WO2017206482A1 - 一种耳机插头的阻抗检测装置 - Google Patents

一种耳机插头的阻抗检测装置 Download PDF

Info

Publication number
WO2017206482A1
WO2017206482A1 PCT/CN2016/110300 CN2016110300W WO2017206482A1 WO 2017206482 A1 WO2017206482 A1 WO 2017206482A1 CN 2016110300 W CN2016110300 W CN 2016110300W WO 2017206482 A1 WO2017206482 A1 WO 2017206482A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
unit
contacts
socket
processing unit
Prior art date
Application number
PCT/CN2016/110300
Other languages
English (en)
French (fr)
Inventor
王建波
曹新放
卢永江
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/304,597 priority Critical patent/US10823773B2/en
Publication of WO2017206482A1 publication Critical patent/WO2017206482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • G01R31/69Testing of releasable connections, e.g. of terminals mounted on a printed circuit board of terminals at the end of a cable or a wire harness; of plugs; of sockets, e.g. wall sockets or power sockets in appliances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/58Contacts spaced along longitudinal axis of engagement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/05Detection of connection of loudspeakers or headphones to amplifiers

Definitions

  • the present invention relates to the field of impedance sensing technology, and more particularly to an impedance detecting device for an earphone plug.
  • the existing earphone plug mainly has a 3.5mm earphone plug, a USB plug, etc., and the USB plug can be divided into various types, such as USB2.0, USB3.0, mini USB, Type-C, and the like. Since the earphones are corroded by the earphones due to sweat during use, the earphones are required to perform a sweat test during the development phase to detect the contact between the contacts of the earphone plug and the ground contact in the later reliability analysis. The equivalent impedance determines the corrosion resistance of the earphone plug, and concludes that the product is reliable. If the equivalent impedance between a contact and the ground contact exceeds the set standard range, the corresponding contact is The ground contact has been corroded, which leads to the conclusion that the product is unreliable.
  • the above-mentioned equivalent impedance is mainly measured by an operator using a multimeter. Since the number of products to be tested is large, the manual operation in the analysis is not only inefficient, but also causes large measurement errors due to improper operation, thereby affecting the income. The accuracy of the conclusion.
  • an impedance detecting apparatus for an earphone plug comprising:
  • a headphone jack unit comprising at least one headphone jack, each of the headphone jacks having a socket end ground contact for connection with a ground contact of a corresponding earphone plug, and for corresponding to other contacts of the corresponding earphone plug Connected socket end connection contacts;
  • the voltage collecting unit includes a first electric power connected between the positive pole of the power source and the contact access point Blocking, the negative pole of the power source is connected to the ground terminal contact of the socket end;
  • a contact selection unit comprising: a selection switch configured in one-to-one correspondence with the selected socket end connection contacts, each of the selection switches being connected between the corresponding connection contact and the contact access point;
  • a processing unit configured to calculate an impedance value of an equivalent impedance between the selected connection contact and the ground contact of the socket end according to a voltage of the contact access point relative to the ground contact of the socket end;
  • a display unit configured to display the resistance value calculated by the processing unit.
  • the device further includes a comparison amplifier circuit, wherein the contact access point is connected to a voltage input end of the same-amplification circuit, and an output end of the same-amplification circuit and the processing unit The voltage input is connected.
  • the selection switches are relay contacts, and the device is configured to control a switching state of the relay contacts by the processing unit.
  • the selection switches are all normally open contacts of the relay.
  • a relay normally closed contact corresponding to each of the relay normally open contacts is connected between the corresponding connection contact and the ground contact of the socket end.
  • the first resistor is formed by two bridge arm resistances having the same resistance value
  • the voltage sampling unit further includes a second resistor
  • the second resistor is connected to the contact access point.
  • the socket ends are grounded between the contacts, and the resistance of the second resistor is the same as the resistance of the bridge arm resistor.
  • the display unit includes a latch and a digital tube, and the IO pin of the processing unit for outputting the segment code control signal is connected to the corresponding segment code pin of the corresponding digital tube via the latch .
  • the display unit is a two-digit display unit
  • the prompting unit adopts a dynamic display structure, wherein all the same segment code pins of all the digital tubes are connected together, and the processing unit is used for outputting bits.
  • the IO pin of the strobe signal is connected to the strobe pin of the corresponding digital tube.
  • the processing unit is further configured to determine whether the calculated resistance value is within a corresponding standard range, and output a determination result signal, where, if yes, the determination result signal is a normal signal indicating that the resistance value is normal. If not, the judgment result signal is an abnormal signal indicating that the resistance value is abnormal;
  • the apparatus further includes a prompting unit, the prompting unit being configured to prompt the resistance abnormality based at least on the abnormality signal.
  • the earphone socket unit comprises a 3.5 mm earphone socket corresponding to a 3.5 mm earphone plug and a USB earphone socket corresponding to the USB earphone plug.
  • the inventors of the present invention have found that in the prior art, there is a problem that the equivalent impedance detection efficiency of the earphone plug is low and the accuracy is low. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • an advantageous effect of the present invention is that the impedance detecting device of the present invention can perform the impedance value of the equivalent impedance between the ground wire contact of the earphone plug and other selected contacts when the earphone plug is inserted into the corresponding earphone socket. Detection, this not only can eliminate the measurement error introduced by improper operation, thereby ensuring the measurement accuracy, but also can greatly improve the detection efficiency and facilitate batch detection.
  • FIG. 1 is a block schematic diagram of an embodiment of an impedance detecting apparatus according to the present invention.
  • FIG. 2 is a circuit schematic diagram of an implementation structure of the voltage sampling circuit of FIG. 1;
  • FIG. 3 is a circuit schematic diagram of another implementation structure of the voltage sampling circuit of FIG. 1;
  • FIG. 4 is a circuit schematic diagram of a third implementation structure of the voltage sampling circuit of FIG. 1;
  • FIG. 5 is a circuit schematic diagram of an implementation structure of the contact selecting unit of FIG. 1;
  • FIG. 6 is a circuit schematic diagram of an implementation structure of the display unit of FIG. 1.
  • FIG. 6 is a circuit schematic diagram of an implementation structure of the display unit of FIG. 1.
