WO2017204519A2 - Vision inspection method using data balancing-based learning, and vision inspection apparatus using data balancing-based learning utilizing vision inspection method - Google Patents

Vision inspection method using data balancing-based learning, and vision inspection apparatus using data balancing-based learning utilizing vision inspection method Download PDF

Info

Publication number
WO2017204519A2
WO2017204519A2 PCT/KR2017/005326 KR2017005326W WO2017204519A2 WO 2017204519 A2 WO2017204519 A2 WO 2017204519A2 KR 2017005326 W KR2017005326 W KR 2017005326W WO 2017204519 A2 WO2017204519 A2 WO 2017204519A2
Authority
WO
WIPO (PCT)
Prior art keywords
data
learning
image
intrinsic
test
Prior art date
Application number
PCT/KR2017/005326
Other languages
French (fr)
Korean (ko)
Other versions
WO2017204519A3 (en
Inventor
오병준
전동철
신원종
Original Assignee
(주)에이앤아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이앤아이 filed Critical (주)에이앤아이
Priority to CN201780001010.9A priority Critical patent/CN109462999B/en
Publication of WO2017204519A2 publication Critical patent/WO2017204519A2/en
Publication of WO2017204519A3 publication Critical patent/WO2017204519A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8809Adjustment for highlighting flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Definitions

  • the present invention relates to a vision inspection method and a vision inspection apparatus for inspecting a defect of a polarizing layer adhered to a display panel, and more particularly, a data imbalance phenomenon in which oversampled data of a specific class is biased through balancing of learned data.
  • the present invention relates to a vision inspection method and a vision inspection apparatus that have improved the accuracy of failure discrimination by overcoming these problems.
  • a display panel is formed by stacking sheets or panels having respective characteristics such as a reflective layer, a light guide layer, a diffusion layer, and a polarizing layer.
  • a vision inspection apparatus for photographing and inspecting a plane that is an inspection target of a display panel has been introduced and implemented.
  • the process of inspecting whether a polarization layer adhered to a display panel is defective or not since the intrinsic and false causality is not clearly distinguished, the causal defect is frequently overdetected, and thus, the accuracy of detecting the intrinsic defect is poor.
  • the present invention has been made in order to solve the problems of the prior art described above by combining the discrimination technology by the recognition and learning in the vision inspection apparatus to calculate the reference data that can increase the discrimination ability of false and false false by calculating the false false
  • the purpose of the present invention is to provide a vision inspection method and a vision inspection apparatus that reduce overdetection and improve detection accuracy of intrinsic defects.
  • a vision inspection method and a vision inspection apparatus having an algorithm that is corrected so that the accuracy of the reference data for determining defects as the process is repeated by processing the data obtained through the inspection and use in learning.
  • the first learning group is formed by including the same number of authentic samples as samples of inferior goods and false samples as samples of inferior goods in the same number.
  • Intrinsic region and false data where true data is located by extracting a first data group having the same number of intrinsic data and false data in which the image image collected from the first learning group is formulated, and plotting the first data group in a feature space
  • the pre-learning step of deriving the classification criteria, the boundary of the caustic region where is located, and extracting the image data from the display panel to which the polarizing layer, which is the test object, is attached, is inserted into the feature space into the feature space and characterized by Judging the area where the test data is located in the space and selling the test object as true or false
  • the classification criteria in the feature space are corrected by applying the test data to the defective discrimination step and the pre-learning step, wherein the test data is corrected through the data balancing step so that the true data and the false data constitute
  • the pre-learning step may include an image collection step of collecting a first learning image group including a true image and a pseudo image extracted from the true samples and the false samples included in the first learning group. Data is derived from each of the intrinsic and pseudo images included in the first learning image group, respectively, to form n first data points to form a first data group, and the first data group is plotted to group adjacent feature points into k groups.
  • the pre-writing step to obtain a dictionary consisting of k average points by calculating the average of the feature points for each group and assigning the true and false data to the dictionary and plotting them in the feature space, and the true zone and the false data where the true data is located in the feature space
  • class classification step for determining the classification criteria which is the boundary of the caustic zone located.
  • the k mean clustering is performed to generate the dictionary using k mean points as the reference word.
  • the defect discriminating step compares the test data, which is n feature points, obtained from the test image extracted from the test object with the image information, and classifies the test data based on k average points and plots them on the feature space.
  • the classification criteria are corrected by adding the test data plotted on the feature space to the true data or the false data of the class classification step through the failure discrimination step.
  • a classification standard is applied by applying one randomly selected caustic data among the causal data derived through the test data and the pre-learning step to a class classification step. If the test object is judged to be false through the bad discrimination step, the classification criteria are applied by applying one of the genuine data randomly selected from the test data and the intrinsic data derived through the pre-learning step to the class classification step. Correct it.
  • the classification criteria are corrected by applying the average value of the caustic data derived through the test data and the pre-learning step to the class classification step. If the test object is judged to be false in the step, the classification criteria are corrected by applying the average value of the intrinsic data derived through the test data and the pre-learning step to the class classification step.
  • the true image, the pseudo image, and the test image are image information of a point where the modified signal of the captured image is rapidly changed while moving the inspection target surface of the inspection object according to a predetermined pattern.
  • the vision inspection apparatus through the data balancing of the present invention for achieving the above object is to read the transfer means for transporting the inspection object, a photographing unit for photographing the inspection surface of the inspection object, the image image obtained through the photographing unit A reading unit which selects a test image, an operation unit which maps the test data obtained through the reading unit to the feature space, and a storage unit which stores the test data obtained through the operation unit, and which stores the test data. It is determined whether the inspection object is defective by comparing the stored data and the test data, and the storage unit stores the test data and the virtual data derived through the test data.
  • Learning-based vision inspection method through data balancing and learning-based vision inspection apparatus through data balancing of the present invention for solving the above problems by acquiring and formulating the data of the intrinsic and false false of the display panel as image information Based on the learning-based algorithm that derives the boundary by drawing the boundary in the feature space and discriminates true and false defects, it improves the accuracy of defect discrimination based on the characteristics of true and false defects and overdetects false negatives. A reducing effect can be obtained.
  • the boundary between intrinsic and false inferiority is continuously corrected, and the data to be further trained are not concentrated in any one area.
  • FIG. 1 is a flowchart illustrating a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating data for determining classification criteria in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG 3 is an image showing a true image of a true sample in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 4 is an image showing a pseudo image of a pseudo sample in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a process of deriving a dictionary from a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a process of assigning a first image group to a dictionary in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a pre-learning step and a bad discrimination step in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 8 is a graph illustrating a three-dimensional example of a state in which an intrinsic region and a pseudo region are derived in a feature space in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram illustrating a process of performing data balancing in a two-dimensional graph in the further learning step of the learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • FIG. 10 is a state diagram illustrating a learning-based vision inspection apparatus through data balancing according to an embodiment of the present invention.
  • the learning-based vision inspection method through data balancing according to the present invention may be implemented as follows.
  • FIG. 1 is a flowchart illustrating a learning-based vision inspection method through data balancing according to an embodiment of the present invention
  • FIG. 2 is a classification criterion in the learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • the learning-based vision inspection method through data balancing is a learning-based vision inspection method for inspecting defects of the polarization layer 304 adhered to the display panel 302.
  • a first learning group including an intrinsic sample 100 that is a sample of an inferior goods and a pseudosample 200 that is a sample of an inferior goods in the same number is provided.
  • the first data group having the same number of the intrinsic data 120 and the false data 220 in which the image image collected from the first learning group is modified is extracted.
  • the first data group is plotted on the feature space 400 to derive the classification criteria 410 which is a boundary between the intrinsic region 130 where the intrinsic data 120 is located and the caustic region 230 where the caustic data 220 is located.
  • the pre-learning step (S100) is performed.
  • the polarization layer 304 which is the inspection object 300, is extracted as an image image from the adhered display panel 302 and substituted with the modified test data 320 on the feature space 400.
  • the failure discrimination step (S200) of determining the area of the test data 320 on the feature space 400 based on the classification criterion 410 and determining the test object 300 as intrinsic or false caustic is performed. .
  • the classification criteria 410 on the feature space 400 is modified by applying the test data 320 to the pre-learning step S100, but the test data 320 is the same number as the true data 120 and the false data 220. Further learning step (S300) is corrected through the data balancing step (S310) to form a first data group, the failure determination step (S200) and the additional learning step (S300) is repeatedly performed.
  • the first learning group includes the same number of intrinsic samples 100 as samples of inferior goods and pseudo samples 200 as samples of inferior goods as A.
  • the first learning image group includes the same number of the true image 110 derived from the true sample 100 and the pseudo image 210 derived from the pseudo sample 200.
  • the first data group includes the same number of intrinsic data 120 that modifies the intrinsic image 110 and caustic data 220 that modifies the pseudo image 210.
  • the true sample 100 and the true image 110 are the same A
  • the pseudo sample 200 and the pseudo image 210 are the same A.
  • the feature space 400 is a multidimensional space having a plurality of variables and refers to a space where specific data is plotted according to an embodiment of the present invention.
  • the image collecting step (S110) which acquires the true image 110 and the false image 210, which are image images of points suspected to be defective from the true sample 100 and the false sample 200, is preliminary.
  • a creation step S120 and a class classification step S130 are included.
  • FIG 3 is an image showing a true image of a true sample in the learning-based vision inspection method through data balancing according to an embodiment of the present invention
  • Figure 4 is a learning-based through data balancing according to an embodiment of the present invention In the vision inspection method, pseudo images of pseudo samples are shown.
  • an image is collected through the photographing unit 520 moving and moving the measurement target planes of the true sample 100 and the false sample 200 in a predetermined pattern.
  • the image is captured at the position to acquire the true image 110 or the false image 210.
  • the spot when a change in brightness of an image captured by the photographing unit 520 rapidly increases or decreases, the spot may be photographed as shown in FIGS. 3 to 4 to obtain an image image. have.
  • the intrinsic data 120 and the pseudo data 220 derived from n feature points are derived from the intrinsic image 110 and the pseudo image 210, respectively.
  • a ⁇ n pieces of intrinsic data 120 are obtained, and A ⁇ n pieces of pseudo data 220 are obtained.
  • FIG. 5 is a schematic diagram showing a process of deriving a dictionary from a learning-based vision inspection method through data balancing according to an embodiment of the present invention
  • FIG. 6 is a learning-based through data balancing according to an embodiment of the present invention. It is a schematic diagram showing the process of assigning the first group of learning images in advance in the vision inspection method.
  • the intrinsic data 120 and the pseudo data 220 derived from the intrinsic image 110 and the pseudo image 210 are colored in the intrinsic image 110 and the pseudo image 210.
  • Features such as brightness, saturation, shape, curvature, and the like may be extracted and collected at n points.
  • the intrinsic data 120 and the false data 220 are converted into a vector amount having characteristics such as hue, brightness, saturation, shape, curvature, etc. as variables, and multidimensional space corresponding to the variables constituting the vector amount. Is plotted on the phase.
  • FIG. 5 briefly illustrates a process in which n feature points are derived as vector quantities from the intrinsic image 110 and the pseudo image 210, and are illustrated in a multi-dimensional space.
  • authentic data 120 and the false data 220 may be extracted based on various factors according to an embodiment to which the present invention is applied.
  • a ⁇ n true data 120 from A true images 110 and A ⁇ n false data 220 from A pseudo images 210 are collected in a vector amount, and the true data 120 And pseudo data 220 are plotted on a multidimensional space as described above, grouping adjacent intrinsic data 120 and pseudo data 220 into k groups, respectively, and intrinsic data belonging to each group ( 120 and the average points of the caustic data 220 are obtained to calculate k average points.
  • each group is defined as a word and k average points are defined as a dictionary to create a dictionary having k words.
  • the pre-creation step S120 may be performed using a k mean clustering algorithm which clusters the given data into k clusters.
  • the class classification step S130 substitutes the authentic data 120 into the dictionary created through the dictionary creation step S120 to histogram the authentic data 120 belonging to each of the k words, as shown in FIG. 6.
  • the histogram step is performed first.
  • FIG. 7 is a schematic diagram showing a pre-learning step and a failure discrimination step in a learning-based vision inspection method through data balancing according to an embodiment of the present invention
  • FIG. 8 is a diagram illustrating learning through data balancing according to an embodiment of the present invention. It is a graph showing three-dimensional examples of the state in which the intrinsic region and the pseudo region are derived from the feature space in the vision inspection method.
  • the word and the intrinsic data 120 belonging to each word are shown in the feature space 400 as a variable, and as shown in FIG. 8, the feature space ( The intrinsic region 130 is derived on 400.
  • the histogram step of histogramting the pseudo data 220 belonging to each of the k words by assigning the pseudo data 220 to the dictionary created through the dictionary creation step S120 is performed as shown in FIG. 6. do.
  • the word and the causal data 130 belonging to each word are shown as a variable on the feature space 400, and as shown in FIG.
  • the caustic region 230 is derived on 400.
  • the classification criterion 410 may be expressed as a line, a plane, or a hyper plane that is a boundary between the intrinsic region 130 and the caustic region 230 on the feature space 400, and the intrinsic region 130 and the caustic region.
  • the 230 may be obtained using a support vector machine (SVM) technique that obtains a boundary of each other in the feature space 400 so as to maximize each other.
  • SVM support vector machine
  • Defective determination step (S200) is consistent with the preset conditions by continuously photographing the surface on which the polarizing layer 304 is bonded to the display panel 302, which is the inspection object 300, along a predetermined path through the photographing unit 520.
  • the failure discrimination step according to the classification criteria to determine whether it is an intrinsic defective or caustic defective according to the belonging region ( S220).
  • a step of correcting the dictionary may be added by reprocessing k average points by adding the test image 310 acquired through the failure discriminating step S200 in advance.
  • the classification standard correction step (S320) of adding the test data 320 obtained through the failure determination step (S200) to the feature space and correcting the classification criteria 410 by reflecting the added test data 320 is Can be performed.
  • the classification standard correction step (S320) is an effect of increasing the learning sample by adding new information obtained by performing a bad discrimination to the bad discrimination criteria previously learned through the pre-learning step (S100). Can be obtained.
  • the additional learning step S300 may include a data balancing step S310.
  • FIG. 9 is a schematic diagram illustrating a process of performing data balancing in an additional learning step through test data in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
  • the feature space learned in the classification criterion correction step S320 may be used.
  • the data added to 400 serves as the intrinsic data 120, and if the test object 300 is false, the data added to the feature space 400 learned in the classification standard correction step S320 is false. It serves as data 220.
  • An imbalance problem of data that may occur between classes classified as true data 120 or false data 220 It may be expressed as an equation, and may be expressed as a binary classification problem for finding a hyperplane on the feature space 400 that becomes an input space with respect to the input vector x.
  • the intrinsic data 120 or the false data 220 are classified into two classes of '+1' or '-1', and the class classification problem may be regarded as finding w to obtain excellent generalization performance.
  • the case where the ratio of the number of data belonging to the intrinsic data 120 and the causal data 220 is significantly different may be regarded as an imbalanced data problem.
  • the classification criteria 410 is the true region (as shown in FIG. 9A). 130 or the caustic region 230 may be biased toward either side.
  • the detection frequency of the intrinsic defect is significantly higher than that of the caustic defect, and the bias of such data may act as a deterrent to improving the accuracy of the defect discrimination. Can be.
  • test data 320 obtained in the failure discrimination step S200 belongs to the intrinsic region 130 on the feature space 400, randomly selected among the caustic data 220 belonging to the caustic region 230 to correspond to this.
  • One caustic data 220 is added to the feature space 400 together with the acquired test data 320 to correct the classification criteria 410.
  • the inspection of the inspection object 300 is performed through the defective determination step S200, a total of four intrinsic defect determinations are derived, the caustic data 220 previously derived together with the obtained four inspection data 320. Is added to the feature space 400 to perform the process of resetting the classification criteria 410.
  • the false negative determination is derived by performing the inspection of the inspection object 300 through the failure determination step (S200)
  • the derived intrinsic data 120 is added to the feature space 400 together with the inspection data 320.
  • the true defect determination is derived by performing the inspection of the inspection object 300 through the failure determination step (S200)
  • the average value of the acquired caustic data 220 together with the test data 320 is characterized.
  • the classification criteria 410 are reset in addition to the space, and when deriving the false negative determination, the average value of the acquired true data 120 is added together with the test data 320 in the feature space to classify the classification criteria 410. Can be reset.
  • the learning-based vision inspection apparatus through data balancing according to the present invention may be implemented as follows.
  • FIG. 10 is a state diagram illustrating a learning-based vision inspection apparatus through data balancing according to an embodiment of the present invention.
  • the learning-based vision inspection apparatus based on data balancing may include an inspection surface of a transport means 510 and an inspection object 300 to which the inspection object 300 is transferred.
  • the reading unit 520 and the reading unit 530 which select a test image 310 by reading an image image acquired through the photographing unit 520 and the photographing unit 520 that move continuously along a predetermined path.
  • the reading unit 530 performs the image collecting step S110 and the test image collecting step S210 described above, and captures an image obtained by continuously photographing the test object 300 through the photographing unit 520.
  • the image is obtained by analyzing the position corresponding to the preset condition.
  • the calculation unit 540 is a pre-creation step (S120), class classification step (S130), failure determination step (S220) according to the classification criteria is performed.
  • an additional learning step S300 including a data balancing step S310 and a classification criterion correction step S320 is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Software Systems (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A vision inspection method using data balancing-based learning according to the present invention comprises: a prior learning step for establishing a classification criterion, which is the boundary for locations of true and false data, by collecting, mathematizing, and schematizing, in a particular space, images of true samples that are samples of genuinely defective products and false samples that are samples of falsely defective products; a defect determination step for determining the object under inspection as genuinely defective or falsely defective by introducing, into the particular space, data to be inspected, which has been extracted as an image from an object under inspection and mathematized, and determining the area in which the data to be inspected is located in the particular space with the classification criterion as the boundary; and an additional learning step for modifying the classification criterion of the particular space by applying the data to be inspected to the prior learning step, wherein the data to be inspected is modified by means of a data balancing step so that the same number of true data and false data are included, and the defect determination step and additional learning step are repeatedly carried out.

