WO2017202154A1 - 一种无线通信中的ue和基站中的方法和装置 - Google Patents

一种无线通信中的ue和基站中的方法和装置 Download PDF

Info

Publication number
WO2017202154A1
WO2017202154A1 PCT/CN2017/080768 CN2017080768W WO2017202154A1 WO 2017202154 A1 WO2017202154 A1 WO 2017202154A1 CN 2017080768 W CN2017080768 W CN 2017080768W WO 2017202154 A1 WO2017202154 A1 WO 2017202154A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
identifier
frequency resource
signaling
wireless signal
Prior art date
Application number
PCT/CN2017/080768
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2017202154A1 publication Critical patent/WO2017202154A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless signal transmission scheme in a wireless communication system, and more particularly to a method and apparatus for uplink transmission and downlink feedback based on cellular network communication.
  • uplink wireless signal transmission is based on base station scheduling.
  • IoT Internet of Things
  • the characteristics of IoT communication include: the number of terminal devices is very large, the standby time supported by the terminal device is long (low power consumption), and the cost of the terminal device is low.
  • Traditional scheduling-based uplink transmission is no longer applicable to IoT, for the following reasons:
  • the signaling required for downlink scheduling can severely reduce transmission efficiency.
  • the terminal device first transmits signaling such as an SR (Scheduling Request) before transmitting the uplink transmission.
  • signaling such as an SR (Scheduling Request)
  • IoT communication requires a lower transmission delay, and existing scheduling-based uplink transmissions cannot meet this requirement.
  • CB Contention Based uplink transmission
  • the UE does not need the scheduling of the base station to transmit uplink information. If no collision occurs (between two or more UEs), the base station can correctly decode the uplink information.
  • CB uplink transmission can effectively reduce control signaling when the number of users required by the base station is large and the time-frequency resources required by each user are small. Collision of overhead and control signaling. Then, there is a significant problem in the CB uplink transmission, that is, when multiple UEs simultaneously select the same block of resources for uplink transmission, the base station only decodes the uplink data of some of the multiple UEs, and sends the uplink data. When the corresponding HARQ-ACK (Hybrid Automatic Repeat request-Acknowledgement) is performed, the plurality of UEs cannot know which one of the HARQ-ACKs transmitted by the base station is its own.
  • HARQ-ACK Hybrid Automatic Repeat request-Acknowledgement
  • a simple method of the foregoing problem is that the base station reserves enough resources for the CB uplink transmission, and the base station also reserves the downlink resource corresponding to the uplink resource to send the corresponding HARQ-ACK.
  • these pre-configured resources will cause serious waste, and the method itself violates the original intention of CB uplink transmission.
  • the present invention provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa.
  • the invention discloses a method in a UE used for wireless communication, which comprises the following steps:
  • Step B Detecting the first signaling in the second time-frequency resource.
  • the first time-frequency resource is selected by the UE, and the first wireless signal is used to determine ⁇ a first parameter set, first data ⁇ .
  • the first parameter set is used to determine at least one of ⁇ the second time-frequency resource, the first signaling ⁇ .
  • the first parameter set includes at least one of ⁇ first identifier, second identifier ⁇ , the first identifier is an integer, and the second identifier is an integer.
  • the first signaling is physical layer signaling, and the first signaling is used to determine a third identity.
  • the uplink transmission of the UE needs to be scheduled by the base station, so
  • the base station only detects the data of UE1, and feeds back the downlink HARQ-ACK. If UE2 also receives this HARQ-ACK, UE2 will consider its number of uplinks. According to the correct reception by the base station, the HARQ false detection brings impact on performance.
  • the design of the second identifier and the third identifier in the above method solves the above problem.
  • the second identifier is a unique identifier of the UE, that is, the second identifier corresponding to each UE is different.
  • the UE sends its own second identifier to the base station.
  • the base station When transmitting the first signaling of the feedback, the base station also feeds back the third identifier detected by itself.
  • the third identifier and the second identifier are the same, it is proved that the feedback is for the UE that sends the second identifier, and the uplink data of the UE that sends the second identifier is correctly received; if the third identifier and the second identifier are different, the proof is This feedback is sent to other UEs, and the uplink data of the UE transmitting the second identity is not correctly received.
  • another feature of the above method is to use the first parameter set to determine at least one of ⁇ the second time-frequency resource, the first signaling ⁇ .
  • the advantage is that when the UE generates the first parameter set, the UE knows where to receive the first signaling, and the scrambling code used by the first signaling, or a spreading sequence, etc., thereby preventing the UE from being larger.
  • the first signaling is completely blindly detected in the time-frequency resource, which reduces the complexity of the UE and saves power.
  • the first identifier is a non-negative integer and the second identifier is a non-negative integer.
  • the first wireless signal indicates at least one of ⁇ a first feature sequence, a first information bit group ⁇ , the first feature sequence is used to determine the first identifier, the first An information bit group is used to determine the second identity.
  • the first feature sequence is one of T1 candidate feature sequences, and an index of the first feature sequence in the T1 candidate feature sequences is the first identifier,
  • the T1 is a positive integer greater than one.
  • the first wireless signal generates an RS (Reference Signal) based on the first feature sequence.
  • the RS is used for demodulation and channel estimation of the first wireless signal.
  • the T1 candidate feature sequences are predefined or configured by higher layer signaling.
  • the first feature sequence is a Zad-off Chu sequence.
  • the first sequence of features is a pseudo-random sequence.
  • the first information bit group includes K3 Information bits, the K3 being a positive integer greater than one.
  • the first wireless signal further includes third information, where the third information includes a ⁇ MCS (Modulation and Coding Status) of the first data, NDI, RV (Redundancy Version, redundancy) Remaining version), at least one of the HARQ process numbers ⁇ .
  • MCS Modulation and Coding Status
  • At least one of ⁇ the first identifier, the first time-frequency resource ⁇ is used to determine the second time-frequency resource.
  • the first signaling includes the third identifier.
  • the first signaling is physical layer signaling.
  • the first signaling is UE-specific physical layer signaling.
  • the first signaling is cell specific.
  • the first signaling is high layer signaling.
  • the first data corresponds to a transport channel when the UL-SCH.
  • the first data is transmitted on the PUSCH.
  • the logical channel corresponding to the first data includes a ⁇ CCCH (Common Control Channel), a DCCH (Dedicated Control Channel), and a DTCH (Dedicated Traffic Channel). At least one of them.
  • ⁇ CCCH Common Control Channel
  • DCCH Dedicated Control Channel
  • DTCH Dedicated Traffic Channel
  • the method is characterized in that the step A further comprises the following steps:
  • Step A0 Determine at least one of ⁇ the first identity, the second identity ⁇ or receive downlink information to determine the second identity.
  • the method is characterized in that the UE determines the second identifier by itself or receives downlink information, for example, a C-RNTI (Cell Radio Network Temporary Identifier) to determine the second identifier. Identification to ensure that the second identity is unique to both the base station and the UE.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the UE is an RRC (Radio Resource Control) Idle (Idle) UE, that is, the UE is a UE that does not establish an RRC connection with the base station, and the UE determines the first one. At least one of an identifier, the second identifier ⁇ .
  • RRC Radio Resource Control
  • the determining, by the UE, the first identifier that the UE selects one of the S1 candidate first identifiers as the UE First identification is determined, by the UE, the first identifier that the UE selects one of the S1 candidate first identifiers as the UE First identification.
  • the S1 candidate first identifiers are fixed or configured by high layer signaling.
  • the determining, by the UE, the second identifier is that the UE selects one of the S2 candidate second identifiers as the second identifier of the UE.
  • the S2 candidate second identifiers are fixed or configured by high layer signaling.
  • the determining, by the UE, the second identifier is that the UE generates a random number as the second identifier of the UE.
  • the determining, by the UE, that the second identifier is the S-TMSI (SAE-Temporary Mobile Subscriber Identity) of the UE is used as the UE The second logo.
  • SAE refers to System Architecture Evolution.
  • the UE is an RRC Connected UE, that is, the UE is a UE that establishes an RRC connection with a base station, and the UE receives downlink information to determine the second identifier.
  • the transport channel of the downlink information is a DL-SCH (Donwlink Shared Channel).
  • the downlink information is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the downlink information is transmitted in Msg4.
  • the second identifier is a C-RNTI of the UE.
  • the method is characterized in that the step A further comprises the following steps:
  • the first information is used to determine a first resource pool, and the first resource pool includes the first time-frequency resource. ⁇ At least one of the time-frequency position of the first time-frequency resource in the first resource pool, the first spreading sequence ⁇ is related to the first parameter set. The first spreading sequence is used for mapping of modulation symbols in the first wireless signal to time-frequency resources.
  • the foregoing method is characterized in that the UE will select the first time-frequency resource in the first resource pool to send the first wireless signal, and the first resource pool is configured by the base station.
  • the advantage of this method is that the base station can adjust the utilization of current system resources.
