WO2017204441A1 - 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치 - Google Patents

초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치 Download PDF

Info

Publication number
WO2017204441A1
WO2017204441A1 PCT/KR2017/002234 KR2017002234W WO2017204441A1 WO 2017204441 A1 WO2017204441 A1 WO 2017204441A1 KR 2017002234 W KR2017002234 W KR 2017002234W WO 2017204441 A1 WO2017204441 A1 WO 2017204441A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
nanoparticle
dispersion
streaming
shock waves
Prior art date
Application number
PCT/KR2017/002234
Other languages
English (en)
French (fr)
Inventor
김무준
김정순
김지향
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Publication of WO2017204441A1 publication Critical patent/WO2017204441A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/55Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/86Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with vibration of the receptacle or part of it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Definitions

  • the present invention relates to a nanoparticle dispersing apparatus for effectively dispersing nanoparticles, and more particularly, it is difficult to generate powerful acoustic power due to the use of planar ultrasonic waves, and it is difficult to generate uneven dispersion due to standing wave sound field distribution.
  • a plurality of piezoelectric vibrators were aggregated in the nanoparticle suspension by shock waves.
  • Ultrasonic streaming and It relates to a nanoparticle dispersion device using a defeated.
  • the present invention in order to solve the problems of the prior art as described above, in addition to the erosion dispersion and fission dispersion can be generated at the same time, giving a certain angle with respect to the tangent of the inner surface of the cylinder of the plurality of piezoelectric vibrators Ultrasonic streaming emitted from each vibrator forms a vortex inside the suspension by arranging it in a circular shape, inducing uniform dispersion, and implementing a completely non-contact dispersion to prevent the incorporation of foreign matter through the pump while simultaneously
  • the present invention relates to a nanoparticle dispersion apparatus using ultrasonic streaming and shock waves configured to be easily extended to a device.
  • nanoparticles are particles having a diameter of 1 nm to 100 nm, and have electrical, optical, and magnetic properties different from those of general materials due to their large surface area relative to the volume of the particles.
  • nanocomposite materials having various and complex functions such as mechanical, chemical, and optical properties by adding nanoparticles having various characteristics to polymer resins.
  • the nanoparticles have a relatively large cohesive force between the particles, so that the particles may not exhibit the physical properties of the nanoparticles due to the nature of forming the aggregates.
  • the problems of such nanoparticles have been improved.
  • various researches are being conducted.
  • examples of the prior art related to the method and apparatus for dispersing nanoparticles as described above for example, first, according to Korean Patent Publication No. 10-1583752, 400 ⁇ 600g epoxy resin and Adding 50-200 g of beta-type nanoparticles to the mixing vessel, and placing the stirrer at an inclination of 15 to 30 ° from the vertical direction of the ground so that the epoxy mixture has an elliptical flow in the mixing vessel, Or, by placing the mixing vessel to have a slope of 15 to 30 ° from the ground and agitating for 1 to 3 hours at a speed of 400 ⁇ 600rpm, the stirring step, the ground in the elliptical flow during stirring Stirring is performed while applying ultrasonic waves to the upper end of the elliptical flow, the part farthest from the reaction, thereby stirring the epoxy mixture comprising the beta-type nanoparticles.
  • the bottom and side of the A housing forming a connection path, a movable plate for adjusting a Bragg peak of a proton beam disposed on an upper side of the side, and having a front sight glass through which the proton beam can pass;
  • a sample container capable of generating nanoparticles by irradiation of a proton beam inside the sealed interior, fixed to a lower portion of the moving plate, positioned inside the enclosure, and having a irradiation window of a proton beam facing the front sight glass;
  • an ultrasonic vibrator that transmits ultrasonic vibration to the liquid to disperse the sample, thereby evenly irradiating the proton beam to the sample for nanoparticle generation, quantifying the amount of the proton beam, and controlling the bragg peak of the proton beam.
  • a storage container capable of storing a nanoparticle solution
  • An aerosol generating module having a heater capable of heating the nanoparticle solution stored in the storage container, and an ultrasonic vibrator capable of transmitting ultrasonic vibration to the nanoparticle solution stored in the storage container; And a nozzle case having an injection passage formed therein and an outlet formed at one side thereof in communication with the injection passage, a suction unit for inhaling nanoparticle solution from the aerosol-generating module into the injection passage and aerosolizing the same to generate aerosol particles.
  • a nanoparticle aerosol injection module having an air injection unit for injecting air toward the outlet along the inner circumferential surface of the aerosol particles in the process of inhaling and aerosolizing the nanoparticle solution from the aerosol generator to discharge to the outside
  • the technical content of the nanoparticle aerosol injector having an air spray unit configured to be attached to the wall surface of the same time, and to be discharged smoothly in the unfolded state without twisting or agglomeration of the fibrous nanoparticles has been presented.
  • a gas may be discharged by blowing a gas.
  • a supersonic nozzle for generating bullet particles of a predetermined size to impinge the bullet particles onto the surface of the product;
  • a gas supplier for supplying gas to the supersonic nozzle at a predetermined pressure;
  • a temperature controller for heating and maintaining the gas supplied from the gas supply to a predetermined temperature, and injecting nano-level fine bullet particles at a high speed onto the surface of the product, thereby forming grooves formed on the surface as well as contaminated particles attached to the surface of the product.
  • the nanoparticle cleaning apparatus using a supersonic nozzle configured to easily remove contaminant particles stuck in the same region as described above and a description thereof have been presented.
  • the splitting dispersion due to the fluid shear force and the erosion dispersion due to the shock wave generated from the ultrasonic cavitation are performed in parallel, but the conventional ultrasonic dispersion apparatus is, for example, an ultrasonic bath or Like the homogenizer, it is difficult to generate powerful acoustic power due to the use of planar ultrasonic waves, and there is a problem of non-uniform dispersion due to the standing wave sound field distribution.
  • the shock wave by the ultrasonic vibrator can simultaneously produce the effective erosion dispersion and the split dispersion by the ultrasonic streaming effect, and implements a complete non-contact dispersion through the pump.
  • nanoparticle dispersion device using ultrasonic streaming and shock waves of a new configuration, which is configured to be easily expanded to a large-capacity dispersion device. Device How is the situation that did not come.
  • the present invention is to solve the problems of the prior art as described above, the object of the present invention, therefore, it is difficult to generate a powerful acoustic power due to the use of planar ultrasound, and there was a problem of non-uniform dispersion due to the standing wave sound field distribution
  • the aggregation of the nanoparticle suspension by shock waves using multiple piezoelectric vibrators In addition to being able to cause effective erosion dispersal in the particles, in addition to inclining the radial plane of the piezoelectric vibrator to cause an ultrasonic streaming effect, vortices can be generated in the nanoparticle suspension to simultaneously generate fission dispersion by fluid shear force.
  • Ultrasonic Streaming and Filling The present invention is to provide a nanoparticle dispersion apparatus using breaking.
  • the ultrasonic streaming and cavitation effect by arranging the radial surfaces of a plurality of piezoelectric vibrators in a circle at an angle with respect to the tangent of the inner surface of the cylinder
  • a uniform dispersion by the non-contact dispersion and easy expansion to a large-capacity dispersing device By inducing a uniform dispersion by the non-contact dispersion and easy expansion to a large-capacity dispersing device, by generating a high-strength ultrasonic sound field by the circular arrangement of the piezoelectric vibrator, it is easy to generate shock waves by ultrasonic cavitation
  • Another object of the present invention in order to solve the problems of the prior art as described above, by using the short-wave ultrasonic waves and shock waves generated from the ultra-high frequency ultrasonic waves of the MHz to achieve efficient mechanical energy transfer to the nanoparticles It is to provide a nanoparticle dispersion device using ultrasonic streaming and shock waves configured to be.
  • Another object of the present invention in order to solve the problems of the prior art as described above, it is possible to disperse large capacity by the individual drive of a plurality of arrayed ultrasonic elements, so that the high-power drive in the case of a large single element is impossible It is an object of the present invention to provide a nanoparticle dispersion apparatus using ultrasonic streaming and shock waves configured to solve the problems of the present invention.
  • Another object of the present invention in order to solve the problems of the prior art as described above, to prevent the mixing of foreign matter in a non-contact dispersion method in which the sample and the ultrasonic vibration surface is separated, it is configured to maintain the purity of the nanoparticle sample It is to provide a nanoparticle dispersion device using ultrasonic streaming and shock waves.
  • the ultrasonic dispersion device and the cylindrical single piezoelectric vibrator of the prior art which is difficult to generate a strong acoustic power due to the use of planar ultrasonic waves and has a problem of non-uniform dispersion due to the standing wave sound field distribution
  • the nanoparticle dispersion apparatus using ultrasonic streaming and shock waves configured to solve the problems of the circulating focused ultrasonic dispersion apparatus of the prior art, which was limited in size due to the use, the main body forming the appearance of the nanoparticle dispersion apparatus.
  • a nanoparticle accommodating container disposed inside the main body to accommodate the nanoparticle suspension; And arranged at a predetermined interval on the side of the main body to simultaneously generate erosion dispersion by shock waves and split dispersion by ultrasonic streaming effects on aggregated particles in the nanoparticle suspension accommodated in the nanoparticle container.
  • a nanoparticle dispersion apparatus using ultrasonic streaming and shock waves comprising a plurality of piezoelectric vibrators.
  • the main body is formed in a hollow cylindrical shape using a material containing aluminum.
  • the nanoparticle container is characterized in that it is formed in the shape of a beaker accommodated in the nanoparticle suspension is installed inside the body.
  • the piezoelectric vibrator is arranged in a plurality of circularly arranged at a predetermined interval on the side along the circumference of the main body is formed in a cylindrical shape, the cavitation shock wave by the ultrasonic waves radiated and focused by each piezoelectric vibrator It is characterized in that it is configured to generate the erosion dispersion by the shock wave in the nanoparticle suspension is generated and accommodated in the nanoparticle container.
  • the piezoelectric vibrators are arranged in a plurality of circularly arranged at predetermined intervals along the circumference of the main body formed in a cylindrical shape and arranged in a circular shape, and at the same time, radiating the radial surfaces of the piezoelectric vibrators arranged in a circular shape of the main body.
  • the erosion dispersion caused by the shock wave generated from the ultrasonic cavitation is generated in the nanoparticle suspension contained in the nanoparticle container, and the ultrasonic stream radiated from each piezoelectric vibrator.
  • generating a vortex inside the nanoparticle suspension is characterized in that it is configured to generate a split dispersion by the fluid shear force at the same time.
  • the nanoparticle dispersion device is characterized in that it further comprises a control unit configured to control each of the piezoelectric vibrator, it is characterized in that it is configured to facilitate the large-capacity dispersion.
  • a nanoparticle dispersion method using ultrasonic streaming and shock wave characterized in that configured to disperse the nanoparticles using the nanoparticle dispersion device using the ultrasonic streaming and shock wave described above.
  • a nanoparticle characterized in that produced using a nanoparticle dispersion device using the ultrasonic streaming and shock waves described above.
  • the use of a plurality of piezoelectric vibrators can cause effective erosion dispersion to the aggregated particles in the nanoparticle suspension by shock waves, in addition to tilting the radial surface of the piezoelectric vibrator to ultrasonic streaming
  • Ultrasonic streaming and shock wave nanoparticle dispersing apparatus configured to generate vortices in the nanoparticle suspension by causing an effect and simultaneously cause split dispersion by fluid shear force are provided, thereby providing powerful acoustic power by using planar ultrasonic waves.
  • the radial planes of the plurality of piezoelectric vibrators are arranged in a circle at an angle with respect to the tangent of the inner surface of the cylinder to induce uniform dispersion by ultrasonic streaming and cavitation effects, and non-contact dispersion.