  • 101 a headphone jack unit; 102: a contact selecting unit;
  • L, R, MIC socket end connection contact
  • GND socket end ground contact
  • LS1 first selection switch
  • LS2 second selection switch
  • LS3 third selection switch
  • R1 first resistance
  • R2 second resistance
  • R101, R102 bridge arm resistance
  • BT power supply
  • U3 operational amplifier
  • LVCC the power supply pin of the latch
  • LGND the ground pin of the latch
  • D0 ⁇ D7 input pin of latch
  • Q0 ⁇ Q7 output pin of latch
  • DS1 first digital tube
  • DS2 second digital tube
  • DP the segment code pin of the digital tube
  • DGND the ground pin of the digital tube
  • SL The strobe pin of the digital tube.
  • the present invention provides an impedance detecting device for the earphone plug.
  • FIG. 1 is a block schematic diagram of an embodiment of an impedance detecting apparatus according to the present invention, wherein a broken line indicates that the contact selecting unit 102 may be a manual operation selecting unit that is not controlled by the processing unit 104, or may be a processed unit 104. Automatic selection unit for control.
  • the apparatus of the present invention includes a headphone jack unit 101, a voltage sampling unit 103, a contact selecting unit 102, a processing unit 104, and a display unit 105.
  • the headphone jack unit 101 is used to connect an earphone plug to the device of the present invention for impedance value measurement.
  • the contact selection unit 102 is for selecting a contact that currently detects an earphone plug connected to the detection circuit.
  • the voltage sampling unit 103 is configured to collect a voltage signal reflecting the impedance value of the equivalent impedance, and output it to the processing unit 104 for calculation of the impedance value.
  • the display unit 105 is configured to display the resistance calculated by the processing unit 104.
  • the earphone jack unit 101 includes at least one earphone jack, each of the earphone jacks having a socket end ground contact for connection with a ground contact of a corresponding earphone plug, and other contacts for corresponding headphone plugs Corresponding connection socket end connection contacts.
  • each of the earphone jacks having a socket end ground contact for connection with a ground contact of a corresponding earphone plug, and other contacts for corresponding headphone plugs Corresponding connection socket end connection contacts.
  • the earphone jack unit 101 may include a headphone jack such as a 3.5 mm headphone jack or a USB headphone jack, etc., and the USB headphone jack may be a mini USB jack, a Type-C interface jack, or the like applied to the headphone jack.
  • the earphone jack unit 101 may further include at least two types of earphone jacks, for example, a 3.5 mm headphone jack including a corresponding 3.5 mm headphone plug and a USB earphone plug corresponding to at least one type. USB headphone jack.
  • FIG. 5 shows a schematic structural view of a 3.5 mm headphone jack J1 corresponding to a 3.5 mm headphone plug.
  • the following is a 3.5 mm headphone jack as an example to illustrate the correspondence between the 3.5 mm headphone jack and the 3.5 mm headphone jack J1.
  • the headphone jack J1 should also include four contacts, respectively for the socket end ground contact GND for connecting the ground contact, a socket end connection contact L for connecting the left ear connection line contact, a socket end connection contact R for connecting the right ear connection line contact, and a socket end connection contact MIC for connecting the microphone line contact,
  • the connection between the corresponding contacts is specifically a contact type electrical connection.
  • the contact selecting unit 102 includes a selection switch configured in one-to-one correspondence with the selected socket end connection contacts, and each selection switch is connected between the corresponding connection contact and the contact access point to be used when the selection switch is closed.
  • the corresponding connection contact is in communication with the contact access point, thereby connecting the equivalent impedance between the corresponding connection contact and the socket ground connection to the detection circuit of the apparatus of the present invention.
  • the selection may be to select all the socket end connection contacts, that is, select all the contacts of the earphone plug to perform impedance detection, or select some socket end connection contacts as needed, that is, select the part of the earphone plug The contacts are impedance tested.
  • Figure 5 shows the contact selection unit corresponding to a 3.5 mm headphone jack. Taking the 3.5mm headphone jack as an example, the structure of the contact selecting unit is illustrated. According to FIG. 5, the contact selecting unit includes a first selecting switch LS1, a second selecting switch LS2 and a third selecting switch LS3, wherein A selection switch LS1 is connected between the socket end connection contact L and the contact access point IN, and the second selection switch LS2 is connected between the socket end connection contact R and the contact access point IN, and the third selection switch is connected. Between the socket end connection contact MIC and the contact access point IN.
  • the above selection switch may be a manual operation switch, that is, the operator manually selects the contact for current detection, or may be a controlled switch to automatically perform impedance detection of each contact in sequence after the device is powered on.
  • the selector switches LS1, LS2, and LS3 of FIG. 5 employ relay contacts, and the switching states of these relay contacts can be controlled by the processing unit 104, that is, the power of the coils of these relay contacts is controlled by the processing unit 104.
  • the processing unit 104 controls the switching state of the selection switch LS1 through the pin P1.1 (see FIG. 6), and controls the selection switch LS2 through the pin P1.2 (see FIG. 6).
  • the switch state, and the switch state of the selection switch LS3 is controlled by the pin P1.3 (see FIG. 6).
  • the state shown in FIG. 5 is that the selection switch LS3 is closed, and the selection switches LS1 and LS2 are disconnected to realize the socket end connection contact.
  • the MIC is in communication with the contact access point IN, and further between the socket end connection contact MIC and the socket end ground contact GND Detection of equivalent impedance.
  • the above selection switch preferably adopts a relay normally open contact, so that after selecting one contact, the coils of the relay corresponding to the other contacts are in a power-off state, thereby achieving the purpose of saving energy.
  • a relay normally closed contact corresponding to the normally open contact of each relay may be connected between the corresponding connection contact and the ground contact of the socket end, so as to The unselected socket end connection contacts are grounded.
  • the above selection switch can also adopt an analog switch, such as a single-pole double-throw analog switch, to realize a structural design that is connected to the contact access point when selected, and communicates with the socket-end connection contact when not selected.
  • an analog switch such as a single-pole double-throw analog switch
  • the voltage collecting unit 103 may include a first resistor R1 connected between the anode of the power source BT and the contact access point IN, and the cathode of the power source is connected to the socket ground terminal GND.
