WO2017206196A1 - 一种超临界流体无水染色机的分离回收及自清洗系统 - Google Patents

一种超临界流体无水染色机的分离回收及自清洗系统 Download PDF

Info

Publication number
WO2017206196A1
WO2017206196A1 PCT/CN2016/085186 CN2016085186W WO2017206196A1 WO 2017206196 A1 WO2017206196 A1 WO 2017206196A1 CN 2016085186 W CN2016085186 W CN 2016085186W WO 2017206196 A1 WO2017206196 A1 WO 2017206196A1
Authority
WO
WIPO (PCT)
Prior art keywords
high pressure
supercritical fluid
separator
medium
dyeing
Prior art date
Application number
PCT/CN2016/085186
Other languages
English (en)
French (fr)
Inventor
龙家杰
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to US15/557,106 priority Critical patent/US10344414B2/en
Publication of WO2017206196A1 publication Critical patent/WO2017206196A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/20Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration, distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/003Filters in combination with devices for the removal of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B19/00Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/14Containers, e.g. vats
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/30Means for cleaning apparatus or machines, or parts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B9/00Solvent-treatment of textile materials
    • D06B9/02Solvent-treatment of textile materials solvent-dyeing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B9/00Solvent-treatment of textile materials
    • D06B9/06Solvent-treatment of textile materials with recovery of the solvent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/81General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dyes dissolved in inorganic solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B2700/00Treating of textile materials, e.g. bleaching, dyeing, mercerising, impregnating, washing; Fulling of fabrics
    • D06B2700/10Apparatus for passing fabrics in roped form through bleaching, washing or dyeing liquid, e.g. for continuous treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B2700/00Treating of textile materials, e.g. bleaching, dyeing, mercerising, impregnating, washing; Fulling of fabrics
    • D06B2700/36Devices or methods for dyeing, washing or bleaching not otherwise provided for
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/94General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dyes dissolved in solvents which are in the supercritical state