  • easy expansion to a large-capacity dispersing device thereby generating a high-intensity ultrasonic sound field by the circular arrangement of the piezoelectric vibrator, which makes it easy to generate shock waves by ultrasonic cavitation, and maximizes dispersion efficiency and nonuniformity by the ultrasonic streaming effect. It is possible to provide a nanoparticle dispersion apparatus using ultrasonic streaming and shock waves configured to solve the dispersion.
  • ultrasonic streaming and shock waves configured to efficiently perform mechanical energy transfer to the nanoparticles by using the short-wave ultrasound and shock waves generated from the ultra-high frequency ultrasonic waves of the MHz band It is possible to provide a nanoparticle dispersion device using.
  • the present invention by being configured as described above, it is possible to disperse large capacity by individual driving of a plurality of arrayed ultrasonic elements, so that a large single element can be configured to solve the problems of the prior art, which is impossible to drive high output. It is possible to provide a nanoparticle dispersion apparatus using ultrasonic streaming and shock waves.
  • FIG. 1 is a view schematically showing the overall configuration of the nanoparticle dispersion apparatus using ultrasonic streaming and shock waves according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a nanoparticle dispersion apparatus using ultrasonic streaming and shock waves according to an embodiment of the present invention shown in FIG. 1.
  • FIG. 3 is a conceptual diagram schematically showing the operating principle of the nanoparticle dispersion apparatus using ultrasonic streaming and shock waves according to an embodiment of the present invention.
  • FIG. 4 is a view showing the actual implementation of the nanoparticle dispersion device using ultrasonic streaming and shock waves according to an embodiment of the present invention configured as described above.
  • FIG. 5 is a view showing the appearance of the ultrasonic sound field of the nanoparticle dispersion device using the ultrasonic streaming and shock waves according to an embodiment of the present invention with a luminol solution.
  • Figure 6 is a graph showing the results of comparing the performance of the ultrasonic dispersion and nanoparticle dispersion apparatus using the ultrasonic wave and shock waves according to an embodiment of the present invention through an experiment through a graph.
  • Nanoparticle dispersion device using ultrasonic streaming and shock wave configured to generate vortices in the nanoparticle suspension by simultaneously inclining the radial surface of the piezoelectric vibrator to cause an ultrasonic streaming effect. It is about.
  • the present invention by arranging the radial surfaces of the plurality of piezoelectric vibrators in a circle at a predetermined angle with respect to the tangent of the inner surface of the cylinder to induce uniform dispersion by ultrasonic streaming and cavitation effect, non-contact dispersion And easy expansion to a large-capacity dispersing device, thereby generating a high-intensity ultrasonic sound field by a circular arrangement of piezoelectric vibrators, which makes it easy to generate shock waves by ultrasonic cavitation, and maximizes dispersion efficiency and nonuniformity by ultrasonic streaming effect.
  • the present invention relates to a nanoparticle dispersion apparatus using ultrasonic streaming and shock waves configured to solve dispersion.
  • nanoparticles using ultrasonic streaming and shockwaves configured to efficiently perform mechanical energy transfer to nanoparticles by using short wavelength ultrasonic waves and shock waves generated from ultra-high frequency ultrasonic waves in the MHz band. It relates to a dispersing device.
  • the ultrasonic streaming and shock wave is configured to solve the problems of the prior art that the large-capacity dispersion by the individual drive of a plurality of arranged ultrasonic elements is possible to drive a high output in the case of a large single element It relates to a nanoparticle dispersion device using.
  • the present invention in the nanoparticle dispersion apparatus using ultrasonic streaming and shock waves configured to prevent foreign matter mixing in a non-contact dispersion method in which the sample and the ultrasonic vibration surface are separated and maintain the purity of the nanoparticle sample. It is about.
  • FIG. 1 is a view schematically showing the overall configuration of a nanoparticle dispersion apparatus 10 using ultrasonic streaming and shock waves according to an embodiment of the present invention.
  • the nanoparticle dispersion apparatus 10 using ultrasonic streaming and shock waves is divided into a main body 11 and a main body 11 formed into a cylindrical shape. And a plurality of piezoelectric vibrators arranged at regular intervals on the side surfaces of the main body 11 to accommodate the nanoparticle suspension, and applying vibration to the nanoparticle suspension contained in the nanoparticle accommodation container 12 ( 13) can be configured to include.
  • the main body 11 for example, as shown in Figure 1, may be formed in a hollow cylindrical shape using a material such as aluminum, the present invention is not necessarily limited to this configuration. That is, it should be noted that the main body 11 may be formed of other materials in addition to aluminum, and in this case, the main body 11 may be formed in various shapes other than the cylindrical shape. .
  • the nanoparticle accommodating container 12 may be formed, for example, in the form of a beaker that accommodates the nanoparticle suspension and is installed inside the main body 11, but as in the main body 11, FIG. 1. It should be noted that the present invention is not limited to the above configuration, and may be variously configured as necessary.
  • a plurality of the piezoelectric vibrators 13 are disposed along the circumference of the main body 11 at regular intervals and are eroded by shock waves generated from ultrasonic cavitation in the nanoparticle suspension contained in the nanoparticle container 12. It can be configured to apply three-dimensional vibration by applying the dispersion and the split dispersion by the fluid shear force at the same time.
  • FIG. 2 is a plan view of the nanoparticle dispersion apparatus 10 using ultrasonic streaming and shock waves according to the embodiment of the present invention shown in FIG.
  • the plurality of piezoelectric vibrators 13 are disposed at regular intervals along the circumference of the main body 11 at regular intervals, so that ultrasonic waves radiated and focused by a plurality of piezoelectric vibrators generate a high-intensity sound field. And cavitation shock waves generated therefrom can cause effective erosion dispersion for aggregated particles in the nanoparticle suspension.
  • the piezoelectric vibrator 13 described above is disposed at an inclined plane of the respective piezoelectric vibrators 13 as shown in FIG. 2 to generate vortices in the nanoparticle suspension by the ultrasonic streaming effect, thereby generating a fluid shear force. It can be configured to simultaneously generate a split dispersion by.
  • ultrasonic waves are repeated under pressure and decompression force in water, and in the case of high-intensity ultrasound, a vacuum is formed temporarily at the time of decompression force, and this vacuum state is caused by dissolved gases. Form bubbles.
  • these bubbles decay into a state of high temperature and high pressure through the adiabatic compression process during the pressing force, and generate a shock wave having a high breaking force, which contributes to the erosion dispersion of the aggregated nanoparticles.
  • the piezoelectric vibrator 13 may be configured to efficiently transmit energy by using ultrasonic waves having a short wavelength of several MHz, for example, for effective dispersion of nanoparticles.
  • the nanoparticle dispersion device 10 using the ultrasonic streaming and shock wave according to an embodiment of the present invention, by including a control unit configured to control each piezoelectric vibrator 13 separately, the existing single By overcoming the limitations on the driving of the piezoelectric vibrator and individually driving the plurality of vibrators, it can be configured to easily enable large-capacity dispersion.
  • nanoparticle dispersion apparatus 10 using ultrasonic streaming and shock waves according to an embodiment of the present invention.
  • FIG. 5 is a view showing the actual implementation of the nanoparticle dispersion apparatus 10 using ultrasonic streaming and shock waves according to an embodiment of the present invention configured as described above, and FIG. 5 illustrates ultrasonic streaming and shock waves according to an embodiment of the present invention.
  • the ultrasonic sound field of the nanoparticle dispersing device 10 is a view showing the appearance of the luminol solution.
  • the conventional ultrasonic dispersion device is difficult to generate a powerful acoustic power when generating ultra-high frequency ultrasonic waves due to the use of planar ultrasonic waves, such as ultrasonic bath or homogenizer, the ultrasonic streaming and shock wave according to an embodiment of the present invention
  • a plurality of piezoelectric vibrators 13 are arranged in a circle around the cylindrical main body 11, so that a strong sound field can be formed in the center of the cylinder. It may be configured to generate a shock wave by the ultra-high frequency ultrasonic waves.
  • the nanoparticle dispersion device 10 using ultrasonic streaming and shock waves according to an embodiment of the present invention, as described above, the radial surface of the piezoelectric vibrator 13 arranged in a circular shape with respect to the tangent of the inner surface of the cylinder.
  • the ultrasonic streaming emitted from each vibrator forms a vortex inside the nanoparticle suspension, which solves the problem of non-uniform dispersion due to the standing wave sound field distribution in the existing ultrasonic dispersion devices, and is also completely non-contact. Since the dispersion is possible, problems such as incorporation of foreign matter through the pump can be solved in the circulating focused ultrasonic dispersion apparatus using the recently proposed pump.
  • circulating focused ultrasound dispersers using pumps have a limitation in size due to the use of a single cylindrical piezoelectric vibrator, that is, circulating focused ultrasound dispersers have a large diameter for large volume dispersion.
  • the cylindrical piezoelectric vibrator should be used, but in this case, the electrical input impedance is extremely low, so that the supply of electrical energy is a problem, whereas the nanoparticle dispersion device 10 using ultrasonic streaming and shock wave according to an embodiment of the present invention,
  • the expandability is infinite, so that it is easy to expand to a large-capacity dispersing apparatus, and thus it can be widely applied to various industrial fields.
  • Figure 6 is a graph showing the results of comparing the performance of the ultrasonic dispersion device and the ultrasonic dispersion device using ultrasonic streaming and shock waves according to an embodiment of the present invention through an experiment in a graph.
  • the present inventors in order to verify the performance of the nanoparticle dispersion apparatus using ultrasonic streaming and shock wave according to an embodiment of the present invention, the ultrasonic streaming device and ultrasonic wave and shock wave according to an embodiment of the present invention
  • the nanoparticle dispersion device was dispersed for 0.002 wt% of TiO 2 nanoparticle suspensions for 30 minutes in the conventional ultrasonic dispersion device, and the nanoparticle dispersion device using ultrasonic streaming and shock wave according to the present invention was dispersed for 10 minutes. Particle size distribution was measured and the results were compared.
  • the nanoparticle dispersion apparatus using ultrasonic streaming and shock waves according to an embodiment of the present invention shows excellent dispersion results despite a short time dispersion. It can be confirmed.
  • the conventional dispersion apparatus shows a peak at about 110 nm
  • the nanoparticle dispersion apparatus using ultrasonic streaming and shock waves according to an embodiment of the present invention shows a peak at about 60 nm. It can be seen that the number of monodispersed particles is much higher.
  • the particles aggregated in the nanoparticle suspension by shock waves using a plurality of piezoelectric vibrators are configured to generate a vortex in the nanoparticle suspension by inclining the radial surface of the piezoelectric vibrator to cause an ultrasonic streaming effect, thereby simultaneously causing the splitting dispersion due to the fluid shear force.
  • the radial planes of the plurality of piezoelectric vibrators are arranged in a circle at a predetermined angle with respect to the tangent of the inner surface of the cylinder to induce uniform dispersion by ultrasonic streaming and cavitation effects, and non-contact dispersion.
  • a nanoparticle dispersion device using ultrasonic streaming and shock waves configured to be easily expanded to a large-capacity dispersion device, thereby generating a high-intensity ultrasonic sound field by a circular arrangement of piezoelectric vibrators, thereby making it easy to generate shock waves by ultrasonic cavitation.
  • the ultrasonic streaming effect can maximize dispersion efficiency and solve non-uniform dispersion.
  • nanoparticle dispersion device using the ultrasonic streaming and shock waves configured as described above, by using the short-wave ultrasonic waves and shock waves generated from the ultra-high frequency ultrasonic waves of the MHz band, mechanical energy to the nanoparticles Delivery can be made efficiently.
  • the present invention by providing a nanoparticle dispersion device using the ultrasonic streaming and shock waves configured as described above, the foreign matter mixing is prevented in a non-contact dispersion method in which the sample and the ultrasonic vibration surface is separated, the purity of the nanoparticle sample Can be maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