  • the contact selection unit 102 After the connection between the socket end connection contact and the contact access point IN is realized by the contact selection unit 102, it is equivalent to the equivalent impedance connection between the selected connection contact and the socket end ground contact GND. Between the contact access terminal IN and the socket end connection contact GND, thus forming a detection loop. Therefore, by obtaining the voltage of the contact access point IN relative to the socket ground contact GND, the impedance value of the equivalent impedance can be calculated.
  • FIG. 3 shows a circuit schematic diagram of an alternative bridge voltage sampling circuit.
  • the first resistor R1 is formed by two bridge arm resistors R101 and R102 having the same resistance value
  • the voltage sampling unit 103 further includes a second resistor R2 connected to the contact. Between the input point IN and the ground terminal contact GND of the socket end, it is equivalent to parallel connection with the equivalent impedance of the access, and the resistance of the second resistor R2 is the same as the resistance of the bridge arm resistors R101 and R102 to form Wheatstone power. bridge.
  • the voltage sampling unit 103 can also add an amplifying circuit as needed, and the voltage input end of the amplifying circuit is connected to the contact access point IN, and the output end of the amplifying circuit is connected with the voltage input end of the processing unit 104 to increase the amplified voltage. Provided to the processing unit 104 to increase sensitivity.
  • Fig. 4 is a circuit diagram showing an embodiment of an amplifying circuit of the same type.
  • the same analog circuit includes an operational amplifier U3, a resistor R7, R8, R10, R11 and R12.
  • the resistor R8 and the resistor R11 are connected in series between the socket ground terminal contact GND and the inverting input terminal of the operational amplifier U3.
  • One end of the resistor R10 is connected to a potential point between the resistor R8 and the resistor R11, and the other end is connected to the output terminal OUT of the operational amplifier U3 to form a feedback resistor.
  • the resistor R7 and the resistor R12 are connected in series between the non-inverting input terminal of the operational amplifier U3 and the voltage input terminal, and the voltage input terminal is connected with the contact access point IN to amplify the voltage of the contact access point in the same manner.
  • the amplified voltage signal is input to the processing unit 104 for processing, for example, the output terminal OUT is connected to the pin P1.0 (see FIG. 6) of the processing unit 104, where the processing unit 104 should have an analog-to-digital converter built therein. To achieve the conversion of analog to numerical quantities.
  • the processing unit 104 is configured to calculate an impedance value of an equivalent impedance between the selected connection contact and the socket end ground contact GND according to the voltage of the contact access point IN relative to the socket end ground contact GND.
  • the processing unit 104 may further determine, according to a pre-stored normal range corresponding to the equivalent impedance of the different connection contacts, whether the calculated impedance value is within a corresponding standard range, and output a determination result signal, wherein, if yes, the determination result The signal is a normal signal indicating that the resistance is normal. If not, the result signal is an abnormal signal indicating that the resistance is abnormal.
  • the device of the present invention may further include a prompting unit (not shown) to prompt the resistance value abnormality according to the abnormality signal at least by the prompting unit, and the prompting unit may include at least sound, light, and display prompting circuits. One or any combination.
  • the display unit 105 can be a digital tube display circuit or a liquid crystal display circuit. If a liquid crystal display circuit is used, the prompting unit can be the same unit as the display unit, that is, the prompting operation can be simultaneously performed by the display unit.
  • Figure 6 shows a circuit schematic of an alternative implementation of a digital tube display circuit.
  • the digital tube display circuit comprises a latch L1 and a two-digit digital tube, wherein the two digital tubes are a first digital tube DS1 and a second digital tube DS2, and an IO pin P1.0 of the processing unit 104 is used as a voltage input terminal.
  • the contact access point IN or the output end of the amplifying circuit is connected, and the IO pin of the processing unit 104 for outputting the segment code control signal is connected to the corresponding segment code pin of the corresponding digital tube via the latch L1 (the segment pin pin) Including a dot code pin) connection, wherein the processing unit 104 converts the voltage received via the pin P1.0 into a segment code control signal to control the digital tube to display the corresponding power Pressure.
  • the display unit 105 can adopt a static display structure, that is, an IO pin for outputting a segment code control signal corresponds to only one segment code pin of one digital tube, or a dynamic display structure, that is, the same segment of a two-digit digital tube
  • the code pins are connected together such that an IO pin for outputting the segment code control signal corresponds to the same segment code pin of all the digital tubes, since the dynamic display structure is rotated by the persistence effect of the human eye. Therefore, the processing unit 104 also needs to control the rotation of the two-digit digital tube, which requires the IO pin of the processing unit 104 for outputting the bit strobe signal to be connected to the strobe pin of the corresponding digital tube.
  • the latch L1 since a total of eight segment code control signals are required, the latch L1 preferably uses eight-way latches, so that only one latch needs to be configured.
  • FIG. 6 specifically shows a dynamic display structure, specifically: the IO pins P1.6, P1.7, P2.0-P2.5 and the latch L1 of the processing unit 104 for outputting the segment code control signals.
  • the eight input pins D0 to D7 are connected one by one, and the eight segment pins a to f and DP (point segment) of the first digital tube DS1 are connected with the same segment pins of the second digital tube DS2.
  • the first output pins Q0 to Q7 of the latch L1 are connected in one-to-one correspondence, and the IO pin P1.4 of the processing unit 104 for outputting the bit strobe signal is connected to the strobe pin SL of the first digital tube DS1.
  • the IO pin P1.5 of the processing unit 104 for outputting the bit strobe signal is connected to the strobe pin SL of the second digital tube DS2.
  • Each of the above units may be supplied with a suitable voltage by the power supply BT through the voltage conversion chip.
  • the voltage conversion circuit via the 12V to 5V is the power supply pin DVCC of the processing unit 104, and the latch L1.
  • the power supply pin LVCC provides a 5V operating voltage, and provides a 12V operating voltage VCC for the amplifying circuit; the grounding pin DVSS of the processing unit 104 and the grounding pin LGND of the latch L1 are connected to the negative terminal of the power supply, that is, the socket end Ground wire contact GND is connected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种耳机插头的阻抗检测装置,包括:耳机插座单元(101),其耳机插座(J1)具有用于与对应耳机插头的地线触点连接的插座端地线触点(GND)、及用于与对应耳机插头的其它触点对应连接的插座端连接触点(L、R、MIC);电压采集单元(103),包括连接在电源(BT)的正极与触点接入点(IN)之间的第一电阻(R1),电源(BT)的负极与插座端地线触点(GND)连接;触点选择单元(102),包括与插座端连接触点(L、R、MIC)一一对应配置的选择开关(LS1、LS2、LS3),每一选择开关(LS1、LS2、LS3)连接在对应连接触点与触点接入点(IN)之间;处理单元(104),用于根据触点接入点(IN)相对插座端地线触点(GND)的电压,计算被选择的连接触点与插座端地线触点(GND)之间的等效阻抗的阻抗值;显示单元(105),用于显示计算得到的阻值。