Definitions

  • the invention belongs to the technical field of pressure vessel and textile dyeing and finishing equipment manufacturing, in particular to a separation and recovery and self-cleaning system of a supercritical fluid waterless dyeing machine.
  • Supercritical CO 2 fluid can replace traditional water bath, dyeing or finishing textiles, and can completely solve the dilemma caused by large water consumption, high energy consumption and serious environmental pollution caused by traditional water bath processing. Therefore, vigorously developing the waterless dyeing and finishing technology represented by supercritical CO 2 fluid and its equipment system have very important practical and strategic significance for the health, sustainable development and ecological environment protection of the industry.
  • the above-mentioned disclosed or other similar supercritical fluid waterless dyeing machine separation and recovery system generally designs a first-stage and/or two-stage separation kettle body downstream of the fixed dyeing unit, and decompresses the dyeing medium to make residual Dye precipitation for separation.
  • a separation system generally only targets the dyeing unit that is fixedly matched, and cannot separate or recover the moving or multiple independent dyeing units, and the separation efficiency is low.
  • the object of the present invention is to provide a separation and recovery and self-cleaning system for a supercritical fluid waterless dyeing machine, so as to realize simultaneous separation and recovery of multiple independent dyeing units of a supercritical fluid waterless dyeing machine.
  • the utility model has the advantages of high efficiency, simple operation, complete separation, stable and reliable, backflushing and self-cleaning, and wide adaptability.
  • the separation and recovery and self-cleaning system of the supercritical fluid waterless dyeing machine of the invention comprises a supercritical fluid medium storage connected in sequence by a high pressure pipeline along the advancing direction of the medium, one or more parallel dyeing units, a high pressure pump, a first stage Separator, secondary separator and membrane separator, wherein
  • the inlet end of the high pressure pump is in communication with the dyeing unit, and the inlet end of the high pressure pump is connected to the membrane separator through a high pressure circuit, by the high pressure pump, the primary separator, two a stage separator, a membrane separator and a high pressure circuit constitute a first loop for depressurizing and extracting the dyeing unit and the membrane separator;
  • the high pressure pump, the primary separator, the secondary separator, the membrane separator and the high pressure circuit constitute the high pressure pump, the first stage separation a second circuit for backflushing and self-cleaning of the secondary separator and the high pressure circuit;
  • the membrane separator is sequentially provided with a sintered filter plate, a filter element and a tapered sintered filter plate.
  • each of the dyeing unit and the supercritical fluid medium storage device may be further connected to a medium tank charging and pressurizing system, and the medium tank charging and supercharging system comprises a medium filter connected in sequence, an increasing pump, and a supercritical fluid high pressure.
  • a mass flow meter and a high pressure ball valve the supercritical fluid high pressure mass flow meter being further coupled to the booster pump for linkage control, and for measuring, transmitting, and responsive to the flow of supercritical fluid mass, density, and temperature
  • a linkage control signal such as a predetermined setting of quality controls the start and stop of the booster pump.
  • the sintered filter plate, the filter element and the tapered sintered filter plate have a filtration precision of 0.01-0.10 ⁇ m.
  • the supercritical fluid medium reservoir has a medium inlet and a medium outlet, the medium outlet is connected to the medium filter, and the medium inlet is used for connecting a gas source, and the gas source passes through a high pressure pipeline and a shut-off valve. And after being processed by the condenser, it enters the medium inlet.
  • the membrane separator is connected to the condenser through a shutoff valve.
  • the dyeing unit is a fixed high-pressure dyeing cylinder or a mobile high-pressure processing container.
  • the medium inlet is disposed at 0-10 cm from the top of the supercritical fluid medium reservoir, and the medium outlet is disposed 5-50 cm from the bottom of the supercritical fluid medium reservoir.
  • shutoff valve for introducing the gas source and a shutoff valve connected to the membrane separator are connected to the condenser through a high pressure tee pipe.
  • the present invention has at least the following advantages:
  • the invention can be combined with a medium tank charging and supercharging system configured by a waterless dyeing machine, and the dyeing unit is cleaned by using a clean fluid medium in a supercritical fluid medium storage;
  • the high-pressure pump, the first-stage separator, the second-stage separator, the membrane separator and the high-pressure circuit can be self-cleaned, thereby overcoming the separation efficiency and the use efficiency of the conventional separation system and the method thereof.
  • the invention has the advantages of poor separation effect, low reliability, complicated and cumbersome separation and recovery process, and difficulty in cleaning the separation system. Therefore, the invention can significantly improve the production and processing efficiency of supercritical fluid waterless dyeing, and has high efficiency, simple operation and separation.
  • FIG. 1 is a schematic view showing the working principle of a separation and recovery system for a supercritical fluid waterless dyeing machine according to an embodiment of the present invention
  • FIG. 2 is a schematic block diagram of a medium tank charging and supercharging system of the present invention.
  • a separation and recovery and self-cleaning system for a supercritical fluid waterless dyeing machine includes a high pressure pump 6, a primary separator 8, and a secondary separator 10.
  • the inlet end of the high pressure pump 6 is connected to the dyeing unit 4, and the inlet end of the high pressure pump 6 is connected to the membrane separator 12 through the high pressure circuit 12-5, by the high pressure pump 6, the primary separator 8, the second stage
  • the separator 10, the membrane separator 12 and the high pressure circuit 12-5 constitute a first circuit for depressurizing and extracting the dyeing unit 4 and the membrane separator 12;
  • the high pressure pump 6, the primary separator 8, the secondary separator 10, the membrane separator 12 and the high pressure circuit 12-5 constitute a high pressure pump 6, one
  • the second separator of the stage separator 8, the secondary separator 10 and the high pressure circuit 12-5 performs backflushing and self-cleaning;
  • a 6th high pressure pump a primary separator 8 , a secondary separator 10 and a membrane separator 12 constitute a third circuit for separating and recovering residual dye and fluid/gas medium contained in the dyeing unit 4 step by step;
  • a fourth circuit for backflushing and self-cleaning of the membrane separator 12 is constituted by the supercritical fluid medium reservoir 1, the membrane separator 12, the high pressure circuit 12-5 and the high pressure pump 6.
  • the high-pressure pump 6 is connected to the shut-off valve 7 and the primary separator 8 through the high-pressure pipe in the outlet direction thereof, and is respectively independent from the dyeing units n 1 , n 2 , ..., n in the inlet direction thereof.
  • I-1 , n i (i ⁇ 1) are connected, and connected to the membrane separator 12 through the high pressure circuit 12-5, and the pressure reduction and extraction of the respective dyeing unit and membrane separator 12 medium can be realized.
  • the second circuit disconnects the high-pressure pump 6 from the dyeing unit 4, and opens the high-pressure pump 6 and the shut-off valves 7, 9, 11, 15 to the high-pressure pump 6, the primary separator 8, the secondary separator 10, and Its high pressure circuit 12-5 is self-cleaning.
  • the fourth circuit in the condition that the connection of each dyeing unit to the high pressure pump 6 is disconnected, the shutoff valve 11 is closed, and the shutoff valve 13 and the shutoff valve 15 are opened, the high pressure pump 6 is activated, using the supercritical fluid medium reservoir 1