  • the size of the first resource pool can be configured based on different requirements. For example, some transmissions require low latency, and some transmissions require high robustness. For different uplink transmission requirements, the UE transmits data on different resource pools in order to utilize resources more efficiently.
  • the first resource pool includes a positive integer number of RUs (Resource Units).
  • the RU occupies one subcarrier in the frequency domain and occupies a duration of one multicarrier symbol in the time domain.
  • the RU is an RE (Resource Element) of an LTE uplink transmission.
  • the multi-carrier symbol is an OFDM symbol.
  • the multi-carrier symbol is an SC-FDMA symbol.
  • the multi-carrier symbol is an FBMC symbol.
  • the subcarrier bandwidth is one of ⁇ 15 kHz, 17.5 KHz, 17.06 KHz, 7.5 KHz, 2.5 KHz ⁇ .
  • the first information is used to determine at least one of a ⁇ frequency domain start location, a frequency domain end location, a time domain start location, and a time domain end location ⁇ of the first resource pool.
  • the first information is used to determine a frequency domain location of a PRB pair occupied by the first resource pool in a system bandwidth.
  • the first information is used to determine a subframe occupied by the first resource pool.
  • the first information is used to determine a period of the first resource pool and an offset value in one period.
  • the first information is used to determine a frequency domain location of a bandwidth occupied by the first resource pool in a system bandwidth.
  • the first spreading sequence is one of K1 candidate first spreading sequences.
  • the K1 candidate first spreading sequences are predefined or configured by higher layer signaling.
  • the first spreading sequence is associated with the first identification.
  • the first identifier is one of S1 candidate first identifiers
  • the first spreading sequence is one of the K1 candidate first spreading sequences
  • the An index identified in the S1 candidate first identifiers and the first extension The index of the spreading sequence in the K1 candidate first spreading sequences is the same.
  • both S1 and K1 are positive integers greater than one.
  • the S1 is equal to the K1.
  • the first wireless signal includes a positive integer number of modulation symbols, and one of the modulation symbols is multiplied by the first spreading sequence and then mapped to Q1 RUs.
  • Q1 is a positive integer.
  • the first resource pool includes Z1 basic time-frequency resources, the first time-frequency resource is one of the Z1 basic time-frequency resources, and the basic time-frequency resource includes a positive integer number of RUs. .
  • the index of the first time-frequency resource in the Z1 basic time-frequency resources is the same as the index of the first identifier in the S1 candidate first identifiers.
  • both Z1 and S1 are positive integers greater than one.
  • the Z1 is equal to the S1.
  • the first identifier is related to the second identifier.
  • the first identifier is a remainder after the second identifier is modulo W.
  • W is a positive integer greater than 1, and W is fixed or configured by higher layer signaling.
  • the method is characterized in that the step B further comprises the following steps:
  • the second information is used to determine a second resource pool, and the second resource pool includes the second time-frequency resource. ⁇ At least one of the time-frequency position of the second time-frequency resource in the second resource pool, the second spreading sequence ⁇ is related to the first parameter set.
  • the second spreading sequence is used for mapping the modulation symbols corresponding to the first signaling to time-frequency resources.
  • the above method has the advantage that, after the UE determines the first parameter set, the first signaling may be searched at a determined location in the second resource pool. Avoid excessive detection complexity, reduce UE complexity, and improve battery life.
  • another advantage of the foregoing method is that the base station can adjust the size of the second resource pool according to the detected number of second identifiers. Avoid being unable to accommodate multiple downstream HARQ-ACKs because the second resource pool is too small.
  • the multiple downlink HARQ-ACKs are for multiple detected uplink data from different UEs.
  • the second resource pool contains a positive integer number of RUs.
  • the RU is in frequency The duration of occupying one subcarrier on a domain and occupying one multicarrier symbol in the time domain.
  • the RU is an LTE downlink transmission RE.
  • the multi-carrier symbol is an OFDM symbol.
  • the multi-carrier symbol is an SC-FDMA symbol.
  • the multi-carrier symbol is an FBMC symbol.
  • the subcarrier bandwidth is one of ⁇ 15 kHz, 17.5 KHz, 17.06 KHz, 7.5 KHz, 2.5 KHz ⁇ .
  • the second information is used to determine at least one of a ⁇ frequency domain start position, a frequency domain end position, a time domain start position, and a time domain end ⁇ of the second resource pool.
  • the second information is used to determine a frequency domain location of a PRB pair occupied by the second resource pool in a system bandwidth.
  • the second information is used to determine a subframe occupied by the second resource pool.
  • the second information is used to determine a period of the second resource pool and an offset value in one period.
  • the second information is used to determine a frequency domain location of a bandwidth occupied by the second resource pool in a system bandwidth.
  • the second information is used to determine a time domain location relationship between the second resource pool and the first resource pool.
  • the first resource pool is located in subframe #n
  • the second resource pool is located in subframe #(n+k)
  • the k is determined by the second information.
  • the time-frequency position of the second time-frequency resource in the second resource pool is related to the first parameter set, where the second resource pool includes Z2 basic time-frequency resources.
  • the second time-frequency resource is one of the Z2 basic time-frequency resources, and the basic time-frequency resource includes a positive integer number of RUs.
  • the index of the second time-frequency resource in the Z2 basic time-frequency resources is the same as the index of the first identifier in the S1 candidate first identifiers. Wherein, both S1 and Z2 are positive integers greater than one.
  • the Z2 is equal to the S1.
  • the second spreading sequence is one of K2 candidate second spreading sequences.
  • the K2 candidate second spreading sequences are predefined or configured by higher layer signaling of.
  • the second spreading sequence is related to the first parameter set, where the second spreading sequence is one of K2 candidate second spreading sequences, and the first signaling adopts the first
  • the second spreading sequence is subjected to spread spectrum coding.
  • the index of the second spreading sequence in the K2 candidate second spreading sequences is the same as the index of the first identifier in the S1 candidate first identifiers.
  • both K2 and S1 are positive integers greater than one.
  • the K2 is equal to the S1.
  • the first signaling by using the second spreading sequence for spreading coding means that the first signaling includes a positive integer number of modulation symbols, and one of the modulation symbols Multiplying by the second spreading sequence is mapped to Q2 RUs.
  • Q2 is a positive integer.
  • the second spreading sequence is related to the first parameter set, where the second spreading sequence is one of the K2 candidate second spreading sequences, and the first signaling adopts The second spreading sequence is subjected to spread spectrum coding.
  • the index of the second spreading sequence in the K2 candidate second spreading sequences is the same as the index of the second identifier in the S2 candidate second identifiers. Both K2 and S2 are positive integers greater than one.
  • the K2 is equal to the S2.
  • the first signaling by using the second spreading sequence for spreading coding means that the first signaling includes a positive integer number of modulation symbols, and one of the modulation symbols Multiplying by the second spreading sequence is mapped to Q2 RUs.
  • Q2 is a positive integer.
  • the second spreading sequence is related to the first parameter set, where the second spreading sequence is one of K2 candidate second spreading sequences, and the first signaling adopts the first
  • the second spreading sequence is subjected to spread spectrum coding.
  • the index of the second spreading sequence in the K2 candidate second spreading sequences is the same as the remainder obtained after the second identifier modulo Y.
  • both K2 and Y are positive integers greater than one.
  • the Y is fixed or configured by higher layer signaling.
  • the first signaling by using the second spreading sequence for spreading coding means that the first signaling includes a positive integer number of modulation symbols, and one of the modulation symbols Multiplying by the second spreading sequence is mapped to Q2 RUs.
  • Q2 is a positive integer.
  • the second information is a DCI.
  • the second information is transmitted on a PDCCH (Physical Downlink Control Channel) or an EPDCCH (Enhanced Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the second information is indicated by physical layer signaling.
  • the second information is indicated by higher layer signaling.
  • the method is characterized in that the step B further comprises the following steps:
  • Step B determining, according to the third identifier, whether the first wireless signal is correctly received
  • the UE assumes that the first wireless signal is correctly decoded, otherwise the UE assumes that the first wireless signal is not correctly decoded.
  • the invention discloses a method in a base station used for wireless communication, which comprises the following steps:
  • Step B Send the first signaling in the second time-frequency resource.
  • the first time-frequency resource is selected by the sender of the first wireless signal, and the first wireless signal is used to determine ⁇ a first parameter set, first data ⁇ .
  • the first parameter set is used to determine at least one of ⁇ the second time-frequency resource, the first signaling ⁇ .
  • the first parameter set includes at least one of ⁇ first identifier, second identifier ⁇ , the first identifier is an integer, and the second identifier is an integer.
  • the first signaling is physical layer signaling, and the first signaling is used to determine a third identity.
  • the base station receives (M-1) wireless signals from (M-1) UEs in the first time-frequency resource in the step A.
  • the (M-1) UEs are UEs other than the transmitting UE of the first wireless signal.
  • the (M-1) wireless signals are wireless signals other than the first wireless signal.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A0 Send downlink information to determine the second identity.
  • the method is characterized in that the step A further comprises the following steps:
