WO2017204758A1 - Production d'énergie électrique à l'aide d'un procédé de cogénération réversible w (chp-w) en remplacement de la cogénération (chp) - Google Patents

Production d'énergie électrique à l'aide d'un procédé de cogénération réversible w (chp-w) en remplacement de la cogénération (chp) Download PDF

Info

Publication number
WO2017204758A1
WO2017204758A1 PCT/TR2016/050323 TR2016050323W WO2017204758A1 WO 2017204758 A1 WO2017204758 A1 WO 2017204758A1 TR 2016050323 W TR2016050323 W TR 2016050323W WO 2017204758 A1 WO2017204758 A1 WO 2017204758A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
energy
steam
cogeneration
heat
Prior art date
Application number
PCT/TR2016/050323
Other languages
English (en)
Inventor
Harun POLAT
Yusuf POLAT
Ahmet DALGIN
Original Assignee
Polkar Orman Urunleri Ve Enerji A. S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polkar Orman Urunleri Ve Enerji A. S filed Critical Polkar Orman Urunleri Ve Enerji A. S
Publication of WO2017204758A1 publication Critical patent/WO2017204758A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • Our invention is based on energy efficiency (7) of the boiler systems (26) that are currently a boiler system itself as a whole, on closed and semi-closed (4-3-5) (8-9-18-19-20-21-25) circuits, and on directly effective usage of just only generated energy from the boiler, and on gained huge energy (10-11) that occurs from its usage.
  • Our invention is applicable to every type of boilers (26) no matter what the size is.
  • the magnitude or smallness ratio of required heat (7) and steam energy (8-18-19) at production line (14) does not effect on applicable feature of the boiler.
  • This system develops solution for every size of boiler (26) and for every energy level that is required by production line (14).
  • this new system has a potential of generating high electrical energy (10-11) at least 60% more than Cogeneration (CHP) one with the same amount of reference fuel.
  • the only thing needs to be done is that providing current technologic parameters the all boilers (26) should be designed to produce superheated steam firstly and for being used to generate electricity aim.
  • the heat and steam that are required for processing of production line (14) are supplied by using directly flue gas (7), by converting superheated steam (8) into steam sorts, or directly from turbine (18-19).
  • the boiled water (24) with a temperature of 104 degree Celsius (°C) is pumped into boiler to convert it into superheated steam (8-9).
  • This water shows its functions for absorption (7) of inner heat of boiler (26) and for providing of combustion balance (7).
  • Water (24) with its functions plays an important role on providing of inner fluid balance (7-26) of the boiler. This explains why we named our invention as CHP-W.
  • Heat (7) that is very fluidic and whose control is very hard needs water (24) to stick so that it is movable to on the way going to power (10-11) production.
  • the relationship between heat (7) and power (10-11) depends on binding of water (24) to balance the heat and power that corresponds to boiler efficiency (26).
  • Cogeneration-CHP does not eliminate directly heat loses. This system is based on regaining principle of excess heat that are inert in the boiler. But, our invention is planned in so as to prevent heat loses (7) (8-9-16-20).
  • Cogeneration is a method which uses rest energy resulted from the heat and steam that is needed by production line
  • our invention is a method that uses the resting heat and steam of electricity generation in the production line.
  • Our invention is contradiction to the process of cogeneration.
  • the flue gas should be discharged in periodical intervals in cogeneration systems either to use it at the various phases of production line if flue gas is not totally left to the atmosphere directly or to balance inner combustion of boiler.
  • This obligatory discharging process causes wasting of high heat that is generated in boiler with flue gas together.
  • a huge amount of heat is kept in boiler (26) to generate superheated steam (8-9) continuously, somewhat it is held in the boiler (26).
  • the high heat's (7), which is held in the boiler (26) almost it's all energy is transferred to boiled water (24), which is pumped (25) into boiler, so as to be superheated steam.
  • Cogeneration systems cannot benefit from energy gaining in any phases via enthalpy of superheated steam because they must be fed with restricted superheated steam (8-18-19). Because of existence of the appropriate superheated steam amount potential (8-9-16) of our invented project solutions, our invention will benefit from the enthalpy of superheated steam in places (8-16-18-19) in terms of general system integrity.