  • the clean media provides efficient backflushing of the membrane separator system 12. Thereby achieving continuous use of the membrane separator system and efficient recovery of the separated dye.
  • the inlet end of the primary separator 8 is connected to the high pressure pump 6 through a high pressure pipe, the outlet end is sequentially connected to the inlet end of the shutoff valve 9 and the secondary separator 10, and the outlet end of the secondary separator 10 is connected to the membrane separator. 12 is connected to realize stepwise decompression separation of the residual dye and the fluid/gas medium contained in each dyeing unit, and can pass through the primary separator 8 and the shutoff valve 8-1 at the lower end of the secondary separator 10 and cut off. The valve 10-1 is recycled.
  • the membrane separator 12 is internally provided with a sintered filter plate 12-1, a filter element 12-2 and a tapered sintered filter plate 12-3.
  • the membrane separator 12 is provided with a shut-off valve 12-4, and the membrane separator 12 is passed through a high pressure circuit.
  • the membrane separator 12-5 is connected to the high pressure pump 6 for further separation and purification of the fluid or gaseous medium treated by the primary separator 8 and the secondary separator 10, and the residual dye carried by the medium is in the sintered filter plate 12-1 Separating by the filter element 12-2 and the tapered sintered filter plate 12-3, and collecting it to the bottom of the membrane separator 12, recycling is realized through the discharge port shutoff valve 12-4; at the same time, the membrane separator 12 can be Disconnecting each dyeing unit from the high pressure pump 6 and closing the shutoff valve 11, opening the shutoff valve 13 and the shutoff valve 15, starting the high pressure pump 6, and backflushing it with the clean medium in the supercritical fluid medium reservoir 1 Self-cleaning.
  • the filtration precision of the sintered filter plate 12-1, the filter element 12-2, and the tapered sintered filter plate 12-3 in the membrane separator 2 is 0.01-0.10 ⁇ m, and the powder in the dye can be completely filtered out.
  • the mutually independent dyeing units n 1 , n 2 , ..., n i-1 , n i (i ⁇ 1) can also be supercharged multiple times by the medium tank charging pressurization system 3, using the supercritical fluid medium reservoir 1 Clean fluid medium for post-dye cleaning of each dyeing unit and product.
  • the medium tank charging and pressurizing system 3 includes a medium filter 3-1 connected in sequence, and an additional pump 3-2.
  • Supercritical fluid high pressure mass flow meter 3-3 and high pressure ball valve 3-4, supercritical fluid high pressure mass flow meter 3-3 is also connected with booster pump 3-2 linkage control to control booster pump through linkage control signal 3- 2 start and stop.
  • the supercritical fluid high pressure mass flow meter 3-3 is connected to the high pressure ball valve 3-4 through the high pressure pipeline at the fluid outlet end, and communicates with the booster pump 3-2 through the high pressure pipeline at the fluid inlet end, which can directly realize the supercritical Measurement and display of fluid mass, density and temperature, and a predetermined setting of the required fluid quality, and further through the supercritical fluid high pressure mass flow meter 3-3 and the booster pump 3-2 linkage control signal to the booster pump
  • the start and stop of 3-2 realizes linkage control to achieve quantitative mass tank charging of the supercritical fluid medium in each dyeing unit 4.
  • the high pressure ball valve 3-4 is connected to each dyeing unit 4 through one end of the high pressure pipe, and the other end is connected to the supercritical fluid high pressure mass flow meter 3-3, and the medium tank charging and supercharging system is connected with the dyeing unit 4 through the opening thereof, thereby realizing
  • the dosing unit 4 requires a quantitative tank filling of the dyeing medium.
  • the booster pump 3-2 can be a gas or liquid booster pump, or a high-pressure piston pump or a diaphragm pump, and its outlet is connected to the supercritical fluid high-pressure mass flowmeter 3-3 through a high-pressure pipeline, and its start-stop and flow are subject to the front super
  • the linkage control signal outputted by the critical fluid high pressure mass flow meter 3-3 is controlled to achieve a quantitative tank charge to the dyeing unit 4.
  • the inlet end is connected to the medium filter 3-1 to achieve and ensure the purification and impurity removal treatment of the tank filling medium.
  • the supercritical fluid medium reservoir 1 is provided with a medium outlet 1-1 and a medium inlet 1-2, wherein the medium inlet 1-2 is disposed at a suitable position from the top of the supercritical fluid medium reservoir 1 and passes through the high pressure conduit and the shutoff valve 17
  • the condensers 16 are sequentially connected to achieve cooling and storage of the medium.
  • the medium inlet 1-2 is disposed at an appropriate position from the top of the supercritical fluid medium reservoir 1, meaning that the medium inlet 1-2 is disposed at 0-10 cm from the top of the supercritical fluid medium reservoir 1; and the medium outlet 1-1 is set At a distance of 5-50 cm from the bottom of the supercritical fluid medium reservoir 1.
  • the medium outlet 1-1 is connected to the medium filter 3-1, and the medium inlet 1-2 is used for connecting the gas source.
  • the gas source passes through the high pressure pipeline, the shutoff valve 14 and is processed by the condenser 16 to enter the medium inlet 1-2.
  • shutoff valve 14 for introducing the air source and the shutoff valve 13 connected to the helium separator 12 pass The high pressure tee pipe is connected to the condenser 16.
  • the medium pressure in each dyeing unit is equal to 1.01 ⁇ 10 5 Pa under the action of the high pressure pump 6.
  • the direct opening of each dyeing unit is realized.
  • the mutually independent dyeing units n 1 , n 2 , ..., n i-1 , n i (i ⁇ 1) can be fixed high-pressure dyeing cylinders of different forms, different shapes and different capacities, or movable textiles. Dyeing, pre-treatment or finishing to treat high pressure processing vessels.
  • the dyeing unit 4 or the mutually independent dyeing units n 1 , n 2 , ..., n i-1 , n i (i ⁇ 1) can be supercharged multiple times by the medium tank charging and supercharging system 3
  • the clean fluid medium in the critical fluid medium reservoir 1 performs floating color cleaning on the dyeing unit and its dyed product, and uses the third loop in which the high pressure pump 6 is located for continuous separation and recovery.
  • the dyeing units can be directly cleaned and separated and recovered according to the above method; and the mobile dyeing unit can be connected to the medium tank filling and adding system 3.
  • each dyeing unit is disconnected from the medium tank charging and pressurizing system 3, and under the action of the high pressure pump 6, the pump is stopped when the medium pressure in each dyeing unit is equal to 1.01 ⁇ 10 5 Pa, so that each dyeing is performed.
  • the unit is balanced with atmospheric pressure to achieve direct opening of the dyeing unit and maximum recycling of the dyeing medium.
  • the high pressure pump 6 is activated, and the membrane can be used by the clean medium in the supercritical fluid medium reservoir 1.
  • the separator system 12 performs efficient backflushing and self-cleaning. Thereby achieving continuous use of the membrane separator system and efficient recovery of the separated dye.
  • each dyeing unit can be disconnected, and the high pressure pump 6, the primary separator 8, the secondary separator 10, and the membrane separator in the separation and recovery system are used.
  • System 12 high pressure circuit 12-5 and shut-off valves 7, 9, 11, 15 backflushing self-cleaning circuit, residual high pressure pump 6, primary separator 8, secondary separator 10 and high pressure circuit 12-5
  • the dye is washed continuously or multiple times and can be recovered through the primary separator 8, the discharge port controlled by the lower end shutoff valves 8-1, 10-1 of the secondary separator 10, and/or through the lower end of the membrane separator 12 12-4 controlled discharge port for recycling.