Description

데이터 밸런싱을 통한 학습기반의 비전검사 방법 및 이를 이용한 데이터 밸런싱을 통한 학습기반의 비전검사 장치Learning-based vision inspection method through data balancing and learning-based vision inspection apparatus using data balancing
본 발명은 디스플레이패널에 접착되는 편광층의 불량을 검사하기 위한 비전검사 방법 및 비전검사 장치에 관한 것으로서, 보다 상세하게는 학습되는 데이터의 밸런싱을 통해 특정 클래스의 과표본 데이터가 편중되는 데이터 불균형 현상을 극복하여 불량판별의 정확성을 높인 비전검사 방법 및 비전검사 장치에 관한 것이다.The present invention relates to a vision inspection method and a vision inspection apparatus for inspecting a defect of a polarizing layer adhered to a display panel, and more particularly, a data imbalance phenomenon in which oversampled data of a specific class is biased through balancing of learned data. The present invention relates to a vision inspection method and a vision inspection apparatus that have improved the accuracy of failure discrimination by overcoming these problems.
일반적으로 디스플레이 패널은 반사층, 도광층, 확산층, 편광층등으로 각각의 특징을 지닌 시트 또는 패널이 적층되어 형성된다.In general, a display panel is formed by stacking sheets or panels having respective characteristics such as a reflective layer, a light guide layer, a diffusion layer, and a polarizing layer.
이러한 디스플레이 패널의 생산공정에서 시트 또는 패널의 접착상태를 점검하여 양품과 불량품을 분류하는 과정이 필수적으로 수행된다.In the production process of such a display panel, the process of classifying good and defective products by checking the adhesive state of the sheet or panel is essentially performed.
양품과 불량품을 분류하는 방법으로는 숙련된 인력이 동원되어 육안을 통해 관찰되는 양품 및 불량품의 시각적 정보를 비교하는 방법이 보편적이고, 정확성도 높다는 장점을 지니고 있다.As a method of classifying good and bad quality, it is common and highly accurate to use visual information on good and bad quality observed by naked workers.
하지만, 숙련된 인력에 의존하는 것은 높은 비용의 발생과 함께 단위 시간당 검수할 수 있는 디스플레이 패널의 양에 한계가 있었고, 검수 인력의 숙련 정도에 따라 검수의 신뢰성이 달라질 수 있다는 단점이 있었다.However, relying on skilled personnel has a limitation in the amount of display panels that can be inspected per unit time with the occurrence of high costs, and the reliability of the inspection may vary depending on the skill of inspectors.
이에, 불량을 검출하기 위한 방법으로서 디스플레이 패널의 검사 대상이 되는 평면을 영상으로 촬영하여 검수하는 비전검사장치가 도입되어 실시되고 있으나, 디스플레이 패널에 접착된 편광층의 불량 여부를 검수하는 과정에 있어, 진성불량과 가성불량의 구분이 명확하지 않아 가성불량이 과검출 되는 경우가 빈번하게 발생되고, 따라서 진성불량의 검출 정확도가 떨어진다는 단점을 지니고 있었다.Accordingly, as a method for detecting defects, a vision inspection apparatus for photographing and inspecting a plane that is an inspection target of a display panel has been introduced and implemented. However, in the process of inspecting whether a polarization layer adhered to a display panel is defective or not, However, since the intrinsic and false causality is not clearly distinguished, the causal defect is frequently overdetected, and thus, the accuracy of detecting the intrinsic defect is poor.
이는 디스플레이 패널에 접착된 편광층의 불량 여부를 판별함에 있어서, 들뜸이나 찍힘과 같은 진성불량품과 단순 얼룩이나 보호필름의 손상등으로 인해 양품임에도 불량으로 분류될 수 있는 가성불량품의 구분을 자동화 기기를 통하여 수행해 내기가 어렵기 때문이다.In determining whether or not the polarizing layer adhered to the display panel is defective, it is possible to distinguish the caustic defects that can be classified as defective due to intrinsic defects such as lifting or stamping and damage of simple stain or protective film. Because it is difficult to carry out through.
디스플레이 패널의 불량을 검출하는 공정을 자동화함으로 불량판별 속도를 높이고 인건비를 줄일 수 있는 잇점을 얻을 수는 있었으나, 기술적 한계로 인해 양품으로 분류될 수 있는 가성불량이 과검출 되어 신뢰도가 떨어지고 반복적인 재검수 과정을 더 필요로 하였다.By automating the process of detecting defects in display panels, it was possible to increase the speed of defect identification and reduce labor costs.However, due to technical limitations, the false positives that can be classified as good products are overdetected, resulting in low reliability and repeated re-examination. More steps were needed.
그리고, 검수과정을 수행하며 축적되는 가성불량 및 진성불량의 데이터를 학습에 활용하여 보다 정확한 기준을 도출하고 이를 검수 시스템에 재적용하는 과정에서 축적되는 데이터의 표본이 어느 하나의 클래스로 편중되는 경우가 일반적이고, 추가로 수집되는 데이터를 학습에 적용함에 있어 오차를 줄이고 보다 정확한 기준을 도출하기 위해서는 수집되는 데이터를 가공하여 클래스간의 데이터 불균형을 해소하여야 할 필요성이 있었다.In addition, when a sample of accumulated data is concentrated in one class by deriving a more accurate criterion by using the data of false and intrinsic defects accumulated during the inspection process and reapplying it to the inspection system. In general, in order to reduce errors and derive more accurate criteria in applying additionally collected data to learning, it was necessary to process the collected data to solve the data imbalance between classes.
하나의 클래스에 속한 데이터의 수가 다른 클래스에 속한 데이터의 수보다 극히 많거나 적으면 데이터의 불균형이 발생된 것으로 볼 수 있다.If the number of data belonging to one class is extremely more or less than the number of data belonging to another class, it can be considered that the data is unbalanced.
하지만, SVM(support vector machine)과 같은 학습 알고리즘들은 클래스간의 데이터 비율이 거의 비슷하다는 가정을 전제로 하기에 데이터의 불균형이 발생될 경우 가성불량과 진성불량을 결정하는 경계의 정확성이 낮아지는 경우가 초래될 수 있었다.However, learning algorithms such as support vector machines (SVMs) assume that data rates between classes are about the same, so when data imbalances occur, the accuracy of the boundary that determines false and true defects becomes low. Could be effected.
따라서 이와 같은 문제점들을 해결하기 위한 방법이 요구된다.Therefore, there is a need for a method for solving such problems.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 발명으로서 비전검사 장치에 인식과 학습에 의한 판별 기술을 접목하여 진성불량과 가성불량의 판별력을 높일 수 있는 기준데이터를 산출하여 가성불량의 과검출을 줄이고 진성불량의 검출 정확도를 향상시킨 비전검사 방법 및 비전검사 장치를 제공하기 위함이다.The present invention has been made in order to solve the problems of the prior art described above by combining the discrimination technology by the recognition and learning in the vision inspection apparatus to calculate the reference data that can increase the discrimination ability of false and false false by calculating the false false The purpose of the present invention is to provide a vision inspection method and a vision inspection apparatus that reduce overdetection and improve detection accuracy of intrinsic defects.
또한, 검수를 통해 얻어지는 데이터를 가공하여 학습에 활용함으로 공정이 반복됨에 따라 불량을 판별하기 위한 기준데이터의 정확성이 높아지도록 보정되는 알고리즘을 지닌 비전검사 방법 및 비전검사 장치를 제공하기 위함이다.In addition, it is to provide a vision inspection method and a vision inspection apparatus having an algorithm that is corrected so that the accuracy of the reference data for determining defects as the process is repeated by processing the data obtained through the inspection and use in learning.
그리고, 학습을 위해 수집되는 데이터에 발생되는 클래스간 불균형을 랜덤샘플링 방식을 통해 보완하여 학습 알고리즘의 적용에 신뢰성을 높인 비전검사 방법 및 비전검사 장치를 제공하기 위함이다.In addition, it is to provide a vision inspection method and a vision inspection apparatus which improve the reliability of application of a learning algorithm by supplementing the class imbalance generated in the data collected for learning through a random sampling method.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기한 목적을 달성하기 위한 본 발명의 데이터 밸런싱을 통한 학습기반의 비전검사 방법은 진성불량품의 샘플인 진성표본 및 가성불량품의 샘플인 가성표본을 동일한 수로 포함하여 제1학습군이 형성되고, 제1학습군으로부터 수집된 영상이미지가 수식화된 진성데이터 및 가성데이터가 동일한 수로 구비되는 제1데이터군을 추출하고, 제1데이터군을 특징공간상에 도식화하여 진성데이터가 위치하는 진성영역 및 가성데이터가 위치하는 가성영역의 경계인 분류기준을 도출하는 사전학습 단계, 검사대상물인 편광층이 접착된 디스플레이패널로부터 영상이미지로 추출되어 수식화된 피검데이터를 특징공간상에 대입하고 분류기준을 경계로 하여 특징공간상에서 피검데이터가 위치하는 영역을 판단하여 검사대상물을 진성불량 또는 가성불량으로 판단하는 불량판별 단계 및 사전학습 단계에 피검데이터를 적용하여 특징공간상의 분류기준을 수정하되, 피검데이터는 진성데이터 및 가성데이터가 동일한 수로 제1데이터군을 구성하도록 데이터 밸런싱 단계를 통해 보정되는 추가학습 단계를 포함하고, 불량판별 단계 및 추가학습 단계가 반복 수행된다.In the learning-based vision inspection method through the data balancing of the present invention for achieving the above object, the first learning group is formed by including the same number of authentic samples as samples of inferior goods and false samples as samples of inferior goods in the same number. Intrinsic region and false data where true data is located by extracting a first data group having the same number of intrinsic data and false data in which the image image collected from the first learning group is formulated, and plotting the first data group in a feature space The pre-learning step of deriving the classification criteria, the boundary of the caustic region where is located, and extracting the image data from the display panel to which the polarizing layer, which is the test object, is attached, is inserted into the feature space into the feature space and characterized by Judging the area where the test data is located in the space and selling the test object as true or false The classification criteria in the feature space are corrected by applying the test data to the defective discrimination step and the pre-learning step, wherein the test data is corrected through the data balancing step so that the true data and the false data constitute the first data group with the same number. Including the step, the failure discrimination step and the further learning step are repeatedly performed.