  • Proportional valve 1 This valve will provide discharging of flue gas from chimney (29) by closing itself automatically when any compression in the seconder airline (5) occurs while it back- pumped into boiler. Another closed valve (30) in the chimney will be opened automatically to discharge the gas.
  • This valve controlled by computer aided automation has the ability to arrange the amount of flue gas (7) that is suitable for the efficiency of combustion cell.
  • Proportional valve 2 When a compression in the flue gas line occurs that is transferred to dryer (3), this valve/mechanism is closed automatically to discharge gas from the chimney (29). Another closed valve located in chimney (30) is used for discharging while its being opened automatically. Also, thanks to this valve, the amount of flue gas (7) that should be steered to dryer is controlled using computer aided automation control system.
  • Dryer unit If heat is needed, the desired quantity and rate of flue gas is transferred from boiler through ventilator with automation control (27) and it is sent to dryer for drying.
  • Superheated oil boiler It is a boiler and place that when production line (14) needs superheated oil, this need is covered by flue gas heat (7) utilizing at the top level.
  • Seconder hot air line After most energy of the flue gas (7) circulated in closed and semi-closed circuit (4-3-5) is taken off and after filtration, it is re-pumped into boiler (26) under control to heat the air that is responsible for burning and to arrange the combustion balance.
  • Flue gas output valve 1 This valve is used automatically for immediate discharge of flue gas (7) that steered to superheated oil coils (4) and from them to multi-cyclone (28) line if any counter pressure possibility on the flue gas route (7) exists. This valve has the eligibility to be controlled and directed by computer-aided automation control system.
  • Turbine It is an equipment where electric energy is generated through rotating of generator.
  • Generator It is winding assembly where electric energy is generated through the rotation of steam turbine.
  • Transformer It regulates desired voltage and current values in the certain power of electrical energy which is generated by electric generator.
  • Medium voltage switchgear group This is substation or main distribution switchgear group where electric voltage is converted from high form into low form or vice versa that is coming from transformers.
  • Production facility This is the industrial plant where only heat or either heat and steam are needed.
  • Interconnected system The system where variation arrangement is provided at the level of electricity generation and consumption.
  • Turbine steam output point Steam output point from turbine where desired steam exits for utilizing in steam heat exchanger or in the production process.
  • Steam collector This is the distribution mechanism where the steam is taken off from turbine output (16) (back pressure & condensing extraction) and transferred to production line (18) and/or to the exchanger (19) considering desired steam quantity.
  • Steam exchanger The steam exchanger where the temperature of whole water is increased to 104 °C in water boiler (24). The steam completed its task through exchanger is included into system via the point marked 21 on the scheme of boiler.
  • Turbine exhaust output The superheated steam (9) that discharges its whole energy into turbine will exist as hot water with lower pressure having half a phase change.
  • Half condensed water (21), as shown below, is handled as complete condensation (21-22) and then after increasing its temperature to 104 °C it will be converted into superheated steam for reusing.
  • Surface cooling This is the section (place) where surface cooling process is done.
  • Phase change Cell condensation 2: This is the section (place) where phase change is occurring with addition of fresh water.
  • Pump cell 1 This is the first pump which is used for pumping water that is totally in liquid phase into boiler.
  • Water boiler This is the water boiler where the whole water is reserved and where its temperature is increased to 104 °C by steam exchanger.
  • Pump cell 2 This is the second pump that is used for pumping the boiled water whose temperature is reaching till 104 °C into superheated steam boiler (26).
  • Superheated steam boiler This is the production center of heat energy where superheated steam is generated. Until now, industrial organizations have never utilized this unit with their industrial production line (14) and just electric energy generation organizations have used it only for production of electric energy.