  • the first information is used to determine a first resource pool, and the first resource pool includes the first time-frequency resource. ⁇ At least one of the time-frequency position of the first time-frequency resource in the first resource pool, the first spreading sequence ⁇ is related to the first parameter set. The first spreading sequence is used for mapping of modulation symbols in the first wireless signal to time-frequency resources.
  • the method is characterized in that the step B further comprises the following steps:
  • the second information is used to determine a second resource pool, and the second resource pool includes the second time-frequency resource. ⁇ At least one of the time-frequency position of the second time-frequency resource in the second resource pool, the second spreading sequence ⁇ is related to the first parameter set.
  • the second spreading sequence is used for mapping the modulation symbols corresponding to the first signaling to time-frequency resources.
  • the base station configures the first resource pool
  • the base station does not determine where the first time-frequency resource is located in the first resource pool, and how many terminals are on the first time-frequency resource.
  • the uplink data will be transmitted. Therefore, the base station receives the first wireless signal by the blind detection.
  • the base station adjusts the size of the second resource pool according to the received number of the second identifier.
  • the number of the received second identifier is greater than a first threshold, and the base station increases the size of the second resource pool.
  • the first threshold is a fixed or higher layer signaling configuration and is a positive integer greater than one.
  • the number of the received second identifier is not greater than a first threshold, and the base station increases the size of the second resource pool.
  • the first threshold is a fixed or higher layer signaling configuration and is a positive integer greater than one.
  • the number of the received second identifier is less than a second threshold, and the base station increases the size of the second resource pool.
  • the second threshold is a fixed or higher layer signaling configuration and is a positive integer greater than one.
  • the second information is used to determine the size of the second resource pool.
  • the second information is used to determine the second The number of basic time-frequency resources R2 contained in the resource.
  • the basic time-frequency resource and the second time-frequency resource include the same number of RUs, and the second time-frequency resource is one of the R2 basic time-frequency resources.
  • R is a positive integer.
  • the method is characterized in that the step B further comprises the following steps:
  • Step B Demodulating the wireless signal received on the first time-frequency resource to determine the third identifier
  • the base station determines, by using the power on all the basic time-frequency resources in the first resource pool, the location of the first time-frequency resource in the first resource pool in step B1.
  • the first resource pool includes R1 basic time-frequency resources, the basic time-frequency resource and the first time-frequency resource include the same number of RUs, and the first time-frequency resource is the R1 One of the basic time-frequency resources.
  • the R1 is a positive integer.
  • the base station further determines, by using blind detection, the location of the first time-frequency resource in the first resource pool in step B1.
  • the demodulating the wireless signal received on the first time-frequency resource to determine the third identifier refers to: the base station blindly detecting M received on the first time-frequency resource A wireless signal (which includes the first wireless signal) determines the third identity.
  • the blind detection is coherent detection for the corresponding feature sequence.
  • the base station performs coherent detection according to the T1 candidate feature sequences.
  • the base station determines the third identifier according to the detected given wireless signal on the first time-frequency resource.
  • the given wireless signal is one of the M wireless signals, and the given wireless signal is from one of the M UEs.
  • the third identity is determined by the transmitting UE of the given wireless signal or by the base station of the serving cell of the transmitting UE of the given wireless signal.
  • the invention discloses a user equipment used for wireless communication, which comprises the following modules:
  • a first processing module for transmitting the first wireless signal in the first time-frequency resource.
  • a second processing module for detecting the first signaling in the second time-frequency resource.
  • the first time-frequency resource is selected by the UE, and the first wireless signal is used to determine ⁇ a first parameter set, first data ⁇ .
  • the first parameter set is used to determine at least one of ⁇ the second time-frequency resource, the first signaling ⁇ .
  • the first parameter set includes at least one of ⁇ first identifier, second identifier ⁇ , the first identifier is an integer, and the second identifier is an integer.
  • the first signaling is physical layer signaling, and the first signaling is used to determine a third identity.
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module is further configured to determine at least one of ⁇ the first identifier, the second identifier ⁇ or receive The downlink information determines the second identity.
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module is further configured to receive the first information.
  • the first information is used to determine a first resource pool, and the first resource pool includes the first time-frequency resource.
  • the first spreading sequence ⁇ is related to the first parameter set.
  • the first spreading sequence is used for mapping of modulation symbols in the first wireless signal to time-frequency resources.
  • the user equipment used for wireless communication is characterized in that the second processing module is further configured to receive the second information.
  • the second information is used to determine a second resource pool, and the second resource pool includes the second time-frequency resource.
  • ⁇ At least one of the time-frequency position of the second time-frequency resource in the second resource pool, the second spreading sequence ⁇ is related to the first parameter set.
  • the second spreading sequence is used for mapping the modulation symbols corresponding to the first signaling to time-frequency resources.
  • the foregoing user equipment used for wireless communication is characterized in that the second processing module is further configured to determine, according to the third identifier, whether the first wireless signal is correctly received. Wherein, if the third identifier is equal to the second identifier, the UE assumes that the first wireless signal is correctly decoded, otherwise the UE assumes that the first wireless signal is not correctly decoded.
  • the invention discloses a base station device used for wireless communication, which comprises the following modules:
  • a third processing module for receiving the first wireless signal in the first time-frequency resource.
  • a fourth processing module configured to send the first signaling in the second time-frequency resource.
  • the first time-frequency resource is selected by the sender of the first wireless signal, and the first wireless signal is used to determine ⁇ a first parameter set, first data ⁇ .
  • the first parameter set is used to determine at least one of ⁇ the second time-frequency resource, the first signaling ⁇ .
  • the first parameter set includes at least one of ⁇ first identifier, second identifier ⁇ , the first identifier is an integer, and the second identifier is an integer.
  • the first signaling is physical layer signaling, and the first signaling is used to determine a third identity.
  • the foregoing base station device used for wireless communication is characterized in that the third processing module is further configured to send downlink information to determine the second identifier.
  • the base station device used for wireless communication is characterized in that the third processing module is further configured to send the first information.
  • the first information is used to determine a first resource pool, and the first resource pool includes the first time-frequency resource. ⁇ At least one of the time-frequency position of the first time-frequency resource in the first resource pool, the first spreading sequence ⁇ is related to the first parameter set.
  • the first spreading sequence is used for mapping of modulation symbols in the first wireless signal to time-frequency resources.
  • the base station device used for wireless communication is characterized in that the fourth processing module is further configured to send the second information.
  • the second information is used to determine a second resource pool, and the second resource pool includes the second time-frequency resource. ⁇ At least one of the time-frequency position of the second time-frequency resource in the second resource pool, the second spreading sequence ⁇ is related to the first parameter set.
  • the second spreading sequence is used for mapping the modulation symbols corresponding to the first signaling to time-frequency resources.
  • the foregoing base station device used for wireless communication is characterized in that the fourth processing module is further configured to demodulate the wireless signal received on the first time-frequency resource to determine the third identifier.
  • the present invention has the following technical advantages over the prior art:
  • the UE can correctly receive the downlink feedback information of the base station for the uplink data of the UE in the scenario of CB uplink transmission.
  • the uplink transmission of the CB and the corresponding downlink feedback are processed on a fixed resource by the design of the first information and the second information, so that the UE and the base station can perform blind detection.
  • FIG. 1 shows a flow chart of uplink transmission and downlink feedback according to an embodiment of the present invention
  • FIG. 2 shows a flow chart of uplink transmission and downlink feedback according to another embodiment of the present invention
  • Figure 3 shows a schematic diagram of the given resource pool in accordance with one embodiment of the present invention.
  • the given resource pool is one of ⁇ the first resource pool, the second resource pool ⁇ .
  • the given resource pool is one of ⁇ the first resource pool, the second resource pool ⁇ .
  • FIG. 5 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of uplink transmission, as shown in FIG.
  • base station N1 is the maintenance base station of the serving cell of UE U2, and the steps identified in block F0 and block F1 are optional.
  • the first information is transmitted in step S10, the first wireless signal is received on the first time-frequency resource in step S11, the second information is transmitted in step S12, and the first time is demodulated in step S13.