Description

一种耳机插头的阻抗检测装置 技术领域
本发明涉及阻抗检测技术领域,更具体地,本发明涉及一种耳机插头的阻抗检测装置。
背景技术
现有的耳机插头主要有3.5mm耳机插头、USB插头等,该USB插头又可分为多种类型,例如USB2.0、USB3.0、迷你USB、Type-C等。由于耳机在使用时会因为汗液造成对耳机插头的腐蚀,因此,耳机在开发阶段需要进行汗液实验,以在后期的可靠性分析中通过检测耳机插头的各触点与地线触点之间的等效阻抗确定耳机插头的耐腐蚀性,进而得出产品是否可靠的结论,即如果某一触点与地线触点之间的等效阻抗超出设定的标准范围,则说明对应触点与地线触点之间已被腐蚀,进而得出产品不可靠的结论。
目前主要通过操作人员使用万用表测量上述等效阻抗,由于进行试验的产品数目较多,因此,在分析时依靠人工操作不仅效率较低,而且还会因操作不当产生较大测量误差,进而影响所得结论的准确性。
发明内容
本发明实施例的一个目的是提供一种能够快速、准确地检测耳机插头地线触点与其它触点之间等效阻抗的阻抗检测装置。
根据本发明的第一方面,提供了一种耳机插头的阻抗检测装置,包括:
耳机插座单元,包括至少一种耳机插座,每一所述耳机插座具有用于与对应耳机插头的地线触点连接的插座端地线触点、及用于与对应耳机插头的其它触点对应连接的插座端连接触点;
电压采集单元,包括连接在电源的正极与触点接入点之间的第一电 阻,所述电源的负极与所述插座端地线触点连接;
触点选择单元,包括与选定的插座端连接触点一一对应配置的选择开关,每一所述选择开关连接在对应连接触点与所述触点接入点之间;
处理单元,用于根据所述触点接入点相对所述插座端地线触点的电压,计算被选择的连接触点与插座端地线触点之间的等效阻抗的阻抗值;以及,
显示单元,用于显示所述处理单元计算得到的阻值。
可选的是,所述装置还包括同相比例放大电路,所述触点接入点与所述同相比例放大电路的电压输入端连接,所述同相比例放大电路的输出端与所述处理单元的电压输入端连接。
可选的是,所述选择开关均为继电器触点,所述装置被设置为通过所述处理单元控制所述继电器触点的开关状态。
可选的是,所述选择开关均为继电器常开触点。
可选的是,对应每一所述继电器常开触点的继电器常闭触点连接在对应连接触点与插座端地线触点之间。
可选的是,所述第一电阻由两个阻值相同的桥臂电阻并联而成,所述电压采样单元还包括第二电阻,所述第二电阻连接在所述触点接入点与所述插座端地线触点之间,且所述第二电阻的阻值与所述桥臂电阻的阻值相同。
可选的是,所述显示单元包括锁存器和数码管,所述处理单元的用于输出段码控制信号的IO引脚经由所述锁存器与对应数码管的对应段码引脚连接。
可选的是,所述显示单元为两位以上显示单元,且所述提示单元采用动态显示结构,其中,所有数码管的相同段码引脚连接在一起,所述处理单元的用于输出位选通信号的IO引脚与对应数码管的选通引脚连接。
可选的是,所述处理单元还用于判断计算得到的阻值是否在对应的标准范围内,并输出判断结果信号,其中,如是,则所述判断结果信号为表征阻值正常的正常信号,如否,则所述判断结果信号为表征阻值异常的异常信号;
所述装置还包括提示单元,所述提示单元被设置为至少根据所述异常信号进行阻值异常的提示。
可选的是,所述耳机插座单元包括对应3.5mm耳机插头的3.5mm耳机插座和对应USB耳机插头的USB耳机插座。
本发明的发明人发现,在现有技术中,存在耳机插头的等效阻抗检测效率低、准确率低等问题。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
本发明的一个有益效果在于,本发明阻抗检测装置能够在将耳机插头插入对应的耳机插座中时,对耳机插头的地线触点与其它选定触点之间的等效阻抗的阻抗值进行检测,这不仅能够消除因操作不当引入的测量误差,进而保证测量准确率,而且还能够大大提高检测效率,有利于进行批量检测。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为根据本发明阻抗检测装置的一种实施方式的方框原理图;
图2为图1中电压采样电路的一种实施结构的电路原理图;
图3为图1中电压采样电路的另一种实施结构的电路原理图;
图4为图1中电压采样电路的第三种实施结构的电路原理图;
图5为图1中所述触点选择单元的一种实施结构的电路原理图;
图6为图1中所述显示单元的一种实施结构的电路原理图。
附图标记说明:
101:耳机插座单元;    102:触点选择单元;
103:电压采样单元;    104:处理单元;
105:显示单元;        J1:3.5mm耳机插座;
L、R、MIC:插座端连接触点;   GND:插座端地线触点;
LS1:第一选择开关;           LS2:第二选择开关;
LS3:第三选择开关;           R1:第一电阻;
R2:第二电阻;                R101、R102:桥臂电阻;