Abstract

一种超临界流体无水染色机的分离回收及自清洗系统,包括通过高压管道沿介质前进方向依次连接的超临界流体介质储存器(1)、一个或多个并联的染色单元(4)、高压泵(6)、一级分离器(8)、二级分离器(10)和膜分离器(12)。可同时对多个或选择的独立染色单元(4)中染色介质和残留染料进行高效分离和回收,并可在结束时对各染色单元(4)直接开盖,既能对各染色单元(4)及产品进行染后清洗,又能进行自清洗,提高了超临界流体无水染色的生产加工效率。

Description

一种超临界流体无水染色机的分离回收及自清洗系统 技术领域
本发明属于压力容器及纺织染整设备制造技术领域,尤其涉及一种超临界流体无水染色机的分离回收及自清洗系统。
背景技术
超临界CO2流体可以代替传统水浴,对纺织品进行染色或后整理等加工,能从源头上彻底破解传统水浴加工所带来的耗水量大、能耗高、环境污染严重等困境。因此,大力发展以超临界CO2流体为代表的无水染整技术及其装备系统,对行业的健康、持续化发展和生态环境保护等都具有非常重要的现实和战略意义。
近年来,随着环保要求越来越高,环保政策执行的力度加大,纺织品的超临界CO2无水染整技术已逐步得到了行业的关注和认同,并已开始进入到商业化阶段,其适用装备系统也得到了大力发展。其中超临界流体无水染色机的分离回收系统则是整个染色机不可或缺的重要组成部分,其分离回收的效果和效率如何,则直接关系到无水染色机本身的生产和加工效率,而且其对介质中残余染料的分离净化程度,也直接影响到介质的循环利用和产品的正品率,以及生产成本。因而,高效、可靠、适用的分离回收系统,对超临界流体无水染色机和无水染色技术的应用、推广和产业化都具有举足轻重的作用。
在公开号为CN101760914A的中国发明专利“超临界染色机”中,公开了含染色循环系统、进布系统、分离回收系统等组成的织物绳状匹染染色机,对织物实现松式无张力状态的无水染色加工。
然而,上述公开或其他同类的超临界流体无水染色机的分离回收系统,一般都是在固定染色单元下游设计一级和/或二级分离釜体,对染色介质进行减压膨胀,使残余染料析出实现分离。然而,这类分离系统一般只针对其固定配套的染色单元,不能实现对移动或多个独立的染色单元进行分离和回收,其分离效率低。同时,现有的超临界流体无水染色机的分离回收系统中,由于减压析出的染料粉末密度小、质量轻,易为流动气体介质所携带,并从而致使其分离效果变差,造成对冷凝器、介质储存器及其干净介质的污染;且其分离回收系统无法实现自动反清洗。因而,这类分离回收系统具有很大的不可靠性和低效性,不但使染色后的分离回收过程变得复杂和繁琐,而且更为重要的是易引起回收介质的污染,从而使后续产品的缸差变大,重演性变得难以控制,也显著影响到无水染色技术的产业化推广。
有鉴于上述的缺陷,本设计人,积极加以研究创新,以期创设一种新型结构的超临界流体无水染色机的分离回收及自清洗系统,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是提供一种超临界流体无水染色机的分离回收及自清洗系统,以实现对超临界流体无水染色机多个独立的染色单元同时进行分离回收,并具有效率高、操作简便、分离彻底、稳定可靠、可反吹自清洗、适应范围广等优点。
本发明的超临界流体无水染色机的分离回收及自清洗系统,包括通过高压管道沿介质前进方向依次连接的超临界流体介质储存器、一个或多个并联的染色单元、高压泵、一级分离器、二级分离器和膜分离器,其中
-所述高压泵的进口端与所述染色单元连通情况下,并将所述高压泵的进口端通过高压回路连接到所述膜分离器上,由所述高压泵、一级分离器、二级分离器、膜分离器及高压回路构成对所述染色单元和膜分离器进行降压和抽取的第一回路;
-所述高压泵的进口端与所述染色单元断开情况下,由所述高压泵、一级分离器、二级分离器、膜分离器及高压回路构成对所述高压泵、一级分离器、二级分离器及高压回路进行反吹自清洗的第二回路;
-由所述高压泵、一级分离器、二级分离器及膜分离器构成对所述染色单元中含有的残余染料与流体/气体介质进行逐级减压分离、回收的第三回路;
-由所述超临界流体介质储存器、膜分离器、高压回路及高压泵构成对所述膜分离器进行反吹自清洗的第四回路。
进一步的,所述膜分离器内部依次设有烧结过滤板、滤芯和锥形烧结过滤板。
进一步的,各所述染色单元与所述超临界流体介质储存器还可连接介质罐充增压系统,所述介质罐充增压系统包括依次连接的介质过滤器、增加泵、超临界流体高压质量流量计和高压球阀,所述超临界流体高压质量流量计还与所述增压泵联动控制连接,并通过对流经的超临界流体质量、密度和温度的测量、传输,以及对所需流体质量的预定设置等联动控制信号控制所述增压泵的启停。
进一步的,所述烧结过滤板、滤芯和锥形烧结过滤板的过滤精度为0.01-0.10μm。
进一步的,所述超临界流体介质储存器具有介质进口和介质出口,所述介质出口与所述介质过滤器连接,所述介质进口用于连接气源,所述气源通过高压管道、截止阀并经冷凝器处理后进入所述介质进口。
进一步的,所述膜分离器通过截止阀连接到所述冷凝器上。
进一步的,所述介质出口与所述介质过滤器之间、所述染色单元与高压泵之间、所述高压泵与一级分离器之间、所述一级分离器与二级分离器之间、二级分离器与膜分离器之间、所述冷凝器与超临界流体介质储存器之间及所述超临界流体介质储存器的下端、一级分离器的下端、二级分离器的下端、膜分离器的下端均设有截止阀。