  • the wireless signal received on the frequency resource determines the third identity, and the first signaling is sent in the second time-frequency resource in step S14.
  • At least one of ⁇ the first identifier, the second identifier ⁇ is determined in step S20, and the first information is received in step S21, and is sent on the first time-frequency resource in step S22.
  • the first wireless signal receives the second information in step S23, detects the first signaling in the second time-frequency resource in step S24, and determines whether the first wireless signal is determined according to the third identifier in step S25. Receive correctly.
  • the base station also receives (M-1) wireless signals from (M-1) UEs in the first time-frequency resource in the step S11.
  • the (M-1) UEs are UEs other than the transmitting UE of the first wireless signal.
  • the (M-1) wireless signals are wireless signals other than the first wireless signal.
  • the demodulating the radio signal received on the first time-frequency resource to determine the third identifier in the step S13 is: the base station N1 is blindly detected on the first time-frequency resource.
  • the received M wireless signals determine the third identity.
  • the M wireless signals include the first wireless signal.
  • the blind detection is a coherent detection for a corresponding sequence of features.
  • the base station N1 performs coherent detection according to the T1 candidate feature sequences.
  • the base station determines the third identifier according to the detected given wireless signal on the first time-frequency resource.
  • the given wireless signal is one of the M wireless signals, and the given wireless signal is from one of the M UEs.
  • the third identity is determined by the transmitting UE of the given wireless signal or by the base station of the serving cell of the transmitting UE of the given wireless signal.
  • Embodiment 2 illustrates a flow chart of uplink transmission, as shown in FIG.
  • base station N3 is the serving base station of the serving cell of UE U4, and the steps identified in block F2 and block F3 are optional.
  • step S30 For the base station N3 , transmitting the downlink information to determine the second identifier in step S30, transmitting the first information in step S31, receiving the first wireless signal on the first time-frequency resource in step S32, and transmitting the second in step S33.
  • Information demodulating the wireless signal received on the first time-frequency resource to determine the third identity in step S34, and transmitting the first signaling in the second time-frequency resource in step S35.
  • the downlink information is determined in step S40 to determine the second identifier
  • the first information is received in step S41
  • the first wireless signal is transmitted on the first time-frequency resource in step S42
  • the first wireless signal is received in step S43.
  • the second information is detected in the second time-frequency resource in step S44, and the first wireless signal is determined to be correctly received according to the third identifier in step S45.
  • the base station also receives (M-1) wireless signals from (M-1) UEs in the first time-frequency resource in the step S32.
  • the (M-1) UEs are UEs other than the transmitting UE of the first wireless signal.
  • the (M-1) wireless signals are wireless signals other than the first wireless signal.
  • the demodulating the radio signal received on the first time-frequency resource to determine the third identifier in the step S34 is: the base station N3 is blindly detected on the first time-frequency resource.
  • the blind detection is coherent detection for the corresponding feature sequence.
  • the base station N1 performs coherent detection according to the T1 candidate feature sequences.
  • the base station determines the third identifier according to the detected given wireless signal on the first time-frequency resource.
  • the given wireless signal is one of the M wireless signals, and the given wireless signal is from one of the M UEs.
  • the third identity is determined by the transmitting UE of the given wireless signal or by the base station of the serving cell of the transmitting UE of the given wireless signal.
  • Embodiment 3 illustrates a schematic diagram of one of the given resource pools in accordance with the present invention.
  • the given resource pool is one of ⁇ the first resource pool, the second resource pool ⁇ .
  • the given resource pool is continuous in both the time domain and the frequency domain.
  • the given resource pool is the first resource pool.
  • the given resource pool is the second resource pool.
  • Embodiment 4 illustrates another schematic diagram of one of the given resource pools in accordance with the present invention.
  • the given resource pool is one of ⁇ the first resource pool, the second resource pool ⁇ .
  • the given resource pool is discretely distributed in the time domain and continuously distributed in the frequency domain.
  • the given resource pool is periodically distributed, and the period is N milliseconds, and N is a positive integer greater than one.
  • the given resource pool is located at #(N*j+i1) milliseconds to #(N*j+i2) milliseconds.
  • j is a positive integer
  • both i1 and i2 are positive integers smaller than N.
  • the i2 is not smaller than the i1, and the N and the i1 are both indicated by the second information.
  • the i2 is equal to the i1.
  • the given resource pool is the first resource pool.
  • the given resource pool is the second resource pool.
  • Embodiment 5 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 100 is mainly composed of a first processing module 101 and a second processing module 102.
  • the first processing module 101 is configured to send the first wireless signal in the first time-frequency resource.
  • the second processing module 102 is configured to detect the first signaling in the second time-frequency resource.
  • the first time-frequency resource is selected by the UE, and the first wireless signal is used to determine ⁇ a first parameter set, first data ⁇ .
  • the first parameter set is used to determine at least one of ⁇ the second time-frequency resource, the first signaling ⁇ .
  • the first parameter set includes at least one of ⁇ first identifier, second identifier ⁇ , the first identifier is an integer, and the second identifier is an integer.
  • the first signaling is physical layer signaling, and the first signaling is used to determine a third identity.
  • the first processing module 101 is further configured to determine at least one of the first identifier, the second identifier, or receive downlink information to determine the second identifier.
  • the first processing module 101 is further configured to receive the first information.
  • the first information is used to determine a first resource pool, and the first resource pool includes the first time-frequency resource.
  • the first resource pool includes the first time-frequency resource.
  • At least one of the first spreading sequence ⁇ is associated with the first set of parameters.
  • the first spreading sequence is used for mapping of modulation symbols in the first wireless signal to time-frequency resources.
  • the second processing module 102 is further configured to receive the second information.
  • the second information is used to determine a second resource pool, and the second resource pool includes the second time-frequency resource.
  • ⁇ At least one of the time-frequency position of the second time-frequency resource in the second resource pool, the second spreading sequence ⁇ is related to the first parameter set.
  • the second spreading sequence is used for mapping the modulation symbols corresponding to the first signaling to time-frequency resources.
  • the second processing module 102 is further configured to determine, according to the third identifier, whether the first wireless signal is correctly received, where, if the third identifier is equal to the second identifier, The UE assumes that the first wireless signal is correctly decoded, otherwise the UE assumes that the first wireless signal is not correctly decoded.
  • Embodiment 6 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 200 is mainly composed of a third processing module 201 and a fourth processing module 202.
  • the third processing module 201 is configured to receive the first wireless signal in the first time-frequency resource.
  • the fourth processing module 202 is configured to send the first signaling in the second time-frequency resource.
  • the first time-frequency resource is selected by the UE, and the first wireless signal is used to determine ⁇ a first parameter set, first data ⁇ .
  • the first parameter set is used to determine at least one of ⁇ the second time-frequency resource, the first signaling ⁇ .
  • the first parameter set includes at least one of ⁇ first identifier, second identifier ⁇ , the first identifier is an integer, and the second identifier is an integer.
  • the first signaling is physical layer signaling, and the first signaling is used to determine a third identity.
  • the third processing module 201 is further configured to send downlink information to determine the second identifier.
  • the third processing module 201 is further configured to send the first information.
  • the first information is used to determine a first resource pool, and the first resource pool includes the first time-frequency resource. ⁇ At least one of the time-frequency position of the first time-frequency resource in the first resource pool, the first spreading sequence ⁇ is related to the first parameter set.
  • the first spreading sequence is used for mapping of modulation symbols in the first wireless signal to time-frequency resources.
  • the fourth processing module 202 is further configured to send the second information.
  • the second information is used to determine a second resource pool, and the second resource pool includes the second time-frequency resource. ⁇ At least one of the time-frequency position of the second time-frequency resource in the second resource pool, the second spreading sequence ⁇ is related to the first parameter set.
  • the second spreading sequence is used for mapping the modulation symbols corresponding to the first signaling to time-frequency resources.
  • the fourth processing module 202 is further configured to demodulate the wireless signal received on the first time-frequency resource to determine the third identifier.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present invention include but are not limited to mobile phones, tablet computers, notebooks, vehicle communication devices, wireless sensors, network cards, Internet of things terminals, RFID terminals, NB-IOT terminals, and MTC (Machine Type Communication).
  • the base station in the present invention includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线通信中的UE和基站中的方法和装置,UE在第一时频资源中发送第一无线信号,随后在第二时频资源中检测第一信令。其中,所述第一时频资源是由所述UE自行选择的。所述第一参数集合包括{第一标识,第二标识}中的至少之一。所述第一信令被用于确定第三标识。所述UE通过比对所述第三标识和所述第二标识判断所述第一无线信号是否被基站正确接收。本发明通过设计第二标识和第三标识,解决无调度的上行传输,UE如何获知其所发送的上行数据被正确接收的问题。同时,将第一参数集合与第一时频资源及第二时频资源建立联系,使UE和基站可以在固定的资源上获取上行数据,以及上行数据对应的反馈,降低盲检测的复杂度。