IN:触点接入点;              OUT:同相比例放大电路的输出端;
BT:电源;                    U3:运算放大器;
R7-R8、R10-R12-电阻;         P1.0-电压输入端;
DVCC-处理单元的供电引脚;     P1.0~P1.7:处理单元的IO引脚;
DVSS-处理单元的接地引脚;     P2.0~P2.5:处理单元的IO引脚;
LVCC:锁存器的供电引脚;      LGND:锁存器的接地引脚;
D0~D7:锁存器的输入引脚;    Q0~Q7:锁存器的输出引脚;
DS1:第一数码管;             DS2:第二数码管;
a~g、DP:数码管的段码引脚;  DGND:数码管的接地引脚;
SL:数码管的选通引脚。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明为了解决现有耳机插头的阻抗检测存在效率低、准确率低的问题,提供了一种耳机插头的阻抗检测装置。
图1为根据本发明阻抗检测装置的一种实施方式的方框原理图,图中虚线表示触点选择单元102可以是不受处理单元104控制的手动操作选择单元,也可以是受处理单元104控制的自动选择单元。
根据图1所示,本发明装置包括耳机插座单元101、电压采样单元103、触点选择单元102、处理单元104和显示单元105。
该耳机插座单元101用于将耳机插头连接至本发明装置上,以进行阻抗值测量。
该触点选择单元102用于选择当前检测连接至检测电路中的耳机插头的触点。
该电压采样单元103用于采集反映等效阻抗的阻抗值的电压信号,并输出至处理单元104进行阻抗值的计算。
该显示单元105则用于显示处理单元104计算得到的阻值。
上述耳机插座单元101包括至少一种耳机插座,每一所述耳机插座具有用于与对应耳机插头的地线触点连接的插座端地线触点、及用于与对应耳机插头的其它触点对应连接的插座端连接触点。这样,由于耳机插座的各触点连接在装置的检测电路中,因此,在将耳机插头插入对应的耳机插座中时,便相当于将耳机插头的对应触点连接至检测电路中,以进行耳机插头的地线触点与耳机插头的其它选定触点之间等效阻抗的检测。
上述耳机插座单元101可以包括一种耳机插座,例如3.5mm耳机插座或者USB耳机插座等,而且USB耳机插座可以是应用于耳机接口的迷你USB插座、Type-C接口插座等。为了扩大本发明装置对不同耳机插头的适用范围,上述耳机插座单元101还可以包括至少两种耳机插座,例如包括对应3.5mm耳机插头的3.5mm耳机插座和对应至少一种类型的USB耳机插头的USB耳机插座。
图5示出了对应3.5mm耳机插头的3.5mm耳机插座J1的结构示意图,下面以3.5mm耳机接口为例,说明3.5mm耳机插头与3.5mm耳机插座J1之间的对应关系。由于3.5mm耳机插头具有四个触点,分别为地线触点、左 耳连接线触点、右耳连接线触点和麦克风线触点,因此,耳机插座J1也应该包括四个触点,分别为用于连接地线触点的插座端地线触点GND、用于连接左耳连接线触点的插座端连接触点L、用于连接右耳连接线触点的插座端连接触点R、及用于连接麦克风线触点的插座端连接触点MIC,以上对应触点之间的连接具体为接触式电连接。
上述触点选择单元102包括与选定的插座端连接触点一一对应配置的选择开关,每一选择开关连接在对应连接触点与触点接入点之间,以在选择开关闭合时将对应连接触点与触点接入点连通,进而将对应连接触点与插座端地线触点之间的等效阻抗连接至本发明装置的检测电路中。该选定可以是选定所有插座端连接触点,即选定对耳机插头的所有触点均进行阻抗检测,也可以是根据需要选择部分插座端连接触点,即选定对耳机插头的部分触点进行阻抗检测。
图5示出了对应3.5mm耳机插座的触点选择单元。现以3.5mm耳机插座为例,说明触点选择单元的结构,根据图5所示,该触点选择单元包括第一选择开关LS1、第二选择开关LS2和第三选择开关LS3,其中,第一选择开关LS1连接在插座端连接触点L与触点接入点IN之间,第二选择开关LS2连接在插座端连接触点R与触点接入点IN之间,第三选择开关连接在插座端连接触点MIC与触点接入点IN之间。
上述选择开关可以是手动操作开关,即操作人员手动选择进行当前检测的触点,也可以是受控开关,以在装置上电后按照顺序自动进行各触点的阻抗检测。
对于受控开关,图5中的选择开关LS1、LS2和LS3采用继电器触点,而这些继电器触点的开关状态可通过处理单元104控制,即通过处理单元104控制这些继电器触点的线圈的通电状态,在图5所示的实施例中,处理单元104通过引脚P1.1(参见图6)控制选择开关LS1的开关状态,通过引脚P1.2(参见图6)控制选择开关LS2的开关状态,及通过引脚P1.3(参见图6)控制选择开关LS3的开关状态,图5所示的状态为选择开关LS3闭合,而选择开关LS1、LS2断开,实现插座端连接触点MIC与触点接入点IN的连通,进而进行插座端连接触点MIC与插座端地线触点GND之间 等效阻抗的检测。