본 발명은 나노입자를 효과적으로 분산시키기 위한 나노입자 분산장치에 관한 것으로, 본 발명에 따르면, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결하여, 다수의 압전진동자를 이용하여 충격파에 의해 나노입자 현탁액 내의 응집된 입자들에 효과적인 침식분산을 일으킬 수 있고, 압전진동자의 방사면에 경사를 주어 초음파 스트리밍 효과를 야기하는 것에 의해 나노입자 현탁액 내에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 일으킬 수 있는 데 더하여, 복수의 압전진동자의 방사면을 원통의 내면의 접선에 대하여 일정 각도를 주어 원형으로 배열하는 것에 의해 각 진동자들로부터 방사된 초음파 스트리밍이 현탁액 내부에 와류를 형성하도록 하여 균일한 분산을 유도하고, 완전한 비접촉식 분산을 구현하여 펌프를 통한 이물질의 혼입을 방지하는 동시에, 대용량의 분산장치로 용이하게 확장이 가능하도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공된다.

Description

초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치
본 발명은 나노입자를 효과적으로 분산시키기 위한 나노입자 분산장치에 관한 것으로, 더 상세하게는, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결하기 위해, 다수의 압전진동자를 이용하여 충격파에 의해 나노입자 현탁액 내의 응집된 입자들에 효과적인 침식분산을 일으킬 수 있는 데 더하여, 압전진동자의 방사면에 경사를 주어 초음파 스트리밍 효과를 야기하는 것에 의해 나노입자 현탁액 내에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 일으킬 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 관한 것이다.
또한, 본 발명은, 상기한 바와 같은 종래기술의 문제점들을 해결하기 위해 침식분산과 분열분산을 동시에 일으킬 수 있는 데 더하여, 복수의 압전진동자의 방사면을 원통의 내면의 접선에 대하여 일정 각도를 주어 원형으로 배열하는 것에 의해 각 진동자들로부터 방사된 초음파 스트리밍이 현탁액 내부에 와류를 형성하도록 하여 균일한 분산을 유도하고, 완전한 비접촉식 분산을 구현하여 펌프를 통한 이물질의 혼입을 방지하는 동시에, 대용량의 분산장치로 용이하게 확장이 가능하도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 관한 것이다.
일반적으로, 나노입자는, 직경이 1nm 에서 100nm의 크기를 가지는 입자로서, 입자가 가지는 체적에 비해 표면적이 큰 특징으로 인해 일반적인 물질과는 다른 전기적, 광학적, 자기적 특성을 가진다.
이에, 최근에는, 이와 같이 다양한 특징을 가지는 나노입자를 고분자 수지 내에 첨가하여 기계적, 화학적, 광학적 물성 등의 다양하고 복합적인 기능을 가지는 나노복합재료를 제조하는 나노융합산업이 주목받고 있다.
여기서, 나노입자는 입자들간의 응집력이 비교적 큰 편이므로 입자들이 응집체를 형성하려는 성질로 인해 나노입자들이 가지는 물성을 발휘하지 못하게 되는 문제점이 있으며, 이를 위해, 최근에는, 이러한 나노입자의 문제점을 개선하여 다양한 고분자 수지 내에서 높은 분산성을 가지도록 하기 위한 연구가 다양하게 진행되고 있다.
더 상세하게는, 상기한 바와 같이 나노입자를 분산시키기 위한 방법 및 장치에 관한 종래기술의 예로는, 예를 들면, 먼저, 한국 등록특허공보 제10-1583752호에 따르면, 에폭시 수지 400 ~ 600g과 베타형 나노입자 50 ~ 200g을 혼합용기에 첨가하는 단계와, 혼합용기 내에 에폭시 혼합물이 타원형의 유동을 가지도록 하기 위해, 지면의 수직방향으로부터 15 ~ 30°의 경사를 가지도록 교반기를 위치시키거나, 또는, 지면으로부터 15 ~ 30°의 경사를 가지도록 혼합용기를 위치시켜 400 ~ 600rpm의 속도로 1 내지 3시간 동안 교반하는 단계를 포함하고, 상기 교반하는 단계는, 교반시 타원형의 유동 중 지면으로부터 가장 멀리 떨어진 부분인 타원형 유동의 상단부에 초음파를 가하면서 교반을 수행하도록 구성됨으로써, 베타형 나노입자를 포함하는 에폭시 혼합물을 교반시 타원형의 유동을 가지도록 하는 동시에, 타원형 유동의 상단부에 초음파를 가하는 것에 의해 고용량의 베타형 나노입자를 고속으로 분산시킬 수 있도록 구성되는 에폭시 수지내 고용량의 베타형 나노입자 고속 분산방법에 관한 기술내용이 제시된 바 있다.
또한, 상기한 바와 같이 나노입자를 분산시키기 위한 방법 및 장치에 관한 종래기술의 다른 예로는, 예를 들면, 한국 등록특허공보 제10-1264836호에 따르면, 액체를 담을 수 있도록 저면과 측면의 상호 연결로 내부를 형성하고, 측면의 상부에 양성자빔의 브래그 피크(Bragg peak) 조절을 위한 이동판이 배치되며, 측면 중 적어도 일면에 양성자빔이 투과될 수 있는 전면 시창이 형성된 함체; 밀폐된 내부에 양성자빔의 조사로 나노입자를 생성할 수 있는 시료가 주입될 수 있으며, 이동판 하부에 고정되어 함체 내부에 위치하고, 전면 시창을 향하는 양성자빔의 조사창이 형성된 시료용기; 및 액체에 초음파 진동을 전달하여 시료를 분산시키는 초음파 진동자를 포함하여, 나노입자 생성을 위한 시료에 양성자빔을 고르게 조사할 수 있고, 양성자빔 양을 정량화할 수 있는 동시에, 양성자빔의 브래그피크 조절과 선형에너지 전이(LET, Linear Energy Transfer)가 조절될 수 있도록 구성되는 나노입자 제조장치 및 나노입자 제조방법에 관한 기술내용이 제시된 바 있다.
아울러, 상기한 바와 같이 나노입자를 분산시키기 위한 방법 및 장치에 관한 종래기술의 또 다른 예로는, 예를 들면, 한국 등록특허공보 제10-1218747호에 따르면, 나노입자 용액을 저장할 수 있는 저장용기, 저장용기에 저장된 나노입자 용액을 가열할 수 있는 가열기, 저장용기에 저장된 나노입자 용액에 초음파 진동을 전달할 수 있는 초음파 진동기를 구비하는 에어로졸 발생모듈; 및 내부에 분사유로가 형성되고 일측에는 분사유로와 연통되게 배출구가 형성되는 노즐 케이스, 에어로졸 발생모듈로부터 분사유로로 나노입자 용액을 흡입함과 동시에 에어로졸화하여 에어로졸 입자를 발생시키는 흡입유닛, 분사유로의 내주면을 따라 배출구를 향해 공기를 분사하는 공기분사유닛을 구비하는 나노입자 에어로졸 분사모듈을 포함하여, 에어로졸 발생기로부터 나노입자 용액을 흡입하여 에어로졸화한 후 외부로 배출시키는 과정에서 에어로졸 입자가 내부 유로의 벽면에 부착되지 않도록 하는 동시에, 섬유상 나노입자가 다시 꼬이거나 뭉치지 않고 펼쳐진 상태로 원활하게 배출될 수 있도록 구성되는 공기분사유닛을 구비한 나노입자 에어로졸 분사장치에 관한 기술내용이 제시된 바 있다.
아울러, 상기한 바와 같이 나노입자를 분산시키기 위한 방법 및 장치에 관한 종래기술의 또 다른 예로는, 예를 들면, 한국 공개특허공보 제10-2009-0050707호에 따르면, 기체를 분출시킴으로써 기체를 기 설정된 크기의 탄환입자로 생성시켜 탄환입자를 제품의 표면에 충돌시키는 초음속 노즐; 기 설정된 압력으로 기체를 초음속 노즐로 공급하는 기체 공급기; 및 기체 공급기로부터 공급되는 기체를 기 설정된 온도로 가열 유지시키는 온도 제어기를 포함하여, 제품의 표면에 나노수준의 미세한 탄환입자를 고속으로 분사시킴으로써 제품의 표면에 부착된 오염입자뿐만 아니라 표면에 형성된 홈과 같은 영역에 박힌 오염입자도 용이하게 제거할 수 있도록 구성되는 초음속 노즐을 이용한 나노입자 세정장치 및 그 세정방법에 관한 기술내용이 제시된 바 있다.
상기한 바와 같이, 종래, 나노입자의 제조 및 분산을 위한 여러 가지 기술내용들이 제시된 바 있으나, 상기한 바와 같은 종래기술의 장치 및 방법들은 다음과 같은 문제점이 있는 것이었다.
즉, 일반적으로, 나노입자의 효과적인 분산을 위해서는 유체 전단력에 의한 분열분산과 초음파 캐비테이션으로부터 발생하는 충격파에 의한 침식분산이 병행되는 것이 바람직하나, 종래의 초음파 분산장치는, 예를 들면, 초음파 배스나 호모지나이저와 같이, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고, 정재파 음장분포로 인한 불균일 분산의 문제점이 있었다.
또한, 최근에는, 순환식 집속초음파 분산장치가 제시된 바 있으나, 이는, 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있어 대용량의 분산을 위하여는 그만큼 대구경의 원통형 압전진동자를 사용하여야 하고, 이 경우 전기적 입력 임피던스가 극도로 낮아져 전기에너지의 공급이 문제가 되는 단점이 있었다.