그리고, 사전학습 단계는 제1학습군에 포함된 각각의 진성표본 및 가성표본으로부터 영상정보로 추출된 진성이미지 및 가성이미지로 구성되는 제1학습이미지군을 수집하는 영상 수집 단계, 진성데이터 및 가성데이터는 제1학습이미지군에 포함된 각각의 진성이미지 및 가성이미지로부터 각각 n개의 특징점으로 도출되어 제1데이터군을 형성하고 제1데이터군을 도식화하여 인접한 특징점들을 k개의 그룹으로 그룹핑하며 각각의 그룹별로 특징점 평균을 구하여 k개의 평균점으로 구성되는 사전을 작성하는 사전작성 단계 및 진성데이터 및 가성데이터를 사전에 대입하여 특징공간상에 도식화하고 특징공간상에서 진성데이터가 위치하는 진성구역 및 가성데이터가 위치하는 가성구역의 경계인 분류기준을 결정하는 클래스 분류 단계를 포함한다.The pre-learning step may include an image collection step of collecting a first learning image group including a true image and a pseudo image extracted from the true samples and the false samples included in the first learning group. Data is derived from each of the intrinsic and pseudo images included in the first learning image group, respectively, to form n first data points to form a first data group, and the first data group is plotted to group adjacent feature points into k groups. The pre-writing step to obtain a dictionary consisting of k average points by calculating the average of the feature points for each group and assigning the true and false data to the dictionary and plotting them in the feature space, and the true zone and the false data where the true data is located in the feature space And class classification step for determining the classification criteria which is the boundary of the caustic zone located.
또는, 사전작성 단계는 케이평균 군집화를 수행하여 k개의 평균점을 기준 단어로 하는 상기 사전을 작성한다.Alternatively, in the dictionary creation step, the k mean clustering is performed to generate the dictionary using k mean points as the reference word.
그리고, 불량판별 단계는 검사대상물로부터 영상정보로 추출된 피검이미지로부터 얻은 n개의 특징점인 피검데이터를 사전과 대비하고 k개의 평균점을 기준으로 피검데이터를 분류하여 특징공간상에 도식화한다.In addition, the defect discriminating step compares the test data, which is n feature points, obtained from the test image extracted from the test object with the image information, and classifies the test data based on k average points and plots them on the feature space.
또는, 추가학습 단계는 불량판별 단계를 통해 특징공간상에 도식화된 피검데이터를 클래스 분류 단계의 진성데이터 또는 가성데이터에 추가하여 상기 분류기준을 보정한다.Alternatively, in the additional learning step, the classification criteria are corrected by adding the test data plotted on the feature space to the true data or the false data of the class classification step through the failure discrimination step.
그리고, 데이터 밸런싱 단계는 불량판별 단계를 통해 검사대상물이 진성불량으로 판단된 경우 피검데이터 및 사전학습 단계를 통해 기 도출된 가성데이터 중 무작위로 선택된 하나의 가성데이터를 클래스 분류 단계에 적용하여 분류기준을 보정하고, 불량판별 단계를 통해 검사대상물이 가성불량으로 판단된 경우 피검데이터 및 사전학습 단계를 통해 기 도출된 진성데이터 중 무작위로 선택된 하나의 진성데이터를 클래스 분류 단계에 적용하여 상기 분류기준을 보정한다.In the data balancing step, when a test object is judged to be a genuine defect through a bad discrimination step, a classification standard is applied by applying one randomly selected caustic data among the causal data derived through the test data and the pre-learning step to a class classification step. If the test object is judged to be false through the bad discrimination step, the classification criteria are applied by applying one of the genuine data randomly selected from the test data and the intrinsic data derived through the pre-learning step to the class classification step. Correct it.
또는, 데이터 밸런싱 단계는 불량판별 단계를 통해 검사대상물이 진성불량으로 판단된 경우 피검데이터 및 사전학습 단계를 통해 기 도출된 가성데이터들의 평균값을 클래스 분류 단계에 적용하여 분류기준을 보정하고, 불량판별 단계를 통해 검사대상물이 가성불량으로 판단된 경우 피검데이터 및 사전학습 단계를 통해 기 도출된 진성데이터들의 평균값을 클래스 분류 단계에 적용하여 분류기준을 보정한다.Alternatively, in the data balancing step, if the inspection object is judged to be incomplete through the bad discrimination step, the classification criteria are corrected by applying the average value of the caustic data derived through the test data and the pre-learning step to the class classification step. If the test object is judged to be false in the step, the classification criteria are corrected by applying the average value of the intrinsic data derived through the test data and the pre-learning step to the class classification step.
그리고, 진성이미지, 가성이미지 및 피검이미지는 검사대상물의 검사대상 표면을 일정한 패턴에 따라 이동하며 촬영된 영상의 수식화된 신호가 급격하게 변화되는 지점의 영상정보이다.In addition, the true image, the pseudo image, and the test image are image information of a point where the modified signal of the captured image is rapidly changed while moving the inspection target surface of the inspection object according to a predetermined pattern.
그리고, 상기한 목적을 달성하기 위한 본 발명의 데이터 밸런싱을 통한 비전검사 장치는 검사대상물이 이송되는 이송수단, 검사대상물의 검사면을 촬영하는 촬영유닛, 촬영유닛을 통해 획득된 영상이미지를 판독하여 피검이미지를 선별하는 판독부, 판독부를 통해 획득된 피검이미지를 수식화한 피검데이터를 특징공간상에 도식화하는 연산부 및 연산부를 통해 획득된 피검데이터가 저장되는 저장부를 포함하고, 연산부는 저장부에 기 저장된 데이터와 피검데이터를 대비하여 검사대상물의 불량여부를 판단하고, 저장부는 피검데이터 및 피검데이터를 통해 도출되는 가상데이터가 함께 저장된다.In addition, the vision inspection apparatus through the data balancing of the present invention for achieving the above object is to read the transfer means for transporting the inspection object, a photographing unit for photographing the inspection surface of the inspection object, the image image obtained through the photographing unit A reading unit which selects a test image, an operation unit which maps the test data obtained through the reading unit to the feature space, and a storage unit which stores the test data obtained through the operation unit, and which stores the test data. It is determined whether the inspection object is defective by comparing the stored data and the test data, and the storage unit stores the test data and the virtual data derived through the test data.
상기한 과제를 해결하기 위한 본 발명의 데이터 밸런싱을 통한 학습기반의 비전검사 방법 및 데이터 밸런싱을 통한 학습기반의 비전검사 장치는 디스플레이 패널의 진성불량 및 가성불량의 데이터를 영상정보로 획득하여 수식화하고 특징공간상에 도식화함으로 그 경계를 도출하여 진성불량 및 가성불량을 판별하는 학습기반의 알고리즘을 바탕으로 하여 진성불량 및 가성불량의 특징을 기반으로 불량판별의 정확도를 높이고, 가성불량의 과검출을 감소시키는 효과를 얻을 수 있다.Learning-based vision inspection method through data balancing and learning-based vision inspection apparatus through data balancing of the present invention for solving the above problems by acquiring and formulating the data of the intrinsic and false false of the display panel as image information Based on the learning-based algorithm that derives the boundary by drawing the boundary in the feature space and discriminates true and false defects, it improves the accuracy of defect discrimination based on the characteristics of true and false defects and overdetects false negatives. A reducing effect can be obtained.
또한, 반복 수행되는 불량판별 단계를 통해 획득되는 진성불량 및 가성불량의 데이터를 축적하여 추가 학습함으로 진성불량 및 가성불량의 경계를 지속적으로 수정하고, 추가 학습되는 데이터가 어느 하나의 영역으로 편중되지 않고 데이터의 밸런싱을 유지할 수 있도록 함으로 데이터의 불균형으로 인해 발생될 수 있는 오차의 증가 또는 학습 알고리즘의 성능저하를 방지할 수 있는 효과가 있다.In addition, by accumulating the data of intrinsic and false inferiority acquired through repeated failure determination step, the boundary between intrinsic and false inferiority is continuously corrected, and the data to be further trained are not concentrated in any one area. By maintaining the balance of the data, it is possible to prevent the increase of the error that may be caused by the data imbalance or the performance degradation of the learning algorithm.
따라서, 학습 알고리즘을 통해 정확도가 더욱 향상된 경계를 비전검사에 활용할 수 있게 된다.Therefore, it is possible to utilize the boundary with improved accuracy through the learning algorithm for vision inspection.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법을 나타낸 흐름도이다.1 is a flowchart illustrating a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 분류기준을 정하는 데이터를 나타낸 흐름도이다.2 is a flowchart illustrating data for determining classification criteria in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 진성표본의 진성이미지를 나타낸 이미지이다.3 is an image showing a true image of a true sample in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 가성표본의 가성이미지를 나타낸 이미지이다.4 is an image showing a pseudo image of a pseudo sample in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 사전이 도출되는 과정을 나타낸 개략도이다.5 is a schematic diagram illustrating a process of deriving a dictionary from a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 제1이미지군을 사전에 대입하는 과정을 나타낸 개략도이다.6 is a schematic diagram illustrating a process of assigning a first image group to a dictionary in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 사전학습단계 및 불량판별 단계를 나타낸 개략도이다.7 is a schematic diagram showing a pre-learning step and a bad discrimination step in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 특징공간상에 진성영역 및 가성영역이 도출된 상태를 3차원으로 예시하여 나타낸 그래프이다.8 is a graph illustrating a three-dimensional example of a state in which an intrinsic region and a pseudo region are derived in a feature space in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법의 추가학습 단계에서 데이터 밸런싱이 수행되는 과정을 2차원 그래프로 나타낸 개략도이다.9 is a schematic diagram illustrating a process of performing data balancing in a two-dimensional graph in the further learning step of the learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 장치를 나타낸 상태도이다.10 is a state diagram illustrating a learning-based vision inspection apparatus through data balancing according to an embodiment of the present invention.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of this embodiment, the same name and the same reference numerals are used for the same configuration and additional description thereof will be omitted.