上述选择开关优选采用继电器常开触点,以在选择一触点后,对应其它触点的继电器的线圈均处于失电状态,进而达到节省能耗的目的。在此基础上,为了减少干扰,如图5所示,还可将对应每一继电器常开触点的继电器常闭触点连接在对应连接触点与插座端地线触点之间,以将未被选择的插座端连接触点接地。
对于受控开关,上述选择开关还可以采用模拟开关,例如单刀双掷模拟开关,以实现被选择时与触点接入点连通,未被选择时与插座端连接触点连通的结构设计。
图2为图1中电压采样单元的一种基本结构。根据图2所示,上述电压采集单元103可以包括连接在电源BT的正极与触点接入点IN之间的第一电阻R1,该电源的负极则与插座端地线触点GND连接。在通过触点选择单元102实现一插座端连接触点与触点接入点IN的连通后,则相当于将被选择的连接触点与插座端地线触点GND之间的等效阻抗连接至触点接入端IN与插座端连接触点GND之间,这样便形成了检测回路。因此,通过获取所述触点接入点IN相对插座端地线触点GND的电压,便可计算得到上述等效阻抗的阻抗值。
为了提高检测精度,减少连接导线等对计算结果的影响,图3示出了一种可供选择的桥式电压采样电路的电路原理图。
根据图3所示,上述第一电阻R1由两个阻值相同的桥臂电阻R101、R102并联而成,而且电压采样单元103还包括第二电阻R2,该第二电阻R2连接在触点接入点IN与插座端地线触点GND之间,相当于与接入的等效阻抗并联,且第二电阻R2的阻值与桥臂电阻R101、R102的阻值相同,以形成惠斯通电桥。
上述电压采样单元103还可以根据需要增加放大电路,放大电路的电压输入端与触点接入点IN连接,放大电路的输出端则与处理单元104的电压输入端连接,以将放大后的电压提供给处理单元104,提高灵敏度。
图4示出了同相比例放大电路的一种实施结构的电路原理图。
根据图4所示,该同相比例放大电路包括运算放大器U3、电阻R7、 R8、R10、R11和R12。电阻R8与电阻R11串联连接在插座端地线触点GND与运算放大器U3的反相输入端之间。电阻R10的一端与电阻R8和电阻R11之间的电位点连接、另一端与运算放大器U3的输出端OUT连接,形成反馈电阻。电阻R7与电阻R12串联连接在运算放大器U3的同相输入端与电压输入端之间,而电压输入端与触点接入点IN连接,以对触点接入点的电压进行同相比例放大,再将放大后的电压信号输入至处理单元104进行处理,例如使输出端OUT与处理单元104的引脚P1.0(参见图6)连接,在此,处理单元104应该内置有模数转换器,以实现模拟量至数值量的转换。
上述处理单元104用于根据触点接入点IN相对插座端地线触点GND的电压,计算被选择的连接触点与插座端地线触点GND之间的等效阻抗的阻抗值。
该处理单元104还可以根据预先存储的对应不同连接触点的等效阻抗的正常范围,判断计算得到的阻抗值是否在对应的标准范围内,并输出判断结果信号,其中,如是,则判断结果信号为表征阻值正常的正常信号,如否,则判断结果信号为表征阻值异常的异常信号。为此,本发明装置还可以包括提示单元(图中未示出),以通过提示单元至少根据该异常信号进行阻值异常的提示,该提示单元可以包括声、光、显示提示电路中的至少一种或者任意组合。
上述显示单元105可以采用数码管显示电路,也可以采用液晶显示电路,如果采用液晶显示电路,则上述提示单元可与显示单元为同一单元,即通过显示单元同时实现提示操作。
图6示出了数码管显示电路的一种可供选择的实施结构的电路原理图。
该数码管显示电路包括锁存器L1和两位数码管,两位数码管分别为第一数码管DS1和第二数码管DS2,处理单元104的一IO引脚P1.0作为电压输入端与触点接入点IN或者放大电路的输出端连接,处理单元104的用于输出段码控制信号的IO引脚经由锁存器L1与对应数码管的对应段码引脚(该段码引脚包括点段码引脚)连接,其中,处理单元104将经由引脚P1.0接收到的电压转换为段码控制信号,以控制数码管显示相应的电 压。
该显示单元105可以采用静态显示结构,即一个用于输出段码控制信号的IO引脚仅对应一个数码管的一个段码引脚,也可以采用动态显示结构,即两位数码管的相同段码引脚连接在一起,以使得一个用于输出段码控制信号的IO引脚对应所有数码管的相同的段码引脚,在此,由于动态显示结构是利用人眼的暂留效应进行轮流显示,因此,处理单元104还需要控制两位数码管的轮流选通,这要求处理单元104的用于输出位选通信号的IO引脚与对应数码管的选通引脚连接。在动态显示结构中,由于一共需要八路段码控制信号,因此,该锁存器L1优选为采用八路锁存器,这样便仅需配置一个锁存器即可。
图6具体示出了一种动态显示结构,具体为:处理单元104的用于输出段码控制信号的IO引脚P1.6、P1.7、P2.0~P2.5与锁存器L1的八个输入引脚D0~D7一一对应连接,第一数码管DS1的八个段位引脚a~f、DP(点段位)与第二数码管DS2的相同段位引脚连接在一起后再与锁存器L1的八个输出引脚Q0~Q7一一对应连接,处理单元104的用于输出位选通信号的IO引脚P1.4与第一数码管DS1的选通引脚SL连接,处理单元104的用于输出位选通信号的IO引脚P1.5与第二数码管DS2的选通引脚SL连接。