进一步的,所述染色单元为固定的高压染缸或移动式的高压处理容器。
进一步的,所述介质进口设置在距所述超临界流体介质储存器顶部0-10cm处,所述介质出口设置在距所述超临界流体介质储存器底部5-50cm处。
进一步的,用以通入所述气源的截止阀与跟所述膜分离器连接的截止阀通过高压三通管道与所述冷凝器连接。
借由上述方案,本发明至少具有以下优点:
1、由于采用了两级分离器和膜分离系统,可实现同时对多个或选定的独立染色单元中染色介质和残留染料进行高效分离和回收,并可将染色单元中流体介质实现最大限度的回收利用,回收后染色单元的气压与外界大气压力相同,可实现各染色单元的直接开盖;
2、本发明可结合无水染色机配置的介质罐充增压系统,利用超临界流体介质储存器中干净流体介质对各染色单元进行染后清洗;
3、利用反吹自清洗功能,可对高压泵、一级分离器、二级分离器、膜分离器及高压回路进行自清洗,从而克服了传统分离系统及其方法分离效率和使用效率低、分离效果差、可靠性不高、分离回收过程复杂和繁琐、分离系统难以清洗等缺点,因此,本发明可显著提高超临界流体无水染色的生产加工效率,并具有效率高、操作简便、分离彻底、稳定可靠、可反吹自清洗、适应范围广 等优点,对从源头上解决纺织印染行业污染物的产生和排放,实现纺织印染行业的节能降耗减排、清洁生产,具有非常广阔的应用前景和重要的实际意义。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明实施例提供的超临界流体无水染色机分离回收系统工作原理示意图;
图2是本发明中介质罐充增压系统的原理框图。
图中:1、超临界流体介质储存器,1-1、介质出口,1-2、介质进口,(1-3、2、5、7、8-1、9、10-1、11、12-4、13、14、15、17)、截止阀,3、介质罐充增压系统,3-1、介质过滤器,3-2、增压泵,3-3、超临界流体高压质量流量计,3-4、高压球阀,4、染色单元,6、高压泵,8、一级分离器,10、二级分离器,12、膜分离器,12-1、膜分离器中烧结过滤板,12-2、膜分离器滤芯,12-3、膜分离器中锥形烧结过滤板,12-5、高压回路,16、冷凝器,(n1、n2、…、ni-1、ni,i≧1)、相互独立且并联的染色单元。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
参见图1和图2,本发明一较佳实施例所述的一种超临界流体无水染色机的分离回收及自清洗系统,包括高压泵6、一级分离器8、二级分离器10、膜分离器12、冷凝器16、超临界流体介质储存器1,以及相互独立的染色单元n1、n2、…、 ni-1、ni(i≧1)。其中
-高压泵6的进口端与染色单元4连通情况下,并将高压泵6的进口端通过高压回路12-5连接到膜分离器12上,由高压泵6、一级分离器8、二级分离器10、膜分离器12及高压回路12-5构成对染色单元4和膜分离器12进行降压和抽取的第一回路;
-高压泵6的进口端与染色单元4断开情况下,由高压泵6、一级分离器8、二级分离器10、膜分离器12及高压回路12-5构成对高压泵6、一级分离器8、二级分离器10及高压回路12-5进行反吹自清洗的第二回路;
-由6高压泵、一级分离器8、二级分离器10及膜分离器12构成对染色单元4中含有的残余染料与流体/气体介质进行逐级减压分离、回收的第三回路;
-由超临界流体介质储存器1、膜分离器12、高压回路12-5及高压泵6构成对膜分离器12进行反吹自清洗的第四回路。
具体的,第一回路:高压泵6在其出口方向通过高压管道与截止阀7和一级分离器8相连,同时在其进口方向分别与相互独立的染色单元n1、n2、…、ni-1、ni(i≧1)相连,以及通过高压回路12-5与膜分离器12相连,可实现对各独立染色单元和膜分离器12介质的降压和抽取。
第二回路:断开高压泵6与染色单元4的连接,开启高压泵6及截止阀7、9、11、15,即可对高压泵6、一级分离器8、二级分离器10及其高压回路12-5进行自清洗。
第三回路:相互独立的染色单元n1、n2、…、ni-1、ni(i≧1)是通过高压管道和截止阀5与高压泵6相连,以串联(i=1)或相互并联后(i≧2)接入高压泵6,其中含有残余染料的流体介质经一级分离器8、二级分离器10及膜分离器12实现分离回收。
第四回路:在断开各染色单元与高压泵6的连接,以及关闭截止阀11,以及开启截止阀13与截止阀15的条件下,启动高压泵6,利用超临界流体介质储存器1中干净介质可对膜分离器系统12进行高效反吹自清洗。从而实现膜分离器系统的连续使用和分离染料的高效回收。
一级分离器8的进口端通过高压管道与高压泵6相连,出口端则与截止阀9和二级分离器10的进口端顺序相连,而二级分离器10的出口端则与膜分离器12相连,从而实现对来自各染色单元中含有的残余染料与流体/气体介质进行逐级减压分离,并可通过一级分离器8与二级分离器10下端的截止阀8-1和截止阀10-1进行回收利用。