본 발명에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법은 하기 되는 것과 같이 실시될 수 있다.The learning-based vision inspection method through data balancing according to the present invention may be implemented as follows.
도 1은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법을 나타낸 흐름도이고, 도 2는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 분류기준을 정하는 데이터를 나타낸 흐름도이다.1 is a flowchart illustrating a learning-based vision inspection method through data balancing according to an embodiment of the present invention, and FIG. 2 is a classification criterion in the learning-based vision inspection method through data balancing according to an embodiment of the present invention. A flow chart showing the data used to determine
본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법은 디스플레이패널(302)에 접착된 편광층(304)의 불량을 검사하기 위한 학습기반의 비전검사 방법이다.The learning-based vision inspection method through data balancing according to an embodiment of the present invention is a learning-based vision inspection method for inspecting defects of the polarization layer 304 adhered to the display panel 302.
도 1 내지 도 2를 참조하여, 진성불량품의 샘플인 진성표본(100) 및 가성불량품의 샘플인 가성표본(200)을 동일한 수로 포함하여 형성되는 제1학습군이 마련된다.1 to 2, a first learning group including an intrinsic sample 100 that is a sample of an inferior goods and a pseudosample 200 that is a sample of an inferior goods in the same number is provided.
제1학습군으로부터 수집된 영상이미지가 수식화된 진성데이터(120) 및 가성데이터(220)가 동일한 수로 구비되는 제1데이터군이 추출된다.The first data group having the same number of the intrinsic data 120 and the false data 220 in which the image image collected from the first learning group is modified is extracted.
제1데이터군을 특징공간(400)상에 도식화하여 진성데이터(120)가 위치하는 진성영역(130) 및 가성데이터(220)가 위치하는 가성영역(230)의 경계인 분류기준(410)을 도출하는 사전학습 단계(S100)가 수행된다.The first data group is plotted on the feature space 400 to derive the classification criteria 410 which is a boundary between the intrinsic region 130 where the intrinsic data 120 is located and the caustic region 230 where the caustic data 220 is located. The pre-learning step (S100) is performed.
검사대상물(300)인 편광층(304)이 접착된 디스플레이패널(302)로부터 영상이미지로 추출되어 수식화된 피검데이터(320)를 특징공간(400)상에 대입한다.The polarization layer 304, which is the inspection object 300, is extracted as an image image from the adhered display panel 302 and substituted with the modified test data 320 on the feature space 400.
분류기준(410)을 경계로 하여 특징공간(400)상에서 피검데이터(320)가 위치하는 영역을 판단하여 검사대상물(300)을 진성불량 또는 가성불량으로 판단하는 불량판별 단계(S200)가 수행된다.The failure discrimination step (S200) of determining the area of the test data 320 on the feature space 400 based on the classification criterion 410 and determining the test object 300 as intrinsic or false caustic is performed. .
사전학습 단계(S100)에 피검데이터(320)를 적용하여 특징공간(400)상의 분류기준(410)을 수정하되, 피검데이터(320)는 진성데이터(120)와 가성데이터(220)가 동일한 수로 제1데이터군을 구성하도록 데이터 밸런싱 단계(S310)를 통해 보정되는 추가학습 단계(S300)를 포함하고, 불량판별 단계(S200) 및 추가학습 단계(S300)는 반복 수행된다.The classification criteria 410 on the feature space 400 is modified by applying the test data 320 to the pre-learning step S100, but the test data 320 is the same number as the true data 120 and the false data 220. Further learning step (S300) is corrected through the data balancing step (S310) to form a first data group, the failure determination step (S200) and the additional learning step (S300) is repeatedly performed.
아래에서는 상기된 각각의 단계를 구체적으로 자세하게 설명한다.In the following, each step described above is described in detail.
제1학습군은 진성불량품의 샘플인 진성표본(100) 및 가성불량품의 샘플인 가성표본(200)을 각각 A개로 동일한 수를 포함한다.The first learning group includes the same number of intrinsic samples 100 as samples of inferior goods and pseudo samples 200 as samples of inferior goods as A.
제1학습이미지군은 진성표본(100)으로부터 도출된 진성이미지(110) 및 가성표본(200)으로부터 도출된 가성이미지(210)를 동일한 수를 포함한다.The first learning image group includes the same number of the true image 110 derived from the true sample 100 and the pseudo image 210 derived from the pseudo sample 200.
제1데이터군은 진성이미지(110)를 수식화한 진성데이터(120) 및 가성이미지(210)를 수식화한 가성데이터(220)를 동일한 수를 포함한다.The first data group includes the same number of intrinsic data 120 that modifies the intrinsic image 110 and caustic data 220 that modifies the pseudo image 210.
따라서, 진성표본(100) 및 진성이미지(110)는 동일하게 A개이고, 가성표본(200) 및 가성이미지(210) 또한 동일하게 A개인 것으로 본 발명의 일 실시예에서는 가정한다.Therefore, in one embodiment of the present invention, the true sample 100 and the true image 110 are the same A, and the pseudo sample 200 and the pseudo image 210 are the same A.
특징공간(400)은 다수의 변수를 지닌 다차원 공간으로서 본 발명의 일 실시예에 따른 특정 데이터가 도식화되는 공간을 지칭한다.The feature space 400 is a multidimensional space having a plurality of variables and refers to a space where specific data is plotted according to an embodiment of the present invention.
사전학습 단계(S100)는 진성표본(100) 및 가성표본(200)으로부터 불량으로 의심되는 지점의 영상이미지인 진성이미지(110) 및 가성이미지(210)를 획득하는 영상 수집 단계(S110), 사전작성 단계(S120) 및 클래스 분류 단계(S130)를 포함한다.In the pre-learning step (S100), the image collecting step (S110), which acquires the true image 110 and the false image 210, which are image images of points suspected to be defective from the true sample 100 and the false sample 200, is preliminary. A creation step S120 and a class classification step S130 are included.
도 3은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 진성표본의 진성이미지를 나타낸 이미지이고, 도 4는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 가성표본의 가성이미지를 나타낸 이미지이다.3 is an image showing a true image of a true sample in the learning-based vision inspection method through data balancing according to an embodiment of the present invention, Figure 4 is a learning-based through data balancing according to an embodiment of the present invention In the vision inspection method, pseudo images of pseudo samples are shown.
도 3 내지 도 4를 참조하여, 영상 수집 단계(S110)는 진성표본(100) 및 가성표본(200)의 측정대상 평면을 일정한 패턴으로 이동하며 촬영하는 촬영유닛(520)을 통해 영상이 수집되고, 특정 위치의 영상에서 기 설정된 조건을 만족하는 결과의 도출 시에 그 위치의 영상이미지를 촬영함으로 진성이미지(110) 또는 가성이미지(210)를 획득하는 단계이다.3 to 4, in the image collecting step S110, an image is collected through the photographing unit 520 moving and moving the measurement target planes of the true sample 100 and the false sample 200 in a predetermined pattern. In the derivation of a result that satisfies a predetermined condition in an image of a specific position, the image is captured at the position to acquire the true image 110 or the false image 210.
본 발명의 일 실시예로서 촬영유닛(520)을 통해 촬상되는 영상의 밝기의 변화가 급격하게 증가 또는 감소하는 경우 그 지점을 도 3 내지 도 4에 도시된 바와 같이 촬영하여 영상이미지로 획득할 수 있다.As an embodiment of the present invention, when a change in brightness of an image captured by the photographing unit 520 rapidly increases or decreases, the spot may be photographed as shown in FIGS. 3 to 4 to obtain an image image. have.
사전작성 단계(S120)는 진성이미지(110) 및 가성이미지(210)로부터 각각 n개의 특징점으로 도출되는 진성데이터(120) 및 가성데이터(220)가 도출된다.In the pre-creation step S120, the intrinsic data 120 and the pseudo data 220 derived from n feature points are derived from the intrinsic image 110 and the pseudo image 210, respectively.
진성데이터(120)는 A×n개가 획득되고, 가성데이터(220) 또한 A×n개가 획득된다.A × n pieces of intrinsic data 120 are obtained, and A × n pieces of pseudo data 220 are obtained.
도 5는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 사전이 도출되는 과정을 나타낸 개략도이고, 도 6은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 제1학습이미지군을 사전에 대입하는 과정을 나타낸 개략도이다.5 is a schematic diagram showing a process of deriving a dictionary from a learning-based vision inspection method through data balancing according to an embodiment of the present invention, and FIG. 6 is a learning-based through data balancing according to an embodiment of the present invention. It is a schematic diagram showing the process of assigning the first group of learning images in advance in the vision inspection method.
도 5 내지 도 6을 참조하여, 진성이미지(110) 및 가성이미지(210)로부터 도출되는 진성데이터(120) 및 가성데이터(220)는 진성이미지(110) 및 가성이미지(210)내에서 색상, 명도, 채도, 형상, 곡률등과 같은 특징을 n개의 지점에서 추출하여 수집될 수 있다.5 to 6, the intrinsic data 120 and the pseudo data 220 derived from the intrinsic image 110 and the pseudo image 210 are colored in the intrinsic image 110 and the pseudo image 210. Features such as brightness, saturation, shape, curvature, and the like may be extracted and collected at n points.
진성데이터(120) 및 가성데이터(220)는 색상, 명도, 채도, 형상, 곡률등과 같은 특징들을 변수로 하는 벡터(vector)량으로 변환되고, 이러한 벡터량을 구성하는 변수에 대응되는 다차원의 공간상에 도식화된다.The intrinsic data 120 and the false data 220 are converted into a vector amount having characteristics such as hue, brightness, saturation, shape, curvature, etc. as variables, and multidimensional space corresponding to the variables constituting the vector amount. Is plotted on the phase.
