WO2017203702A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2017203702A1
WO2017203702A1 PCT/JP2016/065762 JP2016065762W WO2017203702A1 WO 2017203702 A1 WO2017203702 A1 WO 2017203702A1 JP 2016065762 W JP2016065762 W JP 2016065762W WO 2017203702 A1 WO2017203702 A1 WO 2017203702A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
heat exchanger
target air
air heat
blower
Prior art date
Application number
PCT/JP2016/065762
Other languages
French (fr)
Japanese (ja)
Inventor
貴宏 山谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/065762 priority Critical patent/WO2017203702A1/en
Publication of WO2017203702A1 publication Critical patent/WO2017203702A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to an air conditioner having a blower unit and a target air heat exchanger unit.
  • Patent Literature 1 discloses an air conditioner configured to freely combine desired units that are unitized by function.
  • the blower is arranged on the downstream side of the air passage with respect to the heat exchanger. For this reason, the dew condensation water produced in the heat exchanger blows off toward the blower arranged on the downstream side of the air passage, and the dew condensation water may adhere to the blower. Therefore, in the conventional air conditioning apparatus, it is necessary to take a waterproof measure for the blower disposed on the downstream side of the air path from the heat exchanger. Applying waterproof measures to the blower complicates the structure of the blower and is expensive.
  • This invention is for solving the said subject, and it aims at providing the air conditioning apparatus which prevented the dew condensation water produced with the heat exchanger adhering to a fan.
  • An air conditioner includes a refrigeration cycle circuit configured by connecting a compressor, a heat source side heat exchanger, a throttling device, and a target air heat exchanger, and a blower unit containing a blower, and the target A target air heat exchanger unit that houses an air heat exchanger, and the blower unit is arranged upstream of the target air heat exchanger unit in the flow direction of the wind generated by the blower. It is.
  • the blower unit is disposed upstream of the target air heat exchanger unit in the flow direction of the wind generated by the blower. For this reason, the air conditioning apparatus which prevented that the dew condensation water produced with the object air heat exchanger accommodated in the object air heat exchanger unit adheres to the air blower accommodated in the air blower unit can be obtained.
  • FIG. 1 is a diagram schematically illustrating an example of a configuration of an air-conditioning apparatus 30 according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically illustrating an example of the arrangement of the blower unit 10, the target air heat exchanger unit 20, and the heat source side unit 100 in the air-conditioning apparatus 30 according to Embodiment 1 of the present invention.
  • An air conditioner 30 shown in FIG. 1 performs air conditioning of an air conditioning target room 50 such as a room inside a building or a house.
  • the air conditioner 30 is applied to, for example, a ceiling-embedded air conditioner such as a residential packaged air conditioner or a building multi air conditioner.
  • the air conditioner 30 includes, for example, a refrigeration cycle circuit in which the target air heat exchanger unit 20 and the heat source unit 100 are connected by a refrigerant pipe 120 and the refrigerant circulates.
  • the heat source side unit 100 is arranged outdoors, for example.
  • the heat source side unit 100 includes a compressor 102, a flow path switching device 104, a heat source side heat exchanger 106, and a controller 110.
  • the heat source side unit 100 includes a blower 108 that blows air to the heat source side heat exchanger 106.
  • the compressor 102 compresses the refrigerant flowing through the refrigerant pipe 120.
  • the flow path switching device 104 switches the flow of the refrigerant flowing through the refrigerant pipe 120 between cooling and heating.
  • the heat source side heat exchanger 106 exchanges heat between the refrigerant flowing through the refrigerant pipe 120 and the outside air.
  • the controller 110 governs overall control of the air conditioner 30.
  • the controller 110 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, and the like.
  • the target air heat exchanger unit 20 is disposed, for example, in an equipment room 60 inside a building or a house.
  • the facility room 60 is, for example, a space formed in the back of the ceiling above the ceiling of the air-conditioning target room 50 in a building or house. That is, the target air heat exchanger unit 20 is disposed behind the ceiling.
  • the target air heat exchanger unit 20 includes a throttle device 22 and a target air heat exchanger 21.
  • the expansion device 22 adjusts the pressure of the refrigerant flowing through the refrigerant pipe 120.
  • the expansion device 22 may be accommodated in the heat source side unit 100 instead of being accommodated in the target air heat exchanger unit 20.
  • the target air heat exchanger 21 exchanges heat between the refrigerant flowing through the refrigerant pipe 120 and the target air that has flowed into the air passage 40 from the room air in the air conditioning target chamber 50.
  • the air conditioner 30 includes the blower unit 10.
  • the blower unit 10 is disposed in the equipment room 60, for example. That is, the blower unit 10 is arranged on the back of the ceiling together with the target air heat exchanger unit 20.
  • the blower unit 10 includes a sirocco fan 11 as a blower, a motor (not shown) that rotationally drives the sirocco fan 11, and a controller 12 that controls the rotational speed of the motor.
  • the controller 12 has a microcomputer including a CPU, ROM, RAM, I / O port, and the like.
  • the blower unit 10 may house a propeller fan or the like instead of a sirocco fan as a blower.
  • the air conditioning target chamber 50 and the blower unit 10 communicate with each other via a duct 54.
  • the blower unit 10 and the target air heat exchanger unit 20 communicate with each other via the duct member 1.
  • the target air heat exchanger unit 20 and the air conditioning target chamber 50 communicate with each other via a duct 56.
  • the target air flowing out from the target air heat exchanger unit 20 flows through the duct 56.
  • the duct 56 is extended to the upper part of the air-conditioning target room 50 that performs air conditioning inside the building or house.
  • the duct member 1 and the two ducts 54 and 56 are, for example, flexible ducts.
  • the duct member 1, the two ducts 54 and 56, the blower unit 10, and the target air heat exchanger unit 20 constitute an air passage 40 through which target air into which room air in the air-conditioning target room 50 is introduced flows.
  • the air passage 40 is disposed in the equipment room 60. In other words.
  • the air path 40 is extended behind the ceiling of a building or a house.
  • the blower unit 10, the duct member 1, and the target air heat exchanger unit 20 are arranged in the middle of the air passage 40.
  • the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the air flow direction of the wind generated by the sirocco fan 11 in the air path 40.
  • the air in the air-conditioning target chamber 50 is sucked into the duct 54 through the suction port 52 that is the inlet of the air passage 40.
  • the target air sucked into the duct 54 flows into the target air heat exchanger unit 20 via the blower unit 10 and the duct member 1.
  • the target air that has flowed into the target air heat exchanger unit 20 is heat-exchanged with the refrigerant in the target air heat exchanger 21.
  • the conditioned air heat-exchanged by the target air heat exchanger 21 flows through the duct 56 and is blown out from the air outlet 58 that is the outlet of the air passage 40 to the air-conditioning target chamber 50.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 1 of the present invention.
  • the blower unit 10 and the target air heat exchanger unit 20 are connected by a duct member 1.
  • the duct member 1 is, for example, a flexible duct. For this reason, the duct member 1 can be bent or extended freely, and the degree of freedom of arrangement of the blower unit 10 and the target air heat exchanger unit 20 is improved.
  • the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11 in the air path 40.
  • interval of the air blower unit 10 and the object air heat exchanger unit 20 is shorter than the horizontal width corresponding to the flow direction of the wind of the unit cases 13 and 23 in each of the air blower unit 10 and the object air heat exchanger unit 20. That is, the space
  • FIG. 4 is a schematic diagram illustrating an example of the configuration of the blower unit 10 according to Embodiment 1 of the present invention.
  • the blower unit 10 has a rectangular parallelepiped box-shaped unit housing 13.
  • the blower unit 10 has a flange portion 14 that protrudes from the unit housing 13 and has a hole in the upstream connection portion in the air flow direction of the air passage 40 connected to the duct 54.
  • the blower unit 10 has a flange portion 15 that protrudes from the unit housing 13 and has a hole in the downstream connection portion in the wind flow direction of the air passage 40 connected to the duct member 1.
  • These flange portions 14 and 15 protrude in a cylindrical shape from the side surface of the unit housing 13 in the blower unit 10.
  • casing 13 in the air blower unit 10 are the area enclosed by the outer periphery of the duct 54 connected to the flange parts 14 and 15, or the duct member 1, respectively. Small relative to the protruding side area.
  • the center of these flange parts 14 and 15 is arrange
  • the air from the sirocco fan 11 in which the wind direction from the air blowing port 11a located on the upper side is directed in the horizontal direction is made efficient.
  • the blower unit 10 has a sirocco fan 11 as a blower.
  • the air blowing port 11 a facing the downstream side in the wind flow direction of the air passage 40 is located above the unit housing 13 of the blower unit 10.
  • the sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is in the horizontal direction. Even if the sirocco fan 11 is housed inside the unit housing 13, the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the air flow direction of the air passage 40. For this reason, the sirocco fan 11 is not affected by the condensed water generated in the target air heat exchanger 21, and a waterproof measure against the condensed water generated in the target air heat exchanger 21 becomes unnecessary.
  • the blower unit 10 has a controller 12 inside the unit housing 13.
  • the controller 12 communicates with the controller 110 of the heat source side unit 100 and controls the rotation speed of the motor of the sirocco fan 11. Even if the controller 12 is housed inside the unit housing 13, the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the wind flow direction of the air passage 40. For this reason, the controller 12 is not affected by the condensed water generated in the target air heat exchanger 21, and a waterproof measure against the condensed water generated in the target air heat exchanger 21 is not required.
  • FIG. 5 is a schematic diagram showing an example of the configuration of the target air heat exchanger unit 20 according to Embodiment 1 of the present invention.
  • the target air heat exchanger unit 20 has a rectangular parallelepiped box-shaped unit housing 23.
  • the target air heat exchanger unit 20 has a flange portion 24 that protrudes from the unit housing 23 and has a hole in the upstream connection portion in the wind flow direction of the air passage 40 connected to the duct member 1. is doing.
  • the target air heat exchanger unit 20 has a flange portion 25 that protrudes from the unit housing 23 and has a hole inside at a connection location on the downstream side in the wind flow direction of the air passage 40 connected to the duct 56. ing.
  • flange portions 24 and 25 protrude in a cylindrical shape from the side surface of the unit housing 23 in the target air heat exchanger unit 20.
  • the area surrounded by the outer periphery of each of the duct members 1 or 56 connected to the flange portions 24 and 25 and the flange portions 24 and 25 is the flange portion of the unit housing 23 in the target air heat exchanger unit 20.
  • 24 and 25 are small with respect to the area of the side surface which protruded.
  • the centers of the flange portions 24 and 25 are arranged so as to be shifted in the upward direction with respect to the center of the side surface of the unit housing 23 from which the flange portions 24 and 25 protrude in the target air heat exchanger unit 20. . Thereby, the ventilation from the sirocco fan 11 can be efficiently introduced into the target air heat exchanger unit 20.
  • the center of the duct member 1 that connects the flange portion 15 of the blower unit 10 and the flange portion 24 of the target air heat exchanger unit 20 is the blower unit 10 and the target air heat exchanger unit.
  • the unit housings 13 and 23 of the unit housings 13 and 23 are connected to the center of the side surface from which the flange portions 15 and 24 protrude in the upward direction. For this reason, the duct member 1 can avoid an obstacle below the duct member 1.
  • the target air heat exchanger unit 20 has a dish-shaped drain pan 26 that receives dew condensation water generated in the target air heat exchanger 21 at the bottom inside the unit housing 23.
  • the drain pan 26 is provided larger than the projection area in which the area where the target air heat exchanger 21 is arranged is projected downward in the unit housing 23.
  • the target air heat exchanger unit 20 is installed inside the unit housing 23 with the target air heat exchanger 21 inclined with respect to the flow direction of the wind in which the target air flows in the lateral direction. That is, the target air heat exchanger 21 is installed so as to be inclined so that the upper part is located upstream of the lower part in the air flow direction of the air passage 40 inside the unit housing 23 of the target air heat exchanger unit 20. Has been.
  • the duct member 1 should just be connected to the flange parts 15 and 24 of the unit housing
  • FIG. The duct member 1 can be applied to one formed integrally with the blower unit 10 or the target air heat exchanger unit 20.