膜分离器12内部依次设置有烧结过滤板12-1、滤芯12-2和锥形烧结过滤板12-3,膜分离器12排放口设置有截止阀12-4,膜分离器12通过高压回路12-5与高压泵6相连,以实现对经一级分离器8和二级分离器10处理后的流体或气体介质进行进一步的分离净化,将介质携带的残余染料在烧结过滤板12-1、滤芯12-2和锥形烧结过滤板12-3的作用下,实现分离,并汇集到膜分离器12底部,经排放口截止阀12-4实现回收利用;同时,膜分离器12可在断开各染色单元与高压泵6连接,并关闭截止阀11、开启截止阀13和截止阀15的条件下,启动高压泵6,利用超临界流体介质储存器1中干净介质对其进行反吹自清洗。
膜分离器2中烧结过滤板12-1、滤芯12-2及锥形烧结过滤板12-3的过滤精度为0.01-0.10μm,能完全过滤掉染料中的粉末。
相互独立的染色单元n1、n2、…、ni-1、ni(i≧1)还可通过介质罐充增压系统3进行多次增压,利用超临界流体介质储存器1中干净流体介质,可实现对各染色单元及产品的染后清洗。
具体的,介质罐充增压系统3包括依次连接的介质过滤器3-1、增加泵3-2、 超临界流体高压质量流量计3-3和高压球阀3-4,超临界流体高压质量流量计3-3还与增压泵3-2联动控制连接,以通过联动控制信号控制增压泵3-2的启停。超临界流体高压质量流量计3-3,其在流体出口端方向通过高压管道与高压球阀3-4连通,在流体进口端通过高压管道与增压泵3-2连通,可直接实现对超临界流体质量、密度和温度的测量和显示,并可实现对所需流体质量的预定设置,进而通过超临界流体高压质量流量计3-3与增压泵3-2的联动控制信号对增压泵3-2的启停实现联动控制,以达到对各染色单元4中超临界流体介质的定量质量罐充。高压球阀3-4通过高压管道一端与各染色单元4连通,另一端与超临界流体高压质量流量计3-3相连,通过其开启使介质罐充增压系统与染色单元4连通,从而实现对染色单元4所需染色介质的定量罐充。增压泵3-2可采用气体或液体增压泵,或高压柱塞泵、隔膜泵,其出口通过高压管道与超临界流体高压质量流量计3-3连通,其启停及流量受前方超临界流体高压质量流量计3-3输出的联动控制信号控制,以实现对染色单元4的定量罐充。其进口端与介质过滤器3-1连通,以实现和保证对待罐充介质的净化和除杂处理。
超临界流体介质储存器1设有介质出口1-1和介质进口1-2,其中介质进口1-2设置在距超临界流体介质储存器1顶部适当位置处,并通过高压管道与截止阀17、冷凝器16顺序相连,可实现对介质的冷却和储存。介质进口1-2设置在距超临界流体介质储存器1顶部适当位置处,是指介质进口1-2设置在距超临界流体介质储存器1顶部0-10cm处;而介质出口1-1设置在距超临界流体介质储存器1底部5-50cm处。介质出口1-1与介质过滤器3-1连接,介质进口1-2用于连接气源,气源通过高压管道、截止阀14并经冷凝器16处理后进入介质进口1-2。
具体的,用以通入气源的截止阀14与跟膜分离器12连接的截止阀13通过 高压三通管道与冷凝器16连接。
相互独立的染色单元n1、n2、…、ni-1、ni(i≧1)清洗完成后,在高压泵6的作用下,使各染色单元中介质压力等于1.01×105Pa时停泵,并使各染色单元与大气压力相同,实现各染色单元的直接开盖。
相互独立的染色单元n1、n2、…、ni-1、ni(i≧1)可以为固定的各类不同形式、不同形状和不同容量的高压染缸,也可是可移动式的纺织品染色、前处理或后整理处理高压处理容器。
本发明的超临界流体无水染色机的分离回收及自清洗系统工作时,首先将待分离回收的染色单元4或相互独立的多个染色单元n1、n2、…、ni-1、ni(i≧1),按附图1所示通过高压管道与高压泵6连通,并在串联(i=1)或相互并联后(i≧2)接入与高压泵6;然后开启截止阀7、9、11、13,关闭截止阀8-1、10-1、12-4、15,最后启动高压泵6,对染色单元4或相互独立的多个染色单元n1、n2、…、ni-1、ni(i≧1)进行染色介质及残余染料分离回收。同时,可通过介质罐充增压系统3对染色单元4或各相互独立的染色单元n1、n2、…、ni-1、ni(i≧1)进行多次增压,利用超临界流体介质储存器1中干净流体介质对染色单元及其染色产品进行浮色清洗,并利用高压泵6所在的第三回路进行连续分离和回收。
对于固定式染色单元,染色结束后则可按照上述方法,直接对各染色单元进行清洗和分离回收处理;而对移动式染色单元,则可将其与介质罐充增加系统3相连后进行。同时,清洗分离完成后将各染色单元与介质罐充增压系统3断开,在高压泵6的作用下,使各染色单元中介质压力等于1.01×105Pa时停泵,以使各染色单元与大气压力平衡,从而实现各染色单元的直接开盖和染色介质的最大限度回收利用。
此外,在断开各染色单元与高压泵6连接,以及关闭截止阀11,以及开启截止阀13、15的条件下,启动高压泵6,利用超临界流体介质储存器1中干净介质可对膜分离器系统12进行高效反吹自清洗。从而实现膜分离器系统的连续使用和分离染料的高效回收。