도 5에는 진성이미지(110) 및 가성이미지(210)로부터 n개의 특징점이 벡터량으로 도출되어 다차원 공간상의 도식화되는 과정을 간략하게 나타내고 있다.FIG. 5 briefly illustrates a process in which n feature points are derived as vector quantities from the intrinsic image 110 and the pseudo image 210, and are illustrated in a multi-dimensional space.
이는 예시적인 것으로서 본 발명이 적용되는 실시예에 따라 다양한 인자를 기준으로 하여 진성데이터(120) 및 가성데이터(220)가 추출될 수 있다.This is exemplary and the authentic data 120 and the false data 220 may be extracted based on various factors according to an embodiment to which the present invention is applied.
상술한 바와 같이 A개의 진성이미지(110)로 부터 A×n개의 진성데이터(120), A개의 가성이미지(210)로부터 A×n개의 가성데이터(220)가 벡터량으로 수집되고, 진성데이터(120) 및 가성데이터(220)는 상술한 바와 같이 다차원 공간상에 도식화되고, 각각 인접한 진성데이터(120) 및 가성데이터(220)를 군집화하여 k개의 그룹으로 그룹핑하며, 각각의 그룹내에 속하는 진성데이터(120) 및 가성데이터(220)의 평균점을 구하여 k개의 평균점을 산출하게 된다.As described above, A × n true data 120 from A true images 110 and A × n false data 220 from A pseudo images 210 are collected in a vector amount, and the true data 120 And pseudo data 220 are plotted on a multidimensional space as described above, grouping adjacent intrinsic data 120 and pseudo data 220 into k groups, respectively, and intrinsic data belonging to each group ( 120 and the average points of the caustic data 220 are obtained to calculate k average points.
이때, 각각의 그룹을 단어라 정의하고, k개의 평균점을 사전이라 정의하여 k개의 단어를 지닌 사전을 작성한다.At this time, each group is defined as a word and k average points are defined as a dictionary to create a dictionary having k words.
사전작성 단계(S120)는 주어진 데이터를 k개의 클러스터로 묶어 군집화 하는 알고리즘인 케이평균군집화를 이용하여 수행될 수 있다.The pre-creation step S120 may be performed using a k mean clustering algorithm which clusters the given data into k clusters.
클래스 분류 단계(S130)는 진성데이터(120)를 사전작성 단계(S120)를 통해 작성된 사전에 대입하여 k개의 단어들 각각에 속하게 되는 진성데이터(120)를 도 6에 도시된 바와 같이 히스토그램화 하는 히스토그램화 단계가 먼저 수행된다.The class classification step S130 substitutes the authentic data 120 into the dictionary created through the dictionary creation step S120 to histogram the authentic data 120 belonging to each of the k words, as shown in FIG. 6. The histogram step is performed first.
도 7은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 사전학습단계 및 불량판별 단계를 나타낸 개략도이고, 도 8은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 특징공간상에 진성영역 및 가성영역이 도출된 상태를 3차원으로 예시하여 나타낸 그래프이다.7 is a schematic diagram showing a pre-learning step and a failure discrimination step in a learning-based vision inspection method through data balancing according to an embodiment of the present invention, and FIG. 8 is a diagram illustrating learning through data balancing according to an embodiment of the present invention. It is a graph showing three-dimensional examples of the state in which the intrinsic region and the pseudo region are derived from the feature space in the vision inspection method.
상술한 히스토그램화 단계를 통해 구해진 히스토그램을 기준으로 하여 단어와 각각의 단어에 속하는 진성데이터(120)를 변수로 하여 특징공간(400)상에 도시하고, 도 8에 도시된 바와 같이, 특징공간(400)상에서 진성영역(130)을 도출한다.Based on the histogram obtained through the above histogramization step, the word and the intrinsic data 120 belonging to each word are shown in the feature space 400 as a variable, and as shown in FIG. 8, the feature space ( The intrinsic region 130 is derived on 400.
또한, 가성데이터(220)를 사전작성 단계(S120)를 통해 작성된 사전에 대입하여 k개의 단어들 각각에 속하게 되는 가성데이터(220)를 도 6에 도시된 바와 같이 히스토그램화 하는 히스토그램화 단계가 수행된다.In addition, the histogram step of histogramting the pseudo data 220 belonging to each of the k words by assigning the pseudo data 220 to the dictionary created through the dictionary creation step S120 is performed as shown in FIG. 6. do.
가성데이터(220)를 통해 얻어진 히스토그램을 기준으로 하여 단어와 각각의 단어에 속하는 가성데이터(130)를 변수로 하여 특징공간(400)상에 도시하고, 도 8에 도시된 바와 같이, 특징공간(400)상에서 가성영역(230)을 도출한다.Based on the histogram obtained through the caustic data 220, the word and the causal data 130 belonging to each word are shown as a variable on the feature space 400, and as shown in FIG. The caustic region 230 is derived on 400.
분류기준(410)은 특징공간(400)상에서 진성영역(130)과 가성영역(230)의 경계가 되는 선, 면 또는 초평면(hyper plane)으로 표현될 수 있으며, 진성영역(130)과 가성영역(230)이 특징공간(400)상에서 서로간 여백이 극대화 될 수 있도록 그 경계를 구하는 서포트 벡터 머신(SVM, support vector machine)기법을 이용해 구해질 수도 있다.The classification criterion 410 may be expressed as a line, a plane, or a hyper plane that is a boundary between the intrinsic region 130 and the caustic region 230 on the feature space 400, and the intrinsic region 130 and the caustic region. The 230 may be obtained using a support vector machine (SVM) technique that obtains a boundary of each other in the feature space 400 so as to maximize each other.
불량판별 단계(S200)는 검사대상물(300)인 디스플레이패널(302)에 편광층(304)가 접착된 면을 촬영유닛(520)을 통해 일정한 경로를 따라 연속적으로 촬영하여 기 설정된 조건과 부합되는 값을 나타내는 위치의 영상을 촬영한 피검이미지(310)를 획득하는 피검영상 수집 단계(S210) 및 피검이미지(310)를 상술하였던 진성이미지(110) 및 가성이미지(210)를 진성데이터(120) 및 가성데이터(220)로 변환하는 방법과 동일한 방법을 사용하여 피검이미지(310)로 변환하고, 피검이미지(310)를 사전에 대입하여 특징공간(400)상에 도시하며, 클래스 분류 단계(S130)를 통해 구해진 분류기준(410)을 경계로 하여 진성영역(130) 또는 가성영역(230)에 속하는지를 판단하여 그 속하는 영역에 따라서 진성불량 또는 가성불량으로 판단하는 분류기준에 따른 불량판별 단계(S220)를 포함한다.Defective determination step (S200) is consistent with the preset conditions by continuously photographing the surface on which the polarizing layer 304 is bonded to the display panel 302, which is the inspection object 300, along a predetermined path through the photographing unit 520. A test image collection step (S210) of acquiring a test image 310, which captures an image of a location indicating a value, and the intrinsic image 110 and the false image 210 described above with respect to the test image 310. And converting into a test image 310 by using the same method as the method of converting to the caustic data 220, and inserting the test image 310 into a dictionary to be shown on the feature space 400, and classifying step S130. Determining whether it belongs to the intrinsic region 130 or the caustic region 230 on the basis of the classification criteria 410 obtained through the (), the failure discrimination step according to the classification criteria to determine whether it is an intrinsic defective or caustic defective according to the belonging region ( S220).
추가학습 단계(S300)는 불량판별 단계(S200)를 통해 획득된 피검이미지(310)를 사전에 추가하여 k개의 평균점을 재연산하는 과정을 거쳐 사전을 보정하는 단계가 추가될 수 있다.In the additional learning step S300, a step of correcting the dictionary may be added by reprocessing k average points by adding the test image 310 acquired through the failure discriminating step S200 in advance.
또는, 불량판별 단계(S200)를 통해 획득된 피검데이터(320)를 특징공간상에 추가하고 추가된 피검데이터(320)를 반영하여 분류기준(410)을 보정하는 분류기준 보정 단계(S320)가 수행될 수 있다.Alternatively, the classification standard correction step (S320) of adding the test data 320 obtained through the failure determination step (S200) to the feature space and correcting the classification criteria 410 by reflecting the added test data 320 is Can be performed.
이러한 사전을 보정하는 단계, 분류기준 보정 단계(S320)는 사전학습 단계(S100)를 통하여 기학습된 불량판별 기준에 불량판별을 수행하며 획득하게 되는 새로운 정보를 추가하여 학습표본을 증가시켜 가는 효과를 얻을 수 있다.The step of correcting such a dictionary, the classification standard correction step (S320) is an effect of increasing the learning sample by adding new information obtained by performing a bad discrimination to the bad discrimination criteria previously learned through the pre-learning step (S100). Can be obtained.
학습표본을 증가시키므로 불량판별을 수행하는 정확성을 높여 나갈 수 있게 되며, 진성불량과 가성불량의 경계를 특징공간(400)상에서 보다 명확하게 하여 가성불량이 과검출되는 현상을 줄일 수 있게 된다.By increasing the learning sample, it is possible to increase the accuracy of performing the defect discrimination, and the boundary between the intrinsic defect and the caustic defect can be more clearly defined in the feature space 400, thereby reducing the phenomenon of caustic defect overdetection.
그리고, 추가학습 단계(S300)는 데이터 밸런싱 단계(S310)가 포함될 수 있다.In addition, the additional learning step S300 may include a data balancing step S310.
도 9는 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 방법에서 피검데이터를 통한 추가학습 단계에서 데이터 밸런싱이 수행되는 과정을 나타낸 개략도이다.FIG. 9 is a schematic diagram illustrating a process of performing data balancing in an additional learning step through test data in a learning-based vision inspection method through data balancing according to an embodiment of the present invention.
도 9에 도시된 바를 참고하여, 데이터 밸런싱 단계(S310)는 불량판별 단계(S200)를 통해 획득된 검사대상물(300)이 진성불량일 경우 분류기준 보정 단계(S320)에서 기학습된 특징공간(400)에 추가되는 자료가 진성데이터(120)로서 역할을 하게 되고, 검사대상물(300)이 가성불량일 경우 분류기준 보정 단계(S320)에서 기학습된 특징공간(400)에 추가되는 자료가 가성데이터(220)로서 역할을 하게 된다.Referring to FIG. 9, in the data balancing step S310, when the inspection object 300 acquired through the defective discrimination step S200 is an intrinsic defect, the feature space learned in the classification criterion correction step S320 may be used. The data added to 400) serves as the intrinsic data 120, and if the test object 300 is false, the data added to the feature space 400 learned in the classification standard correction step S320 is false. It serves as data 220.