  • the blower unit 10 and the target air heat exchanger unit 20 can be attached and detached with the duct member 1
  • the degree of freedom of installation of the blower unit 10 and the target air heat exchanger unit 20 and the installation time are as follows. Workability is improved.
  • the outer peripheral surface or inner peripheral surface of the flange portions 15 and 24 is threaded, and the blower unit 10 and the target air heat exchanger unit 20 and the duct member 1 are connected by a screw structure.
  • FIG. 6 is a diagram showing the capacity code of the indoor unit according to Embodiment 1 of the present invention.
  • the controller 110 of the heat source side unit 100 configuring the outdoor unit determines the capacity code of the indoor unit according to the type of the indoor unit that combines the blower unit 10 and the target air heat exchanger unit 20. To do.
  • an operator who installs the air conditioner 30 inputs data related to the indoor unit to the controller 110 of the heat source side unit 100.
  • the controller 110 of the heat source side unit 100 determines the capacity code of the indoor unit from the input data.
  • the controller 110 of the heat source side unit 100 may have a function of automatically determining the capacity code of the indoor unit.
  • the controller 110 of the heat source side unit 100 performs an operation according to the capacity code of the indoor unit.
  • the blower unit 10 having a small air volume and the target air heat exchanger unit 20 having a large capacity can be combined.
  • a small air volume and a large capacity it is possible to provide mild air conditioning without a draft feeling or operation with low noise.
  • a high air conditioning load such as a glass-walled building
  • the air conditioning capacity is upgraded and used, the air volume is too large and the draft feeling is felt or the noise is increased. There is no possibility.
  • the large air volume blower unit 10 and the small capacity target air heat exchanger unit 20 can be combined.
  • a combination of a large air volume and a small capacity allows air conditioning equipment to be used when a large number of air is needed due to the branching of ducts in a large number of rooms, or when high sensible heat is required to reduce dehumidification during cooling in low humidity areas. 30 can be provided.
  • the cooling capability and the heating capability are the same.
  • the ability code by the combination shown in FIG. 6 is given and is initially set at the time of construction. For example, when selecting a model with the capability code 3, it is possible to select an air volume suitable for the installation scene even with the same capability.
  • the target air heat exchanger size or the unit size of the target air heat exchanger unit 20 can be selected from different capacities. In other words, a small capacity code can be obtained by combining the blower unit 10 and the target air heat exchanger unit 20.
  • blower corresponding to various external static pressures is required.
  • the fan diameter is generally increased.
  • the blower unit 10 having a different fan diameter, it is possible to cope with a high external static pressure application from a direct blow with no external static pressure. Further, by installing a plurality of blower units 10 in the middle of the air passage 40, the external static pressure can be further increased as a booster fan.
  • the air conditioner 30 is a refrigeration constructed by connecting the compressor 102, the heat source side heat exchanger 106, the expansion device 22 and the target air heat exchanger 21 through the refrigerant pipe 120.
  • a cycle circuit is provided.
  • the air conditioner 30 includes the blower unit 10 that houses the sirocco fan 11.
  • the air conditioner 30 includes a target air heat exchanger unit 20 that houses the target air heat exchanger 21.
  • the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11. According to this configuration, the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11.
  • the air passage 40 has a push-type configuration in which the target air flows from the sirocco fan 11 to the target air heat exchanger 21. Therefore, the dew condensation water generated in the target air heat exchanger 21 accommodated in the target air heat exchanger unit 20 is arranged upstream of the target air heat exchanger unit 20 in the wind flow direction of the air path 40. It was prevented from adhering to the sirocco fan 11 accommodated in the blower unit 10. Further, since the blower unit 10 is separate from the target air heat exchanger unit 20, the dew condensation water generated in the target air heat exchanger 21 accommodated in the target air heat exchanger unit 20 is accommodated in the blower unit 10. The effect of preventing adhesion to the sirocco fan 11 is remarkable.
  • the conditioned air does not pass through the blower unit 10. For this reason, the influence of the thermal load to the sirocco fan 11 of the blower unit 10 is reduced. Furthermore, the distance between the sirocco fan 11 and the target air heat exchanger 21 can be increased. For this reason, the silence of the air conditioning apparatus 30 can be improved. Further, by making the blower unit 10 and the target air heat exchanger unit 20 as separate units, it is possible to select models that match various market needs. That is, it is possible to provide the air conditioner 30 in which the product size, the air volume, the noise, the external static pressure, etc. are customized according to various installation environments or needs. Conventionally, the indoor unit is selected only by the required capacity.
  • the product size such as height, width, and depth may be large and interfere with the ceiling beam.
  • either the duct member 1 or the two ducts 54 and 56 are arranged at the beam position by the separated installation structure in which the blower unit 10 and the target air heat exchanger unit 20 are separated, You can dodge the beam.
  • the size of each unit can be further adjusted, and options can be expanded.
  • the user can select either the blower unit 10 provided with a low-cost AC motor blower or the blower unit 10 provided with a DC motor blower having a high power saving capability.
  • the air conditioner 30 includes the duct member 1 that connects the blower unit 10 and the target air heat exchanger unit 20.
  • Each of the blower unit 10 and the target air heat exchanger unit 20 has flange portions 15 and 24 protruding from the unit housings 13 and 23 at connection points connected to the duct member 1.
  • the area surrounded by the outer peripheries of the flange portions 15 and 24 and the duct member 1 connected to the flange portions 15 and 24 is that of the unit housings 13 and 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively.
  • the area of the side surface from which the flange portions 15 and 24 protrude is small.
  • the duct member 1 connected to the flange portions 15 and 24 is similar to the flange portions 15 and 24 in the unit housings 13 and 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively.
  • the area surrounded by the outer periphery is smaller than the area of the side surface from which the flange portions 15 and 24 protrude. For this reason, obstructions, such as a beam, can be avoided using the location connected with the duct member 1 with the small area enclosed by the outer periphery.
  • interval of the air blower unit 10 and the object air heat exchanger unit 20 is set to the flow direction of the wind of the unit cases 13 and 23 in the air blower unit 10 and the object air heat exchanger unit 20, respectively. Shorter than the corresponding width.
  • interval of the air blower unit 10 connected by the duct member 1 and the object air heat exchanger unit 20 is short.
  • work which connects the duct member 1 is easy compared with what connects with a long duct.
  • the blower unit 10, the target air heat exchanger unit 20, and the duct member 1 are installed in a space where it is difficult to work on the ceiling. For this reason, the effect of facilitating the connection work is remarkable. Moreover, obstacles, such as a beam in a ceiling back, can be avoided using the location connected to the duct member 1.
  • interval of the air blower unit 10 and the object air heat exchanger unit 20 is 70 mm or more and 100 mm or less. According to this structure, the space
  • the lateral width corresponding to the flow direction of the wind in the unit housings 13 and 23 in each of the blower unit 10 and the target air heat exchanger unit 20 is 550 mm or less.
  • corresponds to the flow direction of the wind of the unit housing
  • casing 13 and 23 is 550 mm or less, these blower units 10 and the object air heat exchanger unit 20 can be arrange
  • the air conditioner 30 communicates the blower unit 10 and the target air heat exchanger unit 20 via the duct member 1, and the air passage 40 that extends to the back of the ceiling of the building or house. Is configured.
  • Each of the blower unit 10 and the target air heat exchanger unit 20 is disposed in the air passage 40 behind the ceiling. According to this configuration, each of the blower unit 10 and the target air heat exchanger unit 20 is installed in a space where it is difficult to work on the ceiling. For this reason, the space
  • the target air heat exchanger unit 20 is installed inside the unit housing 23 so that the target air heat exchanger 21 is inclined with respect to the flow direction of the wind in which the target air flows in the lateral direction. ing. According to this configuration, the target air heat exchanger 21 installed at an inclination can have a large area on which the wind of the target air hits, and the heat exchange capability can be improved.
  • the target air heat exchanger 21 is located upstream in the flow direction of the wind path 40 in the air path 40 in the upper part of the unit housing 23 of the target air heat exchanger unit 20. It is installed so as to be inclined. According to this configuration, the dew condensation water generated in the target air heat exchanger 21 is dripped inside the unit housing 23 of the target air heat exchanger unit 20. For this reason, it is possible to reduce the possibility that the dew condensation water will blow off to the downstream air passage 40 in the direction of the wind flow than the target air heat exchanger unit 20.
  • the centers of the flange portions 14, 15, 24, 25 are the flange portions 14, 15, 24, of the unit housings 13, 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively. It arrange
  • the air conditioning apparatus 30 has the duct 56 through which conditioned air flows from the target air heat exchanger unit 20 in the air passage 40.
  • the duct 56 is extended to the upper part of the air-conditioning target room 50 that performs air conditioning inside the building or house. According to this configuration, the conditioned air that is the target air heat exchanged by the target air heat exchanger unit 20 is efficiently distributed to the air-conditioning target chamber 50 without being dispersed through the duct 56.
  • FIG. FIG. 7 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 2 of the present invention.
  • a description will be given focusing on differences from the first embodiment.
  • the blower unit 10 houses a sirocco fan 11 as a blower.
  • the sirocco fan 11 has a blower port 11 a located below the unit housing 13 of the blower unit 10.
  • the sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is obliquely upward.
  • the center of the flange parts 14, 15, 24, 25 is the center of the side surface from which the flange parts 14, 15, 24, 25 of the unit housings 13, 23 of the blower unit 10 and the target air heat exchanger unit 20 protrude. On the other hand, it is arranged so that the position is shifted downward.
  • the centers of the flange portions 14, 15, 24, 25 are the flange portions 14, 15, 24, of the unit housings 13, 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively. It arrange
  • the flange portion 15 is disposed so that the position thereof is shifted downward. Thereby, the loss of the ventilation from the sirocco fan 11 can be made small, and power consumption can be reduced.
  • the duct member 1 can avoid obstacles such as a beam above the duct member 1.
  • the blower unit 10 houses the sirocco fan 11 as a blower.
  • the sirocco fan 11 has a blower port 11 a located below the unit housing 13 of the blower unit 10.
  • the sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is obliquely upward.
  • the air path 40 which goes to the duct member 1 from the air blower unit 10 can be ensured in the diagonally upward direction, and can blow efficiently. Thereby, the loss of the ventilation from the sirocco fan 11 can be made small, and power consumption can be reduced. Further, since the wind direction of the sirocco fan 11 is directed obliquely upward, the influence of the drain pan 26 can be reduced.
  • FIG. 8 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 3 of the present invention.
  • a description will be given focusing on differences from the first embodiment.
  • the blower unit 10 accommodates a sirocco fan 11 as a blower.
  • the air outlet 11 a is located above the unit housing 13 of the blower unit 10.
  • the sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is in the horizontal direction.
  • the centers of the flange portions 14 and 15 are arranged so that the positions are shifted upward with respect to the center of the side surface of the blower unit 10 from which the flange portions 14 and 15 of the unit housing 13 protrude.
  • the target air heat exchanger unit 20 is installed inside the unit housing 23 so that the target air heat exchanger 21 is orthogonal to the flow of the target air in the lateral direction.
  • the centers of the flange portions 24 and 25 are arranged so as to be the center position of the same horizontal position with respect to the center of the side surface from which the flange portions 24 and 25 of the unit housing 23 of the target air heat exchanger unit 20 protrude. Yes.
  • the distance between the blower unit 10 and the target air heat exchanger unit 20 is longer than the lateral width corresponding to the wind flow direction of the unit housing 23 in the target air heat exchanger unit 20. It is shorter than the width of the unit housing 13 in the unit 10. According to this configuration, the duct member 1 connecting the blower unit 10 and the target air heat exchanger unit 20 can avoid an obstacle such as a building or a house beam.
  • FIG. 9 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 4 of the present invention.
  • the fourth embodiment will be described with a focus on differences from the first embodiment.
  • the blower unit 10 and the target air heat exchanger unit 20 are directly connected.
  • the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11.
  • the blower unit 10 and the target air heat exchanger unit 20 may be directly connected without using a duct member.