当需要对分离回收系统自身进行清洗时,如换色染色时,则可将各染色单元断开,采用分离回收系统中高压泵6、一级分离器8、二级分离器10、膜分离器系统12、高压回路12-5及截止阀7、9、11、15组成的反吹自清洗回路,将高压泵6、一级分离器8、二级分离器10及高压回路12-5中残留染料进行连续或多次清洗,并可通过一级分离器8、二级分离器10下端截止阀8-1、10-1控制的排放口进行回收,和/或通过膜分离器12下端截止阀12-4控制的排放口进行回收。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种超临界流体无水染色机的分离回收及自清洗系统,其特征在于:包括通过高压管道沿介质前进方向依次连接的超临界流体介质储存器、一个或多个并联的染色单元、高压泵、一级分离器、二级分离器和膜分离器,其中
    -所述高压泵的进口端与所述染色单元连通情况下,并将所述高压泵的进口端通过高压回路连接到所述膜分离器上,由所述高压泵、一级分离器、二级分离器、膜分离器及高压回路构成对所述染色单元和膜分离器进行降压和抽取的第一回路;
    -所述高压泵的进口端与所述染色单元断开情况下,由所述高压泵、一级分离器、二级分离器、膜分离器及高压回路构成对所述高压泵、一级分离器、二级分离器及高压回路进行反吹自清洗的第二回路;
    -由所述高压泵、一级分离器、二级分离器及膜分离器构成对所述染色单元中含有的残余染料与流体/气体介质进行逐级减压分离、回收的第三回路;
    -由所述超临界流体介质储存器、膜分离器、高压回路及高压泵构成对所述膜分离器进行反吹自清洗的第四回路。
  2. 根据权利要求1所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:所述膜分离器内部依次设有烧结过滤板、滤芯和锥形烧结过滤板。
  3. 根据权利要求1所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:各所述染色单元与所述超临界流体介质储存器还可连接介质罐充增压系统,所述介质罐充增压系统包括依次连接的介质过滤器、增加泵、超临界流体高压质量流量计和高压球阀,所述超临界流体高压质量流量计还与所述增压泵联动控制连接,并通过对流经的超临界流体质量、密度和温度的测量、传输,以及对所需流体质量的预定设置等联动控制信号控制所述增压泵的 启停。
  4. 根据权利要求2所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:所述烧结过滤板、滤芯和锥形烧结过滤板的过滤精度为0.01-0.10μm。
  5. 根据权利要求3所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:所述超临界流体介质储存器具有介质进口和介质出口,所述介质出口与所述介质过滤器连接,所述介质进口用于连接气源,所述气源通过高压管道、截止阀并经冷凝器处理后进入所述介质进口。
  6. 根据权利要求5所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:所述膜分离器通过截止阀连接到所述冷凝器上。
  7. 根据权利要求6所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:所述介质出口与所述介质过滤器之间、所述染色单元与高压泵之间、所述高压泵与一级分离器之间、所述一级分离器与二级分离器之间、二级分离器与膜分离器之间、所述冷凝器与超临界流体介质储存器之间及所述超临界流体介质储存器的下端、一级分离器的下端、二级分离器的下端、膜分离器的下端均设有截止阀。
  8. 根据权利要求7所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:所述染色单元为固定的高压染缸或移动式的高压处理容器。
  9. 根据权利要求7所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:所述介质进口设置在距所述超临界流体介质储存器顶部0-10cm处,所述介质出口设置在距所述超临界流体介质储存器底部5-50cm处。
  10. 根据权利要求6所述的超临界流体无水染色机的分离回收及自清洗系统,其特征在于:用以通入所述气源的截止阀与跟所述膜分离器连接的截止阀 通过高压三通管道与所述冷凝器连接。
PCT/CN2016/085186 2016-05-30 2016-06-08 一种超临界流体无水染色机的分离回收及自清洗系统 WO2017206196A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/557,106 US10344414B2 (en) 2016-05-30 2016-06-08 Separation, recycling and self-cleaning system of supercritical fluid dyeing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610368949.6A CN105937113B (zh) 2016-05-30 2016-05-30 一种超临界流体无水染色机的分离回收及自清洗系统
CN201610368949.6 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017206196A1 true WO2017206196A1 (zh) 2017-12-07