  • Ventilator This is the air intake system that provides with desired amount of flue gas (7) from the boiler (26) under control.
  • Multi-cyclone This is a mechanic assembly where flue gas is filtered.
  • Chimney This is the discharge point that provides immediate discharging of flue gas if any compression is occurred in dryer or in seconder air line.
  • Flue gas output valve 2 This valve is placed into chimney (29) that is closed in normal circumstances. In emergency states this valve is operated automatically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Des centres de production d'énergie (26) en termes d'échelle industrielle (14) sont établis dans des établissements industriels afin de fournir de la chaleur (7) et de l'énergie-vapeur (18-19) qui sont nécessaires pendant les différentes phases de production industrielle. Ces centres sont bien connus sous le nom de chaudières (26). Les chaudières (26), qui ont été améliorées pendant de nombreuses années, ont été utilisées uniquement pour générer de la chaleur et de la vapeur dans des processus de production (14) pour faire face à la demande. Etant donné que l'énergie produite (7) n'a jamais été régénérée en tant qu'énergie auto-transformée (7) (8- 18-19-21) dans des phases quelconques, les chaudières provoquaient de grandes pertes d'énergie (29). Après cette période, un nouveau système a été mis au point, appelé cogénération (CHP). Ce système a été amélioré sur la base de deux concepts. La vapeur surchauffée nécessaire, destinée à la production d'électricité, est produite soit à partir du gaz de fumée (29) dont le rapport CO2-CO est plus élevé et qui est expulsé de la chaudière, soit à partir de la chaleur qui reste dans la chaîne de production (14) en tant qu'énergie thermique élevée inerte. En plus de ces deux concepts similaires en termes de CHP, il existe un autre procédé qui peut être utilisé pour générer de la vapeur surchauffée qui est destinée à régler des échangeurs et surchauffeurs dans la chaudière. Jusqu'à présent, personne n'avait trop réfléchi à placer le système de génération d'énergie électrique (10-11) au centre de la chaudière (26), ce qui est nécessaire à une production à l'échelle industrielle (14), les autres besoins en énergie et autres systèmes (4-3-5) (16- 19) étant conçus de manière interdépendante. Alors que, une fois cela réalisé, avec la même taille de chaudière et la même quantité de combustible, davantage d'énergie électrique serait générée par rapport à l'énergie électrique (10-11) qui est générée par cogénération-CHP. De plus, les besoins de la totalité de la chaleur (7) et de la vapeur (8-18-19), qui sont nécessaires pour la chaîne de production, seraient couverts. La structure de la chaudière (26) est conçue pour produire de l'énergie électrique (10-11), et si on obtient un gain de vapeur surchauffée (89) et/ou de types de vapeur (16) qui sont réutilisés dans les différentes phases de la chaîne de production (18- 19), le rapport de l'unité/temps de l'énergie électrique va s'élever d'au moins 60 % par rapport à la génération par cogénération (CHP). En résumé, l'invention concernant la génération d'électricité (10-11) est basée sur la prise en considération des entrées des chaudières (26) (7) (8- 9) à la place des sorties des chaudières. Compte-tenu des entrées des chaudières, des moyens permettent de reconcevoir la structure de la chaudière (26), le rendement de la chaudière (7), l'utilisation de l'énergie et son fonctionnement (4-3-5) (8-9- 16) et, de cette manière, de tenir compte de l'énergie requise (7) en chaleur et vapeur (8-1819) également, dans la chaîne de production, en utilisant les principes fondamentaux du procédé de cogénération-W. Ainsi, la cogénération-W de l'invention a été mise au point en tant que système alternatif constituant une solution à la cogénération (CHP). Et l'obtention d'énergie (4-3-5) (16) et la capacité de génération d'électricité (10-11) tirée du gain en énergie présentent un meilleur rendement du fait que le nouveau système apporte des changements au procédé courant; le système de l'invention présente de bien meilleures caractéristiques de productivité et d'efficacité, ce qui dépasse la portée du contenu.
PCT/TR2016/050323 2016-05-27 2016-09-01 Production d'énergie électrique à l'aide d'un procédé de cogénération réversible w (chp-w) en remplacement de la cogénération (chp) WO2017204758A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR2016007119 2016-05-27
TRPCT/TR2016/07119 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017204758A1 true WO2017204758A1 (fr) 2017-11-30

Family

ID=60411760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2016/050323 WO2017204758A1 (fr) 2016-05-27 2016-09-01 Production d'énergie électrique à l'aide d'un procédé de cogénération réversible w (chp-w) en remplacement de la cogénération (chp)

Country Status (1)

Country Link
WO (1) WO2017204758A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893262A (zh) * 2022-05-25 2022-08-12 华北电力科学研究院有限责任公司 基于热电联产机组的热电解耦方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414813A (en) * 1981-06-24 1983-11-15 Knapp Hans J Power generator system
US4976107A (en) * 1987-06-18 1990-12-11 Timo Korpela Procedure for improving the efficiency of a steam power plant process
US20100077946A1 (en) * 2008-09-26 2010-04-01 Air Products And Chemicals, Inc. Process temperature control in oxy/fuel combustion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414813A (en) * 1981-06-24 1983-11-15 Knapp Hans J Power generator system
US4976107A (en) * 1987-06-18 1990-12-11 Timo Korpela Procedure for improving the efficiency of a steam power plant process
US20100077946A1 (en) * 2008-09-26 2010-04-01 Air Products And Chemicals, Inc. Process temperature control in oxy/fuel combustion system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893262A (zh) * 2022-05-25 2022-08-12 华北电力科学研究院有限责任公司 基于热电联产机组的热电解耦方法及装置

Similar Documents

Publication Publication Date Title
Held Supercritical CO2 cycles for gas turbine combined cycle power plants
EP3245388B1 (fr) Système de stockage d'énergie thermique et procédé de fonctionnement du système de stockage d'énergie thermique
WO2011030285A1 (fr) Procédé et appareil pour production d'énergie électrique
KR101028634B1 (ko) 발전소의 출력증강으로 발생한 잉여증기를 이용한 보조발전시스템
CN108468574A (zh) 一种实现热电机组三种状态切换运行的系统
Moroz et al. Study of a supercritical CO2 power cycle application in a cogeneration power plant
Laković et al. Impact of the cold end operating conditions on energy efficiency of the steam power plants
Ahmadi et al. Energy and exergy analyses of partial repowering of a natural gas-fired steam power plant
Richter et al. Flexibilization of coal-fired power plants by dynamic simulation
Cha et al. Installation of the supercritical CO2 compressor performance test loop as a first phase of the SCIEL facility
Kler et al. An effective approach to optimizing the parameters of complex thermal power plants
EP3216988B1 (fr) Centrale à turbine à vapeur
RU2687382C1 (ru) Способ работы тепловой электрической станции и устройство для его реализации
KR20210081846A (ko) 부하 추종 운전이 가능한 원전 열병합발전시스템
WO2017204758A1 (fr) Production d'énergie électrique à l'aide d'un procédé de cogénération réversible w (chp-w) en remplacement de la cogénération (chp)
Clay et al. Energetic and exergetic analysis of a multi-stage turbine, coal-fired 173 MW power plant
US20140265597A1 (en) Distributed Energy System Architecture with Thermal Storage
MX2019007623A (es) Planta generadora con sistema de aire de admision de turbina de gas.
RU2671821C1 (ru) Устройство электроснабжения собственных нужд энергоблока электростанции
WO2016162205A1 (fr) Système et procédé de stockage d'énergie
Shapiro et al. Improving the maneuverability of combined-cycle power plants through the use of hydrogen-oxygen steam generators
JP2019173696A (ja) コンバインドサイクル発電プラント、およびその運転方法
Khankari et al. 4-E analysis of a Kalina cycle system 11 integrated 500MWe combined thermal power plant
Kaviri et al. Modeling and optimization of heat recovery heat exchanger
JP2019078476A (ja) 熱電併給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16788271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16788271

Country of ref document: EP

Kind code of ref document: A1