  • the target air heat exchanger unit 20 is installed inside the unit housing 23 with the target air heat exchanger 21 inclined with respect to the flow direction of the wind in which the target air flows in the lateral direction. ing. That is, the target air heat exchanger 21 is installed so as to be inclined so that the upper part is located downstream of the lower part in the wind flow direction of the air passage 40 with respect to the lower part in the unit housing 23 of the target air heat exchanger unit 20. Has been. According to this configuration, the target air heat exchanger 21 installed at an inclination can have a large area on which the wind of the target air hits, and the heat exchange capability can be improved.
  • FIG. 10 is a schematic diagram showing an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 5 of the present invention.
  • a description will be given focusing on differences from the first embodiment.
  • the target air heat exchanger unit 20 is installed inside the unit housing 23 so that the target air heat exchanger 21 is orthogonal to the flow direction of the wind in which the target air flows in the lateral direction. ing.
  • the target air heat exchanger unit 20 is larger than that shown in FIG. 8 of the third embodiment and larger than the blower unit 10.
  • Embodiments 1 to 5 of the present invention may be combined or applied to other parts.

Abstract

Provided is an air conditioning device that can prevent condensation generated by a heat exchanger from adhering to a fan. An air conditioning device comprises a refrigeration cycle circuit comprising a compressor, a heat source-side heat exchanger, a throttling device, and a target air heat exchanger that are connected by piping. The air conditioning device has a fan unit that houses a fan, and a target air heat exchanger unit that houses the target air heat exchanger. The fan unit is disposed further upstream than the target air heat exchanger unit in the direction that air generated by the fan flows.

Description

空気調和装置Air conditioner
 本発明は、送風機ユニットと対象空気熱交換器ユニットとを有する空気調和装置に関する。 The present invention relates to an air conditioner having a blower unit and a target air heat exchanger unit.
 従来、送風機ユニットと熱交換器ユニットとを有する空気調和装置が知られている(たとえば、特許文献1参照)。特許文献1には、機能別にユニット化された所望のユニットを自在に組み合わせる構成の空気調和装置が開示されている。 Conventionally, an air conditioner having a blower unit and a heat exchanger unit is known (for example, see Patent Document 1). Patent Literature 1 discloses an air conditioner configured to freely combine desired units that are unitized by function.
特開平06-221617号公報Japanese Patent Laid-Open No. 06-221617
 特許文献1に開示されている従来の空気調和装置では、送風機は、熱交換器よりも風路の下流側に配置されている。このため、熱交換器で生じた結露水は、風路の下流側に配置された送風機に向かって吹き飛び、送風機に結露水が付着することがある。したがって、従来の空気調和装置では、熱交換器よりも風路の下流側に配置されている送風機に、防水対策を施す必要がある。送風機に防水対策を施すことは、送風機の構造を複雑にし、高コストであった。 In the conventional air conditioner disclosed in Patent Document 1, the blower is arranged on the downstream side of the air passage with respect to the heat exchanger. For this reason, the dew condensation water produced in the heat exchanger blows off toward the blower arranged on the downstream side of the air passage, and the dew condensation water may adhere to the blower. Therefore, in the conventional air conditioning apparatus, it is necessary to take a waterproof measure for the blower disposed on the downstream side of the air path from the heat exchanger. Applying waterproof measures to the blower complicates the structure of the blower and is expensive.
 本発明は、上記課題を解決するためのものであり、熱交換器で生じた結露水が送風機に付着することを防止した空気調和装置を提供することを目的とする。 This invention is for solving the said subject, and it aims at providing the air conditioning apparatus which prevented the dew condensation water produced with the heat exchanger adhering to a fan.
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、絞り装置および対象空気熱交換器を配管接続して構成される冷凍サイクル回路を備え、送風機を収容した送風機ユニットと、前記対象空気熱交換器を収容した対象空気熱交換器ユニットと、を有し、前記送風機ユニットは、前記対象空気熱交換器ユニットよりも前記送風機の生成する風の流れ方向で上流側に配置されたものである。 An air conditioner according to the present invention includes a refrigeration cycle circuit configured by connecting a compressor, a heat source side heat exchanger, a throttling device, and a target air heat exchanger, and a blower unit containing a blower, and the target A target air heat exchanger unit that houses an air heat exchanger, and the blower unit is arranged upstream of the target air heat exchanger unit in the flow direction of the wind generated by the blower. It is.
 本発明に係る空気調和装置によれば、送風機ユニットは、対象空気熱交換器ユニットよりも送風機の生成する風の流れ方向で上流側に配置された。このため、対象空気熱交換器ユニットに収容された対象空気熱交換器で生じた結露水が、送風機ユニットに収容された送風機に付着することを防止した空気調和装置を得ることができる。 According to the air conditioner according to the present invention, the blower unit is disposed upstream of the target air heat exchanger unit in the flow direction of the wind generated by the blower. For this reason, the air conditioning apparatus which prevented that the dew condensation water produced with the object air heat exchanger accommodated in the object air heat exchanger unit adheres to the air blower accommodated in the air blower unit can be obtained.
本発明の実施の形態1に係る空気調和装置の構成の一例を模式的に示す図である。It is a figure which shows typically an example of a structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置における送風機ユニットと対象空気熱交換器ユニットと熱源側ユニットとの配置の一例を模式的に示す図である。It is a figure which shows typically an example of arrangement | positioning with the air blower unit, the object air heat exchanger unit, and the heat-source side unit in the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る送風機ユニットおよび対象空気熱交換器ユニットの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the air blower unit which concerns on Embodiment 1 of this invention, and a target air heat exchanger unit. 本発明の実施の形態1に係る送風機ユニットの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the air blower unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る対象空気熱交換器ユニットの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the object air heat exchanger unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室内機の能力コードを示す図である。It is a figure which shows the capability code of the indoor unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る送風機ユニットおよび対象空気熱交換器ユニットの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the air blower unit which concerns on Embodiment 2 of this invention, and a target air heat exchanger unit. 本発明の実施の形態3に係る送風機ユニットおよび対象空気熱交換器ユニットの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the air blower unit which concerns on Embodiment 3 of this invention, and a target air heat exchanger unit. 本発明の実施の形態4に係る送風機ユニットおよび対象空気熱交換器ユニットの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the air blower unit which concerns on Embodiment 4 of this invention, and a target air heat exchanger unit. 本発明の実施の形態5に係る送風機ユニットおよび対象空気熱交換器ユニットの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the air blower unit which concerns on Embodiment 5 of this invention, and a target air heat exchanger unit.
 以下、図面に基づいて本発明の実施の形態について説明する。
 なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
 さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In addition, in each figure, what attached | subjected the same code | symbol is the same or it corresponds, and this is common in the whole text of a specification.
Furthermore, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置30の構成の一例を模式的に示す図である。図2は、本発明の実施の形態1に係る空気調和装置30における送風機ユニット10と対象空気熱交換器ユニット20と熱源側ユニット100との配置の一例を模式的に示す図である。
 図1に示す空気調和装置30は、建物あるいは家屋の内部の部屋などの空調対象室50の空調を行うものである。空気調和装置30は、たとえば、住宅用パッケージエアコン、ビル用マルチエアコンなどの天井埋め込み型エアコンに適用される。
Embodiment 1 FIG.
FIG. 1 is a diagram schematically illustrating an example of a configuration of an air-conditioning apparatus 30 according to Embodiment 1 of the present invention. FIG. 2 is a diagram schematically illustrating an example of the arrangement of the blower unit 10, the target air heat exchanger unit 20, and the heat source side unit 100 in the air-conditioning apparatus 30 according to Embodiment 1 of the present invention.
An air conditioner 30 shown in FIG. 1 performs air conditioning of an air conditioning target room 50 such as a room inside a building or a house. The air conditioner 30 is applied to, for example, a ceiling-embedded air conditioner such as a residential packaged air conditioner or a building multi air conditioner.
 空気調和装置30は、たとえば、対象空気熱交換器ユニット20と熱源側ユニット100とが冷媒配管120で接続されて冷媒が循環する冷凍サイクル回路を備えている。 The air conditioner 30 includes, for example, a refrigeration cycle circuit in which the target air heat exchanger unit 20 and the heat source unit 100 are connected by a refrigerant pipe 120 and the refrigerant circulates.
 熱源側ユニット100は、たとえば、屋外に配置されるものである。熱源側ユニット100は、圧縮機102と、流路切替装置104と、熱源側熱交換器106と、制御器110と、を有している。また、熱源側ユニット100は、熱源側熱交換器106への送風を行う送風機108を有している。
 圧縮機102は、冷媒配管120を流れる冷媒を圧縮する。流路切替装置104は、冷媒配管120を流れる冷媒の流れを冷房時と暖房時とで切り替える。熱源側熱交換器106は、冷媒配管120を流れる冷媒と外気とで熱交換させる。制御器110は、空気調和装置30の全体の制御を司る。制御器110は、CPU、ROM、RAM、I/Oポートなどを備えたマイコンを有している。
The heat source side unit 100 is arranged outdoors, for example. The heat source side unit 100 includes a compressor 102, a flow path switching device 104, a heat source side heat exchanger 106, and a controller 110. The heat source side unit 100 includes a blower 108 that blows air to the heat source side heat exchanger 106.
The compressor 102 compresses the refrigerant flowing through the refrigerant pipe 120. The flow path switching device 104 switches the flow of the refrigerant flowing through the refrigerant pipe 120 between cooling and heating. The heat source side heat exchanger 106 exchanges heat between the refrigerant flowing through the refrigerant pipe 120 and the outside air. The controller 110 governs overall control of the air conditioner 30. The controller 110 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, and the like.
 対象空気熱交換器ユニット20は、たとえば、建物あるいは家屋の内部の設備室60に配置される。設備室60は、たとえば、建物あるいは家屋の内部における空調対象室50の天井の上方の天井裏に形成された空間である。つまり、対象空気熱交換器ユニット20は、天井裏に配置されている。
 対象空気熱交換器ユニット20は、絞り装置22と、対象空気熱交換器21と、を有している。絞り装置22は、冷媒配管120を流れる冷媒の圧力を調整する。なお、絞り装置22は、対象空気熱交換器ユニット20に収容されず、熱源側ユニット100に収容されてもよい。対象空気熱交換器21は、冷媒配管120を流れる冷媒と空調対象室50の室内空気から風路40に流入させた対象空気とを熱交換させる。
The target air heat exchanger unit 20 is disposed, for example, in an equipment room 60 inside a building or a house. The facility room 60 is, for example, a space formed in the back of the ceiling above the ceiling of the air-conditioning target room 50 in a building or house. That is, the target air heat exchanger unit 20 is disposed behind the ceiling.
The target air heat exchanger unit 20 includes a throttle device 22 and a target air heat exchanger 21. The expansion device 22 adjusts the pressure of the refrigerant flowing through the refrigerant pipe 120. The expansion device 22 may be accommodated in the heat source side unit 100 instead of being accommodated in the target air heat exchanger unit 20. The target air heat exchanger 21 exchanges heat between the refrigerant flowing through the refrigerant pipe 120 and the target air that has flowed into the air passage 40 from the room air in the air conditioning target chamber 50.
 また、空気調和装置30は、送風機ユニット10を有している。送風機ユニット10は、たとえば、設備室60に配置される。つまり、送風機ユニット10は、対象空気熱交換器ユニット20と共に天井裏に配置されている。送風機ユニット10は、送風機としてのシロッコファン11と、シロッコファン11を回転駆動する図示しないモータと、モータの回転数を制御する制御器12と、を有している。制御器12は、CPU、ROM、RAM、I/Oポートなどを備えたマイコンを有している。
 なお、送風機ユニット10は、送風機としてシロッコファンでなく、プロペラファンなどを収容してもよい。
The air conditioner 30 includes the blower unit 10. The blower unit 10 is disposed in the equipment room 60, for example. That is, the blower unit 10 is arranged on the back of the ceiling together with the target air heat exchanger unit 20. The blower unit 10 includes a sirocco fan 11 as a blower, a motor (not shown) that rotationally drives the sirocco fan 11, and a controller 12 that controls the rotational speed of the motor. The controller 12 has a microcomputer including a CPU, ROM, RAM, I / O port, and the like.
