線(11-B)で配線され、それぞれの接続端子に駆動電圧V2として2~40V程度を印加することにより、発光ユニット(U2)が発光する。同様に、中間電極層(5-2)と第2電極(6)間も、リード線(11-C)で配線され、それぞれの接続端子に駆動電圧V3として2~40V程度を印加することにより、発光ユニット(U3)が発光する。 Each of the first electrode (3) and the intermediate electrode layer (5-1) is wired with a lead wire (11-A), and by applying about 2 to 40 V as a drive voltage V1 to each connection terminal, The light emitting unit (U1) emits light. Similarly, the intermediate electrode layer (5-1) and the intermediate electrode layer (5-2) are wired with lead wires (11-B), and a drive voltage V2 of about 2 to 40 V is applied to each connection terminal. As a result, the light emitting unit (U2) emits light. Similarly, the intermediate electrode layer (5-2) and the second electrode (6) are also wired with lead wires (11-C), and a drive voltage V3 of about 2 to 40 V is applied to each connection terminal. The light emitting unit (U3) emits light.
 有機EL素子(OLED)の駆動に際し、駆動電圧V1、駆動電圧V2及び駆動電圧V3として直流電圧を印加する場合には、陽極である第1電極(3)を+の極性とし、陰極である第2電極(6)を-の極性として、電圧2~40Vの範囲内で印加し、さらに中間電極層(5-1及び5-2)に対しては第1電極(3)と第2電極(6)との中間電圧で印加する。 When a direct current voltage is applied as the driving voltage V1, the driving voltage V2, and the driving voltage V3 when driving the organic EL element (OLED), the first electrode (3) that is an anode has a positive polarity and the first electrode that is a cathode. Two electrodes (6) are applied with a negative polarity within a voltage range of 2 to 40V, and the first electrode (3) and the second electrode (5-2) are applied to the intermediate electrode layers (5-1 and 5-2). Apply at an intermediate voltage with 6).
 各駆動電圧の印加により、それぞれの発光ユニットの発光点(h)で発光した発光光(L)は、透明電極である第1電極(3)側より、外部に取り出される。また、第2電極(6)側に発光した光は、第2電極(6)面で反射し、同様に第1電極(3)側より取り出される構成である。 The emitted light (L) emitted from the light emitting point (h) of each light emitting unit by application of each driving voltage is taken out from the first electrode (3) side which is a transparent electrode. In addition, the light emitted to the second electrode (6) side is reflected by the second electrode (6) surface and similarly extracted from the first electrode (3) side.
 図11に示すような3つの発光ユニット(U1、U2及びU3)から構成されるタンデム構造の有機EL素子においては、例えば、有機機能層ユニット(4-A)を構成する発光層には青色発光性化合物を含有してB発光ユニットとし、発光ユニット(4-B)を構成する発光層には緑色発光性化合物を含有してG発光ユニットとし、発光ユニット(4-C)を構成する発光層には赤色発光性化合物を含有してR発光ユニットとし、各駆動電圧V1~V3を適宜調整することにより、白色発光、あるいは所望の波長の発光(調色)を実現することもできる。 In an organic EL element having a tandem structure composed of three light emitting units (U1, U2 and U3) as shown in FIG. 11, for example, the light emitting layer constituting the organic functional layer unit (4-A) emits blue light. The light emitting layer that contains the light emitting compound and constitutes the light emitting unit (4-B), and the light emitting layer that constitutes the light emitting unit (4-B) contains the green light emitting compound as the G light emitting unit. It is also possible to realize a white light emission or light emission (toning) of a desired wavelength by appropriately adjusting the drive voltages V1 to V3 by containing a red light emitting compound in the R light emitting unit.
 (実施形態C:3つの発光ユニットを積層した非独立駆動方式)
 図12は、3つの発光ユニット(U1、U2及びU3)を有するタンデム構造の有機EL素子(EL)の他の一例である実施形態C(タイプC)の構成を示す概略断面図である。
(Embodiment C: Non-independent drive system in which three light emitting units are stacked)
FIG. 12 is a schematic cross-sectional view showing a configuration of an embodiment C (type C) which is another example of an organic EL element (EL) having a tandem structure having three light emitting units (U1, U2 and U3).
 図12は、上記説明した図11に記載のタンデム構造の有機EL素子に対し、第1の発光ユニット(U1)~第3の発光ユニット(U3)までのそれぞれの間に設けた中間電極層(5-1及び5-2)と窒素原子含有層(7-1及び7-2)に代えて、電荷発生層(15A及び15B)を設け、かつ第1電極(3)と第2電極(6)間に駆動電圧V1を印加する方式であり、第1の発光ユニット(U1)~第3の発光ユニット(U3)がそれぞれ独立発光する方式ではなく、同時発光する方式である。 12 shows an intermediate electrode layer (between the first light emitting unit (U1) and the third light emitting unit (U3)) for the organic EL element having the tandem structure shown in FIG. 11 described above. 5-1 and 5-2) and the nitrogen atom containing layers (7-1 and 7-2) are provided with charge generation layers (15A and 15B), and the first electrode (3) and the second electrode (6 ), A driving voltage V1 is applied, and the first light emitting unit (U1) to the third light emitting unit (U3) emit light at the same time, not independently.
 (実施形態D:3つの発光ユニットを並列配置した独立駆動方式)
 図13A及び図13Bは、3つの有機EL素子を並列配置した面発光光源の一例(タイプD)を示す概略図である。
(Embodiment D: Independent drive system in which three light emitting units are arranged in parallel)
13A and 13B are schematic views showing an example (type D) of a surface emitting light source in which three organic EL elements are arranged in parallel.