아울러, 나노입자의 효과적인 분산을 위하여는 유체 전단력에 의한 분열분산과 초음파 캐비테이션으로부터 발생하는 충격파에 의한 침식분산이 병행되어야 하나, 종래의 초음파 분산장치들은 이와 같이 분열분산과 침식분산이 동시에 이루어질 수 있는 구성에 대하여는 제시된 바 없었다.
따라서 상기한 바와 같이, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결하기 위하여는, 초음파 진동자에 의한 충격파로 효과적인 침식분산과 초음파 스트리밍 효과에 의한 분열분산을 동시에 일으킬 수 있으며, 완전한 비접촉식 분산을 구현하여 펌프를 통한 이물질의 혼입을 방지하는 데 더하여, 대용량의 분산장치로 용이하게 확장이 가능하도록 구성되는 새로운 구성의 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공하는 것이 바람직하나, 아직까지 그러한 요구를 모두 만족시키는 장치나 방법은 제공되지 못하고 있는 실정이다.
[선행기술문헌]
1. 한국 등록특허공보 제10-1583752호 (2016.01.04.)
2. 한국 등록특허공보 제10-1264836호 (2013.05.09.)
3. 한국 등록특허공보 제10-1218747호 (2012.12.28.)
4. 한국 공개특허공보 제10-2009-0050707호 (2009.05.20.)
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하고자 하는 것으로, 따라서 본 발명의 목적은, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결하기 위해, 다수의 압전진동자를 이용하여 충격파에 의해 나노입자 현탁액 내의 응집된 입자들에 효과적인 침식분산을 일으킬 수 있는 데 더하여, 압전진동자의 방사면에 경사를 주어 초음파 스트리밍 효과를 야기하는 것에 의해 나노입자 현탁액 내에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 일으킬 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공하고자 하는 것이다.
또한, 본 발명의 다른 목적은, 상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 복수의 압전진동자의 방사면을 원통의 내면의 접선에 대하여 일정 각도를 주어 원형으로 배열하여 초음파 스트리밍 및 캐비테이션 효과에 의해 균일한 분산을 유도하고, 비접촉식 분산 및 대용량 분산장치로의 용이한 확장이 가능하도록 구성됨으로써, 압전진동자의 원형 배열에 의해 고강도 초음파 음장을 생성하여 초음파 캐비테이션에 의한 충격파 발생이 용이한 동시에, 초음파 스트리밍 효과에 의해 분산효율의 극대화 및 불균일 분산을 해소할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공하고자 하는 것이다.
아울러, 본 발명의 또 다른 목적은, 상기한 바와 같은 종래기술의 문제점을 해결하기 위해, MHz대의 초고주파 초음파로부터 발생하는 짧은 파장의 초음파 및 충격파를 이용함으로 인해 나노입자에 역학적 에너지 전달이 효율적으로 이루어질 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공하고자 하는 것이다.
더욱이, 본 발명의 또 다른 목적은, 상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 복수 배열된 초음파 소자의 개별구동에 의한 대용량 분산이 가능하여 대형 단일소자의 경우 고출력 구동이 불가능했던 종래기술의 문제점을 해결할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공하고자 하는 것이다.
또한, 본 발명의 또 다른 목적은, 상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 시료와 초음파 진동면이 분리된 비접촉식 분산방식으로 이물질 혼입이 방지되고, 나노입자 시료의 순도를 유지할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공하고자 하는 것이다.
상기한 바와 같은 목적을 달성하기 위해, 본 발명에 따르면, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 있어서, 상기 나노입자 분산장치의 외관을 형성하는 본체; 상기 본체의 내부에 배치되어 나노입자 현탁액을 수용하는 나노입자 수용용기; 및 상기 본체의 측면에 미리 정해진 일정 간격으로 배치되어 상기 나노입자 수용용기에 수용된 나노입자 현탁액 내의 응집된 입자들에 대하여 충격파에 의한 침식분산과 초음파 스트리밍 효과에 의한 분열분산을 동시에 일으킬 수 있도록 하기 위한 복수의 압전진동자를 포함하여 구성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공된다.
여기서, 상기 본체는, 알루미늄을 포함하는 재질을 이용하여 속이 빈 원통 형상으로 형성되는 것을 특징으로 한다.
또한, 상기 나노입자 수용용기는, 상기 나노입자 현탁액을 수용하여 상기 본체 내부에 설치되는 비커 형태로 형성되는 것을 특징으로 한다.
아울러, 상기 압전진동자는, 원통형으로 형성되는 상기 본체의 둘레를 따라 측면에 미리 정해진 일정 간격으로 복수 개 배치되어 원형으로 배열됨으로써, 각각의 상기 압전진동자에 의해 방사되어 집속된 초음파에 의해 캐비테이션 충격파가 발생되어 상기 나노입자 수용용기에 수용된 나노입자 현탁액에 상기 충격파에 의한 침식분산을 발생시킬 수 있도록 구성되는 것을 특징으로 한다.
더욱이, 상기 압전진동자는, 원통형으로 형성되는 상기 본체의 둘레를 따라 측면에 미리 정해진 일정 간격으로 복수 개 배치되어 원형으로 배열되는 동시에, 원형으로 배열된 각각의 상기 압전진동자의 방사면을 상기 본체의 내면의 접선에 대하여 미리 정해진 일정 각도를 주어 경사지게 배치됨으로써, 상기 나노입자 수용용기에 수용된 나노입자 현탁액에 초음파 캐비테이션으로부터 발생하는 충격파에 의한 침식분산을 발생시키고, 각각의 상기 압전진동자로부터 방사된 초음파 스트리밍이 상기 나노입자 현탁액 내부에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 발생시킬 수 있도록 구성되는 것을 특징으로 한다.
또한, 상기 나노입자 분산장치는, 각각의 상기 압전진동자를 개별적으로 제어할 수 있도록 이루어지는 제어부를 더 포함하여 구성됨으로써, 대용량의 분산도 용이하게 가능하도록 구성되는 것을 특징으로 한다.
아울러, 본 발명에 따르면, 상기에 기재된 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 이용하여 나노입자를 분산시키도록 구성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산방법이 제공된다.
더욱이, 본 발명에 따르면, 상기에 기재된 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 이용하여 제조된 것을 특징으로 하는 나노입자가 제공된다.
상기한 바와 같이, 본 발명에 따르면, 다수의 압전진동자를 이용하여 충격파에 의해 나노입자 현탁액 내의 응집된 입자들에 효과적인 침식분산을 일으킬 수 있는 데 더하여, 압전진동자의 방사면에 경사를 주어 초음파 스트리밍 효과를 야기하는 것에 의해 나노입자 현탁액 내에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 일으킬 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공됨으로써, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결할 수 있다.
또한, 본 발명에 따르면, 상기한 바와 같이 복수의 압전진동자의 방사면을 원통의 내면의 접선에 대하여 일정 각도를 주어 원형으로 배열하여 초음파 스트리밍 및 캐비테이션 효과에 의해 균일한 분산을 유도하고, 비접촉식 분산 및 대용량 분산장치로의 용이한 확장이 가능하도록 구성됨으로써, 압전진동자의 원형배열에 의해 고강도 초음파 음장을 생성하여 초음파 캐비테이션에 의한 충격파 발생이 용이한 동시에, 초음파 스트리밍 효과에 의해 분산효율의 극대화 및 불균일 분산을 해소할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공할 수 있다.