The blower unit 10 may house a propeller fan or the like instead of a sirocco fan as a blower.
 空調対象室50と送風機ユニット10とは、ダクト54を介して連通している。送風機ユニット10と対象空気熱交換器ユニット20とは、ダクト部材1を介して連通している。対象空気熱交換器ユニット20と空調対象室50とは、ダクト56を介して連通している。ダクト56には、対象空気熱交換器ユニット20から流出する対象空気が流れる。ダクト56は、建物あるいは家屋の内部の空気調和を実施する空調対象室50の上部まで延設されている。
 ダクト部材1および2つのダクト54、56は、たとえば、フレキシブルダクトである。
The air conditioning target chamber 50 and the blower unit 10 communicate with each other via a duct 54. The blower unit 10 and the target air heat exchanger unit 20 communicate with each other via the duct member 1. The target air heat exchanger unit 20 and the air conditioning target chamber 50 communicate with each other via a duct 56. The target air flowing out from the target air heat exchanger unit 20 flows through the duct 56. The duct 56 is extended to the upper part of the air-conditioning target room 50 that performs air conditioning inside the building or house.
The duct member 1 and the two ducts 54 and 56 are, for example, flexible ducts.
 ダクト部材1と2つのダクト54、56と送風機ユニット10と対象空気熱交換器ユニット20とは、空調対象室50の室内空気を流入させた対象空気が流れる風路40を構成している。風路40は、設備室60に配置されている。つまり。風路40は、建物あるいは家屋の天井裏に延設されている。送風機ユニット10、ダクト部材1および対象空気熱交換器ユニット20は、風路40の途中に配置されている。
 送風機ユニット10は、対象空気熱交換器ユニット20よりも風路40においてシロッコファン11が生成する風の流れ方向で上流側に配置されている。
The duct member 1, the two ducts 54 and 56, the blower unit 10, and the target air heat exchanger unit 20 constitute an air passage 40 through which target air into which room air in the air-conditioning target room 50 is introduced flows. The air passage 40 is disposed in the equipment room 60. In other words. The air path 40 is extended behind the ceiling of a building or a house. The blower unit 10, the duct member 1, and the target air heat exchanger unit 20 are arranged in the middle of the air passage 40.
The blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the air flow direction of the wind generated by the sirocco fan 11 in the air path 40.
 送風機ユニット10が動作すると、空調対象室50の空気が、風路40の入口である吸入口52を介してダクト54に吸い込まれる。ダクト54に吸い込まれた対象空気は、送風機ユニット10およびダクト部材1を介して対象空気熱交換器ユニット20に流入する。対象空気熱交換器ユニット20に流入した対象空気は、対象空気熱交換器21で冷媒と熱交換される。対象空気熱交換器21で熱交換された空調空気は、ダクト56を流れて風路40の出口である吹出口58から空調対象室50に吹き出される。 When the blower unit 10 operates, the air in the air-conditioning target chamber 50 is sucked into the duct 54 through the suction port 52 that is the inlet of the air passage 40. The target air sucked into the duct 54 flows into the target air heat exchanger unit 20 via the blower unit 10 and the duct member 1. The target air that has flowed into the target air heat exchanger unit 20 is heat-exchanged with the refrigerant in the target air heat exchanger 21. The conditioned air heat-exchanged by the target air heat exchanger 21 flows through the duct 56 and is blown out from the air outlet 58 that is the outlet of the air passage 40 to the air-conditioning target chamber 50.
 図3は、本発明の実施の形態1に係る送風機ユニット10および対象空気熱交換器ユニット20の構成の一例を示す概略図である。
 図3に示すように、送風機ユニット10と対象空気熱交換器ユニット20とは、ダクト部材1で接続されている。
 ダクト部材1は、たとえば、フレキシブルダクトである。このため、ダクト部材1が屈曲あるいは延伸自在であり、送風機ユニット10および対象空気熱交換器ユニット20の配置の自由度が向上される。
 送風機ユニット10は、対象空気熱交換器ユニット20よりも風路40におけるシロッコファン11が生成する風の流れ方向で上流側に配置されている。
FIG. 3 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 1 of the present invention.
As shown in FIG. 3, the blower unit 10 and the target air heat exchanger unit 20 are connected by a duct member 1.
The duct member 1 is, for example, a flexible duct. For this reason, the duct member 1 can be bent or extended freely, and the degree of freedom of arrangement of the blower unit 10 and the target air heat exchanger unit 20 is improved.
The blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11 in the air path 40.
 送風機ユニット10と対象空気熱交換器ユニット20との間隔は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23の風の流れ方向に対応した横幅よりも短い。すなわち、送風機ユニット10と対象空気熱交換器ユニット20との風の流れ方向に対応した間隔は、70mm以上100mm以下である。また、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23の風の流れ方向に対応した横幅は、550mm以下である。 The space | interval of the air blower unit 10 and the object air heat exchanger unit 20 is shorter than the horizontal width corresponding to the flow direction of the wind of the unit cases 13 and 23 in each of the air blower unit 10 and the object air heat exchanger unit 20. That is, the space | interval corresponding to the flow direction of the wind of the air blower unit 10 and the object air heat exchanger unit 20 is 70 mm or more and 100 mm or less. Moreover, the horizontal width | variety corresponding to the flow direction of the wind of the unit housing | casing 13 and 23 in each of the air blower unit 10 and the object air heat exchanger unit 20 is 550 mm or less.
 図4は、本発明の実施の形態1に係る送風機ユニット10の構成の一例を示す概略図である。
 送風機ユニット10は、直方体形状の箱型のユニット筐体13を有している。
 送風機ユニット10は、ダクト54に接続される風路40の風の流れ方向で上流側の接続箇所に、ユニット筐体13から突出して内部が孔となったフランジ部14を有している。送風機ユニット10は、ダクト部材1に接続される風路40の風の流れ方向で下流側の接続箇所に、ユニット筐体13から突出して内部が孔となったフランジ部15を有している。
 これらのフランジ部14、15は、送風機ユニット10におけるユニット筐体13の側面から円筒状に突出している。このため、フランジ部14、15およびフランジ部14、15に接続されるダクト54あるいはダクト部材1のそれぞれの外周で囲われた面積は、送風機ユニット10におけるユニット筐体13のフランジ部14、15が突出した側面の面積に対して小さい。
 これらのフランジ部14、15の中心は、送風機ユニット10におけるユニット筐体13のフランジ部14、15が突出した側面の中心に対して、上方向に位置がずれるように配置されている。これにより、上側に位置した送風口11aからの風向きを横方向に向けられたシロッコファン11からの送風が効率的になるようにしている。
FIG. 4 is a schematic diagram illustrating an example of the configuration of the blower unit 10 according to Embodiment 1 of the present invention.
The blower unit 10 has a rectangular parallelepiped box-shaped unit housing 13.
The blower unit 10 has a flange portion 14 that protrudes from the unit housing 13 and has a hole in the upstream connection portion in the air flow direction of the air passage 40 connected to the duct 54. The blower unit 10 has a flange portion 15 that protrudes from the unit housing 13 and has a hole in the downstream connection portion in the wind flow direction of the air passage 40 connected to the duct member 1.
These flange portions 14 and 15 protrude in a cylindrical shape from the side surface of the unit housing 13 in the blower unit 10. For this reason, the flange parts 14 and 15 and the flange 54 and 15 of the unit housing | casing 13 in the air blower unit 10 are the area enclosed by the outer periphery of the duct 54 connected to the flange parts 14 and 15, or the duct member 1, respectively. Small relative to the protruding side area.
The center of these flange parts 14 and 15 is arrange | positioned so that a position may shift | deviate upward with respect to the center of the side surface from which the flange parts 14 and 15 of the unit housing | casing 13 in the air blower unit 10 protruded. Thereby, the air from the sirocco fan 11 in which the wind direction from the air blowing port 11a located on the upper side is directed in the horizontal direction is made efficient.
 図4に示すように、送風機ユニット10は、送風機としてシロッコファン11を有している。シロッコファン11は、風路40の風の流れ方向で下流側を向いた送風口11aが、送風機ユニット10のユニット筐体13の上側に位置している。シロッコファン11は、送風口11aからの風向きが横方向となるように配置されている。シロッコファン11は、ユニット筐体13の内部に収容されても、送風機ユニット10が対象空気熱交換器ユニット20よりも風路40の風の流れ方向で上流側に配置されている。このため、シロッコファン11には、対象空気熱交換器21で発生する結露水の影響が及ばず、対象空気熱交換器21で発生する結露水に対する防水対策が不要となる。 As shown in FIG. 4, the blower unit 10 has a sirocco fan 11 as a blower. In the sirocco fan 11, the air blowing port 11 a facing the downstream side in the wind flow direction of the air passage 40 is located above the unit housing 13 of the blower unit 10. The sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is in the horizontal direction. Even if the sirocco fan 11 is housed inside the unit housing 13, the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the air flow direction of the air passage 40. For this reason, the sirocco fan 11 is not affected by the condensed water generated in the target air heat exchanger 21, and a waterproof measure against the condensed water generated in the target air heat exchanger 21 becomes unnecessary.
 また、送風機ユニット10は、ユニット筐体13の内部に制御器12を有している。制御器12は、熱源側ユニット100の制御器110と通信し、シロッコファン11のモータの回転数を制御する。制御器12は、ユニット筐体13の内部に収容されても、送風機ユニット10が対象空気熱交換器ユニット20よりも風路40の風の流れ方向で上流側に配置されている。このため、制御器12には、対象空気熱交換器21で発生する結露水の影響が及ばず、対象空気熱交換器21で発生する結露水に対する防水対策が不要となる。 Moreover, the blower unit 10 has a controller 12 inside the unit housing 13. The controller 12 communicates with the controller 110 of the heat source side unit 100 and controls the rotation speed of the motor of the sirocco fan 11. Even if the controller 12 is housed inside the unit housing 13, the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the wind flow direction of the air passage 40. For this reason, the controller 12 is not affected by the condensed water generated in the target air heat exchanger 21, and a waterproof measure against the condensed water generated in the target air heat exchanger 21 is not required.
 図5は、本発明の実施の形態1に係る対象空気熱交換器ユニット20の構成の一例を示す概略図である。
 対象空気熱交換器ユニット20は、直方体形状の箱型のユニット筐体23を有している。
 対象空気熱交換器ユニット20は、ダクト部材1に接続される風路40の風の流れ方向で上流側の接続箇所に、ユニット筐体23から突出して内部が孔となったフランジ部24を有している。対象空気熱交換器ユニット20は、ダクト56に接続される風路40の風の流れ方向で下流側の接続箇所に、ユニット筐体23から突出して内部が孔となったフランジ部25を有している。
 これらのフランジ部24、25は、対象空気熱交換器ユニット20におけるユニット筐体23の側面から円筒状に突出している。このため、フランジ部24、25およびフランジ部24、25に接続されるダクト部材1あるいはダクト56のそれぞれの外周で囲われた面積は、対象空気熱交換器ユニット20におけるユニット筐体23のフランジ部24、25が突出した側面の面積に対して小さい。
 これらのフランジ部24、25の中心は、対象空気熱交換器ユニット20におけるユニット筐体23のフランジ部24、25が突出した側面の中心に対して、上方向に位置をずらして配置されている。これにより、シロッコファン11からの送風が効率的に対象空気熱交換器ユニット20に導入できるようにしている。
FIG. 5 is a schematic diagram showing an example of the configuration of the target air heat exchanger unit 20 according to Embodiment 1 of the present invention.
The target air heat exchanger unit 20 has a rectangular parallelepiped box-shaped unit housing 23.
The target air heat exchanger unit 20 has a flange portion 24 that protrudes from the unit housing 23 and has a hole in the upstream connection portion in the wind flow direction of the air passage 40 connected to the duct member 1. is doing. The target air heat exchanger unit 20 has a flange portion 25 that protrudes from the unit housing 23 and has a hole inside at a connection location on the downstream side in the wind flow direction of the air passage 40 connected to the duct 56. ing.