 図13Aは、3つの有機EL素子を並列配置した面発光光源である有機EL素子ユニット(100)の上面図であり、図13Bは各構成部材の配置を示す概略断面図である。 FIG. 13A is a top view of an organic EL element unit (100), which is a surface-emitting light source in which three organic EL elements are arranged in parallel, and FIG. 13B is a schematic cross-sectional view showing the arrangement of each constituent member.
 図13Aに記載の有機EL素子ユニット(100)では、フレキシブル基材(105)上に、青色発光有機EL素子(OLED-B)、緑色発光有機EL素子(OLED-G)及び赤色発光有機EL素子(OLED-R)を並列配置し、それぞれの有機EL素子を単独で単色発光させる方法、2つを組み合わせて中間色を発光させる方法、あるいは3つの有機EL素子を同時発光させて、白色発光タイプとしてもよい。 In the organic EL element unit (100) shown in FIG. 13A, a blue light emitting organic EL element (OLED-B), a green light emitting organic EL element (OLED-G), and a red light emitting organic EL element are formed on a flexible substrate (105). (OLED-R) are arranged in parallel and each organic EL element emits a single color alone. A combination of the two emits an intermediate color. Alternatively, three organic EL elements emit light simultaneously. Also good.
 図13Bは、有機EL素子ユニット(100)の概略断面図であり、フレキシブル基材(105)上に、薄型電池やフレキシブルプリント回路(FPC)等の駆動電力供給部(108)が配置されており、接着層(107)を介して青色発光有機EL素子(OLED-B)、緑色発光有機EL素子(OLED-G)及び赤色発光有機EL素子(OLED-R)が並列配置され、最表部に表面基材(102)が設けられている。駆動電力供給部(108)から、接続部材(106B、106G及び106R)を介して、各有機EL素子に駆動電力が供給される。 FIG. 13B is a schematic cross-sectional view of the organic EL element unit (100), in which a driving power supply unit (108) such as a thin battery or a flexible printed circuit (FPC) is disposed on the flexible substrate (105). The blue light-emitting organic EL element (OLED-B), the green light-emitting organic EL element (OLED-G) and the red light-emitting organic EL element (OLED-R) are arranged in parallel through the adhesive layer (107). A surface substrate (102) is provided. Drive power is supplied from the drive power supply unit (108) to each organic EL element via the connection members (106B, 106G, and 106R).
 特に、駆動電力供給部(108)として薄型電池を適用することが、外科用手術器具としては薄型化で、電力供給コード等が無く、機動性を高めることができる点で好ましい。 In particular, it is preferable to apply a thin battery as the drive power supply unit (108) in terms of being thin as a surgical instrument, having no power supply cord, and improving mobility.
 《有機EL素子の構成要素》
 次いで、本発明に係る有機EL素子の構成の詳細について説明する。
<Components of organic EL elements>
Subsequently, the detail of a structure of the organic EL element concerning this invention is demonstrated.
 (1.有機EL素子の構成と構成材料)
 本発明に係る有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
(1. Configuration and materials of organic EL elements)
As for the outline of the organic EL device according to the present invention, for example, JP 2013-157634 A, JP 2013-168552 A, JP 2013-177361 A, JP 2013-187221 A, JP 2013-18711 A, and so on. 191644, JP2013-191804, JP2013-225678, JP2013-235994, JP2013-243234, JP2013-243236, JP2013-242366 JP, 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014-003299, JP 2014-013910, JP 2014-014933, Described in Japanese Patent Application Laid-Open No. 2014-017494 It can be mentioned configuration that is.
 また、タンデム型の有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/009087号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。 Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6107734, US Pat. No. 6,337,492, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393, JP-A 2006-49394, JP-A 2006- No. 49396, JP 2011-96679, JP 2005-340187, JP 47114424, JP 3496681, JP 3884564, JP 4213169, JP 2010-192719. Gazette, JP 2009-076929 JP 2008-078414, JP 2007-059848, JP 2003-272860, JP 2003-045676, WO 2005/009087, WO 2005/094130, etc. Although the element structure of description and a constituent material, etc. are mentioned, this invention is not limited to these.
 更に、有機EL素子を構成する各構成要素の詳細について説明する。 Further, details of each component constituting the organic EL element will be described.
 (2:基材)
 有機EL素子(OLED)に適用可能な基材(1)としては、特に制限はなく、例えば、ガラス、プラスチック等の種類を挙げることができる。更には、基材がフレキシブル性を有していることが好ましい。本発明でいうフレキシブル性とは、直径5mmのABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体樹脂)製の棒に10回巻きつけと開放を繰り返した後、目視確認にて基材に割れや欠け等の損傷がない特性をいう。
(2: Base material)
There is no restriction | limiting in particular as a base material (1) applicable to an organic EL element (OLED), For example, types, such as glass and a plastic, can be mentioned. Furthermore, it is preferable that the base material has flexibility. The term “flexibility” as used in the present invention refers to a 5 mm diameter ABS resin (acrylonitrile-butadiene-styrene copolymer resin) rod that is repeatedly wound and released 10 times, and then visually confirmed by cracks and chips. This refers to the characteristics that are not damaged.