아울러, 본 발명에 따르면, 상기한 바와 같이 하여 구성됨으로써, MHz대의 초고주파 초음파로부터 발생하는 짧은 파장의 초음파 및 충격파를 이용함으로 인해 나노입자에 역학적 에너지 전달이 효율적으로 이루어질 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공할 수 있다.
더욱이, 본 발명에 따르면, 상기한 바와 같이 하여 구성됨으로써, 복수 배열된 초음파 소자의 개별구동에 의한 대용량 분산이 가능하여 대형 단일소자의 경우 고출력 구동이 불가능했던 종래기술의 문제점을 해결할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공할 수 있다.
또한, 본 발명에 따르면, 상기한 바와 같이 하여 구성됨으로써, 시료와 초음파 진동면이 분리된 비접촉식 분산방식으로 이물질 혼입이 방지되고, 나노입자 시료의 순도를 유지할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 전체적인 구성을 개략적으로 나타내는 도면이다.
도 2는 도 1에 나타낸 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 평면도이다.
도 3은 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 동작원리를 개략적으로 나타내는 개념도이다.
도 4는 상기한 바와 같이 하여 구성되는 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 실제로 구현한 모습을 나타내는 도면이다.
도 5는 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 초음파 음장을 루미놀 용액으로 가시화한 모습을 나타내는 도면이다.
도 6은 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치와 기존의 초음파 분산장치의 성능을 실험을 통해 비교한 결과를 그래프로 나타낸 도면이다.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 구체적인 실시예에 대하여 설명한다.
여기서, 이하에 설명하는 내용은 본 발명을 실시하기 위한 하나의 실시예일 뿐이며, 본 발명은 이하에 설명하는 실시예의 내용으로만 한정되는 것은 아니라는 사실에 유념해야 한다.
또한, 이하의 본 발명의 실시예에 대한 설명에 있어서, 종래기술의 내용과 동일 또는 유사하거나 당업자의 수준에서 용이하게 이해하고 실시할 수 있다고 판단되는 부분에 대하여는, 설명을 간략히 하기 위해 그 상세한 설명을 생략하였음에 유념해야 한다.
즉, 본 발명은, 후술하는 바와 같이, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결하기 위해, 다수의 압전진동자를 이용하여 충격파에 의해 나노입자 현탁액 내의 응집된 입자들에 효과적인 침식분산을 일으킬 수 있는 데 더하여, 압전진동자의 방사면에 경사를 주어 초음파 스트리밍 효과를 야기하는 것에 의해 나노입자 현탁액 내에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 일으킬 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 관한 것이다.
아울러, 본 발명은, 후술하는 바와 같이, 복수의 압전진동자의 방사면을 원통의 내면의 접선에 대하여 일정 각도를 주어 원형으로 배열하여 초음파 스트리밍 및 캐비테이션 효과에 의해 균일한 분산을 유도하고, 비접촉식 분산 및 대용량 분산장치로의 용이한 확장이 가능하도록 구성됨으로써, 압전진동자의 원형 배열에 의해 고강도 초음파 음장을 생성하여 초음파 캐비테이션에 의한 충격파 발생이 용이한 동시에, 초음파 스트리밍 효과에 의해 분산효율의 극대화 및 불균일 분산을 해소할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 관한 것이다.
더욱이, 본 발명은, 후술하는 바와 같이, MHz대의 초고주파 초음파로부터 발생하는 짧은 파장의 초음파 및 충격파를 이용함으로 인해 나노입자에 역학적 에너지 전달이 효율적으로 이루어질 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 관한 것이다.
또한, 본 발명은, 후술하는 바와 같이, 복수 배열된 초음파 소자의 개별구동에 의한 대용량 분산이 가능하여 대형 단일소자의 경우 고출력 구동이 불가능했던 종래기술의 문제점을 해결할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 관한 것이다.
아울러, 본 발명은, 후술하는 바와 같이, 시료와 초음파 진동면이 분리된 비접촉식 분산방식으로 이물질 혼입이 방지되고, 나노입자 시료의 순도를 유지할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 관한 것이다.
계속해서, 첨부된 도면을 참조하여, 본 발명에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 구체적인 실시예에 대하여 설명한다.
먼저, 도 1을 참조하면, 도 1은 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)의 전체적인 구성을 개략적으로 나타내는 도면이다.
도 1에 나타낸 바와 같이, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)는, 크게 나누어, 원통 형상으로 형성되는 본체(11)와, 본체(11) 내부에 배치되어 나노입자 현탁액을 수용하는 나노입자 수용용기(12)와, 본체(11)의 측면에 일정 간격으로 배치되어 나노입자 수용용기(12)에 수용된 나노입자 현탁액에 진동을 인가하는 복수의 압전진동자(13)를 포함하여 구성될 수 있다.
여기서, 상기한 본체(11)는, 예를 들면, 도 1에 나타낸 바와 같이, 알루미늄과 같은 재질을 이용하여 속이 빈 원통 형상으로 형성될 수 있으나, 본 발명은 반드시 이러한 구성으로만 한정되는 것은 아니며, 즉, 상기한 본체(11)는, 알루미늄 이외에 다른 재질로 형성될 수도 있으며, 이때, 원통 형상이 아닌 다른 형태로 형성될 수도 있는 등, 필요에 따라 다양하게 구성될 수 있는 것임에 유념해야 한다.
또한, 상기한 나노입자 수용용기(12)는, 예를 들면, 나노입자 현탁액을 수용하여 본체(11) 내부에 설치되는 비커 형태로 형성될 수 있으나, 상기한 본체(11)와 마찬가지로 반드시 도 1에 나타낸 구성으로만 한정되는 것은 아니며, 필요에 따라 다양하게 구성될 수 있는 것임에 유념해야 한다.
아울러, 상기한 압전진동자(13)는, 본체(11)의 둘레를 따라 측면에 일정한 간격으로 복수 개 배치되어 나노입자 수용용기(12)에 수용된 나노입자 현탁액에 초음파 캐비테이션으로부터 발생하는 충격파에 의한 침식분산과 유체 전단력에 의한 분열분산을 동시에 인가하여 입체적인 진동을 인가할 수 있도록 구성될 수 있다.
더 상세하게는, 도 2를 참조하면, 도 2는 도 1에 나타낸 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)의 평면도이다.
도 2에 나타낸 바와 같이, 상기한 압전진동자(13)는, 본체(11)의 둘레를 따라 측면에 일정한 간격으로 복수 개 배치됨으로써, 다수의 압전진동자에 의해 방사되어 집속된 초음파가 고강도의 음장을 형성하고, 이로부터 발생한 캐비테이션 충격파가 나노입자 현탁액 내의 응집된 입자들에 대하여 효과적인 침식분산을 일으킬 수 있다.
더욱이, 상기한 압전진동자(13)는, 도 2에 나타낸 바와 같이, 각각의 압전진동자(13)의 방사면에 경사를 주어 배치함으로써, 초음파 스트리밍 효과에 의해 나노입자 현탁액 내에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 일으키도록 구성될 수 있다.
더 상세하게는, 일반적으로, 초음파는 수중에서 가압력의 시기와 감압력의 시기가 반복되며, 고강도 초음파의 경우 감압력의 시기에서 일시적으로 진공상태를 형성하고, 이러한 진공상태는 용존기체들에 의해 기포를 형성한다.
또한, 이러한 기포들은 가압력 시기에 단열압축 과정을 거쳐 고온 고압의 상태로 붕괴되면서 파괴력이 큰 충격파를 발생하게 되고, 이 충격파는 응집된 나노입자의 침식분산에 기여하게 된다.
아울러, 도 2에 나타낸 바와 같이, 원형으로 배열된 압전진동자의 방사면을 원통, 즉, 본체(11)의 내면의 접선에 대하여 일정 각도를 주어 경사지게 고정함으로써, 각각의 진동자로부터 방사된 초음파 스트리밍이 현탁액 내부에 와류를 형성할 수 있으며, 이때 발생하는 유체 전단력이 응집된 나노입자의 분열분산에 기여하게 된다.
더욱이, 상기한 압전진동자(13)는, 나노입자의 효과적인 분산을 위해, 예를 들면, 수 MHz 대의 파장이 짧은 초음파를 사용하여 에너지가 효율적으로 전달될 수 있도록 구성될 수 있다.
또한, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)는, 각각의 압전진동자(13)를 개별적으로 제어할 수 있도록 구성되는 제어부를 포함하여 구성됨으로써, 기존의 단일 압전진동자의 구동에 대한 한계를 극복하고 복수의 진동자를 개별 구동함으로써 대용량의 분산도 용이하게 가능하도록 구성될 수 있다.
따라서 상기한 바와 같이 하여, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)를 구현할 수 있다.
즉, 도 3 내지 도 5를 참조하면, 도 3은 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)의 동작원리를 개략적으로 나타내는 개념도이고, 도 4는 상기한 바와 같이 하여 구성되는 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)를 실제로 구현한 모습을 나타내는 도면이며, 도 5는 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)의 초음파 음장을 루미놀 용액으로 가시화한 모습을 나타내는 도면이다.
더 상세하게는, 기존의 초음파 분산장치는 초음파 배스나 호모지나이저와 같이 평면 초음파를 사용함으로 인해 초고주파 초음파의 발생시에는 강력한 음향파워를 발생시키기 어려우나, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)는, 상기한 바와 같이, 원통형의 본체(11) 둘레에 원형으로 압전진동자(13)를 복수개 배열하여 원통 중심부에 강력한 음장이 형성될 수 있고, 그것에 의해, 1MHz 이상의 초고주파 초음파에 의한 충격파가 발생 가능하도록 구성될 수 있다.
또한, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)는, 상기한 바와 같이, 원형으로 배열된 압전진동자(13)의 방사면을 원통의 내면의 접선에 대하여 일정 각도를 주어 배치함으로써, 각각의 진동자로부터 방사된 초음파 스트리밍이 나노입자 현택액 내부에 와류를 형성하여 기존의 초음파 분산장치들에서 정재파 음장분포로 인한 불균일 분산의 문제점을 해결할 수 있고, 아울러, 완전한 비접촉식 분산이 가능하여 최근 제안된 펌프를 이용한 순환식 집속 초음파 분산장치들에서 펌프를 통한 이물질의 혼입 등과 같은 문제점을 해결할 수 있다.
더욱이, 최근 제안된 펌프를 이용한 순환식 집속 초음파 분산장치들은 대부분 원통형의 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있으며, 즉, 순환식 집속 초음파 분산장치들은, 대용량의 분산을 위하여는 그만큼 대구경의 원통형 압전진동자를 사용하여야 하나, 이 경우 전기적 입력 임피던스가 극도로 낮아져 전기에너지의 공급이 문제가 되는 반면, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)는, 상기한 바와 같이, 각각 개별적으로 제어 가능한 복수의 소형 압전진동자를 배열하여 구성됨으로써, 확장성이 무한하여 대용량의 분산장치로의 확장이 용이하므로 다양한 산업분야에 폭넓게 적용될 수 있다.
계속해서, 도 6을 참조하여, 상기한 바와 같이 하여 구성되는 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치(10)와 기존의 초음파 분산장치의 성능을 실험을 통해 각각 비교한 결과에 대하여 설명한다.
즉, 도 6을 참조하면, 도 6은 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치와 기존의 초음파 분산장치의 성능을 실험을 통해 비교한 결과를 그래프로 나타낸 도면이다.
더 상세하게는, 본 발명자들은, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 성능을 검증하기 위하여, 기존의 초음파 분산장치와 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 대하여 각각 0.002 wt%의 TiO2 나노입자 현탁액에 대하여 기존의 초음파 분산장치는 30분간, 본 발명에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치는 10분간 분산을 실시한 후 입도분포를 측정하여 그 결과를 비교하였다.
그 결과, 도 6에 나타낸 바와 같이, 기존의 초음파 분산장치에 비해 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 경우가 짧은 시간의 분산에도 불구하고 월등한 분산결과를 나타내고 있음을 확인할 수 있다.
즉, 도 6에 나타낸 바와 같이, 기존의 분산장치의 경우는 약 110nm 부근에서 피크를 나타내는 반면, 본 발명의 실시예에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치는 약 60nm 부근에서 피크를 나타내어 단분산된 입자의 수가 월등히 많음을 확인할 수 있다.
따라서 상기한 바와 같이 하여 본 발명에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 구현할 수 있다.
또한, 상기한 바와 같이 하여 본 발명에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 구현하는 것에 의해, 본 발명에 따르면, 다수의 압전진동자를 이용하여 충격파에 의해 나노입자 현탁액 내의 응집된 입자들에 효과적인 침식분산을 일으킬 수 있는 데 더하여, 압전진동자의 방사면에 경사를 주어 초음파 스트리밍 효과를 야기하는 것에 의해 나노입자 현탁액 내에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 일으킬 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공됨으로써, 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 그 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결할 수 있다.
아울러, 본 발명에 따르면, 상기한 바와 같이 복수의 압전진동자의 방사면을 원통의 내면의 접선에 대하여 일정 각도를 주어 원형으로 배열하여 초음파 스트리밍 및 캐비테이션 효과에 의해 균일한 분산을 유도하고, 비접촉식 분산 및 대용량 분산장치로의 용이한 확장이 가능하도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공됨으로써, 압전진동자의 원형 배열에 의해 고강도 초음파 음장을 생성하여 초음파 캐비테이션에 의한 충격파 발생이 용이한 동시에, 초음파 스트리밍 효과에 의해 분산효율의 극대화 및 불균일 분산을 해소할 수 있다.
더욱이, 본 발명에 따르면, 상기한 바와 같이 하여 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공됨으로써, MHz대의 초고주파 초음파로부터 발생하는 짧은 파장의 초음파 및 충격파를 이용함으로 인해 나노입자에 역학적 에너지 전달이 효율적으로 이루어질 수 있다.
또한, 본 발명에 따르면, 상기한 바와 같이 하여 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공됨으로써, 복수 배열된 초음파 소자의 개별구동에 의한 대용량 분산이 가능하여 대형 단일소자의 경우 고출력 구동이 불가능했던 종래기술의 문제점을 해결할 수 있다.
아울러, 본 발명에 따르면, 상기한 바와 같이 하여 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치가 제공됨으로써, 시료와 초음파 진동면이 분리된 비접촉식 분산방식으로 이물질 혼입이 방지되고, 나노입자 시료의 순도를 유지할 수 있다.
이상, 상기한 바와 같은 본 발명의 실시예를 통하여 본 발명에 따른 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치의 상세한 내용에 대하여 설명하였으나, 본 발명은 상기한 실시예에 기재된 내용으로만 한정되는 것은 아니며, 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 설계상의 필요 및 기타 다양한 요인에 따라 여러 가지 수정, 변경, 결합 및 대체 등이 가능한 것임은 당연한 일이라 하겠다.
[부호의 설명]
10. 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치
11. 본체
12. 나노입자 수용용기
13. 압전진동자

Claims (8)

  1. 평면 초음파를 사용함으로 인해 강력한 음향파워를 발생시키기 어렵고 정재파 음장분포로 인한 불균일 분산의 문제점이 있었던 종래기술의 초음파 분산장치 및 원통형 단일 압전진동자를 사용함으로 인해 크기에 제한이 있었던 종래기술의 순환식 집속초음파 분산장치들의 문제점을 해결할 수 있도록 구성되는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치에 있어서,
    상기 나노입자 분산장치의 외관을 형성하는 본체;
    상기 본체의 내부에 배치되어 나노입자 현탁액을 수용하는 나노입자 수용용기; 및
    상기 본체의 측면에 미리 정해진 일정 간격으로 배치되어 상기 나노입자 수용용기에 수용된 나노입자 현탁액 내의 응집된 입자들에 대하여 충격파에 의한 침식분산과 초음파 스트리밍 효과에 의한 분열분산을 동시에 일으킬 수 있도록 하기 위한 복수의 압전진동자를 포함하여 구성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치.
  2. 제 1항에 있어서,
    상기 본체는,
    알루미늄을 포함하는 재질을 이용하여 속이 빈 원통 형상으로 형성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치.
  3. 제 1항에 있어서,
    상기 나노입자 수용용기는,
    상기 나노입자 현탁액을 수용하여 상기 본체 내부에 설치되는 비커 형태로 형성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치.
  4. 제 1항에 있어서,
    상기 압전진동자는,
    원통형으로 형성되는 상기 본체의 둘레를 따라 측면에 미리 정해진 일정 간격으로 복수 개 배치되어 원형으로 배열됨으로써,
    각각의 상기 압전진동자에 의해 방사되어 집속된 초음파에 의해 캐비테이션 충격파가 발생되어 상기 나노입자 수용용기에 수용된 나노입자 현탁액에 상기 충격파에 의한 침식분산을 발생시킬 수 있도록 구성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치.
  5. 제 4항에 있어서,
    상기 압전진동자는,
    원통형으로 형성되는 상기 본체의 둘레를 따라 측면에 미리 정해진 일정 간격으로 복수 개 배치되어 원형으로 배열되는 동시에, 원형으로 배열된 각각의 상기 압전진동자의 방사면을 상기 본체의 내면의 접선에 대하여 미리 정해진 일정 각도를 주어 경사지게 배치됨으로써,
    상기 나노입자 수용용기에 수용된 나노입자 현탁액에 초음파 캐비테이션으로부터 발생하는 충격파에 의한 침식분산을 발생시키고, 각각의 상기 압전진동자로부터 방사된 초음파 스트리밍이 상기 나노입자 현탁액 내부에 와류를 발생시켜 유체 전단력에 의한 분열분산을 동시에 발생시킬 수 있도록 구성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치.
  6. 제 5항에 있어서,
    상기 나노입자 분산장치는,
    각각의 상기 압전진동자를 개별적으로 제어할 수 있도록 이루어지는 제어부를 더 포함하여 구성됨으로써, 대용량의 분산도 용이하게 가능하도록 구성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치.
  7. 청구항 1항 내지 청구항 6항 중 어느 한 항에 기재된 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 이용하여 나노입자를 분산시키도록 구성되는 것을 특징으로 하는 초음파 스트리밍 및 충격파를 이용한 나노입자 분산방법.
  8. 청구항 1항 내지 청구항 6항 중 어느 한 항에 기재된 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치를 이용하여 제조된 것을 특징으로 하는 나노입자.
PCT/KR2017/002234 2016-05-25 2017-02-28 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치 WO2017204441A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0063868 2016-05-25
KR1020160063868A KR101814103B1 (ko) 2016-05-25 2016-05-25 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치