上述各单元可由电源BT经过电压转换芯片提供合适的电压,例如,在电源BT提供12V电压的情况下,经由12V转5V的电压转换电路为处理单元104的供电引脚DVCC、锁存器L1的供电引脚LVCC提供5V工作电压,及为放大电路提供12V的工作电压VCC等;处理单元104的接地引脚DVSS、锁存器L1的接地引脚LGND则与电源的负极连接,即与插座端地线触点GND连接。
上述各实施例主要重点描述与其他实施例的不同之处,但本领域技术人员应当清楚的是,上述各实施例可以根据需要单独使用或者相互结合使用。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围 和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种耳机插头的阻抗检测装置,包括:
    耳机插座单元,包括至少一种耳机插座,每一所述耳机插座具有用于与对应耳机插头的地线触点连接的插座端地线触点、及用于与对应耳机插头的其它触点对应连接的插座端连接触点;
    电压采集单元,包括连接在电源的正极与触点接入点之间的第一电阻,所述电源的负极与所述插座端地线触点连接;
    触点选择单元,包括与选定的插座端连接触点一一对应配置的选择开关,每一所述选择开关连接在对应连接触点与所述触点接入点之间;
    处理单元,用于根据所述触点接入点相对所述插座端地线触点的电压,计算被选择的连接触点与插座端地线触点之间的等效阻抗的阻抗值;以及,
    显示单元,用于显示所述处理单元计算得到的阻值。
  2. 根据权利要求1所述的阻抗检测装置,其特征在于,所述电压采样单元还包括同相比例放大电路,所述触点接入点与所述同相比例放大电路的电压输入端连接,所述同相比例放大电路的输出端与所述处理单元的电压输入端连接。
  3. 根据权利要求1或2所述的阻抗检测装置,其特征在于,所述选择开关均为继电器触点,所述装置被设置为通过所述处理单元控制所述继电器触点的开关状态。
  4. 根据权利要求3所述的阻抗检测装置,其特征在于,所述选择开关均为继电器常开触点。
  5. 根据权利要求4所述的阻抗检测装置,其特征在于,对应每一所述继电器常开触点的继电器常闭触点连接在对应连接触点与插座端地线触点之间。
  6. 根据权利要求1至5中任一项所述的阻抗检测装置,其特征在于, 所述第一电阻由两个阻值相同的桥臂电阻并联而成,所述电压采样单元还包括第二电阻,所述第二电阻连接在所述触点接入点与所述插座端地线触点之间,且所述第二电阻的阻值与所述桥臂电阻的阻值相同。
  7. 根据权利要求1至6中任一项所述的阻抗检测装置,其特征在于,所述显示单元包括锁存器(L1)和数码管(DS1、DS2),所述处理单元(M1)的用于输出段码控制信号的IO引脚(P1.6、P1.7、P2.0~P2.5)经由所述锁存器(L1)与对应数码管的对应段码引脚连接。
  8. 根据权利要求7所述的阻抗检测装置,其特征在于,所述显示单元(U1)为两位以上显示单元,且所述显示单元(U1)采用动态显示结构,其中,所有数码管(DS1、DS2)的相同段码引脚连接在一起,所述处理单元(M1)的用于输出位选通信号的IO引脚(P1.4、P1.5)与对应数码管(DS1、DS2)的选通引脚(SL)连接。
  9. 根据权利要求1至8中任一项所述的阻抗检测装置,其特征在于,所述处理单元还用于判断计算得到的阻值是否在对应的标准范围内,并输出判断结果信号,其中,如是,则所述判断结果信号为表征阻值正常的正常信号,如否,则所述判断结果信号为表征阻值异常的异常信号;
    所述装置还包括提示单元,所述提示单元被设置为至少根据所述异常信号进行阻值异常的提示。
  10. 根据权利要求1至9中任一项所述的阻抗检测装置,其特征在于,所述耳机插座单元包括对应3.5mm耳机插头的3.5mm耳机插座和对应USB耳机插头的USB耳机插座。
PCT/CN2016/110300 2016-05-30 2016-12-16 一种耳机插头的阻抗检测装置 WO2017206482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/304,597 US10823773B2 (en) 2016-05-30 2016-12-16 Impedance detection apparatus for earphone plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610374081.0 2016-05-30
CN201610374081.0A CN106093574B (zh) 2016-05-30 2016-05-30 一种耳机插头的阻抗检测装置