 本発明において、最表面(光放射面側)に配置される基材は、少なくとも有機EL素子より放射される光を、400~800nmの波長域範囲で透過する特性(光透過性)を有していることが好ましい。本発明でいう光透過性とは、400~800nmの波長域範囲における平均光透過率が60%以上であることをいい、好ましくは70%以上、さらに好ましくは80%以上、特に好ましくは90%以上である。 In the present invention, the substrate disposed on the outermost surface (light emission surface side) has a characteristic (light transmittance) that transmits at least light emitted from the organic EL element in a wavelength range of 400 to 800 nm. It is preferable. The light transmittance in the present invention means that the average light transmittance in a wavelength range of 400 to 800 nm is 60% or more, preferably 70% or more, more preferably 80% or more, particularly preferably 90%. That's it.
 すなわち、本発明においては、基材側から光(L)を取り出す構成では、基材としては透明材料であることが必要となり、好ましく用いられる透明な基材としては、ガラス、石英、樹脂基材を挙げることができる。更には、有機EL素子にフレキシブル性を付与することができ、かつ安全性の観点からフレキシブル基材である樹脂基材が好ましい。 That is, in the present invention, in the configuration in which the light (L) is extracted from the base material side, the base material needs to be a transparent material, and the transparent base material preferably used includes glass, quartz, and a resin base material. Can be mentioned. Furthermore, the resin base material which can give flexibility to an organic EL element and is a flexible base material from a safety viewpoint is preferable.
 本発明に適用可能な樹脂基材を構成する樹脂材料としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート(略称:PMMA)、アクリル及びポリアリレート類、アートン(商品名、JSR社製)及びアペル(商品名、三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the resin material constituting the resin base material applicable to the present invention include polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose. Cellulose esters such as triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose nitrate, and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol , Syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, Ether sulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate (abbreviation: PMMA), acrylic and polyarylates, Arton (trade name, Examples include cycloolefin resins such as JSR) and Apel (trade name, manufactured by Mitsui Chemicals).
 これら樹脂基材のうち、コストや入手の容易性の点では、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)等の樹脂材料より構成されるフィルムが、フレキシブル性の樹脂基材として好ましく用いられる。 Among these resin base materials, in terms of cost and availability, it is composed of a resin material such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC). The film to be used is preferably used as a flexible resin substrate.
 樹脂基材の厚さとしては、10~500μmの範囲内にある薄膜の樹脂基材であることが好ましいが、より好ましくは30~400μmの範囲内であり、特に好ましくは、50~300μmの範囲内である。厚さが10μmであれば、有機EL素子を構成する各機能性層を安定して保持することができ、厚さが500μm以下であれば、光治療時に発生する熱エネルギーを効率的に拡散させることができ、また、患者が衣服を着用したままでも肌に密着させることが可能となる点で好ましい。 The thickness of the resin substrate is preferably a thin film resin substrate in the range of 10 to 500 μm, more preferably in the range of 30 to 400 μm, and particularly preferably in the range of 50 to 300 μm. Is within. If the thickness is 10 μm, each functional layer constituting the organic EL element can be stably held, and if the thickness is 500 μm or less, the thermal energy generated during phototherapy is efficiently diffused. It is also preferable in that it can be brought into close contact with the skin even while the patient is wearing clothes.
 (3:第1電極:陽極)
 有機EL素子を構成する陽極としては、Ag、Au等の金属又は金属を主成分とする合金、CuI、あるいはインジウム-スズの複合酸化物(ITO)、SnO及びZnO等の金属酸化物を挙げることができるが、金属又は金属を主成分とする合金であることが好ましく、更に好ましくは、銀又は銀を主成分とする薄銀電極、銀グリッド電極又はIZOである。
(3: 1st electrode: anode)
Examples of the anode constituting the organic EL element include metals such as Ag and Au, alloys containing metal as a main component, CuI, indium-tin composite oxide (ITO), and metal oxides such as SnO 2 and ZnO. However, a metal or an alloy containing a metal as a main component is preferable, and silver, a thin silver electrode containing silver as a main component, a silver grid electrode, or IZO is more preferable.
 透明陽極を、銀を主成分として構成する場合、銀の含有率としては、99%以上であることが好ましい。また、銀の安定性を確保するためにパラジウム(Pd)、銅(Cu)及び金(Au)等が添加されていてもよい。 When the transparent anode is composed mainly of silver, the silver content is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
 透明陽極は銀を主成分として構成されている層であることが好ましいが、具体的には、銀単独で形成しても、あるいは銀(Ag)を主成分として含有する合金から構成されていてもよい。そのような合金としては、例えば、銀-マグネシウム(Ag-Mg)、銀-銅(Ag-Cu)、銀-パラジウム(Ag-Pd)、銀-パラジウム-銅(Ag-Pd-Cu)、銀-インジウム(Ag-In)などが挙げられる。 The transparent anode is preferably a layer composed mainly of silver, but specifically, it may be formed of silver alone or an alloy containing silver (Ag) as a main component. Also good. Examples of such alloys include silver-magnesium (Ag-Mg), silver-copper (Ag-Cu), silver-palladium (Ag-Pd), silver-palladium-copper (Ag-Pd-Cu), silver -Indium (Ag-In) and the like.
 上記陽極を構成する各構成材料の中でも、本発明に係る有機EL素子を構成する陽極としては、銀を主成分として構成し、厚さが2~20nmの範囲内にある透明陽極であることが好ましいが、更に好ましくは厚さが4~12nmの範囲内である。厚さが20nm以下であれば、透明陽極の吸収成分及び反射成分が低く抑えられ、高い光透過率が維持される点で好ましい。 Among the constituent materials constituting the anode, the anode constituting the organic EL device according to the present invention is a transparent anode composed mainly of silver and having a thickness in the range of 2 to 20 nm. The thickness is preferably in the range of 4 to 12 nm. A thickness of 20 nm or less is preferable in that the absorption component and the reflection component of the transparent anode are kept low and a high light transmittance is maintained.