Publications (1)

Publication Number Publication Date
WO2017204441A1 true WO2017204441A1 (ko) 2017-11-30

Family

ID=60411443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002234 WO2017204441A1 (ko) 2016-05-25 2017-02-28 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치

Country Status (2)

Country Link
KR (1) KR101814103B1 (ko)
WO (1) WO2017204441A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193318A (zh) * 2019-06-03 2019-09-03 长沙理工大学 一种基于光声效应的纳米流体防团聚方法
CN110193319A (zh) * 2019-06-03 2019-09-03 长沙理工大学 一种基于光声效应的纳米流体防团聚装置
CN113117261A (zh) * 2019-12-30 2021-07-16 重庆融海超声医学工程研究中心有限公司 用于检测空化效应的方法及装置、超声治疗设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102146243B1 (ko) * 2018-04-09 2020-08-20 (주)클래시스 초음파 처리 장치
KR102266846B1 (ko) 2019-02-20 2021-06-18 부경대학교 산학협력단 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치
KR102251236B1 (ko) * 2020-06-19 2021-05-13 손진영 초음파 트랜스듀서를 이용한 탠덤형 유화 및 분산장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270896A1 (en) * 2002-07-09 2005-12-08 Toshiba Plant Systems & Services Corporation Liquid mixing apparatus and method of liquid mixing
KR20080077586A (ko) * 2007-02-20 2008-08-25 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 분산 또는 분쇄 장치, 비즈 밀 및 이들을 이용한 분산 또는분쇄 방법
JP2008272694A (ja) * 2007-05-01 2008-11-13 Tokyo Univ Of Agriculture & Technology 超音波流体移動装置およびこれを使用した攪拌器並びにポンプ
KR101239308B1 (ko) * 2008-11-25 2013-03-05 가부시키가이샤 무라타 세이사쿠쇼 압전 진동자 및 초음파 모터
KR101264836B1 (ko) * 2010-10-22 2013-05-15 한국원자력연구원 나노입자 제조장치 및 나노입자 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178683A (ja) * 2008-01-31 2009-08-13 Powrex Corp 懸濁液製造装置および懸濁液製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270896A1 (en) * 2002-07-09 2005-12-08 Toshiba Plant Systems & Services Corporation Liquid mixing apparatus and method of liquid mixing
KR20080077586A (ko) * 2007-02-20 2008-08-25 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 분산 또는 분쇄 장치, 비즈 밀 및 이들을 이용한 분산 또는분쇄 방법
JP2008272694A (ja) * 2007-05-01 2008-11-13 Tokyo Univ Of Agriculture & Technology 超音波流体移動装置およびこれを使用した攪拌器並びにポンプ
KR101239308B1 (ko) * 2008-11-25 2013-03-05 가부시키가이샤 무라타 세이사쿠쇼 압전 진동자 및 초음파 모터
KR101264836B1 (ko) * 2010-10-22 2013-05-15 한국원자력연구원 나노입자 제조장치 및 나노입자 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193318A (zh) * 2019-06-03 2019-09-03 长沙理工大学 一种基于光声效应的纳米流体防团聚方法
CN110193319A (zh) * 2019-06-03 2019-09-03 长沙理工大学 一种基于光声效应的纳米流体防团聚装置
CN110193319B (zh) * 2019-06-03 2020-05-29 长沙理工大学 一种基于光声效应的纳米流体防团聚装置
CN110193318B (zh) * 2019-06-03 2020-05-29 长沙理工大学 一种基于光声效应的纳米流体防团聚方法
US10994249B1 (en) 2019-06-03 2021-05-04 Changsha University Of Science And Technology Anti-agglomeration device using ultrasonic waves for a nanofluid
CN113117261A (zh) * 2019-12-30 2021-07-16 重庆融海超声医学工程研究中心有限公司 用于检测空化效应的方法及装置、超声治疗设备
CN113117261B (zh) * 2019-12-30 2023-06-02 重庆融海超声医学工程研究中心有限公司 用于检测空化效应的装置及超声治疗设备

Also Published As

Publication number Publication date
KR101814103B1 (ko) 2018-01-02
KR20170133000A (ko) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2017204441A1 (ko) 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치
KR102105794B1 (ko) 나노버블발생장치
WO2011059179A2 (ko) 집속 초음파를 이용한 나노분말 분산장치 및 이를 이용한 분산방법
US20050260106A1 (en) Ultrasonic reactor and process for ultrasonic treatment of materials
JP2003511222A (ja) 高圧ミルおよび高圧ミルを使用して材料の超微細粒子を作製する方法
KR102465656B1 (ko) 수평 전극을 이용한 분말 표면처리용 플라즈마 장치
KR102128207B1 (ko) 나노버블발생장치
US5173274A (en) Flash liquid aerosol production method and appartus
CN104607127A (zh) 超声波强化撞击流反应器
KR20230088738A (ko) 과립 물질로 부터의 불순물을 제거하기 위한 방법과 장치
WO2020040604A1 (ko) 나노 버블 생성장치 및 이를 포함하는 나노 버블 생성시스템
Sabnis et al. Evaluation of different cavitational reactors for size reduction of DADPS
CN108786509A (zh) 一种固液混合设备及方法
KR20210019350A (ko) 나노버블발생장치
KR102266846B1 (ko) 초음파 스트리밍 및 충격파를 이용한 나노입자 분산장치
JP3682251B2 (ja) 複合超微粒子含有液状媒体の製造方法およびその装置
KR101514034B1 (ko) 나노 분말 분산 장치 및 방법
KR20110086220A (ko) 플라스마 표면처리장치
KR102640641B1 (ko) 수평 전극을 이용한 분말 표면처리용 플라즈마 장치
KR20210044085A (ko) 나노버블발생장치
KR20190074707A (ko) 나노버블발생장치
RU2744627C1 (ru) Способ получения высокодисперсного торфа, обогащенного активными и питательными веществами
KR20210035402A (ko) 나노버블발생장치
CN113510055A (zh) 胶水性能保持装置、注胶机构
CA1142879A (en) Method for enhancing chemical reactions

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802960

Country of ref document: EP

Kind code of ref document: A1