Family

ID=57151624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085186 WO2017206196A1 (zh) 2016-05-30 2016-06-08 一种超临界流体无水染色机的分离回收及自清洗系统

Country Status (3)

Country Link
US (1) US10344414B2 (zh)
CN (1) CN105937113B (zh)
WO (1) WO2017206196A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105937109B (zh) * 2016-05-30 2018-03-30 南通纺织丝绸产业技术研究院 一种超临界流体无水染色机的多管路定量介质罐充系统
CN106835558B (zh) * 2016-11-21 2019-08-16 大连工业大学 一种超临界二氧化碳流体无水煮漂染一体化设备
CN106835561B (zh) * 2016-11-21 2019-10-22 大连工业大学 一种超临界co2无水染整设备中的分离釜
US11697227B2 (en) * 2020-09-10 2023-07-11 Guangzhou Green And Health Biotech Co., Ltd. Foaming and dyeing integrated production line for polymer material product, and method thereof
EP4023444A1 (en) * 2020-12-30 2022-07-06 Dover Europe Sàrl Cleaning process for the hydraulic circuit of an ink jet printer
CN115321709B (zh) * 2022-08-15 2023-10-17 杭州达利富丝绸染整有限公司 一种染整污水循环处理系统及多级水池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766194A (zh) * 2005-11-17 2006-05-03 大连轻工业学院 超临界二氧化碳染色装置及其工艺方法
CN101021047A (zh) * 2007-03-12 2007-08-22 美晨集团股份有限公司 采用超临界流体进行连续化染色的生产系统及其生产工艺
CN104609605A (zh) * 2015-02-03 2015-05-13 大连理工大学 一种实现印染染色废水回用和染料回收的装置及其方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871821A (en) * 1972-10-12 1975-03-18 Dow Chemical Co Package dye process
PL181383B1 (pl) * 1995-10-16 2001-07-31 Krupp Uhde Gmbh Sposób farbowania podlozy tekstylnych, zwlaszcza konfekcjonowanych w postaci nawojów przedzy lub zwijek pasm materialu, za pomoca plynunadkrytycznego PL PL PL PL PL
US5666827A (en) * 1996-06-25 1997-09-16 Renfro Corporation Multi-stage fluid and chemical recovery system for a textile article commercial bleaching apparatus
US5938794A (en) * 1996-12-04 1999-08-17 Amann & Sohne Gmbh & Co. Method for the dyeing of yarn from a supercritical fluid
US6129451A (en) * 1998-01-12 2000-10-10 Snap-Tite Technologies, Inc. Liquid carbon dioxide cleaning system and method
US6397421B1 (en) * 1999-09-24 2002-06-04 Micell Technologies Methods and apparatus for conserving vapor and collecting liquid carbon dioxide for carbon dioxide dry cleaning
US6676710B2 (en) * 2000-10-18 2004-01-13 North Carolina State University Process for treating textile substrates
JP2004249175A (ja) * 2003-02-18 2004-09-09 Howa Kk 二酸化炭素を回収再使用する含浸処理方法及びその方法により含浸処理された製品
HK1104900A2 (en) * 2007-10-15 2008-01-25 Hong Kong Productivity Council A super-critical co2 waterless beam dyeing system
CN102787463B (zh) * 2012-07-17 2014-01-22 大连工业大学 一种超临界二氧化碳染色设备的清洗方法
CN202671866U (zh) * 2012-07-20 2013-01-16 苏州大学 一种以超临界二氧化碳流体为介质的织物绳状染色机
CN203546404U (zh) * 2013-08-26 2014-04-16 香港生产力促进局 一种超临界流体的纺织材料无水整理装置
CN105937109B (zh) * 2016-05-30 2018-03-30 南通纺织丝绸产业技术研究院 一种超临界流体无水染色机的多管路定量介质罐充系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766194A (zh) * 2005-11-17 2006-05-03 大连轻工业学院 超临界二氧化碳染色装置及其工艺方法
CN101021047A (zh) * 2007-03-12 2007-08-22 美晨集团股份有限公司 采用超临界流体进行连续化染色的生产系统及其生产工艺
CN104609605A (zh) * 2015-02-03 2015-05-13 大连理工大学 一种实现印染染色废水回用和染料回收的装置及其方法

Also Published As

Publication number Publication date
US20180119324A1 (en) 2018-05-03
US10344414B2 (en) 2019-07-09
CN105937113A (zh) 2016-09-14
CN105937113B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
WO2017206196A1 (zh) 一种超临界流体无水染色机的分离回收及自清洗系统
CN201120256Y (zh) 反渗透膜清洗装置
CN105937109B (zh) 一种超临界流体无水染色机的多管路定量介质罐充系统
JPH02126922A (ja) 分離膜の逆洗方法
CN104555955A (zh) 一种光纤冷却管用氦气循环再利用方法及其设备
CN201840986U (zh) 用于硅溶胶溶液脱水浓缩的内压管式超滤装置
CN105926210B (zh) 一种超临界流体无水染整的一种移动式染杯
CN107349788A (zh) 一种用于核纯级硝酸铀酰溶液的浓缩方法
CN207614654U (zh) 一种能提高酶制剂收率的超滤系统
CN203602368U (zh) 一种球形氢氧化镍连续合成装置
CN205775262U (zh) 一种超临界流体无水染整的一种移动式染杯
CN205288105U (zh) 一种纳滤系统
CN208395177U (zh) 液体酶超滤装置
CN207192943U (zh) 一种锅炉启动过程中的清洗锅炉水的循环利用系统
CN206173124U (zh) 具有中空超滤装置的饮用水处理设备
CN208553267U (zh) 一种单体水处理设备
CN207862084U (zh) 超纯水处理控制系统
CN206045804U (zh) 一种卷式膜分离设备
CN201280453Y (zh) 工业废水处理膜系统恒压控制装置
CN212790514U (zh) 一种用于超滤装置的反洗系统
CN206621999U (zh) 一种反渗透膜过滤装置
CN209396948U (zh) 一种多功能反渗透水处理装置
CN206444457U (zh) 一种超滤装置
CN205099500U (zh) 一种食品腌制废水的回收装置
CN209894030U (zh) 立式螺旋板换热器反冲洗密闭除垢装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15557106

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16903581

Country of ref document: EP

Kind code of ref document: A1