 本発明でいう銀を主成分として構成されている層とは、透明陽極中の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。また、本発明に係る透明陽極でいう「透明」とは、波長550nmにおける光透過率が50%以上であることをいう。 In the present invention, the layer composed mainly of silver means that the silver content in the transparent anode is 60% by mass or more, preferably the silver content is 80% by mass or more, More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more. Further, “transparent” in the transparent anode according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
 透明陽極としては、銀を主成分として構成されている透明電極層が、必要に応じて複数の層に分けて積層された構成であっても良い。 The transparent anode may have a configuration in which a transparent electrode layer composed mainly of silver is divided into a plurality of layers as necessary.
 また、本発明においては、陽極が、銀を主成分として構成する透明陽極である場合には、透明陽極を形成している銀膜の均一性を高める観点から、その下部に、下地層を設けることが好ましい。下地層としては、特に制限はないが、銀原子と相互作用を有する窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ましく、当該下地層上に、銀を主成分とする透明陽極を形成する方法が好ましい態様である。 Further, in the present invention, when the anode is a transparent anode composed mainly of silver, an underlayer is provided at the lower portion from the viewpoint of improving the uniformity of the silver film forming the transparent anode. It is preferable. Although there is no restriction | limiting in particular as a base layer, It is preferable that it is a layer containing the organic compound which has a nitrogen atom or sulfur atom which interacts with a silver atom, and the transparent layer which has silver as a main component on the said base layer A method of forming the anode is a preferred embodiment.
 (4:中間電極)
 本発明に係る有機EL素子においては、陽極と陰極との間に、有機機能層群と発光層から構成される有機機能層ユニットを二つ以上積層した構造を有することが好ましく、このような機機能層ユニットを二つ以上有する構成においては、当該二つ以上の有機機能層ユニット間に、電気的接続を得るための独立した接続端子を有する中間電極層ユニットを設けて、両者を分離して、発光ユニットを構成する方法が好ましい。
(4: Intermediate electrode)
The organic EL device according to the present invention preferably has a structure in which two or more organic functional layer units each composed of an organic functional layer group and a light emitting layer are laminated between an anode and a cathode. In the configuration having two or more functional layer units, an intermediate electrode layer unit having an independent connection terminal for obtaining electrical connection is provided between the two or more organic functional layer units, and the two are separated. A method of constructing a light emitting unit is preferred.
 中間電極の構成材料としては、上記説明した第1電極(陽極)の形成材料を同様の材料を用いることができる。 As the constituent material of the intermediate electrode, the same material as that for forming the first electrode (anode) described above can be used.
 また、銀を主成分とした材料を用いて中間電極を設ける場合にも、上記第1電極と同様に、形成する中間電極層の銀原子の均一性を高める目的で、下地層(例えば、図10に記載の窒素原子含有層(7))を設けることが好ましい。 Also, when providing an intermediate electrode using a material mainly composed of silver, as in the case of the first electrode, an underlayer (for example, FIG. 10 is preferably provided.
 (5:発光層)
 有機EL素子を構成する発光層は、発光材料としてリン光発光化合物、あるいは蛍光性化合物を用いることができるが、本発明においては、特に、発光材料としてリン光発光化合物が含有されている構成が好ましい。
(5: Light emitting layer)
In the light emitting layer constituting the organic EL element, a phosphorescent light emitting compound or a fluorescent compound can be used as a light emitting material. In the present invention, a structure containing a phosphorescent light emitting compound as a light emitting material is particularly preferred. preferable.
 この発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する位置は発光層の層内であっても発光層と隣接する層との界面であってもよい。 This light-emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emission position is within the layer of the light-emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の中間層を有していることが好ましい。 Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
 発光層の厚さの総和は、1~100nmの範囲内であることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内であることがさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さとする。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the total thickness of the light emitting layers is a thickness including the intermediate layer in the case where a non-light emitting intermediate layer exists between the light emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット法等の公知の薄膜形成方法により形成することができる。 The light emitting layer as described above is a known thin film such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. It can be formed by a forming method.
 また、発光層は、複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホストともいう。)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させる方式が好ましい。 Further, the light emitting layer may be a mixture of a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer. As a structure of the light emitting layer, a method of containing a host compound (also referred to as a light emitting host) and a light emitting material (also referred to as a light emitting dopant compound) and emitting light from the light emitting material is preferable.
 〈ホスト化合物〉
 発光層に適用するホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比率が50%以上であることが好ましい。
<Host compound>
As the host compound applied to the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more in the compound contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、あるいは、複数種のホスト化合物を併用してもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used in combination. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
 〈発光材料〉
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられるが、特に、リン光発光性化合物を用いることが、高い発光効率を得ることができる点から好ましい。
<Light emitting material>
As the light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (both a fluorescent compound or a fluorescent material) are used. In particular, it is preferable to use a phosphorescent compound from the viewpoint that high luminous efficiency can be obtained.
 〈リン光発光性化合物〉
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
<Phosphorescent compound>
A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78, 1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. Examples thereof include compounds described in US Patent No. 0202194, US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, and the like.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許出願公開第2009/0039776号、米国特許第6687266号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許出願公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, US Pat. No. 7,332,232, US Patent Application Publication No. 2009/0039776, US Pat. No. 6,687,266, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2008/0015355, US Pat. No. 7,396,598, US Patent Application Publication No. 2003/0138667, US Pat. No. 7090928 And the like.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許出願公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許出願公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2006/056418, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2006/082742, US Patent Application Publication No. 2005/0260441. U.S. Pat. No. 7,534,505, U.S. Patent Application Publication No. 2007/0190359, U.S. Pat. No. 7,338,722, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/103874, etc. Mention may also be made of the compounds described.
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2008/140115, International Publication No. 2011/134013, International Publication No. 2010/086089, International Publication No. 2012/020327, International Publication No. 2011/051404. Further, compounds described in International Publication No. 2011/073149, JP2009-114086, JP2003-81988, JP2002-363552, and the like can also be mentioned.
 本発明においては、好ましいリン光発光性化合物はIrを中心金属として有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が挙げられる。 In the present invention, preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond is used.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。 The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
 〈蛍光発光性化合物〉
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
<Fluorescent compound>
Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
 (6:有機機能層群)
 次いで、有機機能層ユニットを構成する各層について、電荷注入層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
(6: Organic functional layer group)
Next, each layer constituting the organic functional layer unit will be described in the order of a charge injection layer, a hole transport layer, an electron transport layer, and a blocking layer.
 〈6.1:電荷注入層〉
 電荷注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層と電子注入層とがある。
<6.1: Charge injection layer>
The charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
 電荷注入層としては、一般には、正孔注入層であれば、陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができるが、本発明においては、透明電極に隣接して電荷注入層を配置させることを特徴とする。また、中間電極で用いられる場合は、隣接する電子注入層及び正孔注入層の少なくとも一方が、本発明の要件を満たしていれば良い。 In general, the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer. However, the present invention is characterized in that the charge injection layer is disposed adjacent to the transparent electrode. When used in an intermediate electrode, it is sufficient that at least one of the adjacent electron injection layer and hole injection layer satisfies the requirements of the present invention.
 正孔注入層は、駆動電圧低下や発光輝度向上のために、透明電極である陽極に隣接して配置される層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The hole injection layer is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the driving voltage and improve the luminance of light emission. “The organic EL element and its industrialization front line (November 30, 1998 “Published by TS Co., Ltd.)”, Chapter 2, “Electrode Materials” (pages 123 to 166) in the second volume.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、それらの化合物を正孔注入層に用いることができる。 The details of the hole injection layer are also described in JP-A-9-45479, 9-260062, 8-82869, etc., and these compounds can be used for the hole injection layer. it can.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 電子注入層は、駆動電圧低下や発光輝度向上のために、陰極と発光層との間に設けられる層のことであり、陰極が本発明に係る透明電極で構成されている場合には、当該透明電極に隣接して設けられ、電子注入層の詳細は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に記載されている。 The electron injection layer is a layer provided between the cathode and the light emitting layer for lowering the driving voltage and improving the light emission luminance. When the cathode is composed of the transparent electrode according to the present invention, For details of the electron injection layer, which is provided adjacent to the transparent electrode, see “Organic EL device and its forefront of industrialization” (November 30, 1998, issued by NTS, Inc.). Materials "(pages 123-166).
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、これらに記載されている材料を、電子注入層に好ましく用いることができる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲内が好ましい。 The details of the electron injection layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, etc., and the materials described therein are used for the electron injection layer. It can be preferably used. The electron injection layer is preferably a very thin film, and depending on the constituent materials, the layer thickness is preferably in the range of 1 nm to 10 μm.
 〈6.2:正孔輸送層〉
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料から構成され、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は、単層又は複数層設けることができる。
<6.2: Hole transport layer>
The hole transport layer is composed of a hole transport material having a function of transporting holes. In a broad sense, the hole injection layer and the electron blocking layer also have the function of a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかの機能を有するものであり、有機物、無機物のいずれであってもよい。 The hole transport material has a function of hole injection or transport or electron barrier property, and may be either organic or inorganic.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることもでき、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can also be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の薄膜形成手段を用いて、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよい。 For the hole transport layer, the hole transport material may be a known thin film such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). It can be formed by forming a thin film using a forming means. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the material of the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の有機EL素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an organic EL element with lower power consumption can be produced.
 〈6.3:電子輸送層〉
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
<6.3: Electron transport layer>
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の薄膜形成方法により、形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単一構造であってもよい。 The electron transport layer can be formed of the above-mentioned materials by, for example, a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
 〈6.4:阻止層〉
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層ユニットの各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
<6.4: blocking layer>
Examples of the blocking layer include a hole blocking layer and an electron blocking layer, which are provided as necessary in addition to the constituent layers of the organic functional layer unit described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲内であり、さらに好ましくは5~30nmの範囲内である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
 (7:第2電極:陰極)
 第2電極、例えば、陰極は、有機機能層群や発光層に正孔を供給するために機能する電極膜であり、金属、合金、有機若しくは無機の導電性化合物、又はこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO及びSnO等の酸化物半導体などが挙げられる。
(7: Second electrode: Cathode)
The second electrode, for example, the cathode is an electrode film that functions to supply holes to the organic functional layer group or the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. . Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
 陰極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させて作製することができる。また、第2電極としてのシート抵抗は、数百Ω/sq.以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲内で選ばれる。 The cathode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. The sheet resistance as the second electrode is several hundred Ω / sq. The film thickness is usually selected from the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、有機EL素子が、陰極側からも発光光(L)を取り出す、両面発光型の場合には、前記陽極の形成で用いるとの同様の光透過性の良好な材料により陰極を構成すればよい。 In the case where the organic EL element is a double-sided light emitting type in which emitted light (L) is extracted also from the cathode side, if the cathode is composed of a material having good light transmittance as used in the formation of the anode, Good.