진성데이터(120) 또는 가성데이터(220)로 분류되는 클래스간에 발생될 수 있는 데이터의 불균형 문제는
Figure PCTKR2017005326-appb-I000001
와 같은 수식으로 표현될 수 있으며, 입력벡터 x에 대해 입력공간(input space)이 되는 특징공간(400)상의 초평면(hyperplane)을 찾는 이진 분류 문제로 표현될 수 있다.
An imbalance problem of data that may occur between classes classified as true data 120 or false data 220
Figure PCTKR2017005326-appb-I000001
It may be expressed as an equation, and may be expressed as a binary classification problem for finding a hyperplane on the feature space 400 that becomes an input space with respect to the input vector x.
진성데이터(120) 또는 가성데이터(220)는 '+1'이나 '-1'의 두 클래스로 분류되고, 클래스 분류 문제는 우수한 일반화 성능을 얻을 수 있도록 하는 w를 찾는 것으로 볼 수 있다.The intrinsic data 120 or the false data 220 are classified into two classes of '+1' or '-1', and the class classification problem may be regarded as finding w to obtain excellent generalization performance.
이때, 진성데이터(120)와 가성데이터(220)에 속하는 데이터 수의 비율이 현격히 차이가 나는 경우를 불균형 데이터(imbalanced data)문제라고 볼 수 있다.In this case, the case where the ratio of the number of data belonging to the intrinsic data 120 and the causal data 220 is significantly different may be regarded as an imbalanced data problem.
이러한 불균형 데이터 문제의 발생 시 진성데이터(120) 또는 가성데이터(220) 중 하나의 클래스로 데이터가 편중되고 이는 사전학습 단계(S100)를 통하여 기학습된 불량판별 기준을 보정하는 분류기준 보정 단계(S320)에서 불량판별 기준의 신뢰성을 낮추는 결과를 초래할 수 있다.When such an unbalanced data problem occurs, data is biased into one class of the intrinsic data 120 or the false data 220, which is a classification standard correction step of correcting the defective discrimination criteria previously learned through the pre-learning step (S100). S320) may result in lowering the reliability of the failure discrimination criteria.
따라서, 진성데이터(120) 또는 가성데이터(220) 중 어느 하나의 경우로 획득되는 피검데이터(320)가 편중될 경우 도 9의 (a)에 도시된 바와 같이 분류기준(410)이 진성영역(130) 또는 가성영역(230) 중 어느 한 쪽으로 치우치게 되는 경우가 발생될 수 있다.Therefore, when the test data 320 obtained by either the true data 120 or the false data 220 is biased, the classification criteria 410 is the true region (as shown in FIG. 9A). 130 or the caustic region 230 may be biased toward either side.
특히, 디스플레이패널(302)의 편광층(304)의 불량검사를 수행하는 경우 가성불량에 비하여 진성불량의 검출 빈도가 현저히 높아, 이러한 데이터의 편중은 불량판별의 정확도를 향상시키는데 저해요인으로 작용될 수 있다.In particular, when the defect inspection of the polarization layer 304 of the display panel 302 is performed, the detection frequency of the intrinsic defect is significantly higher than that of the caustic defect, and the bias of such data may act as a deterrent to improving the accuracy of the defect discrimination. Can be.
따라서, 불량판별 단계(S200)에서 얻어진 피검데이터(320)가 특징공간(400)상에서 진성영역(130)에 속할 경우, 이와 대응되도록 가성영역(230)에 속한 가성데이터(220) 중 무작위로 선택된 하나의 가성데이터(220)를 획득된 피검데이터(320)와 함께 특징공간(400)상에 추가하여 분류기준(410)을 보정하도록 한다.Therefore, when the test data 320 obtained in the failure discrimination step S200 belongs to the intrinsic region 130 on the feature space 400, randomly selected among the caustic data 220 belonging to the caustic region 230 to correspond to this. One caustic data 220 is added to the feature space 400 together with the acquired test data 320 to correct the classification criteria 410.
상세하게는 불량판별 단계(S200)를 통해 검사대상물(300)의 검수를 수행하여 총 4개의 진성불량 판정이 도출되었다면, 획득된 4개의 피검데이터(320)와 함께 기 도출된 가성데이터(220)를 특징공간(400)상에 추가하여 분류기준(410)을 재설정하는 과정을 수행하게 된다.In detail, when the inspection of the inspection object 300 is performed through the defective determination step S200, a total of four intrinsic defect determinations are derived, the caustic data 220 previously derived together with the obtained four inspection data 320. Is added to the feature space 400 to perform the process of resetting the classification criteria 410.
불량판별 단계(S200)를 통해 검사대상물(300)의 검수를 수행하여 가성불량 판정이 도출된 경우에는 기 도출된 진성데이터(120)를 피검데이터(320)와 함께 특징공간(400)상에 추가하여 분류기준(410)을 재설정하게 된다.If the false negative determination is derived by performing the inspection of the inspection object 300 through the failure determination step (S200), the derived intrinsic data 120 is added to the feature space 400 together with the inspection data 320. To reset the classification criteria (410).
또 다른 실시예로서, 불량판별 단계(S200)를 통해 검사대상물(300)의 검수를 수행하여 진성불량 판정이 도출되었다면, 기 획득된 가성데이터(220)들의 평균값을 피검데이터(320)와 함께 특징공간상에 추가하여 분류기준(410)을 재설정하고, 가성불량 판정의 도출시에는 기 획득된 진성데이터(120)들의 평균값을 피검데이터(320)와 함께 특징공간상에 추가하여 분류기준(410)을 재설정할 수 있다.As another embodiment, if the true defect determination is derived by performing the inspection of the inspection object 300 through the failure determination step (S200), the average value of the acquired caustic data 220 together with the test data 320 is characterized. The classification criteria 410 are reset in addition to the space, and when deriving the false negative determination, the average value of the acquired true data 120 is added together with the test data 320 in the feature space to classify the classification criteria 410. Can be reset.
이러한 실시예는 무작위로 데이터를 선택하는 과정을 거치지 않고 단순 연산만으로 기 획득된 데이터의 평균값을 구해 데이터 밸런싱을 수행하게 되므로, 연산과정을 단순화하여 처리 속도를 향상시킬 수 있는 효과를 얻을 수 있다.In this embodiment, since the data balancing is performed by obtaining the average value of the data obtained by the simple operation only, without performing the process of selecting data at random, it is possible to simplify the calculation process and improve the processing speed.
본 발명에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 장치는 하기 되는 것과 같이 실시될 수 있다.The learning-based vision inspection apparatus through data balancing according to the present invention may be implemented as follows.
도 10은 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 장치를 나타낸 상태도이다.10 is a state diagram illustrating a learning-based vision inspection apparatus through data balancing according to an embodiment of the present invention.
도 10에 도시된 바와 같이, 본 발명의 일 실시예에 따른 데이터 밸런싱을 통한 학습기반의 비전검사 장치는 검사대상물(300)이 이송되는 이송수단(510), 검사대상물(300)의 검사면을 일정한 경로를 따라 이동하며 연속적으로 촬영하는 촬영유닛(520), 촬영유닛(520)을 통해 획득된 영상이미지를 판독하여 피검이미지(310)를 선별하는 판독부(530), 판독부(530)를 통해 획득된 피검이미지(310)를 수식화한 피검데이터(320)를 특징공간(400)상에 도식화하는 연산부(540) 및 연산부(540)를 통해 획득된 피검데이터(320)가 저장되는 저장부(550)를 포함하고, 연산부(540)는 저장부(550)에 기 저장된 데이터와 피검데이터(310)를 대비하여 검사대상물(300)의 불량여부를 판단하고, 저장부(550)는 피검데이터(320) 및 피검데이터(320)를 통해 도출되는 가상데이터가 함께 저장될 수 있다.As shown in FIG. 10, the learning-based vision inspection apparatus based on data balancing according to an embodiment of the present invention may include an inspection surface of a transport means 510 and an inspection object 300 to which the inspection object 300 is transferred. The reading unit 520 and the reading unit 530 which select a test image 310 by reading an image image acquired through the photographing unit 520 and the photographing unit 520 that move continuously along a predetermined path. A storage unit for storing the test data 320 obtained through the operation unit 540 and the operation unit 540 to plot the test data 320 obtained by modifying the test image 310 obtained through the feature space 400 ( 550, and the operation unit 540 determines whether the inspection object 300 is defective in comparison with the data previously stored in the storage unit 550 and the test data 310, and the storage unit 550 includes the test data ( 320 and virtual data derived through the data 320 may be stored together.
상세하게는, 판독부(530)는 상술하였던 영상수집 단계(S110) 및 피검 영상 수집 단계(S210)가 수행되며, 촬영유닛(520)을 통해 연속적으로 검사대상물(300)을 촬영하여 얻어지는 영상을 분석하여 기 설정된 조건에 부합되는 위치의 영상이미지를 획득하게 된다.In detail, the reading unit 530 performs the image collecting step S110 and the test image collecting step S210 described above, and captures an image obtained by continuously photographing the test object 300 through the photographing unit 520. The image is obtained by analyzing the position corresponding to the preset condition.
연산부(540)는 사전작성 단계(S120), 클래스분류 단계(S130), 분류기준에 따른 불량판별 단계(S220)가 수행된다.The calculation unit 540 is a pre-creation step (S120), class classification step (S130), failure determination step (S220) according to the classification criteria is performed.
저장부(550)는 데이터 밸런싱 단계(S310) 및 분류기준 보정 단계(S320)를 포함하는 추가학습 단계(S300)가 수행된다.In the storage unit 550, an additional learning step S300 including a data balancing step S310 and a classification criterion correction step S320 is performed.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, a preferred embodiment according to the present invention has been described, and the fact that the present invention can be embodied in other specific forms in addition to the above-described embodiments without departing from the spirit or scope thereof has ordinary skill in the art. It is obvious to them. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and thus, the present invention is not limited to the above description and may be modified within the scope of the appended claims and their equivalents.