Description

一种无线通信中的UE和基站中的方法和装置 技术领域
本发明涉及无线通信系统中的无线信号的传输方案,特别是涉及基于蜂窝网通信的上行传输及下行反馈的方法和装置。
背景技术
传统的基于数字调制方式的无线通信系统,例如3GPP(3rd Generation Partner Project,第三代合作伙伴项目)蜂窝系统中,上行无线信号的发送是基于基站的调度。而对下一代无线通信系统而言,IoT(Internet of Things,物联网)通信可能会成为一个重要的应用场景。
IoT通信的特征包括:终端设备的数量非常巨大,终端设备所支持的待机时间较长(功耗要低),终端设备的成本较低等方面。传统的基于调度的上行发送不再适用于IoT,原因包括:
-.下行调度所需要的信令会严重降低传输效率。尤其考虑到典型的一次IoT的上行发送所包括的信息比特数量通常比较少。
-.增加终端设备的功耗,降低待机时间。现有的系统中,终端设备首先通过例如SR(Scheduling Request,调度请求)等信令,然后才能发送上行传输。
-.增大了上行传输延时。一些特殊场景中,IoT通信需要较低的传输延时,而现有的基于调度的上行传输不能满足这一需求。
针对上述问题,CB(Contention Based,基于竞争的)上行传输被提出,即UE不需要基站的调度即可发送上行信息。如果没有发生(两个或者多个UE之间的)冲突,则基站能够正确译码上行信息。
发明内容
发明人通过研究发现,CB上行传输的好处之一在于,当基站所需服务的用户数较多,且每个用户所需的时频资源较小时,CB上行传输可以有效的降低控制信令的开销和控制信令的碰撞。然后,CB上行传输也会存在一个显著的问题,即当有多个UE同时选择同一块资源进行上行传输时,而基站只解码出了所述多个UE中的部分UE的上行数据,并发送 对应的HARQ-ACK(Hybrid Automatic Repeat request-Acknowledgement,混合自动重传请求确认)时,所述多个UE无法知道基站发送的HARQ-ACK中哪一个是其自己的。上述问题的一个简单的方法,就是基站预留足够多的资源用于CB上行传输,且基站也同时预留与上行资源匹配的下行资源发送对应的HARQ-ACK。但是这样当没有较多UE进行CB传输时,这些预先配置的资源会产生严重的浪费,且这个方法本身也违背了CB上行传输的设计初衷。
针对上述问题,本发明提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本发明公开了一种被用于无线通信的UE中的方法,其中,包括如下步骤:
-步骤A.在第一时频资源中发送第一无线信号
-步骤B.在第二时频资源中检测第一信令。
其中,所述第一时频资源是由所述UE自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
作为一个实施例,传统的LTE(Long Term Evolution,长期演进)及LTE-A(Long Term Evolution Advanced,增强的长期演进)系统中,UE的上行传输均需要通过基站调度完成,因此,无论是通过DCI(Downlink Control Information,下行控制信息)中的NDI(New Data Indicator,新数据指示)隐性的发送下行的HARQ-ACK;或者通过PHICH(Physical Hybrid ARQ Indicator Channel,物理混合自动重传请求指示信道)显性的发送下行的HARQ-ACK,UE总是可以在已知的时频资源上去接收上行传输的HARQ-ACK,从而确定上行数据是否被基站正确接收。然而,CB上行传输,如果UE1和UE2同时选择了同一块时频资源并发送各自的上行数据,而基站只检测出了UE1的数据,并反馈下行HARQ-ACK。如果UE2也接收到这个HARQ-ACK,则UE2会认为它的上行数 据被基站正确接收,进而带来HARQ误检测,对性能产生影响。
作为一个实施例,上述方法中的第二标识和第三标识的设计,即解决了上述问题。所述第二标识是UE唯一的标识,即保证每个UE对应的第二标识均是不一样的。UE在发送上行数据时,将自己的第二标识也发送给基站,基站在发送反馈的第一信令时,将自己检测到的第三标识也同时反馈。如果第三标识和第二标识相同,则证明这个反馈是针对发送第二标识的UE的,且发送第二标识的UE的上行数据被正确接收;如果第三标识和第二标识不同,则证明这个反馈是发送给其他UE的,且发送第二标识的UE的上行数据没有被正确接收。
作为一个实施例,上述方法的另一个特质是将所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。这样的好处在于,当UE生成第一参数集合时,UE就会知道在哪里接收第一信令,以及第一信令所采用的扰码,或者扩频序列等信息,进而避免UE在较大的时频资源中完全盲检测第一信令,降低UE复杂度,更加节电。
作为一个实施例,所述第一标识是非负整数,所述第二标识是非负整数。
作为一个实施例,所述第一无线信号指示{第一特征序列,第一信息比特组}中的至少之一,所述第一特征序列被用于确定所述第一标识,所述第一信息比特组被用于确定所述第二标识。
作为该实施例的一个子实施例,所述第一特征序列是T1个候选特征序列中的一个,所述第一特征序列在所述T1个候选特征序列中的索引是所述第一标识,所述T1是大于1的正整数。
作为该子实施例的一个附属实施例,所述第一无线信号基于所述第一特征序列生成RS(Reference Signal,参考信号)。其中,所述RS用于所述第一无线信号的解调和信道估计。
作为该子实施例的一个附属实施例,所述T1个候选特征序列是预定义的或通过高层信令配置的。
作为该实施例的一个子实施例,所述第一特征序列是Zad-off Chu序列。
作为该实施例的一个子实施例,所述第一特征序列是伪随机序列。
作为该实施例的一个子实施例,所述第一信息比特组中包括K3个 信息比特,所述K3是大于1的正整数。
作为一个实施例,所述第一无线信号还包括第三信息,所述第三信息包括所述第一数据的{MCS(Modulation and Coding Status,调制编码状态),NDI,RV(Redundancy Version,冗余版本),HARQ进程号}中的至少之一。
作为一个实施例,{所述第一标识,所述第一时频资源}中的至少之一被用于确定所述第二时频资源。
作为一个实施例,所述第一信令包括所述第三标识。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是UE特定的物理层信令。
作为一个实施例,所述第一信令是小区特定的。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一数据对应的传输信道时UL-SCH。
作为一个实施例,所述第一数据在PUSCH上传输。
作为一个实施例,所述第一数据对应的逻辑信道包括{CCCH(Common Control Channel,公共控制信道),DCCH(Dedicated Control Channel,专用控制信道),DTCH(Dedicated Traffic Channel,专用业务信道)}中的至少之一。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包含如下步骤:
-步骤A0.自行确定{所述第一标识,所述第二标识}中的至少之一,或者接收下行信息确定所述第二标识。
作为一个实施例,上述方法的特质在于,所述UE自行确定所述第二标识或者通过接收下行信息,例如C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)以确定所述第二标识,以保证所述第二标识对于基站和UE的均是唯一的。
作为一个实施例,所述UE是RRC(Radio Resource Control,无线资源管理)Idle(空闲)UE,即所述UE是没有与基站建立RRC连接的UE,且所述UE自行确定{所述第一标识,所述第二标识}中的至少之一。
作为该实施例的一个子实施例,所述所述UE自行确定所述第一标识是指:所述UE从S1个候选第一标识中自行选择一个作为所述UE的 第一标识。其中,所述S1个候选第一标识是固定的,或通过高层信令配置的。
作为该实施例的一个子实施例,所述所述UE自行确定所述第二标识是指,所述UE从S2个候选第二标识中自行选择一个作为所述UE的第二标识。其中,所述S2个候选第二标识是固定的,或通过高层信令配置的。
作为该实施例的一个子实施例,所述所述UE自行确定所述第二标识是指,所述UE自行生成一个随机数作为所述UE的第二标识。
作为该实施例的一个子实施例,所述所述UE自行确定所述第二标识是指,所述UE的S-TMSI(SAE-Temporary Mobile Subscriber Identity,SAE临时移动注册标识)作为所述UE的第二标识。其中,SAE是指System Architecture Evolution(系统架构演进)。
作为一个实施例,所述UE是RRC Connected(连接的)UE,即所述UE是与基站建立RRC连接的UE,且所述UE接收下行信息确定所述第二标识。
作为该实施例的一个子实施例,所述下行信息的传输信道是DL-SCH(Donwlink Shared Channel,下行共享信道)。
作为该实施例的一个子实施例,所述下行信息在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输。
作为该实施例的一个子实施例,所述下行信息在Msg4中传输。
作为该实施例的一个子实施例,所述第二标识是所述UE的C-RNTI。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包含如下步骤:
-步骤A10.接收第一信息;
其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置,第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
作为一个实施例,上述方法的特质在于,所述UE将会在第一资源池中选择第一时频资源发送第一无线信号,且所述第一资源池被基站配置。该方法的好处在于,基站可以针对当前系统资源的利用情况,调整 第一资源池的大小。同时,也可以基于不同的需求配置多个资源池,比如有些传输需要低延迟,有些传输需要高鲁棒性。针对不同的上行传输需求,UE在不同的资源池上发送数据,以便更加高效的利用资源。
作为一个实施例,所述第一资源池包含正整数个RU(Resource Unit,资源单位)。所述RU在频域上占用一个子载波,在时域上占用一个多载波符号的持续时间。
作为该实施例的一个子实施例,所述RU是LTE上行传输的RE(Resource Element,资源单元)。
作为该实施例的一个子实施例,所述多载波符号是OFDM符号。
作为该实施例的一个子实施例,所述多载波符号是SC-FDMA符号。
作为该实施例的一个子实施例,所述多载波符号是FBMC符号。
作为该实施例的一个子实施例,所述子载波带宽是{15kHz,17.5KHz,17.06KHz,7.5KHz,2.5KHz}中的一种。
作为一个实施例,所述第一信息被用于确定所述第一资源池的{频域起始位置,频域结束位置,时域起始位置,时域结束位置}中的至少之一。
作为一个实施例,所述第一信息被用于确定所述第一资源池所占用的PRB对在系统带宽中的频域位置。
作为一个实施例,所述第一信息被用于确定所述第一资源池所占用的子帧。
作为一个实施例,所述第一信息被用于确定所述第一资源池的周期和在一个周期中的偏移值。
作为一个实施例,所述第一信息被用于确定所述第一资源池所占用的带宽在系统带宽中的频域位置。
作为一个实施例,所述第一扩展序列是K1个候选第一扩展序列中的一个。所述K1个候选第一扩展序列是预定义的或通过高层信令配置的。
作为一个实施例,所述第一扩展序列与所述第一标识相关。
作为该实施例的一个子实施例,所述第一标识是S1个候选第一标识中的一个,所述第一扩展序列是所述K1个候选第一扩展序列中的一个;且所述第一标识在所述S1个候选第一标识中的索引与所述第一扩 展序列在所述K1个候选第一扩展序列中的索引是一样的。其中,所述S1和所述K1均是大于1的正整数。
作为该子实施例的一个附属实施例,所述S1等于所述K1。
作为一个实施例,所述第一无线信号包括正整数个调制符号,一个所述调制符号乘以所述第一扩展序列后被映射到Q1个RU上。其中,所述Q1是正整数。
作为一个实施例,所述第一资源池包含Z1个基本时频资源,所述第一时频资源是所述Z1个基本时频资源中的一个,所述基本时频资源包含正整数个RU。所述第一时频资源在所述Z1个基本时频资源中的索引,与所述第一标识在所述S1个候选第一标识中的索引是相同的。其中,所述Z1和所述S1均是大于1的正整数。
作为该实施例的一个子实施例,所述Z1等于所述S1。
作为一个实施例,所述第一标识和所述第二标识相关。
作为该实施例的一个子实施例,所述第一标识是所述第二标识取模W后的余数。其中,W是大于1的正整数,且W是固定的或通过高层信令配置的。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤B还包含如下步骤:
-步骤B0.接收第二信息;
其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
作为一个实施例,上述方法的好处在于,当所述UE确定所述第一参数集合后,就可以在所述第二资源池中的确定位置上搜索所述第一信令。避免过高的检测复杂度,降低UE复杂度,提高电池寿命。
作为一个实施例,上述方法的另一个好处在于,基站可以根据检测到的第二标识的数目,来调整所述第二资源池的大小。避免因第二资源池过小而无法容纳多个下行HARQ-ACK。其中,所述多个下行HARQ-ACK针对多个检测出的来自不同UE的上行数据。
作为一个实施例,所述第二资源池包含正整数个RU。所述RU在频 域上占用一个子载波,在时域上占用一个多载波符号的持续时间。
作为该实施例的一个子实施例,所述RU是LTE下行传输的RE。
作为该实施例的一个子实施例,所述多载波符号是OFDM符号。
作为该实施例的一个子实施例,所述多载波符号是SC-FDMA符号。
作为该实施例的一个子实施例,所述多载波符号是FBMC符号。
作为该实施例的一个子实施例,所述子载波带宽是{15kHz,17.5KHz,17.06KHz,7.5KHz,2.5KHz}中的一种。
作为一个实施例,所述第二信息被用于确定所述第二资源池的{频域起始位置,频域结束位置,时域起始位置,时域结束为止}中的至少之一。
作为一个实施例,所述第二信息被用于确定所述第二资源池所占用的PRB对在系统带宽中的频域位置。
作为一个实施例,所述第二信息被用于确定所述第二资源池所占用的子帧。
作为一个实施例,所述第二信息被用于确定所述第二资源池的周期和在一个周期中的偏移值。
作为一个实施例,所述第二信息被用于确定所述第二资源池所占用的带宽在系统带宽中的频域位置。
作为一个实施例,所述第二信息被用于确定所述第二资源池与所述第一资源池的时域位置关系。
作为该实施例的一个子实施例,所述第一资源池位于子帧#n,所述第二资源池位于子帧#(n+k),所述k由所述第二信息确定。
作为一个实施例,所述所述第二时频资源在所述第二资源池中的时频位置与所述第一参数集合有关是指:所述第二资源池包含Z2个基本时频资源,所述第二时频资源是所述Z2个基本时频资源中的一个,所述基本时频资源包含正整数个RU。所述第二时频资源在所述Z2个基本时频资源中的索引,与所述第一标识在所述S1个候选第一标识中的索引是相同的。其中,所述S1和Z2均是大于1的正整数。
作为该实施例的一个子实施例,所述Z2等于所述S1。
作为一个实施例,所述第二扩展序列是K2个候选第二扩展序列中的一个。所述K2个候选第二扩展序列是预定义的或通过高层信令配置 的。
作为一个实施例,所述第二扩展序列与所述第一参数集合有关是指:所述第二扩展序列是K2个候选第二扩展序列中的一个,所述第一信令采用所述第二扩展序列进行扩频编码。所述第二扩展序列在K2个候选第二扩展序列中的索引,与所述第一标识在所述S1个候选第一标识中的索引是相同的。其中,所述K2和所述S1均是大于1的正整数。
作为该实施例的一个子实施例,所述K2等于所述S1。
作为该实施例的一个子实施例,所述所述第一信令采用所述第二扩展序列进行扩频编码是指:所述第一信令包括正整数个调制符号,一个所述调制符号乘以所述第二扩展序列后被映射到Q2个RU上。其中,所述Q2是正整数。
作为一个实施例,所述第二扩展序列与所述第一参数集合有关是指:所述第二扩展序列是所述K2个候选第二扩展序列中的一个,所述第一信令采用所述第二扩展序列进行扩频编码。所述第二扩展序列在所述K2个候选第二扩展序列中的索引,与所述第二标识在所述S2个候选第二标识中的索引是相同的。所述K2和所述S2均是大于1的正整数。
作为该实施例的一个子实施例,所述K2等于所述S2。
作为该实施例的一个子实施例,所述所述第一信令采用所述第二扩展序列进行扩频编码是指:所述第一信令包括正整数个调制符号,一个所述调制符号乘以所述第二扩展序列后被映射到Q2个RU上。其中,所述Q2是正整数。
作为一个实施例,所述第二扩展序列与所述第一参数集合有关是指:所述第二扩展序列是K2个候选第二扩展序列中的一个,所述第一信令采用所述第二扩展序列进行扩频编码。所述第二扩展序列在K2个候选第二扩展序列中的索引,与所述第二标识取模Y后得到的余数相同。其中,所述K2和所述Y均是大于1的正整数。所述Y是固定的或通过高层信令配置。
作为该实施例的一个子实施例,所述所述第一信令采用所述第二扩展序列进行扩频编码是指:所述第一信令包括正整数个调制符号,一个所述调制符号乘以所述第二扩展序列后被映射到Q2个RU上。其中,所述Q2是正整数。
作为一个实施例,所述第二信息是DCI。
作为一个实施例,所述第二信息在PDCCH(Physical Downlink Control Channel,物理下行控制信道)或EPDCCH(Enhanced Physical Downlink Control Channel,增强物理下行控制信道)上传输。
作为一个实施例,所述第二信息通过物理层信令指示。
作为一个实施例,所述第二信息通过高层信令指示。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤B还包含如下步骤:
-步骤B1.根据所述第三标识确定所述第一无线信号是否被正确接收;
其中,如果所述第三标识等于所述第二标识,所述UE假定所述第一无线信号被正确译码,否则所述UE假定所述第一无线信号未被正确译码。
本发明公开了一种被用于无线通信的基站中的方法,其中,包括如下步骤:
-步骤A.在第一时频资源中接收第一无线信号
-步骤B.在第二时频资源中发送第一信令。
其中,所述第一时频资源是由所述第一无线信号的发送者自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
作为一个实施例,所述基站在所述步骤A还在第一时频资源中接收来自(M-1)个UE的(M-1)个无线信号。其中,所述(M-1)个UE是所述第一无线信号的发送UE之外的UE。所述(M-1)个无线信号是所述第一无线信号之外的无线信号。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包含如下步骤:
-步骤A0.发送下行信息确定所述第二标识。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包含如下步骤:
-步骤A10.发送第一信息;
其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置,第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤B还包含如下步骤:
-步骤B0.发送第二信息;
其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
上述方法中,虽然基站配置了所述第一资源池,但是基站并不确定所述第一时频资源位于所述第一资源池的哪里,以及所述第一时频资源上有多少个终端会传输上行数据。因此所述基站通过所述盲检测接收所述第一无线信号。
作为一个实施例,所述基站根据接收到的所述第二标识的数目调整所述第二资源池的大小。
作为该实施例的一个子实施例,所述接收到的所述第二标识的数目大于第一阈值,所述基站增加所述第二资源池的大小。其中,所述第一阈值是固定的或高层信令配置,且是大于1的正整数。
作为该实施例的一个子实施例,所述接收到的所述第二标识的数目不大于第一阈值,所述基站增加维持所述第二资源池的大小。其中,所述第一阈值是固定的或高层信令配置,且是大于1的正整数。
作为该实施例的一个子实施例,所述接收到的所述第二标识的数目小于第二阈值,所述基站增加减小所述第二资源池的大小。其中,所述第二阈值是固定的或高层信令配置,且是大于1的正整数。
作为一个实施例,所述第二信息被用于确定所述第二资源池的大小。
作为该实施例的一个子实施例,所述第二信息被用于确定所述第二 资源包含的基本时频资源的个数R2。所述基本时频资源与所述第二时频资源包含相同的RU数,且所述第二时频资源是所述R2个基本时频资源中的一个。其中,所述R是正整数。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤B还包含如下步骤:
-步骤B1.解调所述第一时频资源上接收的无线信号以确定所述第三标识;
作为一个实施例,所述基站在步骤B1中还通过检测所述第一资源池中所有所述基本时频资源上的功率判断所述第一时频资源在所述第一资源池中的位置。其中,所述第一资源池包含R1个所述基本时频资源,所述基本时频资源与所述第一时频资源包含相同的RU数,且所述第一时频资源是所述R1个基本时频资源中的一个。所述R1是正整数。
作为一个实施例,所述基站在步骤B1中还通过盲检测确定所述第一时频资源在所述第一资源池中的位置。
作为一个实施例,所述解调所述第一时频资源上接收的无线信号以确定所述第三标识是指:所述基站盲检测在所述第一时频资源上收到的M个无线信号(其中包含所述第一无线信号)以确定所述第三标识。
作为该实施例的一个子实施例,所述盲检测是针对相应特征序列的相干检测(Coherent Detection)。
作为该子实施例的一个附属实施例,所述基站根据所述T1个候选特征序列进行相干检测。
作为该实施例的一个子实施例,所述基站根据检测出的所述第一时频资源上的给定无线信号确定所述第三标识。其中,所述给定无线信号是所述M个无线信号中的一个,且所述给定无线信号来自所述M个UE中的一个。
作为该子实施例的一个附属实施例,所述第三标识由所述给定无线信号的发送UE自行确定或通过所述给定无线信号的发送UE的服务小区的基站配置。
本发明公开了一种被用于无线通信的用户设备,其中,包括如下模块:
-第一处理模块:用于在第一时频资源中发送第一无线信号。
-第二处理模块:用于在第二时频资源中检测第一信令。
其中,所述第一时频资源是由所述UE自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还用于自行确定{所述第一标识,所述第二标识}中的至少之一,或者接收下行信息确定所述第二标识。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还用于接收第一信息。其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置,第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二处理模块还用于接收第二信息。其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二处理模块还用于根据所述第三标识确定所述第一无线信号是否被正确接收。其中,如果所述第三标识等于所述第二标识,所述UE假定所述第一无线信号被正确译码,否则所述UE假定所述第一无线信号未被正确译码。
本发明公开了一种被用于无线通信的基站设备,其中,包括如下模块:
-第三处理模块:用于在第一时频资源中接收第一无线信号。
-第四处理模块:用于在第二时频资源中发送第一信令。
其中,所述第一时频资源是由所述第一无线信号的发送者自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第三处理模块还用于发送下行信息确定所述第二标识。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第三处理模块还用于发送第一信息。其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置,第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第四处理模块还用于发送第二信息。其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第四处理模块还用于解调所述第一时频资源上接收的无线信号以确定所述第三标识。
作为一个实施例,相比现有公开技术,本发明具有如下技术优势:
-.通过设计所述第二标识和所述第三标识,实现在CB上行传输的场景下,UE可以正确接收基站对于所述UE上行数据的下行反馈信息。
-.通过所述第一信息和所述第二信息的设计,将CB的上行传输和对应的下行反馈在固定的资源上处理,便于UE和基站进行盲检测。
-.通过所述第一参数集合,所述第一时频资源,所述第二时频资源的关联设计,避免基站和UE在过大的资源上进行过多次数的盲检测,降低复杂度,提高终端电池效率和电池寿命。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的上行传输及下行反馈的流程图;
图2示出了根据本发明的另一个实施例的上行传输及下行反馈的流程图;
图3示出了根据本发明的一个实施例的所述给定资源池的示意图。其中,所述给定资源池是{所述第一资源池,所述第二资源池}中的之一。