 (8:封止部材)
 有機EL素子を封止するのに用いられる封止手段としては、例えば、フレキシブル性を備えた封止部材と、陰極及び透明基板とを、封止用接着剤を用いて接着する方法を挙げることができる。
(8: Sealing member)
Examples of the sealing means used for sealing the organic EL element include a method of bonding a flexible sealing member, a cathode, and a transparent substrate using a sealing adhesive. Can do.
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、光取り出し側でなければ透明性及び電気絶縁性は特に限定されない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited unless the light extraction side.
 具体的には、フレキシブル性を備えた薄膜ガラス板、ポリマー板、フィルム、金属フィルム(金属箔)等が挙げられる。薄膜ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等の材料から構成される薄板を挙げることができる。金属フィルムとしては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金から構成される金属フィルムが挙げられる。 Specifically, a thin film glass plate, a polymer plate, a film, a metal film (metal foil) having flexibility, and the like can be given. Examples of the thin film glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Moreover, as a polymer board, the thin board comprised from materials, such as a polycarbonate, an acryl, a polyethylene terephthalate, a polyether sulfide, a polysulfone, can be mentioned. Examples of the metal film include a metal film composed of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. It is done.
 本発明においては、封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。さらに、ポリマーフィルムは、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。 In the present invention, as the sealing member, a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned. Furthermore, the polymer film has a water vapor transmission rate of 1 × 10 −3 g / m 2 .multidot.m at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% RH measured by a method according to JIS K 7129-1992. The oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 ml / m 2 · 24 h · atm (1 atm is 1.01325 × 10 5 a Pa) equal to or lower than a temperature of 25 ± 0.5 ° C., water vapor permeability at a relative humidity of 90 ± 2% RH is preferably not more than 1 × 10 -3 g / m 2 · 24h.
 封止部材と有機EL素子の表示領域(発光領域)との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することもできる。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area (light emitting area) of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase. You can also Further, the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
 また、有機EL素子における発光機能層ユニットを完全に覆い、かつ有機EL素子における第1電極である陽極(3)と、第2電極である陰極(6)の端子部分を露出させる状態で、透明基板上に封止膜を設けることもできる。 Further, the organic EL element is transparent in a state that completely covers the light emitting functional layer unit and exposes the terminal portions of the anode (3) as the first electrode and the cathode (6) as the second electrode in the organic EL element. A sealing film can also be provided on the substrate.
 以上のような封止材は、有機EL素子における第1電極である陽極(3)と、第2電極である陰極(6)の端子部分を露出させると共に、少なくとも発光機能層を覆う状態で設けられている。 The sealing material as described above is provided in a state in which the terminal portions of the anode (3) as the first electrode and the cathode (6) as the second electrode in the organic EL element are exposed and at least the light emitting functional layer is covered. It has been.
 本発明の外科用手術器具は、手術用の照明光源で、血液等の付着により変化した発光スペクトルを速やかに補正し、適正な発光スペクトル下で、手術の作業性を向上させることができる無影灯である有機EL素子を具備した外科用手術器具であり、体内挿入時に血液が付着しても、駆動電流を変化させて、適性の発光スペクトルに補正することができ、開創器や手術用手袋に装着させることができる。 The surgical surgical instrument of the present invention is a shadowless light source capable of quickly correcting an emission spectrum changed due to adhesion of blood or the like with a surgical illumination light source, and improving the workability of surgery under an appropriate emission spectrum. Surgical surgical instrument equipped with an organic EL element that is a light. Even if blood adheres during insertion into the body, the drive current can be changed and corrected to an appropriate emission spectrum. Can be attached.