Claims (9)

  1. 디스플레이패널에 접착된 편광층의 불량을 검사하기 위한 학습기반의 비전검사 방법으로서,A learning-based vision inspection method for inspecting defects of a polarizing layer adhered to a display panel,
    진성불량품의 샘플인 진성표본 및 가성불량품의 샘플인 가성표본을 동일한 수로 포함하여 제1학습군이 형성되고, 상기 제1학습군으로부터 수집된 영상이미지가 수식화된 진성데이터 및 가성데이터가 동일한 수로 구비되는 제1데이터군을 추출하고, 상기 제1데이터군을 특징공간상에 도식화하여 상기 진성데이터가 위치하는 진성영역 및 상기 가성데이터가 위치하는 가성영역의 경계인 분류기준을 도출하는 사전학습 단계;A first learning group is formed including the same number of intrinsic samples as the samples of inferior goods and the false samples as samples of the inferior goods, and the intrinsic data and the caustic data in which the image images collected from the first learning groups are modified are provided in the same number. Extracting a first data group, and drawing the first data group on a feature space to derive a classification criterion that is a boundary between an intrinsic region in which the intrinsic data is located and a causal region in which the pseudo data is located;
    검사대상물인 편광층이 접착된 디스플레이패널로부터 영상이미지로 추출되어 수식화된 피검데이터를 상기 특징공간상에 대입하고 상기 분류기준을 경계로 하여 상기 특징공간상에서 상기 피검데이터가 위치하는 영역을 판단하여 상기 검사대상물을 진성불량 또는 가성불량으로 판단하는 불량판별 단계; 및The image data is extracted from the display panel to which the polarization layer, which is an object to be inspected, is attached to the feature space, and is modified into the feature space, and the area where the test data is located in the feature space is determined based on the classification criteria. A defect discrimination step of judging the inspection object as true or false; And
    상기 사전학습 단계에 상기 피검데이터를 적용하여 상기 특징공간상의 분류기준을 수정하되, 상기 피검데이터는 상기 진성데이터 및 상기 가성데이터가 동일한 수로 상기 제1데이터군을 구성하도록 데이터 밸런싱 단계를 통해 보정되는 추가학습 단계;를 포함하고, The classification data on the feature space is modified by applying the test data to the pre-learning step, wherein the test data is corrected through a data balancing step so that the true data and the false data constitute the first data group with the same number. A further learning step;
    상기 불량판별 단계 및 상기 추가학습 단계가 반복 수행되는 데이터 밸런싱을 통한 학습기반의 비전검사 방법.The learning-based vision inspection method through data balancing in which the failure discrimination step and the additional learning step are repeatedly performed.
  2. 제1항에 있어서,The method of claim 1,
    상기 사전학습 단계는,The pre-learning step,
    상기 제1학습군에 포함된 각각의 상기 진성표본 및 상기 가성표본으로부터 영상정보로 추출된 진성이미지 및 가성이미지로 구성되는 제1학습이미지군을 수집하는 영상 수집 단계;An image collection step of collecting a first learning image group consisting of an intrinsic image and a pseudo image extracted as the image information from each of the intrinsic specimens and the pseudo specimens included in the first learning group;
    상기 진성데이터 및 상기 가성데이터는 상기 제1학습이미지군에 포함된 각각의 상기 진성이미지 및 상기 가성이미지로부터 각각 n개의 특징점으로 도출되어 상기 제1데이터군을 형성하고 상기 제1데이터군을 도식화하여 인접한 특징점들을 k개의 그룹으로 그룹핑하며 각각의 그룹별로 특징점 평균을 구하여 k개의 평균점으로 구성되는 사전을 작성하는 사전작성 단계; 및The intrinsic data and the pseudo data are derived from each of the intrinsic image and the pseudo image included in the first learning image group as n feature points, respectively, to form the first data group and to diagram the first data group. A dictionary generation step of grouping adjacent feature points into k groups, obtaining a mean of feature points for each group, and creating a dictionary including k mean points; And
    상기 진성데이터 및 상기 가성데이터를 상기 사전에 대입하여 상기 특징공간상에 도식화하고 상기 특징공간상에서 상기 진성데이터가 위치하는 진성구역 및 상기 가성데이터가 위치하는 가성구역의 경계인 분류기준을 결정하는 클래스 분류 단계;The class classification is performed by mapping the intrinsic data and the causal data into the dictionary to determine a classification criterion that is a boundary between the intrinsic region in which the intrinsic data is located and the intrinsic region in which the caustic data is located. step;
    를 포함하는 데이터 밸런싱을 통한 학습기반의 비전검사 방법.Learning-based vision inspection method through data balancing comprising a.
  3. 제2항에 있어서,The method of claim 2,
    상기 사전작성 단계는,The dictionary creation step,
    케이평균 군집화를 수행하여 k개의 평균점을 기준 단어로 하는 상기 사전을 작성하는 데이터 밸런싱을 통한 학습기반의 비전검사 방법.A learning-based vision inspection method through data balancing for performing the k-means clustering to create the dictionary with k mean points as the reference word.
  4. 제2항에 있어서,The method of claim 2,
    상기 불량판별 단계는,The failure determination step,
    상기 검사대상물로부터 영상정보로 추출된 피검이미지로부터 얻은 n개의 특징점인 피검데이터를 상기 사전과 대비하고 상기 k개의 평균점을 기준으로 상기 피검데이터를 분류하여 상기 특징공간상에 도식화하는 데이터 밸런싱을 통한 학습기반의 비전검사 방법.Learning through data balancing which compares the test data which are n feature points obtained from the test image extracted from the test object as image information from the dictionary and classifies the test data on the basis of the k average points and plots them on the feature space. Based vision inspection method.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 추가학습 단계는,The further learning step,
    상기 불량판별 단계를 통해 상기 특징공간상에 도식화된 상기 피검데이터를 상기 클래스 분류 단계의 상기 진성데이터 또는 상기 가성데이터에 추가하여 상기 분류기준을 보정하는 데이터 밸런싱을 통한 학습기반의 비전검사 방법.Learning-based vision inspection method through data balancing for correcting the classification criteria by adding the test data plotted on the feature space through the bad discrimination step to the true data or the false data of the class classification step.
  6. 제5항에 있어서,The method of claim 5,
    상기 데이터 밸런싱 단계는,The data balancing step,
    상기 불량판별 단계를 통해 상기 검사대상물이 진성불량으로 판단된 경우 상기 피검데이터 및 상기 사전학습 단계를 통해 기 도출된 상기 가성데이터 중 무작위로 선택된 하나의 가성데이터를 상기 클래스 분류 단계에 적용하여 상기 분류기준을 보정하고, 상기 불량판별 단계를 통해 상기 검사대상물이 가성불량으로 판단된 경우 상기 피검데이터 및 상기 사전학습 단계를 통해 기 도출된 상기 진성데이터 중 무작위로 선택된 하나의 진성데이터를 상기 클래스 분류 단계에 적용하여 상기 분류기준을 보정하는 데이터 밸런싱을 통한 학습기반의 비전검사 방법.If it is determined that the inspection object is an intrinsic defect through the failure discrimination step, the classification is performed by applying one randomly selected caustic data of the test data and the causal data previously derived through the pre-learning step to the class classification step. If the test object is judged to be false false through the failure determination step, the classifying step of randomly selected one of the authentic data from the test data and the intrinsic data derived through the pre-learning step Learning-based vision inspection method through data balancing to apply the correction to the classification criteria.
  7. 제5항에 있어서,The method of claim 5,
    상기 데이터 밸런싱 단계는,The data balancing step,
    상기 불량판별 단계를 통해 상기 검사대상물이 진성불량으로 판단된 경우 상기 피검데이터 및 상기 사전학습 단계를 통해 기 도출된 상기 가성데이터들의 평균값을 상기 클래스 분류 단계에 적용하여 상기 분류기준을 보정하고, 상기 불량판별 단계를 통해 상기 검사대상물이 가성불량으로 판단된 경우 상기 피검데이터 및 상기 사전학습 단계를 통해 기 도출된 상기 진성데이터들의 평균값을 상기 클래스 분류 단계에 적용하여 상기 분류기준을 보정하는 데이터 밸런싱을 통한 학습기반의 비전검사 방법.If it is determined that the inspection object is an intrinsic defectiveness through the failure determination step, the classification criteria are corrected by applying the average value of the caustic data derived through the test data and the pre-learning step to the class classification step, and If the inspection object is determined to be false through a bad discrimination step, data balancing is performed by applying an average value of the intrinsic data derived through the test data and the pre-learning step to the class classification step to correct the classification criteria. Learning-based vision testing through learning.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 진성이미지, 상기 가성이미지 및 상기 피검이미지는,The true image, the pseudo image and the test image,
    상기 검사대상물의 검사대상 표면을 일정한 패턴에 따라 이동하며 촬영된 영상의 수식화된 신호가 급격하게 변화되는 지점의 영상정보인 데이터 밸런싱을 통한 학습기반의 비전검사 방법.A learning-based vision inspection method using data balancing, which is image information of a point at which a modified signal of a photographed image is rapidly changed while moving the inspection target surface of the inspection object according to a predetermined pattern.
  9. 검사대상물이 이송되는 이송수단;Transport means for transporting the inspection object;
    상기 검사대상물의 검사면을 촬영하는 촬영유닛;A photographing unit for photographing an inspection surface of the inspection object;
    상기 촬영유닛을 통해 획득된 영상이미지를 판독하여 피검이미지를 선별하는 판독부;A reading unit which selects an image to be examined by reading an image image obtained through the photographing unit;
    상기 판독부를 통해 획득된 상기 피검이미지를 수식화한 피검데이터를 특징공간상에 도식화하는 연산부; 및An operation unit which plots the test data obtained by modifying the test image obtained through the reading unit on a feature space; And
    상기 연산부를 통해 도식화된 피검데이터가 저장되는 저장부;를 포함하고,And a storage unit for storing the test data plotted through the operation unit.
    상기 연산부는 상기 저장부에 기 저장된 데이터와 상기 도식화된 피검데이터를 대비하여 상기 검사대상물의 불량여부를 판단하고, 상기 저장부는 상기 피검데이터 및 상기 피검데이터를 통해 도출되는 가상데이터가 함께 저장되는 데이터 밸런싱을 통한 학습기반의 비전검사 장치.The operation unit compares the data previously stored in the storage unit with the illustrated test data and determines whether the inspection object is defective, and the storage unit stores data together with the virtual data derived through the test data and the test data. Learning-based vision inspection device through balancing.
PCT/KR2017/005326 2016-05-23 2017-05-23 Vision inspection method using data balancing-based learning, and vision inspection apparatus using data balancing-based learning utilizing vision inspection method WO2017204519A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780001010.9A CN109462999B (en) 2016-05-23 2017-05-23 Visual inspection method based on learning through data balance and visual inspection device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160062783A KR101782363B1 (en) 2016-05-23 2016-05-23 Vision inspection method based on learning data
KR10-2016-0062783 2016-05-23