These flange portions 24 and 25 protrude in a cylindrical shape from the side surface of the unit housing 23 in the target air heat exchanger unit 20. For this reason, the area surrounded by the outer periphery of each of the duct members 1 or 56 connected to the flange portions 24 and 25 and the flange portions 24 and 25 is the flange portion of the unit housing 23 in the target air heat exchanger unit 20. 24 and 25 are small with respect to the area of the side surface which protruded.
The centers of the flange portions 24 and 25 are arranged so as to be shifted in the upward direction with respect to the center of the side surface of the unit housing 23 from which the flange portions 24 and 25 protrude in the target air heat exchanger unit 20. . Thereby, the ventilation from the sirocco fan 11 can be efficiently introduced into the target air heat exchanger unit 20.
 ここで、図3に示すように、送風機ユニット10のフランジ部15と対象空気熱交換器ユニット20のフランジ部24とを接続するダクト部材1の中心は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23のフランジ部15、24が突出した側面の中心に対して、上方向に位置がずれて繋がっている。このため、ダクト部材1は、ダクト部材1の下方の障害物を回避することができる。 Here, as shown in FIG. 3, the center of the duct member 1 that connects the flange portion 15 of the blower unit 10 and the flange portion 24 of the target air heat exchanger unit 20 is the blower unit 10 and the target air heat exchanger unit. The unit housings 13 and 23 of the unit housings 13 and 23 are connected to the center of the side surface from which the flange portions 15 and 24 protrude in the upward direction. For this reason, the duct member 1 can avoid an obstacle below the duct member 1.
 図5に示すように、対象空気熱交換器ユニット20は、ユニット筐体23の内部の底部に、対象空気熱交換器21で発生する結露水を受け止める皿状のドレンパン26を有している。ドレンパン26は、ユニット筐体23の内部で対象空気熱交換器21の配置される領域を下方に投影した投影領域よりも大きく設けられている。 As shown in FIG. 5, the target air heat exchanger unit 20 has a dish-shaped drain pan 26 that receives dew condensation water generated in the target air heat exchanger 21 at the bottom inside the unit housing 23. The drain pan 26 is provided larger than the projection area in which the area where the target air heat exchanger 21 is arranged is projected downward in the unit housing 23.
 対象空気熱交換器ユニット20は、ユニット筐体23の内部で対象空気熱交換器21を対象空気が横方向に流れる風の流れ方向に対して傾斜して設置している。
 すなわち、対象空気熱交換器21は、対象空気熱交換器ユニット20のユニット筐体23の内部で上部が下部よりも風路40の風の流れ方向で上流側に位置するように傾斜して設置されている。
The target air heat exchanger unit 20 is installed inside the unit housing 23 with the target air heat exchanger 21 inclined with respect to the flow direction of the wind in which the target air flows in the lateral direction.
That is, the target air heat exchanger 21 is installed so as to be inclined so that the upper part is located upstream of the lower part in the air flow direction of the air passage 40 inside the unit housing 23 of the target air heat exchanger unit 20. Has been.
 なお、ダクト部材1は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23のフランジ部15、24に接続できるものであればよい。ダクト部材1は、送風機ユニット10あるいは対象空気熱交換器ユニット20と一体的に形成されたものに適用することができる。
 ここで、送風機ユニット10と対象空気熱交換器ユニット20とが、ダクト部材1で着脱することができる場合には、送風機ユニット10および対象空気熱交換器ユニット20の設置の自由度および設置時の作業性が向上される。たとえば、フランジ部15、24の外周面または内周面にネジ加工が施されており、送風機ユニット10および対象空気熱交換器ユニット20とダクト部材1とは、ネジ構造によって接続される。
In addition, the duct member 1 should just be connected to the flange parts 15 and 24 of the unit housing | casing 13 and 23 in each of the air blower unit 10 and the object air heat exchanger unit 20. FIG. The duct member 1 can be applied to one formed integrally with the blower unit 10 or the target air heat exchanger unit 20.
Here, when the blower unit 10 and the target air heat exchanger unit 20 can be attached and detached with the duct member 1, the degree of freedom of installation of the blower unit 10 and the target air heat exchanger unit 20 and the installation time are as follows. Workability is improved. For example, the outer peripheral surface or inner peripheral surface of the flange portions 15 and 24 is threaded, and the blower unit 10 and the target air heat exchanger unit 20 and the duct member 1 are connected by a screw structure.
 図6は、本発明の実施の形態1に係る室内機の能力コードを示す図である。
 図6に示すように、室外機を構成する熱源側ユニット100の制御器110は、送風機ユニット10と対象空気熱交換器ユニット20とを組み合わせた室内機の種類によって、室内機の能力コードを判定する。
FIG. 6 is a diagram showing the capacity code of the indoor unit according to Embodiment 1 of the present invention.
As shown in FIG. 6, the controller 110 of the heat source side unit 100 configuring the outdoor unit determines the capacity code of the indoor unit according to the type of the indoor unit that combines the blower unit 10 and the target air heat exchanger unit 20. To do.
 たとえば、空気調和装置30を設置する作業者が、熱源側ユニット100の制御器110に、室内機に関するデータを入力する。熱源側ユニット100の制御器110は、入力されたデータから室内機の能力コードを判定する。なお、熱源側ユニット100の制御器110は、室内機の能力コードを自動で判定する機能を有していてもよい。
 熱源側ユニット100の制御器110は、室内機の能力コードに応じた運転を実行する。
For example, an operator who installs the air conditioner 30 inputs data related to the indoor unit to the controller 110 of the heat source side unit 100. The controller 110 of the heat source side unit 100 determines the capacity code of the indoor unit from the input data. Note that the controller 110 of the heat source side unit 100 may have a function of automatically determining the capacity code of the indoor unit.
The controller 110 of the heat source side unit 100 performs an operation according to the capacity code of the indoor unit.
 次に、図6を用いて能力コード3の送風機ユニット10と対象空気熱交換器ユニット20とを組み合わせた室内機の一例について説明する。
 能力コード3では、中風量の送風機ユニット10と中容量の対象空気熱交換器ユニット20とを組み合わせることができる。
Next, an example of an indoor unit in which the blower unit 10 with the capacity code 3 and the target air heat exchanger unit 20 are combined will be described with reference to FIG.
In the capacity code 3, the medium air volume blower unit 10 and the medium capacity target air heat exchanger unit 20 can be combined.
 また、能力コード3では、小風量の送風機ユニット10と大容量の対象空気熱交換器ユニット20とを組み合わせることもできる。小風量と大容量との組み合せとすることで、ドラフト感のないマイルド空調あるいは低騒音での運転を提供することができる。
 なお、たとえば、ガラス張り建築などの空調負荷の高い部屋では、空調能力を格上げ使用した際に、風量が大き過ぎてドラフト感を感じたり、騒音が大きくしたりするなど、十分な満足が得られていない可能性がある。
In the capacity code 3, the blower unit 10 having a small air volume and the target air heat exchanger unit 20 having a large capacity can be combined. By combining a small air volume and a large capacity, it is possible to provide mild air conditioning without a draft feeling or operation with low noise.
For example, in a room with a high air conditioning load such as a glass-walled building, when the air conditioning capacity is upgraded and used, the air volume is too large and the draft feeling is felt or the noise is increased. There is no possibility.
 また、能力コード3では、大風量の送風機ユニット10と小容量の対象空気熱交換器ユニット20とを組み合わせることもできる。大風量と小容量との組み合せとすることで、多数の部屋にダクト分岐され大風量が必要な場合、あるいは、低湿度地域で冷房時の除湿を抑えたい高顕熱要求の場合などの空気調和装置30を提供することができる。 In the capacity code 3, the large air volume blower unit 10 and the small capacity target air heat exchanger unit 20 can be combined. A combination of a large air volume and a small capacity allows air conditioning equipment to be used when a large number of air is needed due to the branching of ducts in a large number of rooms, or when high sensible heat is required to reduce dehumidification during cooling in low humidity areas. 30 can be provided.
 能力コード3のいずれの組み合せにおいても冷房能力および暖房能力は同等である。室外機と室内機とのシステム通信あるいは冷媒制御を行うために、室内機側の送風機ユニット10と対象空気熱交換器ユニット20との組み合せを認識する必要がある。図6に示す組み合せによる能力コードが付与され、施工時に初期設定する。
 たとえば、能力コード3となる機種選定をする際には、同一能力でも、設置シーンに見合った風量を選定することができる。そして、異なる容量から対象空気熱交換器サイズあるいは対象空気熱交換器ユニット20のユニットサイズの選択ができる。逆に言えば、送風機ユニット10と対象空気熱交換器ユニット20との組み合せで、小刻みな能力コードを得ることができる。
In any combination of the capability codes 3, the cooling capability and the heating capability are the same. In order to perform system communication or refrigerant control between the outdoor unit and the indoor unit, it is necessary to recognize the combination of the blower unit 10 on the indoor unit side and the target air heat exchanger unit 20. The ability code by the combination shown in FIG. 6 is given and is initially set at the time of construction.
For example, when selecting a model with the capability code 3, it is possible to select an air volume suitable for the installation scene even with the same capability. And the target air heat exchanger size or the unit size of the target air heat exchanger unit 20 can be selected from different capacities. In other words, a small capacity code can be obtained by combining the blower unit 10 and the target air heat exchanger unit 20.
 ここで、ダクト式空調では、多様な機外静圧に対応した送風機が必要となる。高機外静圧が必要となる場合は、一般的にファン径が大きくなる。ファン径の異なる送風機ユニット10を選択することにより、機外静圧ゼロの直吹きから高機外静圧の用途に対応することができる。
 また、風路40の途中に送風機ユニット10を複数設置することにより、ブースターファンとして更に機外静圧を引き上げることもできる。
Here, in the duct type air conditioning, a blower corresponding to various external static pressures is required. When high static pressure outside the machine is required, the fan diameter is generally increased. By selecting the blower unit 10 having a different fan diameter, it is possible to cope with a high external static pressure application from a direct blow with no external static pressure.
Further, by installing a plurality of blower units 10 in the middle of the air passage 40, the external static pressure can be further increased as a booster fan.
 以上の実施の形態1によれば、空気調和装置30は、圧縮機102、熱源側熱交換器106、絞り装置22および対象空気熱交換器21を冷媒配管120で配管接続して構成される冷凍サイクル回路を備えている。空気調和装置30は、シロッコファン11を収容した送風機ユニット10を有している。空気調和装置30は、対象空気熱交換器21を収容した対象空気熱交換器ユニット20を有している。送風機ユニット10は、対象空気熱交換器ユニット20よりもシロッコファン11の生成する風の流れ方向で上流側に配置されている。
 この構成によれば、送風機ユニット10が対象空気熱交換器ユニット20よりもシロッコファン11の生成する風の流れ方向で上流側に配置されている。このため、風路40では、対象空気がシロッコファン11から対象空気熱交換器21に流れる押込み型の構成となる。したがって、対象空気熱交換器ユニット20に収容された対象空気熱交換器21で生じた結露水が、対象空気熱交換器ユニット20よりも風路40の風の流れ方向で上流側に配置される送風機ユニット10に収容されたシロッコファン11に付着することを防止した。また、送風機ユニット10が対象空気熱交換器ユニット20とは別体であるため、対象空気熱交換器ユニット20に収容された対象空気熱交換器21で生じた結露水が、送風機ユニット10に収容されたシロッコファン11に付着することを防止する効果が顕著となる。
 さらに、従来技術とは異なり、空調空気が送風機ユニット10を通らない構成である。このため、送風機ユニット10のシロッコファン11への熱負荷の影響が低減される。
 さらに、シロッコファン11と対象空気熱交換器21との間の距離を大きくとることができる。このため、空気調和装置30の静音性が向上できる。
 また、送風機ユニット10と対象空気熱交換器ユニット20とを別ユニットにすることによって、多様な市場ニーズにマッチした機種選定ができる。すなわち、多様な設置環境またはニーズに合わせて、製品サイズ、風量、騒音、機外静圧などをカスタマイズした空気調和装置30が提供できる。
 なお、従来では、単に必要とする能力のみで室内機の選定を行っていた。このため、サイズ、風量、騒音、機外静圧などが、設置環境およびニーズに合わせられた空気調和装置を得ることは困難であった。
 たとえば、従来の一体型ユニットでは、三角屋根の戸建て住宅において、高さ、幅、奥行きといった製品サイズが大きく天井梁に干渉してしまう場合があった。しかし、実施の形態1によれば、送風機ユニット10と対象空気熱交換器ユニット20とが分離した分離設置構造によって梁の位置にダクト部材1あるいは2つのダクト54、56のいずれかを配置し、梁をかわすことができる。
 さらに、実施の形態1によれば、送風機ユニット10と対象空気熱交換器ユニット20との組み合せ選定によって、それぞれのユニットの更なるサイズ調整が行え、選択肢が広がる。
 また、実施の形態1によれば、低コストのACモータ送風機を備えた送風機ユニット10と節電能力の高いDCモータ送風機を備えた送風機ユニット10とのいずれかをユーザが選択することができる。
According to the first embodiment described above, the air conditioner 30 is a refrigeration constructed by connecting the compressor 102, the heat source side heat exchanger 106, the expansion device 22 and the target air heat exchanger 21 through the refrigerant pipe 120. A cycle circuit is provided. The air conditioner 30 includes the blower unit 10 that houses the sirocco fan 11. The air conditioner 30 includes a target air heat exchanger unit 20 that houses the target air heat exchanger 21. The blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11.