 1 基材、フレキシブル基材
 3 第1電極
 4、4-A、4-B 有機機能層ユニット
 5 中間電極
5-1、5-2、15 薄銀電極
 6 第2電極
 7、7-1、7-2 下地層、窒素原子含有層
 11、11-A、11-B、11-C リード線
 12 発光ユニット
 13 封止用接着剤
 14 封止基板
 22、24 有機機能層群
 23 発光層
 50 開創器
 51A、51B 指輪
 52 ラチェット歯
 53A、53B ハンドル
 54 ヒンジ部
 55A、55B アーム
 56A、56B アーム連結部
 57A、57B 開創具
 59 手術台
 60A、60B、60C 自在開創固定器ユニット
 61 手術台固定金具
 62 本体支持棒
 63 第3ジョイント自由自在
 64 第2アーム
 65 エルボージョイント
 66 第1アーム
 67 第1ジョイント自由自在
 68 鈎固定部
 71 手術用手袋
 100 有機EL素子ユニット
 102 表面基材
 105 フレキシブル基材
 106 接続部材
 107 接着層
 108 駆動電力供給部
 B 血液
 L 発光光
 h 発光点
 OLED、OLEDa、OLEDb 有機EL素子
 OLED-B 青色発光有機EL素子
 OLED-G 緑色発光有機EL素子
 OLED-R 赤色発光有機EL素子
 U1、U2、U3 発光ユニット
DESCRIPTION OF SYMBOLS 1 Base material, flexible base material 3 First electrode 4, 4-A, 4-B Organic functional layer unit 5 Intermediate electrode 5-1, 5-2, 15 Thin silver electrode 6 Second electrode 7, 7-1, 7 -2 Underlayer, nitrogen atom-containing layer 11, 11-A, 11-B, 11-C Lead wire 12 Light emitting unit 13 Sealing adhesive 14 Sealing substrate 22, 24 Organic functional layer group 23 Light emitting layer 50 Retractor 51A, 51B Ring 52 Ratchet teeth 53A, 53B Handle 54 Hinge part 55A, 55B Arm 56A, 56B Arm connection part 57A, 57B retractor 59 Operating table 60A, 60B, 60C Free retractor unit 61 Operating table fixing bracket 62 Main body support Rod 63 Third joint freely 64 Second arm 65 Elbow joint 66 First arm 67 First joint freely 68 ジ ョ イ ン ト fixing part 71 Surgical gloves 100 Organic EL element unit 102 Surface base material 105 Flexible base material 106 Connection member 107 Adhesive layer 108 Drive power supply part B Blood L Light emission h Light emission point OLED, OLEDa, OLEDb Organic EL element OLED-B Blue light emission organic EL Element OLED-G Green light emitting organic EL element OLED-R Red light emitting organic EL element U1, U2, U3 Light emitting unit

Claims (6)

  1.  手術時に体内に挿入して使用する、面発光光源を具備した外科用手術器具であって、
     前記面発光光源は有機エレクトロルミネッセンス素子であり、
     前記有機エレクトロルミネッセンス素子の発光スペクトルが、印加する駆動電流の変化に対して、下式(1)で規定する条件を満たすことを特徴とする外科用手術器具。
     式(1)
       Ib/Ibo>Ir/Iro
    〔式中、Iboは駆動電流変化前の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度であり、Ibは駆動電流変化後の青色発光領域(400~500nm)における最大の極大発光波長(λBmax)の発光強度であり、Iroは駆動電流変化前の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度であり、Irは駆動電流変化後の赤色発光領域(570~700nm)における最大の極大発光波長(λRmax)の発光強度である。〕
    A surgical instrument equipped with a surface-emitting light source that is inserted into the body and used during surgery,
    The surface-emitting light source is an organic electroluminescence element,
    The surgical instrument according to claim 1, wherein the emission spectrum of the organic electroluminescence element satisfies a condition defined by the following formula (1) with respect to a change in an applied drive current.
    Formula (1)
    Ib / Ibo> Ir / Iro
    [In the formula, Ibo is the light emission intensity of the maximum maximum light emission wavelength (λB max ) in the blue light emission region (400 to 500 nm) before the drive current change, and Ib is the blue light emission region (400 to 500 nm) after the drive current change. Is the emission intensity of the maximum emission wavelength (λB max ), Iro is the emission intensity of the maximum emission wavelength (λR max ) in the red emission region (570 to 700 nm) before the drive current change, and Ir is the drive This is the emission intensity at the maximum maximum emission wavelength (λR max ) in the red emission region (570 to 700 nm) after the current change. ]
  2.  前記有機エレクトロルミネッセンス素子が、基材上に一対の電極と、少なくとも当該電極対に挟持された有機物層を含む発光ユニットを備えており、当該基材がフレキシブル性基材であることを特徴とする請求項1に記載の外科用手術器具。 The organic electroluminescence device includes a light emitting unit including a pair of electrodes and at least an organic layer sandwiched between the electrode pair on a base material, and the base material is a flexible base material. The surgical instrument according to claim 1.
  3.  前記体内に挿入して使用する器具が開創器であり、当該開創器を構成する開創板に前記有機エレクトロルミネッセンス素子が配置されていることを特徴とする請求項1又は請求項2に記載の外科用手術器具。 The surgical instrument according to claim 1 or 2, wherein the instrument used by being inserted into the body is a retractor, and the organic electroluminescence element is disposed on a retractor plate constituting the retractor. Surgical instruments.
  4.  前記体内に挿入して使用する器具が手術用手袋であり、当該手術用手袋の各指部又は甲部に前記有機エレクトロルミネッセンス素子が配置されていることを特徴とする請求項1又は請求項2に記載の外科用手術器具。 The instrument used by being inserted into the body is a surgical glove, and the organic electroluminescence element is disposed on each finger or upper part of the surgical glove. The surgical surgical instrument described in 1.
  5.  前記有機エレクトロルミネッセンス素子が、発光波長を制御することが可能な調色タイプであることを特徴とする請求項1から請求項4までのいずれか一項に記載の外科用手術器具。 The surgical instrument according to any one of claims 1 to 4, wherein the organic electroluminescence element is a toning type capable of controlling a light emission wavelength.
  6.  前記有機エレクトロルミネッセンス素子が、2つ以上の発光ユニットを積層したタンデム構成であることを特徴とする請求項1から請求項5までのいずれか一項に記載の外科用手術器具。 The surgical surgical instrument according to any one of claims 1 to 5, wherein the organic electroluminescence element has a tandem configuration in which two or more light emitting units are stacked.