图4示出了根据本发明的另一个实施例的所述给定资源池的示意图。其中,所述给定资源池是{所述第一资源池,所述第二资源池}中的之一。
图5示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
图6示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了上行传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站,方框F0和方框F1中标识的步骤是可选的。
对于基站N1,在步骤S10中发送第一信息,在步骤S11中在第一时频资源上接收第一无线信号,在步骤S12中发送第二信息,在步骤S13中解调所述第一时频资源上接收的无线信号以确定所述第三标识,在步骤S14中在第二时频资源中发送第一信令。
对于UE U2,在步骤S20中自行确定{所述第一标识,所述第二标识}中的至少之一,在步骤S21中接收第一信息,在步骤S22中在第一时频资 源上发送第一无线信号,在步骤S23中接收第二信息,在步骤S24中在第二时频资源中检测第一信令,在步骤S25中根据所述第三标识确定所述第一无线信号是否被正确接收。
作为一个子实施例,所述基站在所述步骤S11中还在第一时频资源中接收来自(M-1)个UE的(M-1)个无线信号。其中,所述(M-1)个UE是所述第一无线信号的发送UE之外的UE。所述(M-1)个无线信号是所述第一无线信号之外的无线信号。
作为一个子实施例,所述步骤S13中解调所述第一时频资源上接收的无线信号以确定所述第三标识是指:所述基站N1盲检测在所述第一时频资源上收到的M个无线信号以确定所述第三标识。其中,所述M个无线信号包含所述第一无线信号。
作为该子实施例的一个附属实施例,所述盲检测是针对相应特征序列的相干检测。
作为该附属实施例的一个范例,所述基站N1根据所述T1个候选特征序列进行相干检测。
作为该子实施例的一个附属实施例,所述基站根据检测出的所述第一时频资源上的给定无线信号确定所述第三标识。其中,所述给定无线信号是所述M个无线信号中的一个,且所述给定无线信号来自所述M个UE中的一个。
作为该附属实施例的一个范例,所述第三标识由所述给定无线信号的发送UE自行确定或通过所述给定无线信号的发送UE的服务小区的基站配置。
实施例2
实施例2示例了上行传输的流程图,如附图2所示。附图2中,基站N3是UE U4的服务小区的维持基站,方框F2和方框F3中标识的步骤是可选的。
对于基站N3,在步骤S30中发送下行信息确定所述第二标识,在步骤S31发送第一信息,在步骤S32中在第一时频资源上接收第一无线信号,在步骤S33中发送第二信息,在步骤S34中解调所述第一时频资源上接收的无线信号以确定所述第三标识,在步骤S35中在第二时频资源中发送第一信令。
对于UE U4,在步骤S40中接收下行信息确定所述第二标识,在步骤S41中接收第一信息,在步骤S42中在第一时频资源上发送第一无线信号,在步骤S43中接收第二信息,在步骤S44中在第二时频资源中检测第一信令,在步骤S45中根据所述第三标识确定所述第一无线信号是否被正确接收。
作为一个子实施例,所述基站在所述步骤S32中还在第一时频资源中接收来自(M-1)个UE的(M-1)个无线信号。其中,所述(M-1)个UE是所述第一无线信号的发送UE之外的UE。所述(M-1)个无线信号是所述第一无线信号之外的无线信号。
作为一个子实施例,所述步骤S34中解调所述第一时频资源上接收的无线信号以确定所述第三标识是指:所述基站N3盲检测在所述第一时频资源上收到的M个无线信号(其中包含所述第一无线信号)以确定所述第三标识。
作为该子实施例的一个附属实施例,所述盲检测是针对相应特征序列的相干检测(Coherent Detection)。
作为该附属实施例的一个范例,所述基站N1根据所述T1个候选特征序列进行相干检测。
作为该子实施例的一个附属实施例,所述基站根据检测出的所述第一时频资源上的给定无线信号确定所述第三标识。其中,所述给定无线信号是所述M个无线信号中的一个,且所述给定无线信号来自所述M个UE中的一个。
作为该附属实施例的一个范例,所述第三标识由所述给定无线信号的发送UE自行确定或通过所述给定无线信号的发送UE的服务小区的基站配置。
实施例3
实施例3示例了根据本发明的一个所述给定资源池的示意图。其中,所述给定资源池是{所述第一资源池,所述第二资源池}中的之一。
如图3所示,所述给定资源池在时域上和频域上均是连续的。
作为一个子实施例,所述给定资源池是所述第一资源池。
作为一个子实施例,所述给定资源池是所述第二资源池。
实施例4
实施例4示例了根据本发明的一个所述给定资源池的另一个示意图。其中,所述给定资源池是{所述第一资源池,所述第二资源池}中的之一。
如图4所示,所述给定资源池在时域上是离散分布的,在频域上是连续分布的。
作为一个子实施例,所述给定资源池是周期分布的,且周期是N毫秒,N是大于1的正整数。
作为该子实施例的一个附属实施例,所述给定资源池位于#(N*j+i1)毫秒至#(N*j+i2)毫秒。其中所述j是正整数,所述i1和所述i2均是小于N的正整数。所述i2不小于所述i1,所述N和所述i1均由所述第二信息指示。
作为该附属实施例的一个范例,所述i2等于所述i1。
作为一个子实施例,所述给定资源池是所述第一资源池。
作为一个子实施例,所述给定资源池是所述第二资源池。
实施例5
实施例5示例了一个UE中的处理装置的结构框图,如附图5所示。附图5中,UE处理装置100主要由第一处理模块101和第二处理模块102组成。
-第一处理模块101:用于在第一时频资源中发送第一无线信号。
-第二处理模块102:用于在第二时频资源中检测第一信令。
实施例5中,所述第一时频资源是由所述UE自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
作为一个子实施例,所述第一处理模块101还用于自行确定{所述第一标识,所述第二标识}中的至少之一,或者接收下行信息确定所述第二标识。
作为一个子实施例,所述第一处理模块101还用于接收第一信息。其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置, 第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
作为一个子实施例,所述第二处理模块102还用于接收第二信息。其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
作为一个子实施例,所述第二处理模块102还用于根据所述第三标识确定所述第一无线信号是否被正确接收;其中,如果所述第三标识等于所述第二标识,所述UE假定所述第一无线信号被正确译码,否则所述UE假定所述第一无线信号未被正确译码。
实施例6
实施例6示例了一个基站设备中的处理装置的结构框图,如附图6所示。附图6中,基站设备处理装置200主要由第三处理模块201和第四处理模块202组成。
-第三处理模块201:用于在第一时频资源中接收第一无线信号。
-第四处理模块202:用于在第二时频资源中发送第一信令。
实施例6中,所述第一时频资源是由所述UE自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
作为一个子实施例,所述第三处理模块201还用于发送下行信息确定所述第二标识。
作为一个子实施例,所述第三处理模块201还用于发送第一信息。其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置,第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
作为一个子实施例,所述第四处理模块202还用于发送第二信息。 其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
作为一个子实施例,所述第四处理模块202还用于解调所述第一时频资源上接收的无线信号以确定所述第三标识。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本发明中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种被用于无线通信的UE中的方法,其中,包括如下步骤:
    -步骤A.在第一时频资源中发送第一无线信号
    -步骤B.在第二时频资源中检测第一信令。
    其中,所述第一时频资源是由所述UE自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤A还包含如下步骤:
    -步骤A0.自行确定{所述第一标识,所述第二标识}中的至少之一,或者接收下行信息确定所述第二标识。
  3. 根据权利要求1,2所述的方法,其特征在于,所述步骤A还包含如下步骤:
    -步骤A10.接收第一信息;
    其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置,第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
  4. 根据权利要求1-3所述的方法,其特征在于,所述步骤B还包含如下步骤:
    -步骤B0.接收第二信息;
    其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
  5. 根据权利要求1-4所述的方法,其特征在于,所述步骤B还包含如下步骤:
    -步骤B1.根据所述第三标识确定所述第一无线信号是否被正确接收;
    其中,如果所述第三标识等于所述第二标识,所述UE假定所述第一无线信号被正确译码,否则所述UE假定所述第一无线信号未被正确译码。
  6. 一种被用于无线通信的基站中的方法,其中,包括如下步骤:
    -步骤A.在第一时频资源中接收第一无线信号
    -步骤B.在第二时频资源中发送第一信令。
    其中,所述第一时频资源是由所述第一无线信号的发送者自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
  7. 根据权利要求6所述的方法,其特征在于,所述步骤A还包含如下步骤:
    -步骤A0.发送下行信息确定所述第二标识。
  8. 根据权利要求6,7所述的方法,其特征在于,所述步骤A还包含如下步骤:
    -步骤A10.发送第一信息;
    其中,所述第一信息被用于确定第一资源池,所述第一资源池包含所述第一时频资源。{所述第一时频资源在所述第一资源池中的时频位置,第一扩展序列}中的至少之一与所述第一参数集合有关。所述第一扩展序列被用于所述第一无线信号中的调制符号到时频资源的映射。
  9. 根据权利要求6-8所述的方法,其特征在于,所述步骤B还包含如下步骤:
    -步骤B0.发送第二信息;
    其中,所述第二信息被用于确定第二资源池,所述第二资源池包含所述第二时频资源。{所述第二时频资源在所述第二资源池中的时频位置,第二扩展序列}中的至少之一与所述第一参数集合有关。所述第二扩展序列被用于所述第一信令对应的调制符号到时频资源的映射。
  10. 根据权利要求6-9所述的方法,其特征在于,所述步骤B还包含如下步骤:
    -步骤B1.解调所述第一时频资源上接收的无线信号以确定所述第三标识。
  11. 一种用于无线通信的用户设备,其中,包括如下模块:
    -第一处理模块:用于在第一时频资源中发送第一无线信号。
    -第二处理模块:用于在第二时频资源中检测第一信令。
    其中,所述第一时频资源是由所述UE自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
  12. 一种用于无线通信的基站设备,其中,包括如下模块:
    -第三处理模块:用于在第一时频资源中接收第一无线信号。
    -第四处理模块:用于在第二时频资源中发送第一信令。
    其中,所述第一时频资源是由所述第一无线信号的发送者自行选择的,所述第一无线信号被用于确定{第一参数集合,第一数据}。所述第一参数集合被用于确定{所述第二时频资源,所述第一信令}中的至少之一。所述第一参数集合包括{第一标识,第二标识}中的至少之一,所述第一标识是整数,所述第二标识是整数。所述第一信令是物理层信令,所述第一信令被用于确定第三标识。
PCT/CN2017/080768 2016-05-21 2017-04-17 一种无线通信中的ue和基站中的方法和装置 WO2017202154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016103436524 2016-05-21
CN201610343652.4A CN107404369B (zh) 2016-05-21 2016-05-21 一种无线通信中的ue和基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2017202154A1 true WO2017202154A1 (zh) 2017-11-30