According to this configuration, the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11. Therefore, the air passage 40 has a push-type configuration in which the target air flows from the sirocco fan 11 to the target air heat exchanger 21. Therefore, the dew condensation water generated in the target air heat exchanger 21 accommodated in the target air heat exchanger unit 20 is arranged upstream of the target air heat exchanger unit 20 in the wind flow direction of the air path 40. It was prevented from adhering to the sirocco fan 11 accommodated in the blower unit 10. Further, since the blower unit 10 is separate from the target air heat exchanger unit 20, the dew condensation water generated in the target air heat exchanger 21 accommodated in the target air heat exchanger unit 20 is accommodated in the blower unit 10. The effect of preventing adhesion to the sirocco fan 11 is remarkable.
Furthermore, unlike the prior art, the conditioned air does not pass through the blower unit 10. For this reason, the influence of the thermal load to the sirocco fan 11 of the blower unit 10 is reduced.
Furthermore, the distance between the sirocco fan 11 and the target air heat exchanger 21 can be increased. For this reason, the silence of the air conditioning apparatus 30 can be improved.
Further, by making the blower unit 10 and the target air heat exchanger unit 20 as separate units, it is possible to select models that match various market needs. That is, it is possible to provide the air conditioner 30 in which the product size, the air volume, the noise, the external static pressure, etc. are customized according to various installation environments or needs.
Conventionally, the indoor unit is selected only by the required capacity. For this reason, it has been difficult to obtain an air conditioner whose size, air volume, noise, external static pressure, etc. are matched to the installation environment and needs.
For example, in the conventional integrated unit, in a detached house with a triangular roof, the product size such as height, width, and depth may be large and interfere with the ceiling beam. However, according to the first embodiment, either the duct member 1 or the two ducts 54 and 56 are arranged at the beam position by the separated installation structure in which the blower unit 10 and the target air heat exchanger unit 20 are separated, You can dodge the beam.
Further, according to the first embodiment, by selecting a combination of the blower unit 10 and the target air heat exchanger unit 20, the size of each unit can be further adjusted, and options can be expanded.
Further, according to the first embodiment, the user can select either the blower unit 10 provided with a low-cost AC motor blower or the blower unit 10 provided with a DC motor blower having a high power saving capability.
 実施の形態1によれば、空気調和装置30は、送風機ユニット10と対象空気熱交換器ユニット20とを接続するダクト部材1を有している。送風機ユニット10および対象空気熱交換器ユニット20のそれぞれは、ダクト部材1に接続される接続箇所に、ユニット筐体13、23から突出したフランジ部15、24を有している。フランジ部15、24およびフランジ部15、24に接続されるダクト部材1のそれぞれの外周で囲われた面積は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23のフランジ部15、24が突出した側面の面積に対して小さい。
 この構成によれば、フランジ部15、24に接続されるダクト部材1は、フランジ部15、24と同様に、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23のフランジ部15、24が突出した側面の面積よりも、外周で囲われた面積が小さい。このため、外周で囲われた面積が小さいダクト部材1で接続されている箇所を利用して、梁などの障害物が回避できる。
According to Embodiment 1, the air conditioner 30 includes the duct member 1 that connects the blower unit 10 and the target air heat exchanger unit 20. Each of the blower unit 10 and the target air heat exchanger unit 20 has flange portions 15 and 24 protruding from the unit housings 13 and 23 at connection points connected to the duct member 1. The area surrounded by the outer peripheries of the flange portions 15 and 24 and the duct member 1 connected to the flange portions 15 and 24 is that of the unit housings 13 and 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively. The area of the side surface from which the flange portions 15 and 24 protrude is small.
According to this configuration, the duct member 1 connected to the flange portions 15 and 24 is similar to the flange portions 15 and 24 in the unit housings 13 and 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively. The area surrounded by the outer periphery is smaller than the area of the side surface from which the flange portions 15 and 24 protrude. For this reason, obstructions, such as a beam, can be avoided using the location connected with the duct member 1 with the small area enclosed by the outer periphery.
 実施の形態1によれば、送風機ユニット10と対象空気熱交換器ユニット20との間隔は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23の風の流れ方向に対応する横幅よりも短い。
 この構成によれば、ダクト部材1で接続される送風機ユニット10と対象空気熱交換器ユニット20との間隔が短い。このため、長いダクトで接続するようなものと比較して、ダクト部材1を接続する作業が容易である。また、送風機ユニット10、対象空気熱交換器ユニット20およびダクト部材1は、天井裏の作業が困難なスペースに設置される。このため、接続作業が容易となる効果が顕著である。
 また、ダクト部材1に接続されている箇所を利用して、天井裏における梁などの障害物が回避できる。
According to Embodiment 1, the space | interval of the air blower unit 10 and the object air heat exchanger unit 20 is set to the flow direction of the wind of the unit cases 13 and 23 in the air blower unit 10 and the object air heat exchanger unit 20, respectively. Shorter than the corresponding width.
According to this structure, the space | interval of the air blower unit 10 connected by the duct member 1 and the object air heat exchanger unit 20 is short. For this reason, the operation | work which connects the duct member 1 is easy compared with what connects with a long duct. The blower unit 10, the target air heat exchanger unit 20, and the duct member 1 are installed in a space where it is difficult to work on the ceiling. For this reason, the effect of facilitating the connection work is remarkable.
Moreover, obstacles, such as a beam in a ceiling back, can be avoided using the location connected to the duct member 1. FIG.
 実施の形態1によれば、送風機ユニット10と対象空気熱交換器ユニット20との間隔は、70mm以上100mm以下である。
 この構成によれば、ダクト部材1で接続される送風機ユニット10と対象空気熱交換器ユニット20との間隔が短くできる。また、外周で囲われる面積が小さいダクト部材1で接続されている箇所を利用して、梁などの障害物が回避できる。
According to Embodiment 1, the space | interval of the air blower unit 10 and the object air heat exchanger unit 20 is 70 mm or more and 100 mm or less.
According to this structure, the space | interval of the air blower unit 10 connected with the duct member 1 and the object air heat exchanger unit 20 can be shortened. Moreover, obstructions, such as a beam, can be avoided using the location connected with the duct member 1 with the small area enclosed by outer periphery.
 実施の形態1によれば、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23の風の流れ方向に対応する横幅は、550mm以下である。
 この構成によれば、送風機ユニット10と対象空気熱交換器ユニット20との間隔が、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23の風の流れ方向に対応する横幅よりも短くできる。そして、ユニット筐体13、23の横幅が550mm以下であるため、建物あるいは家屋の梁と梁との間にこれらの送風機ユニット10および対象空気熱交換器ユニット20を配置することができる。
According to Embodiment 1, the lateral width corresponding to the flow direction of the wind in the unit housings 13 and 23 in each of the blower unit 10 and the target air heat exchanger unit 20 is 550 mm or less.
According to this structure, the space | interval of the air blower unit 10 and the object air heat exchanger unit 20 respond | corresponds to the flow direction of the wind of the unit housing | casing 13 and 23 in the air blower unit 10 and the object air heat exchanger unit 20, respectively. Can be shorter than the width. And since the horizontal width of the unit housing | casing 13 and 23 is 550 mm or less, these blower units 10 and the object air heat exchanger unit 20 can be arrange | positioned between the beams of a building or a house.
 実施の形態1によれば、空気調和装置30は、送風機ユニット10と対象空気熱交換器ユニット20とをダクト部材1を介して連通し、建物あるいは家屋の天井裏に延設される風路40が構成されている。送風機ユニット10および対象空気熱交換器ユニット20のそれぞれは、天井裏の風路40に配置されている。
 この構成によれば、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれは、天井裏の作業が困難なスペースに設置される。このため、送風機ユニット10と対象空気熱交換器ユニット20との間隔が短く、長いダクトで接続するものと比較して、ダクト部材1の接続作業が容易である。
According to the first embodiment, the air conditioner 30 communicates the blower unit 10 and the target air heat exchanger unit 20 via the duct member 1, and the air passage 40 that extends to the back of the ceiling of the building or house. Is configured. Each of the blower unit 10 and the target air heat exchanger unit 20 is disposed in the air passage 40 behind the ceiling.
According to this configuration, each of the blower unit 10 and the target air heat exchanger unit 20 is installed in a space where it is difficult to work on the ceiling. For this reason, the space | interval of the air blower unit 10 and the object air heat exchanger unit 20 is short, and compared with what connects with a long duct, the connection operation | work of the duct member 1 is easy.
 実施の形態1によれば、対象空気熱交換器ユニット20は、ユニット筐体23の内部で対象空気熱交換器21を対象空気が横方向に流れる風の流れ方向に対して傾斜して設置している。
 この構成によれば、傾斜して設置された対象空気熱交換器21は、対象空気の風が当たる面積が大きくでき、熱交換能力が向上できる。
According to the first embodiment, the target air heat exchanger unit 20 is installed inside the unit housing 23 so that the target air heat exchanger 21 is inclined with respect to the flow direction of the wind in which the target air flows in the lateral direction. ing.
According to this configuration, the target air heat exchanger 21 installed at an inclination can have a large area on which the wind of the target air hits, and the heat exchange capability can be improved.
 実施の形態1によれば、対象空気熱交換器21は、対象空気熱交換器ユニット20のユニット筐体23の内部で上部が下部よりも風路40の風の流れ方向で上流側に位置するように傾斜して設置されている。
 この構成によれば、対象空気熱交換器21で発生する結露水が、対象空気熱交換器ユニット20のユニット筐体23の内部に滴下する。このため、結露水が対象空気熱交換器ユニット20よりも風の流れ方向で下流の風路40に吹き飛ぶおそれが低減できる。
According to the first embodiment, the target air heat exchanger 21 is located upstream in the flow direction of the wind path 40 in the air path 40 in the upper part of the unit housing 23 of the target air heat exchanger unit 20. It is installed so as to be inclined.
According to this configuration, the dew condensation water generated in the target air heat exchanger 21 is dripped inside the unit housing 23 of the target air heat exchanger unit 20. For this reason, it is possible to reduce the possibility that the dew condensation water will blow off to the downstream air passage 40 in the direction of the wind flow than the target air heat exchanger unit 20.
 実施の形態1によれば、フランジ部14、15、24、25の中心は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23のフランジ部14、15、24、25が突出した側面の中心に対して、上方向に位置がずれるように配置されている。
 この構成によれば、シロッコファン11の送風口11aが上側に位置するときに、フランジ部15が上方向に位置がずれて配置されている。これにより、シロッコファン11からの送風のロスが小さくでき、消費電力が低減できる。
 また、ダクト部材1は、ダクト部材1の下方の梁などの障害物が回避できる。
According to the first embodiment, the centers of the flange portions 14, 15, 24, 25 are the flange portions 14, 15, 24, of the unit housings 13, 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively. It arrange | positions so that a position may shift | deviate upwards with respect to the center of the side surface which 25 protruded.