PCT/JP2017/012579 2016-05-31 2017-03-28 Surgical instrument WO2017208596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018520678A JP7011583B2 (en) 2016-05-31 2017-03-28 Surgical instruments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016108345 2016-05-31
JP2016-108345 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208596A1 true WO2017208596A1 (en) 2017-12-07

Family

ID=60479389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012579 WO2017208596A1 (en) 2016-05-31 2017-03-28 Surgical instrument

Country Status (2)

Country Link
JP (1) JP7011583B2 (en)
WO (1) WO2017208596A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006113A1 (en) * 2019-07-09 2021-01-14
JP2021010713A (en) * 2019-07-09 2021-02-04 国立大学法人高知大学 Medical tool

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514127A (en) * 1997-07-02 2002-05-14 ルミテックス インコーポレイテッド Optical transmission system and its application
JP2005058440A (en) * 2003-08-12 2005-03-10 Junichi Shimada Retractor with led
JP2005211409A (en) * 2004-01-30 2005-08-11 Stanley Electric Co Ltd Surgical lighting system for interior of thoracic cavity and lighting method for interior of thoracic cavity
JP2005279255A (en) * 2004-03-05 2005-10-13 Junichi Shimada Illuminating apparatus, filter apparatus and image display
JP2008038306A (en) * 2006-08-09 2008-02-21 Joyo Machine Co Ltd Working glove improved in visibility
US20120149992A1 (en) * 2010-12-10 2012-06-14 Anil Duggal Organic Light Emitting Diode Illuminated Surgical Retractor
JP2012199177A (en) * 2011-03-23 2012-10-18 Sumitomo Chemical Co Ltd Organic el element
WO2014069256A1 (en) * 2012-10-31 2014-05-08 コニカミノルタ株式会社 Organic electroluminescent element
WO2015116724A1 (en) * 2014-01-28 2015-08-06 Invuity, Inc. Drop in surgical illuminator
WO2016076151A1 (en) * 2014-11-13 2016-05-19 コニカミノルタ株式会社 Organic electroluminescence therapy device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514127A (en) * 1997-07-02 2002-05-14 ルミテックス インコーポレイテッド Optical transmission system and its application
JP2005058440A (en) * 2003-08-12 2005-03-10 Junichi Shimada Retractor with led
JP2005211409A (en) * 2004-01-30 2005-08-11 Stanley Electric Co Ltd Surgical lighting system for interior of thoracic cavity and lighting method for interior of thoracic cavity
JP2005279255A (en) * 2004-03-05 2005-10-13 Junichi Shimada Illuminating apparatus, filter apparatus and image display
JP2008038306A (en) * 2006-08-09 2008-02-21 Joyo Machine Co Ltd Working glove improved in visibility
US20120149992A1 (en) * 2010-12-10 2012-06-14 Anil Duggal Organic Light Emitting Diode Illuminated Surgical Retractor
JP2012199177A (en) * 2011-03-23 2012-10-18 Sumitomo Chemical Co Ltd Organic el element
WO2014069256A1 (en) * 2012-10-31 2014-05-08 コニカミノルタ株式会社 Organic electroluminescent element
WO2015116724A1 (en) * 2014-01-28 2015-08-06 Invuity, Inc. Drop in surgical illuminator
WO2016076151A1 (en) * 2014-11-13 2016-05-19 コニカミノルタ株式会社 Organic electroluminescence therapy device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006113A1 (en) * 2019-07-09 2021-01-14
WO2021006113A1 (en) * 2019-07-09 2021-01-14 国立大学法人 高知大学 Medical tool for fingertip
JP2021010661A (en) * 2019-07-09 2021-02-04 国立大学法人高知大学 Medical tool
JP2021010713A (en) * 2019-07-09 2021-02-04 国立大学法人高知大学 Medical tool
US12076104B2 (en) 2019-07-09 2024-09-03 National University Corporation Kochi University Medical tool for fingertip

Also Published As

Publication number Publication date
JP7011583B2 (en) 2022-01-26
JPWO2017208596A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
TWI363579B (en) Organic light emitting device having improved stabiltiy
JP6554291B2 (en) Multilayer organic light emitting device
JP4537207B2 (en) Electroluminescent device with low work function anode
TWI254593B (en) Organic electroluminescent element that suppresses generation of ultraviolet light and lighting system that has organic electroluminescent element
WO2012128078A1 (en) Organic electroluminescent element and lighting device
JP2015050157A (en) Organic electroluminescent illuminating device
JP6799860B2 (en) Biologically applicable light irradiation device, how to use bioapplied light irradiation device, encapsulant of bioapplied light irradiation device, method of manufacturing encapsulant of bioapplied light irradiation device, method of using encapsulant of bioapplied light irradiation device , Set, skin disease treatment device and beauty treatment device
JP2016152831A (en) Device for optical treatment
WO2017208596A1 (en) Surgical instrument
JP2007235081A (en) Organic led element
JP2016207522A (en) Phototherapy apparatus
JP2016091793A (en) Organic electroluminescent device and method for manufacturing the same
JP6358250B2 (en) Pattern formation method for organic electroluminescence device
JP2017033849A (en) Organic electroluminescent element, manufacturing method of organic electroluminescent element, and illumination device
JP6728603B2 (en) Organic electroluminescence element and vehicle lamp
JP6673214B2 (en) Organic electroluminescence therapy device
JP6409771B2 (en) Organic electroluminescence device and method for manufacturing the same
JP6913088B2 (en) Organic electroluminescence elements and vehicle lamps
JP6702314B2 (en) Phototherapy device
WO2018198529A1 (en) Organic electroluminescence element, optical sensor, and biometric sensor
JP2007059311A (en) Organic electroluminescent panel and its manufacturing method
JP2001118675A (en) Organic electroluminescent element
JP2016214588A (en) Optical treatment device
JP6337897B2 (en) Method for manufacturing organic electroluminescence element
CN118159103A (en) Composite light-emitting module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520678

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806157

Country of ref document: EP

Kind code of ref document: A1