Family

ID=60389276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080768 WO2017202154A1 (zh) 2016-05-21 2017-04-17 一种无线通信中的ue和基站中的方法和装置

Country Status (2)

Country Link
CN (2) CN111404656B (zh)
WO (1) WO2017202154A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109963334A (zh) * 2017-12-22 2019-07-02 珠海市魅族科技有限公司 确定传输资源的方法、装置以及数据的传输方法、装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259153B (zh) 2018-01-12 2022-04-19 中兴通讯股份有限公司 一种数据传输方法及装置
WO2019144264A1 (zh) * 2018-01-23 2019-08-01 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111970089B (zh) * 2018-01-30 2024-05-14 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN112073101B (zh) * 2018-02-07 2024-05-28 上海朗帛通信技术有限公司 一种基站、用户设备中的用于无线通信的方法和装置
CN110324905B (zh) * 2018-03-28 2023-04-07 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110366191B (zh) * 2018-04-09 2022-11-15 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112822784B (zh) * 2018-06-28 2024-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN112866936B (zh) * 2019-01-02 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113839749A (zh) 2019-03-14 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US12058740B2 (en) 2019-06-06 2024-08-06 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication
CN112054833B (zh) * 2019-06-06 2021-11-23 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN112804032B (zh) * 2019-11-14 2022-07-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113068256B (zh) * 2020-01-02 2022-07-29 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145520A1 (zh) * 2009-11-05 2010-12-23 中兴通讯股份有限公司 基于竞争的上行传输方法及装置
CN102291826A (zh) * 2010-06-18 2011-12-21 华为技术有限公司 基于竞争的上行传输方法、配置方法和相关设备
CN104125610A (zh) * 2013-04-28 2014-10-29 电信科学技术研究院 D2d通信中的数据发送方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902822B (zh) * 2010-07-22 2012-12-26 北京交通大学 一种基站辅助的移动终端设备自主接入的方法和装置
US9451604B2 (en) * 2012-08-03 2016-09-20 Intel Corporation Signaling and channel designs for D2D communications
WO2014113961A1 (zh) * 2013-01-24 2014-07-31 华为技术有限公司 用于传输参考信号的方法、基站和用户设备
EP2953390B1 (en) * 2013-03-22 2018-11-07 Huawei Technologies Co., Ltd. Data transmission method, user equipment, base station, and system
CN104184540B (zh) * 2013-05-23 2017-12-01 电信科学技术研究院 D2d通信中的数据传输方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145520A1 (zh) * 2009-11-05 2010-12-23 中兴通讯股份有限公司 基于竞争的上行传输方法及装置
CN102291826A (zh) * 2010-06-18 2011-12-21 华为技术有限公司 基于竞争的上行传输方法、配置方法和相关设备
CN104125610A (zh) * 2013-04-28 2014-10-29 电信科学技术研究院 D2d通信中的数据发送方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109963334A (zh) * 2017-12-22 2019-07-02 珠海市魅族科技有限公司 确定传输资源的方法、装置以及数据的传输方法、装置

Also Published As

Publication number Publication date
CN111404656A (zh) 2020-07-10
CN111404656B (zh) 2022-03-29
CN107404369A (zh) 2017-11-28
CN107404369B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2017202154A1 (zh) 一种无线通信中的ue和基站中的方法和装置
US11871314B2 (en) Resource allocation method for V2X communication in wireless communication system and apparatus therefor
US11405145B2 (en) Method and apparatus for transmitting and receiving signal in a communication system
US11889296B2 (en) Method and apparatus for transmitting uplink information
US11902028B2 (en) Method and apparatus for transmitting and receiving signal in a communication system
EP3888409B1 (en) Method and apparatus for transmitting and receiving a signal in a wireless communication system
EP3414859B1 (en) Apparatus and method for drx mechanisms for single harq process operation in nb-iot
WO2017190586A1 (zh) 一种无线通信中的方法和装置
US11381944B2 (en) Signal transmission method for V2X communication in wireless communication system and device therefor
CN110383743B (zh) 用于在无线通信系统中分配ack/nack资源的方法及其装置
AU2017201168B1 (en) Method and apparatus for receiving a control channel
US20210377954A1 (en) Information sending method and apparatus
US10749626B2 (en) Method and device for uplink transmission based on network communication
US20240064806A1 (en) Method and apparatus for transmitting uplink information
WO2017115109A1 (en) Multi-stage reception monitoring
WO2015090199A1 (zh) 传输数据的方法、装置和系统
US20200044814A1 (en) Method for allocating resource for multiple signals in wireless communication system and apparatus therefor
JP5898913B2 (ja) 物理層シグナリングの伝送方法およびその装置
TW201642692A (zh) 一種無線通訊方法
CN117616845A (zh) 资源碰撞的指示方法、装置、设备及存储介质
WO2013023686A1 (en) Scheduling in a communication system capable of using muted or almost blank subframes

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802000

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17802000

Country of ref document: EP

Kind code of ref document: A1