According to this configuration, when the air blowing port 11a of the sirocco fan 11 is positioned on the upper side, the flange portion 15 is disposed so as to be displaced in the upward direction. Thereby, the loss of the ventilation from the sirocco fan 11 can be made small, and power consumption can be reduced.
Further, the duct member 1 can avoid obstacles such as a beam below the duct member 1.
 実施の形態1によれば、空気調和装置30は、風路40における対象空気熱交換器ユニット20から調和空気が流れるダクト56を有している。ダクト56は、建物あるいは家屋の内部の空気調和を実施する空調対象室50の上部まで延設されている。
 この構成によれば、対象空気熱交換器ユニット20で熱交換した対象空気である調和空気は、ダクト56を介して分散されずに空調対象室50に効率良く送風される。
According to Embodiment 1, the air conditioning apparatus 30 has the duct 56 through which conditioned air flows from the target air heat exchanger unit 20 in the air passage 40. The duct 56 is extended to the upper part of the air-conditioning target room 50 that performs air conditioning inside the building or house.
According to this configuration, the conditioned air that is the target air heat exchanged by the target air heat exchanger unit 20 is efficiently distributed to the air-conditioning target chamber 50 without being dispersed through the duct 56.
実施の形態2.
 図7は、本発明の実施の形態2に係る送風機ユニット10および対象空気熱交換器ユニット20の構成の一例を示す概略図である。実施の形態2では、実施の形態1と異なる点を中心に説明する。
Embodiment 2. FIG.
FIG. 7 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 2 of the present invention. In the second embodiment, a description will be given focusing on differences from the first embodiment.
 図7に示すように、送風機ユニット10には、送風機としてシロッコファン11が収容されている。シロッコファン11は、送風口11aが送風機ユニット10のユニット筐体13の下側に位置している。シロッコファン11は、送風口11aからの風向きが斜め上方となるように配置されている。 As shown in FIG. 7, the blower unit 10 houses a sirocco fan 11 as a blower. The sirocco fan 11 has a blower port 11 a located below the unit housing 13 of the blower unit 10. The sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is obliquely upward.
 フランジ部14、15、24、25の中心は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23のフランジ部14、15、24、25が突出した側面の中心に対して、下方向に位置がずれるように配置されている。 The center of the flange parts 14, 15, 24, 25 is the center of the side surface from which the flange parts 14, 15, 24, 25 of the unit housings 13, 23 of the blower unit 10 and the target air heat exchanger unit 20 protrude. On the other hand, it is arranged so that the position is shifted downward.
 実施の形態2によれば、フランジ部14、15、24、25の中心は、送風機ユニット10および対象空気熱交換器ユニット20のそれぞれにおけるユニット筐体13、23のフランジ部14、15、24、25が突出した側面の中心に対して、下方向に位置がずれるように配置されている。
 この構成によれば、シロッコファン11の送風口11aがユニット筐体13の下側に位置するときに、フランジ部15が下方向に位置がずれるように配置されている。これにより、シロッコファン11からの送風のロスが小さくでき、消費電力が低減できる。
 また、ダクト部材1は、ダクト部材1の上方の梁などの障害物が回避できる。
According to the second embodiment, the centers of the flange portions 14, 15, 24, 25 are the flange portions 14, 15, 24, of the unit housings 13, 23 in the blower unit 10 and the target air heat exchanger unit 20, respectively. It arrange | positions so that a position may shift | deviate with respect to the center of the side surface which 25 protruded.
According to this configuration, when the air blowing port 11a of the sirocco fan 11 is located on the lower side of the unit housing 13, the flange portion 15 is disposed so that the position thereof is shifted downward. Thereby, the loss of the ventilation from the sirocco fan 11 can be made small, and power consumption can be reduced.
Further, the duct member 1 can avoid obstacles such as a beam above the duct member 1.
 実施の形態2によれば、送風機ユニット10には、送風機としてシロッコファン11が収容されている。シロッコファン11は、送風口11aが送風機ユニット10のユニット筐体13の下側に位置している。シロッコファン11は、送風口11aからの風向きが斜め上方となるように配置されている。
 この構成によれば、送風機ユニット10からダクト部材1に向かう風路40が斜め上方の方向に確保でき、効率良く送風ができる。これにより、シロッコファン11からの送風のロスが小さくでき、消費電力が低減できる。
 また、シロッコファン11の風向きが斜め上方に向けられているため、ドレンパン26の影響が低減できる。
According to the second embodiment, the blower unit 10 houses the sirocco fan 11 as a blower. The sirocco fan 11 has a blower port 11 a located below the unit housing 13 of the blower unit 10. The sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is obliquely upward.
According to this structure, the air path 40 which goes to the duct member 1 from the air blower unit 10 can be ensured in the diagonally upward direction, and can blow efficiently. Thereby, the loss of the ventilation from the sirocco fan 11 can be made small, and power consumption can be reduced.
Further, since the wind direction of the sirocco fan 11 is directed obliquely upward, the influence of the drain pan 26 can be reduced.
実施の形態3.
 図8は、本発明の実施の形態3に係る送風機ユニット10および対象空気熱交換器ユニット20の構成の一例を示す概略図である。実施の形態3では、実施の形態1と異なる点を中心に説明する。
Embodiment 3 FIG.
FIG. 8 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 3 of the present invention. In the third embodiment, a description will be given focusing on differences from the first embodiment.
 図8に示すように、送風機ユニット10には、送風機としてシロッコファン11が収容されている。シロッコファン11は、送風口11aが送風機ユニット10のユニット筐体13の上側に位置している。シロッコファン11は、送風口11aからの風向きが横方向となるように配置されている。 As shown in FIG. 8, the blower unit 10 accommodates a sirocco fan 11 as a blower. In the sirocco fan 11, the air outlet 11 a is located above the unit housing 13 of the blower unit 10. The sirocco fan 11 is arranged so that the wind direction from the air outlet 11a is in the horizontal direction.
 フランジ部14、15の中心は、送風機ユニット10におけるユニット筐体13のフランジ部14、15が突出した側面の中心に対して、上方向に位置がずれるように配置されている。 The centers of the flange portions 14 and 15 are arranged so that the positions are shifted upward with respect to the center of the side surface of the blower unit 10 from which the flange portions 14 and 15 of the unit housing 13 protrude.
 対象空気熱交換器ユニット20は、ユニット筐体23の内部で対象空気熱交換器21を対象空気が横方向に流れる流れに対して直交するように設置している。 The target air heat exchanger unit 20 is installed inside the unit housing 23 so that the target air heat exchanger 21 is orthogonal to the flow of the target air in the lateral direction.
 フランジ部24、25の中心は、対象空気熱交換器ユニット20におけるユニット筐体23のフランジ部24、25が突出した側面の中心に対して、同一水平位置の中心位置になるように配置されている。 The centers of the flange portions 24 and 25 are arranged so as to be the center position of the same horizontal position with respect to the center of the side surface from which the flange portions 24 and 25 of the unit housing 23 of the target air heat exchanger unit 20 protrude. Yes.
 実施の形態3によれば、送風機ユニット10と対象空気熱交換器ユニット20との間隔は、対象空気熱交換器ユニット20におけるユニット筐体23の風の流れ方向に対応する横幅よりも長く、送風機ユニット10におけるユニット筐体13の横幅よりも短い。
 この構成によれば、送風機ユニット10と対象空気熱交換器ユニット20とを接続するダクト部材1は、建物あるいは家屋の梁などの障害物が回避できる。
According to the third embodiment, the distance between the blower unit 10 and the target air heat exchanger unit 20 is longer than the lateral width corresponding to the wind flow direction of the unit housing 23 in the target air heat exchanger unit 20. It is shorter than the width of the unit housing 13 in the unit 10.
According to this configuration, the duct member 1 connecting the blower unit 10 and the target air heat exchanger unit 20 can avoid an obstacle such as a building or a house beam.
実施の形態4.
 図9は、本発明の実施の形態4に係る送風機ユニット10および対象空気熱交換器ユニット20の構成の一例を示す概略図である。実施の形態4では、実施の形態1と異なる点を中心に説明する。
Embodiment 4 FIG.
FIG. 9 is a schematic diagram illustrating an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 4 of the present invention. The fourth embodiment will be described with a focus on differences from the first embodiment.
 図9に示すように、送風機ユニット10と対象空気熱交換器ユニット20とは、直接接続されている。ただし、送風機ユニット10は、対象空気熱交換器ユニット20よりもシロッコファン11の生成する風の流れ方向で上流側に配置されている。
 このように、送風機ユニット10と対象空気熱交換器ユニット20とは、ダクト部材を介さずに直接接続されてもよい。
As shown in FIG. 9, the blower unit 10 and the target air heat exchanger unit 20 are directly connected. However, the blower unit 10 is disposed upstream of the target air heat exchanger unit 20 in the flow direction of the wind generated by the sirocco fan 11.
Thus, the blower unit 10 and the target air heat exchanger unit 20 may be directly connected without using a duct member.
 実施の形態4によれば、対象空気熱交換器ユニット20は、ユニット筐体23の内部で対象空気熱交換器21を対象空気が横方向に流れる風の流れ方向に対して傾斜して設置している。
 すなわち、対象空気熱交換器21は、対象空気熱交換器ユニット20のユニット筐体23の内部で上部が下部よりも風路40の風の流れ方向で下流側に位置するように傾斜して設置されている。
 この構成によれば、傾斜して設置された対象空気熱交換器21は、対象空気の風が当たる面積が大きくでき、熱交換能力が向上できる。
According to the fourth embodiment, the target air heat exchanger unit 20 is installed inside the unit housing 23 with the target air heat exchanger 21 inclined with respect to the flow direction of the wind in which the target air flows in the lateral direction. ing.
That is, the target air heat exchanger 21 is installed so as to be inclined so that the upper part is located downstream of the lower part in the wind flow direction of the air passage 40 with respect to the lower part in the unit housing 23 of the target air heat exchanger unit 20. Has been.
According to this configuration, the target air heat exchanger 21 installed at an inclination can have a large area on which the wind of the target air hits, and the heat exchange capability can be improved.
実施の形態5.
 図10は、本発明の実施の形態5に係る送風機ユニット10および対象空気熱交換器ユニット20の構成の一例を示す概略図である。実施の形態5では、実施の形態1と異なる点を中心に説明する。
Embodiment 5 FIG.
FIG. 10 is a schematic diagram showing an example of the configuration of the blower unit 10 and the target air heat exchanger unit 20 according to Embodiment 5 of the present invention. In the fifth embodiment, a description will be given focusing on differences from the first embodiment.
 図10に示すように、対象空気熱交換器ユニット20は、ユニット筐体23の内部で対象空気熱交換器21を対象空気が横方向に流れる風の流れ方向に対して直交するように設置している。
 対象空気熱交換器ユニット20は、実施の形態3の図8に示すものよりも大きく、送風機ユニット10に比べても大きい。
 このように、送風機ユニット10と対象空気熱交換器ユニット20との組み合せ選定によって、それぞれのユニットの更なるサイズ調整が行え、選択肢が広がる。
As shown in FIG. 10, the target air heat exchanger unit 20 is installed inside the unit housing 23 so that the target air heat exchanger 21 is orthogonal to the flow direction of the wind in which the target air flows in the lateral direction. ing.
The target air heat exchanger unit 20 is larger than that shown in FIG. 8 of the third embodiment and larger than the blower unit 10.
Thus, by selecting a combination of the blower unit 10 and the target air heat exchanger unit 20, further size adjustment of each unit can be performed, and options can be expanded.
 なお、本発明の実施の形態1~5を組み合わせてもよいし、他の部分に適用してもよい。 It should be noted that Embodiments 1 to 5 of the present invention may be combined or applied to other parts.