Publications (1)

Publication Number Publication Date
WO2017206482A1 true WO2017206482A1 (zh) 2017-12-07

Family

ID=57230976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110300 WO2017206482A1 (zh) 2016-05-30 2016-12-16 一种耳机插头的阻抗检测装置

Country Status (3)

Country Link
US (1) US10823773B2 (zh)
CN (1) CN106093574B (zh)
WO (1) WO2017206482A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093574B (zh) * 2016-05-30 2018-07-03 歌尔股份有限公司 一种耳机插头的阻抗检测装置
GB2567903A (en) * 2017-10-27 2019-05-01 Cirrus Logic Int Semiconductor Ltd Socket monitoring
CN113030575B (zh) * 2021-03-11 2023-07-07 福建星云电子股份有限公司 一种绝缘检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226329A (ja) * 2009-03-23 2010-10-07 Sony Ericsson Mobile Communications Ab 携帯端末装置
CN202634659U (zh) * 2012-05-23 2012-12-26 东莞宇龙通信科技有限公司 耳机接口自适应电路及移动终端
CN203490285U (zh) * 2013-04-24 2014-03-19 成都飞机设计研究所 一种无人机全自动阻抗检测装置
CN103986999A (zh) * 2014-04-14 2014-08-13 小米科技有限责任公司 一种检测耳机阻抗的方法、装置及终端设备
CN105425044A (zh) * 2015-12-01 2016-03-23 中国科学院西安光学精密机械研究所 矩阵自动阻抗测试仪及测试方法
CN106093574A (zh) * 2016-05-30 2016-11-09 歌尔股份有限公司 一种耳机插头的阻抗检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623667B2 (en) * 2008-01-14 2009-11-24 Apple Inc. Electronic device accessory with ultrasonic tone generator
KR102250772B1 (ko) * 2014-06-27 2021-05-11 삼성전자주식회사 이어 잭 오작동을 방지하는 전자 장치 및 방법
KR20160052405A (ko) * 2014-10-31 2016-05-12 페어차일드 세미컨덕터 코포레이션 오디오 크로스토크 교정 스위치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226329A (ja) * 2009-03-23 2010-10-07 Sony Ericsson Mobile Communications Ab 携帯端末装置
CN202634659U (zh) * 2012-05-23 2012-12-26 东莞宇龙通信科技有限公司 耳机接口自适应电路及移动终端
CN203490285U (zh) * 2013-04-24 2014-03-19 成都飞机设计研究所 一种无人机全自动阻抗检测装置
CN103986999A (zh) * 2014-04-14 2014-08-13 小米科技有限责任公司 一种检测耳机阻抗的方法、装置及终端设备
CN105425044A (zh) * 2015-12-01 2016-03-23 中国科学院西安光学精密机械研究所 矩阵自动阻抗测试仪及测试方法
CN106093574A (zh) * 2016-05-30 2016-11-09 歌尔股份有限公司 一种耳机插头的阻抗检测装置

Also Published As

Publication number Publication date
CN106093574A (zh) 2016-11-09
US10823773B2 (en) 2020-11-03
US20190293700A1 (en) 2019-09-26
CN106093574B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
US8193834B2 (en) Multiple detection circuit for accessory jacks
WO2017206482A1 (zh) 一种耳机插头的阻抗检测装置
TW201344210A (zh) 接地阻抗測試裝置及具有其的探棒
CN106707147B (zh) 瓦斯继电器流速整定装置及方法
CN213600773U (zh) 一种自动切换量程的电流测量电路及测量仪
JP6165860B2 (ja) バイオセンサ測定器の感電の危険を低減する装置および方法
CN116699475B (zh) 基于源表的远端采样接触检测系统、方法及源表装置
CN109257023A (zh) 一种功放保护电路和方法
TWI452306B (zh) 熱電偶焊接檢測裝置
CN205643590U (zh) 一种多芯电缆故障检测器
US10944259B2 (en) System and method for over voltage protection in both positive and negative polarities
CN201311330Y (zh) Pt100测温电路
CN106338937A (zh) 用于基于检测到的负载电阻值生成输出信号的装置和方法
CN215493952U (zh) 一种开关管检测电路及其系统
CN115683395A (zh) 热电偶的断路检测电路和断路检测方法
CN112763803B (zh) 一种通用化火工品测试平台
TWI704362B (zh) 差動訊號檢測裝置
CN110196789B (zh) 差动信号检测装置
JP4957645B2 (ja) 材料試験機
CN106019062B (zh) 一种剩余电流线圈断线检测装置及其检测方法
CN216209829U (zh) 耐压测试仪校准电路
JP2016090275A (ja) 回路素子測定装置
JP2019091452A (ja) アナログ入力信号のフェイルセーフ読み取りのための入力回路
CN210572498U (zh) 一种导线电阻测量装置
CN215678544U (zh) 一种测试设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903862

Country of ref document: EP

Kind code of ref document: A1