Publications (2)

Publication Number Publication Date
WO2017204519A2 true WO2017204519A2 (en) 2017-11-30
WO2017204519A3 WO2017204519A3 (en) 2018-08-09

Family

ID=60036118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005326 WO2017204519A2 (en) 2016-05-23 2017-05-23 Vision inspection method using data balancing-based learning, and vision inspection apparatus using data balancing-based learning utilizing vision inspection method

Country Status (3)

Country Link
KR (1) KR101782363B1 (en)
CN (1) CN109462999B (en)
WO (1) WO2017204519A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819598A (en) * 2018-04-26 2020-10-23 大王制纸株式会社 Sorting device, sorting method, and sorting program, and computer-readable recording medium or storage device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039047A (en) 2018-10-01 2020-04-16 에스케이씨 주식회사 Method for detecting defect of film and system therefor
KR102209505B1 (en) * 2018-12-13 2021-02-01 재단법인대구경북과학기술원 Artificial inteligence learning methods and apparatus using analysis of data frequency value
KR102223070B1 (en) * 2019-01-23 2021-03-05 한국과학기술원 Method and apparatus for training neural network
KR20240077302A (en) 2022-11-24 2024-05-31 부산대학교 산학협력단 Apparatus and Method for Detecting Defect Using Deep Learning-based Surface Inspection
CN116484262B (en) * 2023-05-06 2023-12-08 南通大学 Textile equipment fault auxiliary processing method based on text classification

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743126A (en) * 1993-08-02 1995-02-10 Nikon Corp Pattern inspection device
CN100428277C (en) * 1999-11-29 2008-10-22 奥林巴斯光学工业株式会社 Defect inspecting system
JP2002174603A (en) * 2000-12-08 2002-06-21 Olympus Optical Co Ltd Defect classifying method
JP4504612B2 (en) * 2002-08-12 2010-07-14 株式会社日立ハイテクノロジーズ Foreign matter inspection method and foreign matter inspection device
JP3756507B1 (en) * 2004-09-17 2006-03-15 シャープ株式会社 Image processing algorithm evaluation method and apparatus, image processing algorithm generation method and apparatus, program, and program recording medium
WO2006054272A2 (en) * 2004-11-19 2006-05-26 Koninklijke Philips Electronics, N.V. A stratification method for overcoming unbalanced case numbers in computer-aided lung nodule false positive reduction
JP2006292615A (en) 2005-04-13 2006-10-26 Sharp Corp Visual examination apparatus, visual inspection method, program for making computer function as visual inspection apparatus, and recording medium
CN101140619A (en) * 2006-09-05 2008-03-12 大日本网目版制造株式会社 Image processing device, data processing device and parameter adjusting method
KR20100068734A (en) * 2008-12-15 2010-06-24 (주)워프비전 Method for verifying defective on printed circuit board
US9219886B2 (en) * 2012-12-17 2015-12-22 Emerson Electric Co. Method and apparatus for analyzing image data generated during underground boring or inspection activities
KR20150095053A (en) * 2014-02-12 2015-08-20 한화테크윈 주식회사 Validity verification apparatus of product inspection and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819598A (en) * 2018-04-26 2020-10-23 大王制纸株式会社 Sorting device, sorting method, and sorting program, and computer-readable recording medium or storage device
CN111819598B (en) * 2018-04-26 2023-06-13 大王制纸株式会社 Sorting apparatus, sorting method, sorting program, and computer-readable recording medium or storage device

Also Published As

Publication number Publication date
KR101782363B1 (en) 2017-09-27
CN109462999A (en) 2019-03-12
WO2017204519A3 (en) 2018-08-09
CN109462999B (en) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2017204519A2 (en) Vision inspection method using data balancing-based learning, and vision inspection apparatus using data balancing-based learning utilizing vision inspection method
WO2019107614A1 (en) Machine vision-based quality inspection method and system utilizing deep learning in manufacturing process
EP0374694B1 (en) Defect detection system and method for pattern to be inspected
CN108520514B (en) Consistency detection method for electronic elements of printed circuit board based on computer vision
KR102168724B1 (en) Method And Apparatus for Discriminating Normal and Abnormal by using Vision Inspection
US6862491B2 (en) System and method for process variation monitor
CN109946303A (en) Check device and method
KR960011414A (en) Inspection system and process
WO2021066253A1 (en) Artificial intelligence (ai)-based object inspection system and method
JP5718781B2 (en) Image classification apparatus and image classification method
TW202144766A (en) Two-dimensional PCB appearance defect real-time automatic detection technology based on deep learning
WO2016043397A1 (en) Glass defect detection method and apparatus using hyperspectral imaging technique
CN111242899B (en) Image-based flaw detection method and computer-readable storage medium
CN110533654A (en) The method for detecting abnormality and device of components
WO2016204402A1 (en) Component defect inspection method, and apparatus therefor
KR20050120420A (en) In-line typed apparatus for auto wafer-defect classification and control method thereof
CN111311545A (en) Container detection method, device and computer readable storage medium
KR101782364B1 (en) Vision inspection method based on learning data
CN108508023A (en) The defect detecting system of end puller bolt is contacted in a kind of railway contact line
CN111275682A (en) Container detection method, device and computer readable storage medium
CN114549414A (en) Abnormal change detection method and system for track data
WO2016080815A1 (en) Method for inspecting forged passport and recording medium therefor
CN113128555B (en) Method for detecting abnormality of train brake pad part
CN116523922B (en) Bearing surface defect identification method
KR20160139207A (en) Method for inspecting defects of substrates

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803038

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17803038

Country of ref document: EP

Kind code of ref document: A2