 1 ダクト部材、10 送風機ユニット、11 シロッコファン、11a 送風口、12 制御器、13 ユニット筐体、14 フランジ部、15 フランジ部、20 対象空気熱交換器ユニット、21 対象空気熱交換器、22 絞り装置、23 ユニット筐体、24 フランジ部、25 フランジ部、26 ドレンパン、30 空気調和装置、40 風路、50 空調対象室、52 吸入口、54 ダクト、56 ダクト、58 吹出口、60 設備室、100 熱源側ユニット、102 圧縮機、104 流路切替装置、106 熱源側熱交換器、108 送風機、110 制御器、120 冷媒配管。 1 duct member, 10 blower unit, 11 sirocco fan, 11a blower opening, 12 controller, 13 unit housing, 14 flange part, 15 flange part, 20 target air heat exchanger unit, 21 target air heat exchanger, 22 throttle Equipment, 23 unit housing, 24 flange part, 25 flange part, 26 drain pan, 30 air conditioner, 40 air channel, 50 air conditioning target room, 52 inlet, 54 duct, 56 duct, 58 air outlet, 60 equipment room, 100 heat source side unit, 102 compressor, 104 flow path switching device, 106 heat source side heat exchanger, 108 blower, 110 controller, 120 refrigerant piping.

Claims (12)

  1.  圧縮機、熱源側熱交換器、絞り装置および対象空気熱交換器を配管接続して構成される冷凍サイクル回路を備え、
     送風機を収容した送風機ユニットと、前記対象空気熱交換器を収容した対象空気熱交換器ユニットと、を有し、
     前記送風機ユニットは、前記対象空気熱交換器ユニットよりも前記送風機の生成する風の流れ方向で上流側に配置された空気調和装置。
    A refrigeration cycle circuit configured by connecting a compressor, a heat source side heat exchanger, an expansion device, and a target air heat exchanger,
    A blower unit containing a blower, and a target air heat exchanger unit containing the target air heat exchanger,
    The said air blower unit is an air conditioning apparatus arrange | positioned in the flow direction of the wind which the said air blower produces | generates rather than the said object air heat exchanger unit.
  2.  前記送風機ユニットと前記対象空気熱交換器ユニットとを接続するダクト部材を有し、
     前記送風機ユニットおよび前記対象空気熱交換器ユニットのそれぞれは、前記ダクト部材に接続される接続箇所に、ユニット筐体から突出したフランジ部を有し、
     前記フランジ部および前記フランジ部に接続される前記ダクト部材のそれぞれの外周で囲われた面積は、前記送風機ユニットおよび前記対象空気熱交換器ユニットのそれぞれにおけるユニット筐体の前記フランジ部が突出した面の面積に対して小さい請求項1に記載の空気調和装置。
    A duct member connecting the blower unit and the target air heat exchanger unit;
    Each of the blower unit and the target air heat exchanger unit has a flange portion that protrudes from a unit housing at a connection location connected to the duct member,
    The area surrounded by the flange portion and the outer periphery of each of the duct members connected to the flange portion is a surface from which the flange portion of the unit housing projects in each of the blower unit and the target air heat exchanger unit. The air conditioner according to claim 1, which is small with respect to the area of the air conditioner.
  3.  前記送風機ユニットと前記対象空気熱交換器ユニットとの間隔は、前記送風機ユニットおよび前記対象空気熱交換器ユニットのそれぞれにおけるユニット筐体の前記風の流れ方向に対応する横幅よりも短い請求項1または2に記載の空気調和装置。 The distance between the blower unit and the target air heat exchanger unit is shorter than a lateral width corresponding to the wind flow direction of the unit housing in each of the blower unit and the target air heat exchanger unit. 2. The air conditioning apparatus according to 2.
  4.  前記送風機ユニットと前記対象空気熱交換器ユニットとの間隔は、70mm以上100mm以下である請求項3に記載の空気調和装置。 The air conditioning apparatus according to claim 3, wherein a distance between the blower unit and the target air heat exchanger unit is 70 mm or more and 100 mm or less.
  5.  前記送風機ユニットおよび前記対象空気熱交換器ユニットのそれぞれにおけるユニット筐体の前記風の流れ方向に対応する横幅は、550mm以下である請求項3または4に記載の空気調和装置。 The air conditioner according to claim 3 or 4, wherein a width corresponding to the flow direction of the wind of the unit housing in each of the blower unit and the target air heat exchanger unit is 550 mm or less.
  6.  前記送風機ユニットと前記対象空気熱交換器ユニットとを前記ダクト部材を介して連通し、建物あるいは家屋の天井裏に延設される風路が構成され、
     前記送風機ユニットおよび前記対象空気熱交換器ユニットのそれぞれは、前記天井裏の前記風路に配置される請求項2~5のいずれか1項に記載の空気調和装置。
    The blower unit and the target air heat exchanger unit communicate with each other via the duct member, and an air path extending on the ceiling of a building or a house is configured.
    The air conditioner according to any one of claims 2 to 5, wherein each of the blower unit and the target air heat exchanger unit is disposed in the air path behind the ceiling.
  7.  前記対象空気熱交換器ユニットは、ユニット筐体の内部で前記対象空気熱交換器を前記対象空気が横方向に流れる前記風の流れ方向に対して傾斜して設置した請求項1~6のいずれか1項に記載の空気調和装置。 7. The target air heat exchanger unit according to claim 1, wherein the target air heat exchanger is installed inside the unit casing so as to be inclined with respect to a flow direction of the wind in which the target air flows in a lateral direction. The air conditioning apparatus of Claim 1.
  8.  前記対象空気熱交換器は、前記対象空気熱交換器ユニットのユニット筐体の内部で上部が下部よりも前記風の流れ方向で上流側に位置するように傾斜して設置された請求項7に記載の空気調和装置。 The target air heat exchanger is installed in an inclined manner so that an upper part is located upstream of a lower part in the wind flow direction inside a unit housing of the target air heat exchanger unit. The air conditioning apparatus described.
  9.  前記フランジ部の中心は、前記送風機ユニットおよび前記対象空気熱交換器ユニットのそれぞれにおけるユニット筐体の前記フランジ部が突出した面の中心に対して、上下方向に位置がずれるように配置された請求項2~8のいずれか1項に記載の空気調和装置。 The center of the flange portion is disposed so as to be displaced in the vertical direction with respect to the center of the surface of the unit housing where the flange portion protrudes in each of the blower unit and the target air heat exchanger unit. Item 9. The air conditioner according to any one of Items 2 to 8.
  10.  前記フランジ部の中心は、前記送風機ユニットおよび前記対象空気熱交換器ユニットのそれぞれにおけるユニット筐体の前記フランジ部が突出した面の中心に対して、下方向に位置がずれるように配置された請求項9に記載の空気調和装置。 The center of the flange portion is arranged so that the position is shifted downward with respect to the center of the surface of the unit housing where the flange portion protrudes in each of the blower unit and the target air heat exchanger unit. Item 10. The air conditioner according to Item 9.
  11.  前記送風機ユニットに収容された前記送風機は、シロッコファンであり、
     前記シロッコファンは、送風口が前記送風機ユニットのユニット筐体の下側に位置し、前記送風口からの風向きが斜め上方となるように配置された請求項10に記載の空気調和装置。
    The blower housed in the blower unit is a sirocco fan,
    The air conditioner according to claim 10, wherein the sirocco fan is arranged such that a blower port is positioned below a unit housing of the blower unit, and a wind direction from the blower port is obliquely upward.
  12.  前記対象空気熱交換器ユニットから調和空気が流れるダクトを有し、
     前記ダクトは、建物あるいは家屋の空気調和を実施する空調対象室の上部まで延設される請求項1~11のいずれか1項に記載の空気調和装置。
    A duct through which conditioned air flows from the target air heat exchanger unit;
    The air conditioning apparatus according to any one of claims 1 to 11, wherein the duct extends to an upper part of an air-conditioning target room that performs air conditioning of a building or a house.
PCT/JP2016/065762 2016-05-27 2016-05-27 Air conditioning device WO2017203702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065762 WO2017203702A1 (en) 2016-05-27 2016-05-27 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065762 WO2017203702A1 (en) 2016-05-27 2016-05-27 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2017203702A1 true WO2017203702A1 (en) 2017-11-30

Family

ID=60411727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065762 WO2017203702A1 (en) 2016-05-27 2016-05-27 Air conditioning device

Country Status (1)

Country Link
WO (1) WO2017203702A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943829A4 (en) * 2019-03-20 2022-03-23 Mitsubishi Electric Corporation Air conditioner
WO2022254500A1 (en) * 2021-05-31 2022-12-08 伸和コントロールズ株式会社 Air-conditioning device, constituent unit of same, and combined air-conditioning system
JP7430905B2 (en) 2020-05-12 2024-02-14 伸和コントロールズ株式会社 Air conditioning equipment, its component units, and complex air conditioning systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145920U (en) * 1981-03-08 1982-09-13
JPS6179122U (en) * 1984-10-31 1986-05-27
JPS6186636U (en) * 1984-11-13 1986-06-06
JPS61114217U (en) * 1984-12-27 1986-07-19
JPH02137621U (en) * 1989-04-20 1990-11-16
JPH04198633A (en) * 1990-11-29 1992-07-20 Mitsubishi Electric Corp Air-conditioner
JPH10176840A (en) * 1996-12-17 1998-06-30 Mitsubishi Electric Corp Air conditioner
JP2004092950A (en) * 2002-08-29 2004-03-25 Fujitsu General Ltd Indoor unit for air conditioner
JP2014005954A (en) * 2012-06-21 2014-01-16 Mitsubishi Electric Corp Indoor equipment of air-conditioning device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145920U (en) * 1981-03-08 1982-09-13
JPS6179122U (en) * 1984-10-31 1986-05-27
JPS6186636U (en) * 1984-11-13 1986-06-06
JPS61114217U (en) * 1984-12-27 1986-07-19
JPH02137621U (en) * 1989-04-20 1990-11-16
JPH04198633A (en) * 1990-11-29 1992-07-20 Mitsubishi Electric Corp Air-conditioner
JPH10176840A (en) * 1996-12-17 1998-06-30 Mitsubishi Electric Corp Air conditioner
JP2004092950A (en) * 2002-08-29 2004-03-25 Fujitsu General Ltd Indoor unit for air conditioner
JP2014005954A (en) * 2012-06-21 2014-01-16 Mitsubishi Electric Corp Indoor equipment of air-conditioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943829A4 (en) * 2019-03-20 2022-03-23 Mitsubishi Electric Corporation Air conditioner
JP7430905B2 (en) 2020-05-12 2024-02-14 伸和コントロールズ株式会社 Air conditioning equipment, its component units, and complex air conditioning systems
WO2022254500A1 (en) * 2021-05-31 2022-12-08 伸和コントロールズ株式会社 Air-conditioning device, constituent unit of same, and combined air-conditioning system

Similar Documents

Publication Publication Date Title
US10605479B2 (en) Air-conditioning system
US11466872B2 (en) Modular heat pump system
JP6734624B2 (en) Indoor unit of air conditioner
JP5761097B2 (en) Air conditioner indoor unit
WO2017203702A1 (en) Air conditioning device
KR20090067593A (en) Air conditioning apparatus, vane controlling apparatus for the air conditioning apparatus, and vane controlling method for the air conditioning apparatus
JP2008045780A (en) Indoor unit of air conditioner
ATE435998T1 (en) BUILT-IN OUTDOOR UNIT FOR AIR CONDITIONING
WO2019163104A1 (en) Air conditioner indoor unit and air conditioner indoor system
JP6584675B2 (en) Heat exchanger unit and air conditioner
JP7212283B2 (en) air conditioner
JP2022050948A (en) Air conditioning ventilation system
JP4016988B2 (en) Air heat source heat pump air conditioner for agricultural industry
US20120088445A1 (en) Air distribution unit
JP2001108271A (en) Ventilating device, air conditioning and ventilating system as well as building employing the ventilating device
JP6377900B2 (en) Air conditioning system and building
JP2016099034A (en) Air conditioning device, adjustment method of air conditioning device and manufacturing method of air conditioning facility
WO2003098119A1 (en) Indoor unit for air conditioner
JP2017003167A (en) Ceiling embedded type air conditioner
US20230228447A1 (en) Air conditioner makeup air circulation
US20240003572A1 (en) Air conditioning appliance and method for control
JP2005164213A (en) Ceiling suspension type air conditioner
JP7311281B2 (en) air conditioner
JP2011190968A (en) Blowing device
JP2006242492A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP