WO2017202081A1 - 导航装置及方法 - Google Patents

导航装置及方法 Download PDF

Info

Publication number
WO2017202081A1
WO2017202081A1 PCT/CN2017/074283 CN2017074283W WO2017202081A1 WO 2017202081 A1 WO2017202081 A1 WO 2017202081A1 CN 2017074283 W CN2017074283 W CN 2017074283W WO 2017202081 A1 WO2017202081 A1 WO 2017202081A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
tactile
user
wearable
navigation
Prior art date
Application number
PCT/CN2017/074283
Other languages
English (en)
French (fr)
Inventor
胡勇
王龙
温垦
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/554,940 priority Critical patent/US10663316B2/en
Priority to EP17757657.6A priority patent/EP3470044A4/en
Publication of WO2017202081A1 publication Critical patent/WO2017202081A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3652Guidance using non-audiovisual output, e.g. tactile, haptic or electric stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/06Walking aids for blind persons
    • A61H3/061Walking aids for blind persons with electronic detecting or guiding means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/06Walking aids for blind persons
    • A61H3/061Walking aids for blind persons with electronic detecting or guiding means
    • A61H2003/063Walking aids for blind persons with electronic detecting or guiding means with tactile perception
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0157Constructive details portable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5084Acceleration sensors

Definitions

  • Embodiments of the present invention relate to the field of navigation technologies, and in particular, to a wearable tactile navigation device and method.
  • Visually impaired people can't make comprehensive judgments on azimuth and road condition information during travel.
  • Existing solutions to assist visually impaired people through intelligent hardware include converting visual information into auditory or other sensory information. For example, feedback information such as voice prompts or voice navigation can be provided to the visually impaired.
  • feedback information such as voice prompts or voice navigation can be provided to the visually impaired.
  • the existing solutions may have problems such as: feedback information such as voice prompts or voice navigation may not be intuitive enough.
  • the visually impaired person receives the feedback information, the feedback information needs to be interpreted according to the current situation. In order to arrive at the direction of the action or the indicative result of the action.
  • current navigation devices are generally map navigation (including visual navigation or voice navigation) of smart terminals. These navigation devices require the user to combine the map for comprehensive judgment.
  • Embodiments of the present invention provide a wearable tactile navigation device comprising: a tactile navigation actuator including a feedback contact configured to control the feedback contact to generate a directional sensed tactile according to a direction indication signal a signal, wherein the direction indicated by the haptic signal substantially coincides with a direction of motion suggested to a user of the wearable haptic navigation device.
  • the tactile navigation actuator includes a plurality of feedback contacts, each feedback contact corresponding to a direction indicating active area.
  • the haptic navigation actuator sequentially controls the plurality of feedback contacts to generate the haptic signal in a certain order according to the direction indication signal.
  • the magnitude of the haptic signal varies depending on the urgency of the indication of the direction indication signal.
  • the haptic signal includes at least one of a force signal, a temperature signal, and an electrical signal.
  • the haptic signal is a force signal
  • the implementation of the force signal by the single feedback contact includes vibration, tapping, or pressing.
  • the wearable tactile navigation device further includes a motion sensor, wherein the motion sensor is configured to detect a direction in which the tactile navigation actuator is twisted, and a direction in which the tactile navigation actuator rotates is used Auxiliary generation of the direction indication signal.
  • wearable tactile navigation devices include wearable vests, wristbands, arm bands, knee pads, belts, headbands, gloves, or hats.
  • the wearable tactile navigation device is a wearable vest
  • the feedback contact including at least a first feedback contact at a left shoulder of the vest and a second feedback contact at a right shoulder of the vest point
  • the corresponding direction of the first feedback contact indicates that the active area is the left half of the user, and the corresponding direction of the second feedback contact indicates that the active area is the right half of the user.
  • the wearable tactile navigation device further includes:
  • An environment detector configured to detect current environmental information of the user
  • a locator configured to detect a current location of the user and obtain map information
  • An input configured to receive a destination entered by the user
  • a processor configured to calculate a navigation route according to the destination, the current location of the user, and the map information, and the current environmental information of the user detected according to the navigation route and the environment detector The direction indication information is generated.
  • the processor is also configured to:
  • the direction in which the user is currently generally oriented is determined based on different orientations of two or more feedback contacts disposed in the tactile navigation actuator.
  • An embodiment of the present invention further provides a wearable tactile navigation method, including:
  • a haptic signal having directional indication is generated based on the direction indication signal, wherein the direction indicated by the haptic signal substantially coincides with a direction of action suggested to a recipient of the haptic signal.
  • the magnitude of the haptic signal varies depending on the urgency of the indication of the direction indication signal.
  • the wearable tactile navigation method further includes:
  • the direction indication information is generated according to the navigation route and the current environment information of the recipient of the haptic signal.
  • the haptic signal includes a plurality of haptic sub-signals, and the single haptic sub-signal corresponds to a directional indicating action region;
  • the haptic sub-signals are sequentially generated in a certain order according to the direction indicated by the haptic signal.
  • the wearable tactile navigation method further includes: determining a direction in which the recipient of the tactile signal is currently generally oriented, including:
  • the direction in which the recipient of the haptic signal is currently generally oriented is determined based on two or more different orientations of the direction indicating action regions.
  • the wearable tactile navigation method further includes:
  • the direction of the twist being used to assist in generating the direction indication signal.
  • FIG. 1A is a schematic structural diagram of a wearable tactile navigation device according to an embodiment of the present invention.
  • FIG. 1B is a second schematic structural diagram of a wearable tactile navigation device according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of an exemplary wearable tactile navigation device and a tactile navigation actuator thereof according to an embodiment of the present invention
  • 2B-2D are schematic diagrams of force signals in different tactile signals provided by the tactile navigation actuator of FIG. 2A, respectively;
  • FIG. 3 is a schematic diagram of another exemplary wearable tactile navigation device and a tactile navigation actuator thereof according to an embodiment of the present invention
  • FIG. 4A is a schematic diagram of another exemplary wearable tactile navigation device and a tactile navigation actuator thereof according to an embodiment of the present invention
  • 4B and 4C are schematic diagrams showing the generation of temperature signals in different haptic signals provided by the haptic navigation actuator of FIG. 4A, respectively;
  • FIG. 5 is a flowchart of an exemplary wearable tactile navigation method according to an embodiment of the present invention.
  • 6A-6B are diagrams showing an example of setting an update feedback point corresponding action area according to an embodiment of the present invention.
  • the wearable tactile navigation device and method provided by the embodiments of the present invention can provide a directional sense of touch to a user (for example, a visually impaired person, a non-visually impaired person with a weak sense of direction, or other person who needs to navigate the route of travel).
  • the navigation signal provides a more direct navigation suggestion than navigational information such as voice prompts.
  • an embodiment of the present invention provides a wearable tactile navigation device 120.
  • the wearable tactile navigation device 120 includes a tactile navigational actuator 126.
  • the haptic navigation actuator 126 includes a feedback contact configured to control the feedback contact to generate a haptic signal having directional indication according to a direction indication signal, wherein the haptic signal indicates a direction and a suggestion to the wear
  • the direction of action of the user wearing the tactile navigation device is approximately the same.
  • the tactile navigation actuator 126 includes a plurality of feedback contacts, each of which corresponds to a direction indicating active area.
  • the haptic navigation actuator 126 sequentially controls the plurality of feedback contacts to generate the haptic signal according to the direction indication signal, wherein the haptic signal may be sized according to the indication of the direction indication signal Change with urgency.
  • the haptic signal includes at least one of a force signal, a temperature signal, and an electrical signal.
  • the implementation of the force signal by the single feedback contact includes vibration, tapping or pressing.
  • the term “substantially” means that the error between the expected value and the actual value does not exceed the preset range.
  • the preset range can be within ⁇ 5%, ⁇ 10%, or other suitable range.
  • the direction indicated by the tactile signal is substantially identical to the direction of action suggested to the user of the wearable tactile navigation device” may mean that the angle of the direction indicated by the tactile signal is related to the direction of action suggested to the user.
  • the error range between angles does not exceed ⁇ 5%, ⁇ 10%, or other suitable margin of error for the angle of motion suggested to the user.
  • the wearable tactile navigation device 120 can also include a navigation generator 102.
  • the wearable tactile navigation device 120 may also include other components not shown in FIG. 1A, such as an alert device (eg, a light that can automatically blink when the light is insufficient, a speaker that emits a voice prompt, etc.), Power (eg, button battery), etc.
  • navigation generator 102 can include locator 104, input 106, motion sensor 130, environment detector 122, and processor 108.
  • the navigation generator 102 can be a blind mobile phone or other blind dedicated electronic device. Since the user can wear or carry the navigation generator 102, the locator 104 can be configured to detect the current location of the user and obtain map information.
  • the locator 104 can be a global positioning system (GPS) sensor for determining the current location of the user and transmitting the determined location information to the processor 108.
  • GPS global positioning system
  • the locator 104 can also be other electronic devices that can determine the position of the user, such as a Beidou satellite navigation system or a mobile phone base station positioning system, etc., which is not limited by the present invention.
  • the input 106 can be configured to receive destination information entered by the user.
  • the input 106 can include a keyboard (eg, a keyboard for a visually impaired person) such that the user can directly enter destination information via the keyboard.
  • the inputter 106 can include a microphone such that the user can input destination information by voice.
  • the input device 106 can include other buttons, touch devices, and somatosensory devices such that the user can select the ones that have been stored in the navigation generator 102. Information.
  • the input unit 106 transmits the destination information to the processor 108.
  • the processor 108 can be configured to calculate a navigation route based on the user's current location, the entered destination information, and the stored map information.
  • the navigation route may include one or more routes from the user's current location to the destination, and the user may select one of the routes for navigation.
  • the processor 108 receives the current environmental information (eg, traffic information) of the user from the environment detector 122, and generates direction indication information according to the navigation route and the current environmental information of the user.
  • the direction indication information may include real-time, step-by-step, directional navigation information.
  • the processor 108 may generate direction indication information for indicating the user's walking in real time according to the navigation route (for example, the direction indication information includes instructing the user to move forward, Turn left and continue to go forward or turn right and continue to move forward.)
  • the processor 108 may generate real-time direction indication information for instructing the user to temporarily stop the advance; in the environment detector After the mobile obstacle is no longer detected 122, the processor 108 can generate real-time direction indication information for instructing the user to proceed.
  • the processor 108 can communicate the generated direction indication information to the wearable tactile navigation device 120.
  • processor 108 first determines the general orientation of the user's current orientation.
  • the navigation generator 102 or the wearable tactile navigation device 120 can include a somatosensory device.
  • the wearable tactile navigation device 120 can audibly prompt the user to swing the arm forward so that the somatosensory device senses the user's waving arm and transmits the sensing result to the processor 108. Therefore, the processor 108 can determine the general direction of the user's current orientation based on the sensing result of the somatosensory device.
  • the wearable tactile navigation device 120 can audibly prompt the user to move forward a few steps, and the motion sensor 130 (eg, a gyroscope) can thus detect the general orientation of the user's current orientation. Then, the processor 108 generates direction indication information according to the navigation route, the current environment information of the user, and the general direction of the current orientation of the user. For example, suppose the user is standing on the north-south sidewalk and the navigation route is heading north. Since the user faces the east side at this time, the processor 108 first generates direction indication information to instruct the user to turn left about 90 degrees, and then generates direction indication information to instruct the user to go forward.
  • the motion sensor 130 eg, a gyroscope
  • the wearable tactile navigation device 120 can determine the approximate orientation of the user's current orientation based on different positions of the two or more predetermined position reference points on the map. to.
  • the preset position reference points may be located in different portions of the wearable tactile navigation device 120. For example, as shown in the navigation vest shown in FIG. 2A, a position reference point can be set at a position of the navigation vest at the user's abdomen and back.
  • the controller can receive a general direction of the current orientation of the user as determined by the processor, the direction indication information being generated based on a general direction of the current orientation of the user.
  • determining the general direction of the user's current orientation includes: determining a general direction of the user's orientation after moving according to the position of the user moving in a certain direction before and after moving; or, according to the setting in the wearable navigation The different orientations of the two or more feedback contacts in the device determine the general orientation of the user's current orientation.
  • Processor 108 can include a processor (or microprocessor) and a memory.
  • the processor can process the data signals and can include various computing structures, such as a Complex Instruction Set Computer (CISC) architecture, a Structured Reduced Instruction Set Computer (RISC) architecture, or a structure that implements a combination of multiple instruction sets.
  • the memory can hold instructions and/or data executed by the processor. These instructions and/or data may include code for implementing some or all of the functions of the embodiments of the present invention.
  • the memory includes dynamic random access memory (DRAM), static random access memory (SRAM), flash memory, optical memory, or other memory well known to those skilled in the art.
  • the processor 108 may be a dedicated hardware device, such as a DSP, ASIC, FPGA, circuit board, etc., for implementing some or all of the functions described in the embodiments of the present invention.
  • the environment detector 122 can be configured to detect the current environmental information of the user.
  • the environment detector 122 can detect road condition information around the user, including a stationary obstacle, a moving obstacle, a speed at which the obstacle moves, an abnormal road condition, and a possibility of passage of the road.
  • the environment detector 122 can also detect environmental conditions such as exhibition halls, conference halls, or other indoor spaces as well as environmental conditions of scenic spots, streets, plazas, or other outdoor spaces, and generate corresponding environmental information.
  • the environment detector 122 can include a probe sensor, an image sensor (eg, a miniature camera or camera), or other sensor.
  • the environment detector 122 transmits the detected current road condition information of the user to the processor 108, so that the processor 108 can generate direction indication information according to the current road condition information of the user.
  • environment detector 122 is disposed in wearable tactile navigation device 120; in some embodiments, environment detector 122 may also be disposed in navigation generator 102.
  • the tactile navigation actuator 126 can include a controller 124 and a feedback contact 128 (128a, One or more of 128b,...,128n).
  • the controller 124 can be configured to receive the direction indication signal and to convert the direction indication signal to a feedback drive signal.
  • the feedback drive signal can be used to drive the feedback contact 128 (128a, 128b, ..., 128n) to output a directional tactile signal.
  • haptic navigation actuator 126 includes feedback contacts 128 (128a, 128b, ..., 128n) that are controlled by haptic navigation actuator 126 to generate the haptic signals in accordance with the feedback drive signals.
  • the haptic signal can include one or more of a force signal, a temperature signal, and an electrical signal.
  • controller 124 includes a powered drive motor, a microprocessor for controlling the drive motor, and/or other related circuit components, and tactile navigation actuator 126 can be a flexible massager disposed on the user's shoulder, feedback touch Point 128 can be the point of contact of the finger (or palm) of the flexible massaging hand.
  • the controller 124 converts the received direction indication signal (eg, a forward-going signal, a stopped signal, or a signal that turns to the right 60 degrees, etc.) into a finger (or palm) vibration for driving the flexible massaging hand, An electrical signal that is squeezed or tapped.
  • the tactile navigation actuator 126 When the finger (or palm) of the flexible massaging hand vibrates, squeezes or taps under the action of an electrical signal, the tactile navigation actuator 126 accordingly outputs a directional force signal to the user.
  • the direction of the force signal is approximately the same as the direction of motion suggested by the user. For example, when the direction of action suggested to the user is forward, the direction of the force signal is generally forward with respect to the user; when the direction of action suggested to the user is 45 degrees to the right, the force signal The direction is approximately 45 degrees to the right relative to the user; when the action indication to the user is to stop, the direction of the force signal is directed rearward relative to the user.
  • An exemplary wearable tactile navigation device having a directional force signal and its tactile navigation actuator will be described in detail below in connection with Figures 2A-2D.
  • the haptic navigation actuator 126 controls a plurality of feedback contacts 128 to generate force signals for the haptic signals, each feedback contact including a predetermined directional indication active area.
  • the force signal of the haptic signal can be directed in any direction so that the user can be provided with navigation suggestions in different directions.
  • the force feedback of the force signal of the haptic signal at a single feedback contact 128 includes vibration, tapping, pressing or squeezing, and the like.
  • the force feedback implementation of each feedback contact 128 may include electromagnetic vibration, tapping with a certain intermittent tempo, piezoelectric power, or other implementation.
  • the haptic signal can also include a temperature signal.
  • controller 124 includes a processor (or microprocessor) and/or other associated circuit components, and feedback contact 128 includes a material (eg, metal) that undergoes a temperature change in accordance with the magnitude of the applied electrical signal; controller 124 Will be connected
  • the received direction indication signal is converted to a feedback drive signal (e.g., an electrical signal) for controlling the feedback contact 128 to produce a temperature change, and the tactile navigation actuator 128 sequentially applies the feedback drive to the feedback contact 128 in a certain order.
  • a signal is generated to generate a temperature signal of the haptic signal.
  • each feedback contact 128 produces a temperature change under the effect of a feedback drive signal
  • the tactile navigation actuator 126 accordingly outputs a directional temperature signal to the user.
  • the direction indicated by the temperature signal is consistent with the direction of action suggested by the user.
  • An exemplary wearable tactile navigation device having a directional temperature signal and its tactile navigation actuator will be described in detail below in conjunction with Figures 4A-4C.
  • the magnitude of the haptic signal may vary depending on the urgency of the indication of the direction indication signal. For example, when the indication urgency of the direction indication signal is an emergency, the magnitude of the force in the tactile signal may be increased, and the temperature change of the temperature signal may also be increased. The magnitude of the force and/or the temperature change value in the haptic signal may be divided into different levels according to the indication urgency of the direction indication signal, such that the magnitude of the force in the haptic signal and/or when the urgency of the indication of the direction indication signal is higher. Or the greater the temperature change.
  • the wearable tactile navigation device 120 can also include a motion sensor 130.
  • the motion sensor 130 can be configured to detect whether the tactile navigation actuator 126 is twisted and the direction after being twisted.
  • the motion sensor 130 is configured to detect a direction in which the tactile navigation actuator is twisted, the direction in which the tactile navigation actuator rotates is used to assist in generating the direction indication signal.
  • the processor 108 can generate or update a direction indication signal based on the direction in which the tactile navigation actuator 126 is twisted.
  • the wearable tactile navigation device 120 can be worn on the arm, the tactile navigation actuator 126 can be twisted as the arm swings, the motion sensor 130 can detect the angle or direction of rotation of the tactile navigation actuator 126, and the processor 108 can The direction indication signal is generated or updated in real time according to the direction in which the tactile navigation actuator 126 is rotated.
  • the controller 124 may update the feedback drive signal based on the direction in which the tactile navigation actuator 126 is twisted. 6A-6B below will show an example of setting the update feedback drive signal.
  • Motion sensor 130 may include an acceleration sensor, a gyroscope, or other sensor that detects motion.
  • the motion sensor 130 may include a multi-axis accelerometer, a multi-axis magnetic sensor or a multi-axis gyroscope, and the like.
  • the wearable tactile navigation device 120 provided by the embodiments of the present invention may be a wearable vest, a wristband, an arm band, a knee brace, a waistband, a headband, a glove, and a hat.
  • the feedback contact 128 can be placed at the shoulder position of the vest (eg, the tactile navigation actuator 126 can be a massage) Hand, covering the user's shoulder).
  • the feedback contact 128 can be disposed on the inner side of the wristband (for example, when the user wears the wristband, the feedback contact can be used around The wrist of the person and the contact with the user's wrist).
  • Feedback contact 128 can be a regular or irregular point, block, planar or linear contact.
  • navigation generator 102 and wearable tactile navigation device 120 can be different devices.
  • the wearable tactile navigation device 120 can be a wearable vest, a wristband, an arm strap, a knee brace, a belt, a headband, a hat, or other wearable item
  • the navigation generator 102 can be a mobile phone for the visually impaired or other
  • the haptic navigation provided by the embodiment of the present invention can be implemented by communication between the wearable haptic navigation device 120 and the navigation generator 102.
  • the navigation generator 102 and the wearable haptic navigation device 120 are the same integrated device.
  • locator 104 eg, GPS
  • input 106 eg, an input keyboard or microphone
  • processor 108 eg, a microprocessor or other module
  • FIG. 1B shows another schematic diagram of the wearable tactile navigation device 120.
  • the wearable tactile navigation device 120 can include a locator 104, an input 106, a processor 108, an environment detector 122, a motion sensor 130, and a tactile navigation executor 126.
  • Haptic navigation actuator 126 can include controller 124 and feedback contacts 128a, 128b...128n.
  • the functions and structures of the various devices in FIG. 1B eg, locator 104, input 106, processor 108, environment detector 122, motion sensor 130, and tactile navigation actuator 126) are similar to those of FIG. 1A. The functions and structures are similar or identical and will not be described here.
  • the wearable tactile navigation device may be a wearable smart vest, and the blind mobile phone may be connected to the smart vest as a control end (or a navigation generator); the tactile navigation actuator may be a flexible massage hand disposed at a shoulder position of the vest
  • the feedback contact may be a finger contact point of a flexible massaging hand, a palm contact point or other regular or irregular point, block, line or planar contact point.
  • the navigation route can be calculated according to the map information and the GPS positioning device stored in the mobile phone, and the surrounding environment condition can also be detected by an environment detector (for example, a detecting sensor) disposed on the vest ( For example, the front road condition) and the environmental test result is transmitted to the mobile phone as the control terminal.
  • the processor in the mobile phone is calculated based on the navigation route and the environmental test result.
  • the forward direction of the user is negotiated, and the forward direction is transmitted as a direction indication signal to a controller (for example, a drive motor) disposed in the vest.
  • the controller generates corresponding electrical signals to respectively drive the massager's feedback contacts to apply an appropriate amount of force to the user.
  • the feedback contact includes a first feedback contact at a left shoulder of the vest and a second feedback contact at a right shoulder of the vest, the first at the left shoulder A corresponding direction of a feedback contact indicates that the active area is the left half of the user, and a corresponding direction of the second feedback contact at the right shoulder indicates that the active area is the right half of the user.
  • FIG. 2A shows a top view of the feedback contact 206 of the vest at the shoulder position.
  • a flexible massaging hand overlies the user's shoulder 204, wherein feedback contacts 206a and 206f (similar to the thumb of a human hand) are located on one side of the back, feedback contacts 206b, 206c, 206d and 206e (similar to the four fingers of the left hand) and feedback contacts 206g, 206h, 206i and 206j (similar to the four fingers of the right hand) are located on one side of the chest.
  • the controller may generate corresponding electrical signals according to the directional indication signals to respectively control the feedback contacts 206a-206j such that the feedback contacts 206a-206j apply force signals to the user, wherein the feedback contacts 206a-206j may be individually controlled.
  • the force signals are each applied to the user, which may be a combination of forces applied to the user by each of the feedback contacts 206a-206j.
  • FIG. 2B shows a schematic diagram of the force signal provided to the front forward provided by the haptic navigation actuator of FIG. 2A.
  • the controller may control each feedback contact to apply a force to the user such that the direction of the force signal received by the user is directly forward.
  • the controller can control the feedback contacts 206a and 206f to apply forces 212 and 214 to the user, wherein the direction of the feedback contact 206a indicates that the active area is the left half and the direction of the feedback contact 206f indicates the active area. For the right half, both simultaneously apply a force to the front, prompting the user to walk straight ahead.
  • FIG. 2C is a diagram showing the force signal provided by the haptic navigation actuator of FIG. 2A for walking in a 45 degree direction to the right.
  • the controller may control each feedback contact to apply a force to the user, prompting the user to turn right. Then, after the user turns to the corresponding direction, the controller can again control each feedback contact to apply a force to the user such that the direction of the force signal received by the user is directed to the front.
  • the force signal acts on the user and prompts the user to move forward. Therefore, the user can walk in a direction of about 45 degrees to the right in two steps.
  • the controller can control the feedback contact 206a Applying a forward force to the user, and controlling the feedback contacts 206g, 206h, 206i, and 206j to apply a rearward force to the user, since the direction of the feedback contact 206a indicates that the active area is the left half of the user, the user The left half receives the forward force, and the directions of the feedback contacts 206g, 206h, 206i, and 206j indicate that the active area is the right half of the user, so the right half of the user receives the backward force; the feedback contact 206a When 206g, 206h, 206i, and 206j are simultaneously applied to the user, the user is prompted to turn to one direction on the right side.
  • the controller can control the force applied by the feedback contacts 206a and 206f to the user (as shown in FIG. 2B), wherein the indication action area of the feedback contact 206a is the left half body, and the feedback touch The indicated action area of the point 206f is the right half body, and both of them simultaneously apply a force to the front, prompting the user to walk straight ahead. Therefore, the user can walk in a direction of about 45 degrees to the right in two steps.
  • the controller may control each feedback contact to apply a force to the user. So that the direction of the force signal received by the user is directly behind.
  • the controller can control the forces applied by each of the feedback contacts 206b-206e and 206g-206j such that the direction of the force signal received by the user is directed rearward, prompting the user to pause walking.
  • FIG. 3 illustrates another exemplary wearable tactile navigation device 300 and its feedback contact 302 in a tactile navigational actuator.
  • the wearable tactile navigation device 300 can be worn on an arm or wrist.
  • the wearable tactile navigation device 300 can be a wristband or an armband.
  • the feedback contact 302 may be a point contact point as shown in FIG. 3, or may be a block, a planar, a line or other shaped contact point.
  • the wearable tactile navigation device 300 can include a motion sensor for detecting the twist direction of the arm such that the output tactile signal (eg, force signal and/or temperature signal) can be adjusted in real time according to the direction of the arm twist, such that the tactile signal
  • the direction of the indication is approximately the same as the direction of the action suggested to the user.
  • FIG. 4A illustrates a feedback contact 404 (eg, 404a-404h) in another exemplary wearable tactile navigation device 402 and its tactile navigational actuator.
  • the wearable tactile navigation device 402 can be a wearable smart wristband to which a navigation generator (eg, a blind cell phone) is connected.
  • the feedback contact 404 includes a material that undergoes a temperature change in accordance with the magnitude of the applied electrical signal (eg, metal or other material that can conduct heat or generate heat).
  • Feedback contact 404 can be a regular or irregular point, block or planar contact.
  • the navigation route is calculated according to the map information and the GPS positioning device stored in the mobile phone or downloaded in real time through the network, and the front road condition and the road condition detection result can be detected by an environment detector (for example, a detecting sensor) disposed on the smart wristband. Transfer to the phone as the console.
  • the processor in the mobile phone calculates the forward direction suggested to the user according to the navigation route and the road condition detection result, and transmits the forward direction as a direction indication signal to the controller disposed on the wristband.
  • the controller generates a corresponding feedback drive signal (eg, an electrical signal) to control the feedback contact 404 to produce a temperature change, respectively.
  • the controller can apply feedback drive signals to different feedback contacts 404 in a certain order and/or at a certain frequency (or time interval), thereby causing each feedback contact 404 to follow a certain feedback drive signal.
  • the order and/or a certain frequency (or time interval) produces a temperature change, so the wearable tactile navigation device accordingly outputs a directional temperature signal to the user.
  • the direction indicated by the temperature signal is substantially the same as the direction of action suggested to the user.
  • the time interval can be 1 second, 2 seconds, or other suitable time interval.
  • the controller can determine the order based on the direction of action suggested to the user.
  • the feedback contact 404c and the feedback contact 404g are feedback contacts located at the foremost and last sides, respectively.
  • the controller may follow the order shown by the dashed line in FIG. 4B (ie, 404g->404h->404f->404a->404e->404b->404d- > 404c)
  • a drive electrical signal is applied to feedback contacts 404g, 404h, 404f, 404a, 404e, 404b, 404d, and 404c in turn, causing each feedback contact to produce a temperature change in that order under the effect of the drive electrical signal.
  • the smart wristband 402 accordingly outputs a temperature signal to the user that is directed from the feedback contact 404g to the feedback contact 404c (as indicated by arrow 410).
  • the feedback contact 404a and the feedback contact 404e are the leftmost and rightmost feedback contacts, respectively.
  • the controller may follow the order shown by the dashed line in FIG. 4C (ie, 404h->404a->404g->404b->404f->404c- >404e->404d) sequentially apply drive electrical signals to feedback contacts 404h, 404a, 404g, 404b, 404f, 404c, 404e, and 404d, thereby causing each feedback contact to generate temperature in that order under the action of the drive electrical signal Variety.
  • the smart wristband 402 accordingly outputs a temperature signal to the user from the feedback contact 404h to the feedback contact 404d (as indicated by arrow 412).
  • FIG. 5 is a flowchart of a wearable tactile navigation method 500 according to an embodiment of the present invention.
  • the wearable tactile navigation method 500 can be implemented by the wearable tactile navigation device provided by the embodiment of the present invention. Lines can also be executed by other navigation devices.
  • the wearable haptic navigation method 500 may include steps S502, S504, S506, S508, S510, S512, and S514, and may also include other methods or steps performed by the wearable haptic navigation device provided by the embodiments of the present invention. Let me repeat. As an example, method 500 will be described below in conjunction with FIGS. 1A and 1B.
  • step S502 method 500 can detect the current location of the user.
  • the locator 104 can detect the current location of the user.
  • method 500 can receive the destination entered by the user.
  • the user can input information of the destination through the inputter 106.
  • the method 500 may calculate a navigation route based on the destination, the current location of the user, and map information obtained (stored or downloaded).
  • processor 108 can calculate a navigation route based on the destination, the current location of the user, and stored map information.
  • step S508 the method 500 can detect the current environmental information of the user.
  • the environment detector 122 can detect the current road condition information of the user.
  • step S510 the method 500 may generate direction indication information according to the navigation route and the current environment information of the user.
  • the processor 108 may generate direction indication information according to the navigation route and the current environment information of the user.
  • step S512 method 500 can convert the direction indication signal to a feedback drive signal.
  • controller 124 can receive the direction indication signal from processor 108 and convert the direction indication signal to a feedback drive signal.
  • the method 500 may generate and output a haptic signal having directivity based on the feedback driving signal, wherein the direction indicated by the haptic signal substantially coincides with a direction of motion suggested to the user.
  • haptic navigation actuator 126 can generate and output a haptic signal having directionality based on the feedback drive signal.
  • the haptic signal includes at least one of a force signal, a temperature signal, and an electrical signal. The magnitude of the haptic signal varies according to the urgency of the indication of the direction indication signal.
  • the force feedback implementation of the force signal of the haptic signal at a single feedback contact includes vibration, tapping, or pressing.
  • generating and outputting a haptic signal having directionality based on the feedback driving signal includes: sequentially applying an electrical signal to a feedback contact of the haptic navigation actuator according to the feedback driving signal to generate a temperature of the haptic signal a signal, wherein the feedback contact comprises a material that undergoes a temperature change in accordance with the magnitude of the applied electrical signal.
  • the user of the wearable tactile navigation device may be the recipient of a tactile signal that is navigated using the received tactile signal.
  • the wearable tactile navigation device 602 is a wearable smart wristband that is provided with an azimuth monitoring point and uses the user's main body trunk as an azimuth reference point.
  • the azimuth detection point can be any point on the wristband, such as feedback contact 606a or other feedback contact.
  • Fig. 6A shows an initial state when the wristband is worn.
  • the motion sensor can sense initial orientation information of the azimuth monitoring point relative to the azimuth reference point in the initial state.
  • the motion sensor may include a multi-axis accelerometer, a multi-axis magnetic sensor or a multi-axis gyroscope.
  • the feedback contacts corresponding to the front, the rear, the right left, and the right of the user are 606c, 606g, 606a, and 606e, respectively.
  • the motion sensor can sense the change of the orientation information of the azimuth monitoring point relative to the azimuth reference point, and then the controller 124 can correct or update the corresponding action area of the feedback point according to the change of the orientation information.
  • Settings For example, as shown in FIG. 6B, when the user's arm is twisted 45 degrees to the right, the motion sensor senses that the change of the orientation information of the azimuth monitoring point with respect to the azimuth reference point is reversed by 45 degrees to the right, therefore, the controller 124 can modify the feedback settings to: the feedback contacts corresponding to the front, rear, front left, and right sides of the user are 606a, 606c, 606e, and 606g, respectively.
  • a wearable tactile navigation device and method are provided according to embodiments of the present invention, which are capable of providing a directional tactile navigation signal to a user (eg, a visually impaired person), thereby Navigation information such as voice prompts provides more direct navigation advice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • Public Health (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • User Interface Of Digital Computer (AREA)
  • Navigation (AREA)

Abstract

一种可穿戴触觉导航装置(120)及方法。所述可穿戴触觉导航装置(120)包括触觉导航执行器(126)。触觉导航执行器(126)包括反馈触点(128),其被配置为可根据方向指示信号,控制所述反馈触点(128),生成具有方向指示性的信号触觉信号。所述触觉信号指示的方向与建议给使用者的行动方向一致。所述可穿戴触觉导航装置(120)及方法能够给包括视障人士在内的有导航需要的使用者提供具有方向性的触觉导航信号,从而提供了比语音提示更为直接的导航建议。

Description

导航装置及方法 技术领域
本发明的实施例涉及导航技术领域,尤其涉及一种可穿戴的触觉导航装置及方法。
背景技术
视障人士在出行过程中,无法通过视觉来对方位和路况信息进行综合的判断。现有的通过智能硬件协助视障人士出行的解决方案包括将视觉信息转换为听觉或其它感官信息。例如,可以向视障人士提供语音提示或语音导航等反馈信息。然而,现有的解决方案可能存在的问题包括:如语音提示或语音导航等反馈信息可能不够直观,当视障人士接收到该反馈信息时需要根据现时的状况对该反馈信息进行对应的解读,才能得出行动的方向或是否行动的指示性结果。
另外,目前的导航装置一般为智能终端的地图导航(包括视觉导航或语音导航)。这些导航装置需要用户自行结合地图进行综合判断。
发明内容
本发明的实施例提供了一种可穿戴触觉导航装置,包括:触觉导航执行器,包括反馈触点,被配置为可根据方向指示信号,控制所述反馈触点,生成具有方向指示性的触觉信号,其中所述触觉信号指示的方向与建议给所述可穿戴触觉导航装置的使用者的行动方向大致一致。
例如,所述触觉导航执行器包括多个反馈触点,每个反馈触点对应有方向指示作用区域。
例如,所述触觉导航执行器根据所述方向指示信号,按照一定次序依次控制所述多个反馈触点来产生所述触觉信号。
例如,所述触觉信号的大小根据所述方向指示信号的指示紧急程度而变化。
例如,所述触觉信号包括力信号、温度信号和电信号中的至少一项。
例如,所述触觉信号为力信号,所述单个反馈触点生成所述力信号的实现方式包括震动、拍打或按压。
例如,所述可穿戴触觉导航装置还包括运动感测器,其中,所述运动感测器被配置为检测所述触觉导航执行器扭转的方向,所述触觉导航执行器旋转的方向被用于辅助生成所述方向指示信号。
例如,可穿戴触觉导航装置包括可穿戴的马甲、腕带、手臂带、护膝、腰带、头带、手套或帽子。
例如,所述可穿戴触觉导航装置为可穿戴的马甲,所述反馈触点至少包括位于所述马甲的左肩膀处的第一反馈触点和位于所述马甲的右肩膀处的第二反馈触点,
所述第一反馈触点的对应方向指示作用区域为使用者的左半身,所述第二反馈触点的对应方向指示作用区域为所述使用者的右半身。
例如,可穿戴触觉导航装置,还包括:
环境检测器,被配置为检测所述使用者当前的环境信息;
定位器,被配置为检测所述使用者当前位置及获得地图信息;
输入器,被配置为接收所述使用者输入的目的地;以及
处理器,被配置为根据所述目的地、所述使用者当前位置的和所述地图信息计算导航路线,以及根据所述导航路线和所述环境检测器检测的所述使用者当前的环境信息生成所述方向指示信息。
例如,所述处理器还被配置为:
根据所述使用者向某一方向移动前和移动后的位置,确定所述使用者移动后大致朝向的方向;或者
根据设置在所述触觉导航执行器中的两个或两个以上的反馈触点的不同方位,确定所述使用者当前大致朝向的方向。
本发明实施例还提供了一种可穿戴触觉导航方法,包括:
接收方向指示信号;
基于所述方向指示信号生成具有方向指示性的触觉信号,其中所述触觉信号指示的方向与给所述触觉信号的接收者建议的行动方向大致一致。
例如,所述触觉信号的大小根据所述方向指示信号的指示紧急程度而变化。
例如,所述可穿戴触觉导航方法,还包括:
获得当前地图信息;
检测所述触觉信号的接收者当前的位置;
接收所述触觉信号的接收者输入的目的地;
根据所述目的地、所述触觉信号的接收者当前的位置和获得的地图信息,计算导航路线;
检测所述触觉信号的接收者当前的环境信息;以及
根据所述导航路线和所述触觉信号的接收者当前的环境信息生成所述方向指示信息。
例如,所述触觉信号包括多个触觉子信号,单个所述触觉子信号对应有方向指示作用区域;
根据所述触觉信号指示的方向,按照一定次序依次生成所述触觉子信号。
例如,可穿戴触觉导航方法,还包括:确定所述触觉信号的接收者当前大致朝向的方向,包括:
根据所述触觉信号的接收者向某一方向移动前和移动后的位置,确定所述触觉信号的接收者当前大致朝向的方向;或者
根据两个或两个以上的所述方向指示作用区域的不同方位,确定所述触觉信号的接收者当前大致朝向的方向。
例如,所述可穿戴触觉导航方法,还包括:
检测所述方向指示作用区域相对所述触觉信号接收者当前大致朝向的扭转的方向,所述扭转的方向被用于辅助生成所述方向指示信号。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,而非对本发明的限制,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为本发明的实施例提供的可穿戴触觉导航装置的结构示意图之一;
图1B为本发明的实施例提供的可穿戴触觉导航装置的结构示意图之二;
图2A为本发明的实施例提供的一种示例性的可穿戴触觉导航装置及其触觉导航执行器的示意图;
图2B-2D分别为图2A中的触觉导航执行器提供的不同触觉信号中的力信号的示意图;
图3为本发明的实施例提供的另一种示例性的可穿戴触觉导航装置及其触觉导航执行器的示意图;
图4A为本发明的实施例提供的另一种示例性的可穿戴触觉导航装置及其触觉导航执行器的示意图;
图4B和4C分别为图4A中的触觉导航执行器提供的不同触觉信号中的温度信号的生成示意图;
图5为本发明的实施例提供的一种示例性的可穿戴触觉导航方法的流程图;以及
图6A-6B为本发明的实施例提供的更新反馈点对应作用区域设定的示例。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的可穿戴触觉导航装置及方法能够给使用者(例如,视障人士、方向感较弱的非视障人士或其他需要对行进路线进行导航的人)提供具有方向性的触觉导航信号,从而比语音提示等导航信息提供了更为直接的导航建议。下面结合附图对本发明的实施例提供的一种可穿戴的触觉导航装置以及方法进行详细地描述。
参照图1A,本发明的实施例提供了一种可穿戴的触觉导航装置120。该可穿戴触觉导航装置120包括触觉导航执行器126。该触觉导航执行器126包括反馈触点,被配置为可根据方向指示信号,控制所述反馈触点,生成具有方向指示性的触觉信号,其中所述触觉信号指示的方向与建议给所述可穿 戴触觉导航装置的使用者的行动方向大致一致。例如,所述触觉导航执行器126包括多个反馈触点,每个反馈触点对应有方向指示作用区域。所述触觉导航执行器126根据所述方向指示信号,按照一定次序依次控制所述多个反馈触点来产生所述触觉信号,其中,所述触觉信号的大小可以根据所述方向指示信号的指示紧急程度而变化。所述触觉信号包括力信号、温度信号和电信号中的至少一项。当所述触觉信号为力信号时,所述单个反馈触点生成所述力信号的实现方式包括震动、拍打或按压。
值得注意的是,在本公开实施例中,“大致”一词表示期望值和实际值之间的误差不超过预设的范围。该预设的范围可以在±5%、±10%或其他合适的范围之内。例如,“所述触觉信号指示的方向与建议给所述可穿戴触觉导航装置的使用者的行动方向大致一致”可以表示:所述触觉信号指示的方向的角度与建议给使用者的行动方向的角度之间的误差范围不超过建议给使用者的行动方向的角度的±5%、±10%或其他合适的误差范围。
该可穿戴触觉导航装置120还可以包括导航生成器102。在一些实施例中,可穿戴触觉导航装置120还可以包括其余未在图1A中示出的部件,例如,警示装置(例如,光线不足时能够自动闪烁的灯或发出语音提示的扬声器等)、电源(例如,纽扣电池)等。在一些示例中,导航生成器102可以包括定位器104、输入器106、运动感测器130、环境检测器122以及处理器108。例如,导航生成器102可以为盲人专用手机或其他盲人专用电子设备。由于使用者可以佩戴或携带导航生成器102,因此定位器104可以被配置为检测该使用者的当前的位置以及获取地图信息。例如,定位器104可以为全球定位系统(GPS)传感器,用于确定使用者当前的位置,并将确定后的位置信息传送到处理器108。定位器104也可以为其他的可以确定使用者位置的电子器件,例如北斗卫星导航系统或手机基站定位系统等,本发明对此不作限制。
输入器106可以被配置为接收使用者输入的目的地信息。例如,输入器106可以包括键盘(例如,视障人士专用键盘),使得使用者可以通过键盘直接输入目的地信息。又例如,输入器106可以包括麦克风,使得使用者可以通过语音输入目的地信息。又例如,输入器106可以包括其他按钮、触控装置、体感装置,使得使用者可以选择已经存储在导航生成器102中的目的 地信息。输入器106将该目的地信息传送到处理器108。
处理器108可以被配置为根据使用者当前的位置、输入的目的地信息和存储的地图信息计算导航路线。该导航路线可以包括从使用者当前的位置到达目的地的一条或多条路线,使用者可以选择其中的一条路线进行导航。在一些示例中,处理器108从环境检测器122接收到使用者当前的环境信息(例如,路况信息),并根据该导航路线和使用者当前的环境信息生成方向指示信息。该方向指示信息可以包括实时的、一步一步的、带有方向性的导航信息。例如,当使用者沿着导航路线向目的地行走时,处理器108可以根据导航路线实时地生成用于指示使用者行走的方向指示信息(例如,该方向指示信息包括指示使用者向前走、向左转弯然后继续往前走或向右转弯然后继续往前走的指示信息)。又例如,当使用者当前的路况信息表明正前方出现移动的障碍物(例如,移动的汽车)时,处理器108可以生成用于指示使用者暂时停止前进的实时方向指示信息;在环境检测器122不再检测到该移动的障碍物之后,处理器108可以生成用于指示使用者继续前进的实时方向指示信息。处理器108可以将生成的方向指示信息传送到可穿戴触觉导航装置120。
在一些实施例中,处理器108先判断使用者当前朝向的大致方向。例如,导航生成器102或可穿戴触觉导航装置120可以包括体感装置。在需要判断使用者当前朝向的大致方向时,可穿戴触觉导航装置120可以语音提示使用者往前挥动手臂,使得体感装置感测到使用者挥动的手臂并将感测结果传送给处理器108。因此,处理器108可以根据体感装置的感测结果判断使用者当前朝向的大致方向。又例如,可穿戴触觉导航装置120可以语音提示使用者往前走几步,运动感测器130(例如,陀螺仪)因此可以检测到使用者当前朝向的大致方向。然后,处理器108根据导航路线、使用者当前的环境信息和使用者当前朝向的大致方向生成方向指示信息。例如,假设使用者站在南北走向的人行道上,并且导航路线指示往北走。由于使用者此时正面对着东边,因此,处理器108首先生成方向指示信息指示使用者向左转身90度左右,然后再生成方向指示信息指示使用者往前走。
例如,结合GPS,可穿戴触觉导航装置120可以根据两个或两个以上的预先设定的位置参考点在地图上的不同位置来判断使用者当前朝向的大致方 向。预先设定的位置参考点可以位于可穿戴触觉导航装置120的不同部分。例如,如图2A所示的导航马甲,可以在导航马甲的位于使用者的腹部和后背的位置处设置位置参考点。
例如,控制器可以接收由处理器确定的所述使用者当前朝向的大致方向,所述方向指示信息可以根据所述使用者当前朝向的大致方向来生成。例如,判断使用者当前朝向的大致方向,包括:根据所述使用者向某一方向移动前和移动后的位置,确定所述使用者移动后朝向的大致方向;或者,根据设置在可穿戴导航装置中的两个或两个以上的反馈触点的不同方位来判断所述使用者当前朝向的大致方向。
处理器108可以包括处理器(或微处理器)以及存储器。处理器可以处理数据信号,可以包括各种计算结构,例如复杂指令集计算机(CISC)结构、结构精简指令集计算机(RISC)结构或者一种实行多种指令集组合的结构。存储器可以保存处理器执行的指令和/或数据。这些指令和/或数据可以包括代码,用于实现本发明实施例描述一些功能或全部功能。例如,存储器包括动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存(flash memory)、光存储器(optical memory),或其他的本领域技术人员熟知的存储器。在一些实施例中,处理器108可以为专用的硬件器件,例如,DSP、ASIC、FPGA、电路板等,用于实现本发明实施例描述的一些功能或全部功能。
环境检测器122可以被配置为检测使用者当前的环境信息。例如,环境检测器122可以检测使用者周围的路况信息,包括静止的障碍物、移动的障碍物、障碍物移动的速度、异常路况以及道路通过的可能性等。例如,环境检测器122还可以检测诸如展览馆、会议厅或其他室内空间的环境状况以及景区、街道、广场或其他室外空间的环境状况,并生成相对应的环境信息。环境检测器122可以包括探测传感器、图像传感器(例如,微型摄像机或照相机)或其他传感器。环境检测器122将检测到的使用者当前的路况信息传送到处理器108,使得处理器108可以根据使用者当前的路况信息生成方向指示信息。在图1A和1B中,环境检测器122设置在可穿戴触觉导航装置120中;在一些实施例中,环境检测器122也可以设置在导航生成器102中。
触觉导航执行器126可以包括控制器124和反馈触点128(128a, 128b,…,128n)中的一或多项。控制器124可以被配置为接收方向指示信号以及将所述方向指示信号转换为反馈驱动信号。所述反馈驱动信号可以用于驱动反馈触点128(128a,128b,…,128n)输出具有方向性的触觉信号。例如,触觉导航执行器126包括反馈触点128(128a,128b,…,128n),触觉导航执行器126根据所述反馈驱动信号控制所述反馈触点128来产生所述触觉信号。所述触觉信号可以包括力信号、温度信号和电信号中的一项或多项。
例如,控制器124包括提供动力的驱动电机、用于控制驱动电机的微处理器和/或其他相关的电路部件,触觉导航执行器126可以为设置于使用者肩部的柔性按摩手,反馈触点128可以为柔性按摩手的手指(或手掌)接触点。控制器124将接收到的方向指示信号(例如,向前走的信号、停止的信号、或向右侧60度转弯的信号等)转换为用于驱动柔性按摩手的手指(或手掌)震动、挤压或拍打的电信号。当柔性按摩手的手指(或手掌)在电信号的作用下震动、挤压或拍打时,触觉导航执行器126相应地对使用者输出了具有方向性的力信号。该力信号的方向与为使用者建议的行动方向大致一致。例如,当建议给使用者的行动方向为向前时,该力信号的方向相对于使用者来说指向大致前方;当建议给使用者的行动方向为转向右方45度时,该力信号的方向相对于使用者来说指向右方大致45度;当建议给使用者的行动指示为停止时,该力信号的方向相对于使用者来说指向后方。一个示例性的输出具有方向性的力信号的可穿戴触觉导航装置及其触觉导航执行器将在下面结合图2A-2D来进行详细的说明。
在一些示例中,所述触觉导航执行器126控制多个反馈触点128来产生所述触觉信号的力信号,每个反馈触点包含有预设的方向指示作用区域。所述触觉信号的力信号可以指向任何方向,从而可以给使用者提供不同方向的导航建议。
所述触觉信号的力信号在单个反馈触点128的力反馈实现方式包括震动、拍打、按压或挤压等。例如,每个反馈触点128的力反馈实现方式可以包括电磁震动、具有一定间歇节奏的拍打、压电力或其他实现方式。
在一些示例中,触觉信号还可以包括温度信号。例如,控制器124包括处理器(或微处理器)和/或其他相关的电路部件,反馈触点128包括根据施加的电信号的大小而发生温度变化的材料(例如,金属);控制器124将接 收到的方向指示信号转换为用于控制反馈触点128产生温度变化的反馈驱动信号(例如,电信号),触觉导航执行器128对所述反馈触点128按照一定次序依次施加所述反馈驱动信号来产生所述触觉信号的温度信号。例如,当各反馈触点128在反馈驱动信号的作用下产生温度变化时,触觉导航执行器126相应地对使用者输出了具有方向性的温度信号。该温度信号指示的方向与为使用者建议的行动方向一致。一个示例性的输出具有方向性的温度信号的可穿戴触觉导航装置及其触觉导航执行器将在下面结合图4A-4C来进行详细的说明。
在一些示例中,触觉信号的大小可以根据方向指示信号的指示紧急程度而变化。例如,当方向指示信号的指示紧急程度为紧急情况时,可以增大触觉信号中力的大小,也可以提高温度信号的温度变化。触觉信号中的力的大小和/或温度变化值可以根据方向指示信号的指示紧急程度分为不同的等级,使得当方向指示信号的指示紧急程度越高时,触觉信号中的力的大小和/或温度变化越大。
如图1A所示,可穿戴触觉导航装置120还可以包括运动感测器130。运动感测器130可以被配置为检测触觉导航执行器126是否被扭转以及被扭转后的方向。例如,所述运动感测器130被配置为检测所述触觉导航执行器扭转的方向,所述触觉导航执行器旋转的方向被用于辅助生成所述方向指示信号。处理器108可以根据触觉导航执行器126扭转后的方向来生成或更新方向指示信号。例如,可穿戴触觉导航装置120可以穿戴在手臂上,触觉导航执行器126随着手臂的摆动而发生扭转,运动感测器130可以检测触觉导航执行器126旋转的角度或方向,处理器108可以根据触觉导航执行器126旋转后的方向生成或者实时更新方向指示信号。或者,控制器124可以根据触觉导航执行器126扭转后的方向更新反馈驱动信号。下图6A-6B将示出更新反馈驱动信号的设定的一个例子。运动感测器130可以包括加速度传感器、陀螺仪或其他检测运动的传感器。例如,运动感测器130可以包括多轴加速计、多轴磁感应计或多轴陀螺仪等。本发明的实施例提供的可穿戴触觉导航装置120可以为可穿戴的马甲、腕带、手臂带、护膝、腰带、头带、手套以及帽子。例如,当可穿戴触觉导航装置120为可穿戴的马甲时,反馈触点128可以设置于所述马甲的肩膀位置处(例如,触觉导航执行器126可以为按摩 手,覆盖于使用者的肩膀处)。又例如,当可穿戴触觉导航装置120为可穿戴的腕带时,反馈触点128可以设置于所述腕带的内侧(例如,当使用者佩戴该腕带时,反馈触点可以环绕着使用者的手腕,并与使用者的手腕接触)。反馈触点128可以为规则的或非规则的点状、块状、面状或线状接触点。
在一些实施例中,导航生成器102和可穿戴触觉导航装置120可以为不同的器件。例如,可穿戴触觉导航装置120可以为可穿戴的马甲、腕带、手臂带、护膝、腰带、头带、帽子或其他可穿戴的物件,导航生成器102可以为视障人士专用的手机或其他电子设备;通过可穿戴触觉导航装置120与导航生成器102之间的通信可以实现本发明实施例提供的触觉导航。在另一些实施例中,导航生成器102和可穿戴触觉导航装置120为同一集成的设备。例如,可以将导航生成器102的定位器104(例如,GPS)、输入器106(例如,输入键盘或麦克风)以及处理器108(例如,微处理器)或其他模块集成到作为可穿戴触觉导航装置120的马甲、腕带、手臂带、护膝、腰带、头带、帽子或其他可穿戴的物件中。
图1B示出了可穿戴触觉导航装置120另一结构示意图。该可穿戴触觉导航装置120可以包括定位器104、输入器106、处理器108、环境检测器122、运动感测器130和触觉导航执行器126。触觉导航执行器126可以包括控制器124和反馈触点128a、128b…128n。图1B中的各器件(例如,定位器104、输入器106、处理器108、环境检测器122、运动感测器130和触觉导航执行器126)的功能和结构与图1A中的类似的器件的功能和结构相似或相同,在此不再赘述。
图2A示出了一种示例性的可穿戴触觉导航装置及其触觉导航执行器。该可穿戴触觉导航装置可以为可穿戴的智能马甲,盲人型手机可以作为控制端(或导航生成器)与该智能马甲连接;该触觉导航执行器可以为设置于马甲肩膀位置处的柔性按摩手;反馈触点可以是柔性按摩手的手指接触点、手掌接触点或者其它规则的或非规则的点状、块状、线状或面状接触点。当使用者通过手机端输入目的地之后,可以根据手机中存储的地图信息及GPS定位装置计算出导航路线,还可以通过设置在马甲上的环境检测器(例如,探测传感器)检测周围环境状况(例如,前方路况)并将环境检测结果传送给作为控制端的手机。手机中的处理器根据导航路线和环境检测结果计算出建 议给使用者的前行方向,并将该前行方向作为方向指示信号传送给设置在马甲内的控制器(例如,驱动电机)。该控制器生成相应的电信号来分别驱动按摩手的反馈触点来施加适当大小的力给使用者。
在一些实施例中,所述反馈触点包括位于所述马甲的左肩膀处的第一反馈触点和位于所述马甲的右肩膀处的第二反馈触点,位于左肩膀处的所述第一反馈触点的对应方向指示作用区域为使用者的左半身,位于右肩膀处的所述第二反馈触点的对应方向指示作用区域为所述使用者的右半身。
图2A示出了马甲在肩部位置处的反馈触点206的俯视图。在头202的两侧,柔性按摩手覆盖在使用者的肩膀204之上,其中,反馈触点206a和206f(类似于人手的大拇指)均位于背部的一侧,反馈触点206b、206c、206d和206e(类似于左手的四指)以及反馈触点206g、206h、206i和206j(类似于右手的四指)均位于胸部的一侧。控制器可以根据方向性指示信号生成相应的电信号来分别控制各反馈触点206a-206j,使得反馈触点206a-206j施加力信号给使用者,其中,各反馈触点206a-206j可以单独控制各自施加给使用者的力,所述力信号可以为各反馈触点206a-206j单独施加给使用者的力的结合。
图2B示出了图2A中的触觉导航执行器提供的向正前方行走的力信号的示意图。例如,当接收到的方向指示信号为向正前方行走的指示信号时,控制器可以控制各反馈触点对使用者施加力,使得使用者接收到的力信号的方向为正前方。结合图2B的示例,控制器可以控制反馈触点206a和206f来对使用者施加力212和214,其中,反馈触点206a的方向指示作用区域为左半身,反馈触点206f的方向指示作用区域为右半身,两者同时施加向正前方的力,提示使用者向正前方行走。
图2C示出了图2A中的触觉导航执行器提供的向右前方45度方向行走的力信号的示意图。例如,当接收到的方向指示信号为向右前方45度方向行走的指示信号时,控制器可以控制各反馈触点对使用者施加力,提示使用者向右转。接着,当使用者转到相应的方向后,控制器可以再次控制各反馈触点对使用者施加力,使得使用者接收到的力信号的方向为指向正前方。该力信号作用于使用者,提示使用者向前走。因此,使用者可以分两步实现向右边大约45度的方向行走。结合图2C的示例,控制器可以控制反馈触点206a 对使用者施加向前的力,以及控制反馈触点206g、206h、206i和206j对使用者施加向后的力,由于反馈触点206a的方向指示作用区域为使用者的左半身,因此使用者的左半身接收到向前的力,而反馈触点206g、206h、206i和206j的方向指示作用区域为使用者的右半身,因此使用者的右半身接收到向后的力;反馈触点206a、206g、206h、206i和206j同时作用于使用者时,提示使用者转向右侧的一个方向。当使用者转到相应的方向后,控制器可以控制反馈触点206a和206f对使用者施加的力(如图2B所示),其中,反馈触点206a的指示作用区域为左半身,反馈触点206f的指示作用区域为右半身,两者同时施加向正前方的力,提示使用者向正前方行走。因此,使用者可以分两步实现向右边大约45度的方向行走。
图2D示出了图2A中的触觉导航执行器提供的暂停行走的力信号的示意图。例如,当接收到的方向指示信号为暂停行走的指示信号时(例如,正前方有障碍物、沟道等异常路况而需要暂时停止前进),控制器可以控制各反馈触点对使用者施加力,使得使用者接收到的力信号的方向为正后方。结合图2D的示例,控制器可以控制各反馈触点206b-206e和206g-206j施加的力,使得使用者接收到的力信号的方向指向正后方,提示使用者暂停行走。
图3示出了另一种示例性的可穿戴触觉导航装置300及其触觉导航执行器中的反馈触点302。可穿戴触觉导航装置300可以佩戴到手臂或手腕上。例如,可穿戴触觉导航装置300可以为腕带或臂带。反馈触点302可以为如图3所示的点状接触点,也可以为块状、面状、线状或其他形状的接触点。可穿戴触觉导航装置300可以包括用来检测手臂的扭转方向的运动感测器,从而可以根据手臂扭转的方向实时地调整输出的触觉信号(例如,力信号和/或温度信号),使得触觉信号指示的方向与建议给使用者的行动方向时刻保持大致一致。
图4A示出了另一种示例性的可穿戴触觉导航装置402及其触觉导航执行器中的反馈触点404(例如,404a-404h)。可穿戴触觉导航装置402可以为可穿戴式的智能腕带,导航生成器(例如,盲人型手机)与该智能腕带连接。反馈触点404包括根据施加的电信号的大小而发生温度变化的材料(例如,金属或其他可以导热或产生热的材料)。反馈触点404可以是规则的或非规则的点状、块状或面状接触点。在使用者通过手机端输入目的地后,可 以根据手机中存储的或者通过网络实时下载的地图信息及GPS定位装置计算出导航路线,还可以通过设置在智能腕带上的环境检测器(例如,探测传感器)检测前方路况并将路况检测结果传送给作为控制端的手机。手机中的处理器根据导航路线和路况检测结果计算出给使用者建议的前行方向,并将该前行方向作为方向指示信号传送给设置在腕带上的控制器。该控制器生成相应的反馈驱动信号(例如,电信号)来分别控制反馈触点404产生温度变化。例如,控制器可以按照一定的次序和/或一定的频率(或时间间隔)分别将反馈驱动信号施加到不同的反馈触点404,从而导致各反馈触点404在反馈驱动信号的作用下按照一定的次序和/或一定的频率(或时间间隔)来产生温度变化,因此可穿戴触觉导航装置相应地对使用者输出了具有方向性的温度信号。该温度信号指示的方向与建议给使用者的行动方向大致一致。该时间间隔可以为1秒、2秒或其他合适的时间间隔。如下图4B和4C所示,控制器可以根据建议给使用者的行动方向来确定该次序。
例如,如图4B所示,反馈触点404c和反馈触点404g分别为位于最前方和最后方的反馈触点。当建议给使用者的行动方向为正前方时,控制器可以按照如图4B中的虚线所示的次序(即,404g->404h->404f->404a->404e->404b->404d->404c)依次给反馈触点404g、404h、404f、404a、404e、404b、404d和404c施加驱动电信号,从而导致各反馈触点在驱动电信号的作用下按照该次序来产生温度变化。因此,智能腕带402相应地对使用者输出了方向自反馈触点404g至反馈触点404c(如箭头410所示)的温度信号。
例如,如图4C所示,反馈触点404a和反馈触点404e分别为位于最左边和最右边的反馈触点。当建议给使用者的行动方向为右前方45度左右时,控制器可以按照如图4C中的虚线所示的次序(即,404h->404a->404g->404b->404f->404c->404e->404d)依次给反馈触点404h、404a、404g、404b、404f、404c、404e和404d施加驱动电信号,从而导致各反馈触点在驱动电信号的作用下按照该次序来产生温度变化。因此,智能腕带402相应地对使用者输出了方向自反馈触点404h至反馈触点404d(如箭头412所示)的温度信号。
图5为本发明的实施例提供的可穿戴触觉导航方法500的流程图。可穿戴触觉导航方法500可以由本发明实施例提供的可穿戴触觉导航装置来执 行,也可以由其他导航设备来执行。可穿戴触觉导航方法500可以包括步骤S502、S504、S506、S508、S510、S512和S514,也可以包括本发明实施例提供的可穿戴触觉导航装置执行的其他方法或步骤,重复之处在此不再赘述。作为示例,下面将结合图1A和1B来对方法500进行说明。
在步骤S502中,方法500可以检测使用者当前的位置。例如,定位器104可以检测使用者当前的位置。在步骤S504中,方法500可以接收所述使用者输入的目的地。例如,使用者可以通过输入器106输入目的地的信息。
在步骤S506中,方法500可以根据所述目的地、所述使用者当前的位置和获得(存储或下载)的地图信息计算导航路线。例如,处理器108可以根据所述目的地、所述使用者当前的位置和存储的地图信息计算导航路线。
在步骤S508中,方法500可以检测使用者当前的环境信息。例如,环境检测器122可以检测使用者当前的路况信息。
在步骤S510中,方法500可以根据所述导航路线和所述使用者当前的环境信息生成方向指示信息。例如,处理器108可以根据所述导航路线和所述使用者当前的环境信息生成方向指示信息。
在步骤S512中,方法500可以将所述方向指示信号转换为反馈驱动信号。例如,控制器124可以从处理器108接收所述方向指示信号,并将所述方向指示信号转换为反馈驱动信号。
在步骤S514中,方法500可以基于所述反馈驱动信号生成并输出具有方向性的触觉信号,其中所述触觉信号指示的方向与给使用者建议的行动方向大致一致。例如,触觉导航执行器126可以基于所述反馈驱动信号生成并输出具有方向性的触觉信号。所述触觉信号包括力信号、温度信号和电信号中的至少一项。所述触觉信号的大小根据所述方向指示信号的指示紧急程度而变化。
例如,所述触觉信号的力信号在单个反馈触点的力反馈实现方式包括震动、拍打或按压。
例如,基于所述反馈驱动信号生成并输出具有方向性的触觉信号,包括:根据所述反馈驱动信号对触觉导航执行器的反馈触点按照一定次序依次施加电信号来产生所述触觉信号的温度信号,其中所述反馈触点包括根据施加的所述的电信号的大小而发生温度变化的材料。
可以理解的是,在本发明的实施例中,所述可穿戴触觉导航装置的使用者可以为触觉信号的接收者,所述接收者使用接收到的触觉信号来导航。
图6A-6B示出了更新反馈点对应作用区域的设定的一个例子。例如,可穿戴触觉导航装置602为可穿戴式的智能腕带,该智能腕带上设置有方位监测点,并以使用者的身体主躯干为方位参照点。该方位检测点可以为腕带上的任一点,例如,反馈触点606a或其他反馈触点。图6A示出了腕带被佩戴时的初始状态。运动感测器可以感测在初始状态时方位监测点相对于方位参照点的初始方位信息。运动感测器可以包括多轴加速计、多轴磁感应计或多轴陀螺仪等。在初始状态的反馈点对应作用区域的设定中,对应于使用者的正前方、正后方、正左边和正右边的反馈触点分别为606c、606g、606a和606e。
当使用者的手臂发生扭转时,运动感测器可以感测方位监测点相对于方位参照点的方位信息的改变,然后控制器124可以依据该方位信息的改变来修正或更新反馈点对应作用区域的设定。例如,如图6B所示,当使用者手臂向右扭转45度时,运动感测器感测到方位监测点相对于方位参照点的方位信息的改变为向右扭转45度,因此,控制器124可以将反馈设定修改为:对应于使用者的正前方、正后方、正左边和正右边的反馈触点分别为606a、606c、606e和606g。
以上,参照图1A和1B到图6B描述了根据本发明的实施例提供的可穿戴触觉导航装置及方法,其能够给使用者(例如,视障人士)提供具有方向性的触觉导航信号,从而比语音提示等导航信息提供了更为直接的导航建议。
需要说明的是,在本说明书中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后,还需要说明的是,上述一系列处理不仅包括以这里所述的顺序按时间序列执行的处理,而且包括并行或分别地、而不是按时间顺序执行的处理。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的硬件平台的方式来实现,当然也可以全部通过硬件来实施。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
本发明要求于2016年5月23日递交的中国专利申请第201610345176.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本发明的一部分。

Claims (17)

  1. 一种可穿戴触觉导航装置,包括:
    触觉导航执行器,包括反馈触点,被配置为可根据方向指示信号,控制所述反馈触点,生成具有方向指示性的触觉信号,其中所述触觉信号指示的方向与建议给所述可穿戴触觉导航装置的使用者的行动方向大致一致。
  2. 如权利要求1所述的可穿戴触觉导航装置,其中所述触觉导航执行器包括多个反馈触点,每个反馈触点对应有方向指示作用区域。
  3. 如权利要求2所述的可穿戴触觉导航装置,其中所述触觉导航执行器根据所述方向指示信号,按照一定次序依次控制所述多个反馈触点来产生所述触觉信号。
  4. 如权利要求1-3任一项所述的可穿戴触觉导航装置,其中所述触觉信号的大小根据所述方向指示信号的指示紧急程度而变化。
  5. 如权利要求1-4所述的可穿戴触觉导航装置,其中所述触觉信号包括力信号、温度信号和电信号中的至少一项。
  6. 如权利要求1-5所述的可穿戴触觉导航装置,其中所述触觉信号为力信号,所述单个反馈触点生成所述力信号的实现方式包括震动、拍打或按压。
  7. 如权利要求1-6任一项所述的可穿戴触觉导航装置,还包括运动感测器,其中,所述运动感测器被配置为检测所述触觉导航执行器扭转的方向,所述触觉导航执行器旋转的方向被用于辅助生成所述方向指示信号。
  8. 如权利要求1-7任一项所述的可穿戴触觉导航装置,包括可穿戴的马甲、腕带、手臂带、护膝、腰带、头带、手套或帽子。
  9. 如权利要求1-8任一项所述的可穿戴触觉导航装置,其中所述可穿戴触觉导航装置为可穿戴的马甲,所述反馈触点至少包括位于所述马甲的左肩膀处的第一反馈触点和位于所述马甲的右肩膀处的第二反馈触点,
    所述第一反馈触点的对应方向指示作用区域为使用者的左半身,所述第二反馈触点的对应方向指示作用区域为所述使用者的右半身。
  10. 如权利要求1-9任一项所述的可穿戴触觉导航装置,还包括:
    环境检测器,被配置为检测所述使用者当前的环境信息;
    定位器,被配置为检测所述使用者当前位置及获得地图信息;
    输入器,被配置为接收所述使用者输入的目的地;以及
    处理器,被配置为根据所述目的地、所述使用者当前位置的和所述地图信息计算导航路线,以及根据所述导航路线和所述环境检测器检测的所述使用者当前的环境信息生成所述方向指示信息。
  11. 如权利要求10所述的可穿戴触觉导航装置,其中,所述处理器还被配置为:
    根据所述使用者向某一方向移动前和移动后的位置,确定所述使用者移动后大致朝向的方向;或者
    根据设置在所述触觉导航执行器中的两个或两个以上的反馈触点的不同方位,确定所述使用者当前大致朝向的方向。
  12. 一种可穿戴触觉导航方法,包括:
    接收方向指示信号;
    基于所述方向指示信号生成具有方向指示性的触觉信号,其中所述触觉信号指示的方向与给所述触觉信号的接收者建议的行动方向大致一致。
  13. 如权利要求12所述的可穿戴触觉导航方法,其中所述触觉信号的大小根据所述方向指示信号的指示紧急程度而变化。
  14. 如权利要求12-13任一项所述的可穿戴触觉导航方法,还包括:
    获得当前地图信息;
    检测所述触觉信号的接收者当前的位置;
    接收所述触觉信号的接收者输入的目的地;
    根据所述目的地、所述触觉信号的接收者当前的位置和获得的地图信息,计算导航路线;
    检测所述触觉信号的接收者当前的环境信息;以及
    根据所述导航路线和所述触觉信号的接收者当前的环境信息生成所述方向指示信息。
  15. 如权利要求12-14任一项所述的可穿戴触觉导航方法,其中,所述触觉信号包括多个触觉子信号,单个所述触觉子信号对应有方向指示作用区域;
    根据所述触觉信号指示的方向,按照一定次序依次生成所述触觉子信号。
  16. 如权利要求13-15任一项所述的可穿戴触觉导航方法,还包括:确定所述触觉信号的接收者当前大致朝向的方向,包括:
    根据所述触觉信号的接收者向某一方向移动前和移动后的位置,确定所述触觉信号的接收者当前大致朝向的方向;或者
    根据两个或两个以上的所述方向指示作用区域的不同方位,确定所述触觉信号的接收者当前大致朝向的方向。
  17. 如权利要求13-16任一项所述的可穿戴触觉导航方法,还包括:
    检测所述方向指示作用区域相对所述触觉信号接收者当前大致朝向的扭转的方向,所述扭转的方向被用于辅助生成所述方向指示信号。
PCT/CN2017/074283 2016-05-23 2017-02-21 导航装置及方法 WO2017202081A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/554,940 US10663316B2 (en) 2016-05-23 2017-02-21 Navigation device and method
EP17757657.6A EP3470044A4 (en) 2016-05-23 2017-02-21 NAVIGATION APPARATUS AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610345176.XA CN105748265B (zh) 2016-05-23 2016-05-23 一种导航装置及方法
CN201610345176.X 2016-05-23

Publications (1)

Publication Number Publication Date
WO2017202081A1 true WO2017202081A1 (zh) 2017-11-30

Family

ID=56322339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074283 WO2017202081A1 (zh) 2016-05-23 2017-02-21 导航装置及方法

Country Status (4)

Country Link
US (1) US10663316B2 (zh)
EP (1) EP3470044A4 (zh)
CN (1) CN105748265B (zh)
WO (1) WO2017202081A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138187A1 (fr) * 2018-01-12 2019-07-18 Esthesix Procede et dispositif ameliores pour indiquer un cap c a un utilisateur
FR3076909A1 (fr) * 2018-01-12 2019-07-19 Esthesix Procédé et dispositif améliorés pour indiquer un cap C à un utilisateur
CN112629531A (zh) * 2019-09-24 2021-04-09 广东小天才科技有限公司 一种导航辅助方法、可穿戴设备、计算机设备和存储介质
EP4273877A1 (de) * 2022-05-04 2023-11-08 DC Vision Systems GmbH Tragbares system sowie computerimplementiertes verfahren zur unterstützung einer person mit seheinschränkungen

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10636261B2 (en) * 2015-01-12 2020-04-28 Trekace Technologies Ltd. Intuitive tactile devices, systems and methods
CN107850438A (zh) * 2015-01-12 2018-03-27 R·I·加贝 导航设备及方法
WO2016114487A1 (ko) * 2015-01-13 2016-07-21 주식회사 씨케이머티리얼즈랩 촉각 정보 제공 기기
CN105748265B (zh) * 2016-05-23 2021-01-22 京东方科技集团股份有限公司 一种导航装置及方法
US20180061276A1 (en) * 2016-08-31 2018-03-01 Intel Corporation Methods, apparatuses, and systems to recognize and audibilize objects
WO2018063136A1 (en) * 2016-10-01 2018-04-05 Intel Corporation Systems, methods, and apparatuses for implementing increased human perception of haptic feedback systems
CN108951446A (zh) * 2017-05-29 2018-12-07 宁波市镇海西门专利技术开发有限公司 一种盲人引路装置及方法
JP7226330B2 (ja) * 2017-11-01 2023-02-21 ソニーグループ株式会社 情報処理装置、情報処理方法及びプログラム
WO2019187527A1 (ja) * 2018-03-27 2019-10-03 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US11036391B2 (en) * 2018-05-16 2021-06-15 Universal Studios LLC Haptic feedback systems and methods for an amusement park ride
US11181381B2 (en) 2018-10-17 2021-11-23 International Business Machines Corporation Portable pedestrian navigation system
CN109596123A (zh) * 2018-12-07 2019-04-09 湖北航天飞行器研究所 一种可穿戴体感式导航联络装置
CN110448435B (zh) * 2019-07-15 2021-07-16 联想(北京)有限公司 一种提示方法及受控运动设备
CN112135026B (zh) * 2020-09-23 2022-02-25 北京一华明升科技有限公司 基于激光方向传感器和人工智能云台的识路装置及方法
CN112422829B (zh) * 2020-11-19 2022-04-26 北京字节跳动网络技术有限公司 辅助拍摄图像的方法、装置、终端和存储介质
CN113576855B (zh) * 2021-09-29 2021-12-28 上海豪承信息技术有限公司 导盲装置和导盲方法
EP4330802A1 (en) * 2022-02-11 2024-03-06 AI Guided Limited Haptic guiding system
TWI825619B (zh) * 2022-03-11 2023-12-11 國立臺北科技大學 智慧整合型行走輔助系統及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105937A1 (en) * 2006-03-10 2007-09-20 Tomtom International B.V. Tactile device, navigation device and system comprising such a tactile device and navigation device
CN105115493A (zh) * 2015-08-17 2015-12-02 联想(北京)有限公司 一种导航方法及穿戴式电子设备
GB2527139A (en) * 2014-06-15 2015-12-16 Thomas Essl Wearable haptic notification device, and software application for risk, danger and threat calculation, prediction and prevention
CN205126750U (zh) * 2015-11-26 2016-04-06 华北电力大学 一种导盲仪
CN105547318A (zh) * 2016-01-26 2016-05-04 京东方科技集团股份有限公司 一种智能头戴设备和智能头戴设备的控制方法
CN105748265A (zh) * 2016-05-23 2016-07-13 京东方科技集团股份有限公司 一种导航装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7546204B2 (en) 2004-05-12 2009-06-09 Takashi Yoshimine Information processor, portable apparatus and information processing method
US20130218456A1 (en) * 2006-02-16 2013-08-22 John S. Zelek Wearable tactile navigation system
JP2008286546A (ja) * 2007-05-15 2008-11-27 Casio Comput Co Ltd 身体装着型電子機器
CN202069017U (zh) * 2011-05-13 2011-12-14 惠州Tcl移动通信有限公司 一种导盲鞋系统
WO2012159128A2 (en) * 2011-05-13 2012-11-22 Duncan Douglas Malcolm A walking aid
EP2912644A4 (en) * 2012-10-23 2016-05-25 Univ New York PORTABLE OBJECT RETRIEVING SOMATIC SENSOR INFORMATION
US20140180582A1 (en) * 2012-12-21 2014-06-26 Mark C. Pontarelli Apparatus, method and techniques for wearable navigation device
US20150049325A1 (en) * 2013-08-19 2015-02-19 Shiloh S.S. Curtis Wearable user-controlled obstacle identification and notification system for hands-free navigation
WO2015100482A1 (en) * 2013-12-31 2015-07-09 Iftech Inventing Future Technology Inc. Wearable devices, systems, methods and architectures for sensory stimulation and manipulation, and physiological data acquisition
US10024679B2 (en) * 2014-01-14 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Smart necklace with stereo vision and onboard processing
US11137490B2 (en) * 2014-09-16 2021-10-05 Teknologian Tutkimuskeskus Vtt Navigational aid with adaptive radar
US9826806B2 (en) * 2014-11-10 2017-11-28 Pranav Challa Assistive support systems and devices for automatic feedback
CN104535059A (zh) * 2014-12-04 2015-04-22 上海交通大学 针对全盲人群的室内定位系统
US10210723B2 (en) * 2016-10-17 2019-02-19 At&T Intellectual Property I, L.P. Wearable ultrasonic sensors with haptic signaling for blindside risk detection and notification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105937A1 (en) * 2006-03-10 2007-09-20 Tomtom International B.V. Tactile device, navigation device and system comprising such a tactile device and navigation device
GB2527139A (en) * 2014-06-15 2015-12-16 Thomas Essl Wearable haptic notification device, and software application for risk, danger and threat calculation, prediction and prevention
CN105115493A (zh) * 2015-08-17 2015-12-02 联想(北京)有限公司 一种导航方法及穿戴式电子设备
CN205126750U (zh) * 2015-11-26 2016-04-06 华北电力大学 一种导盲仪
CN105547318A (zh) * 2016-01-26 2016-05-04 京东方科技集团股份有限公司 一种智能头戴设备和智能头戴设备的控制方法
CN105748265A (zh) * 2016-05-23 2016-07-13 京东方科技集团股份有限公司 一种导航装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470044A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138187A1 (fr) * 2018-01-12 2019-07-18 Esthesix Procede et dispositif ameliores pour indiquer un cap c a un utilisateur
FR3076909A1 (fr) * 2018-01-12 2019-07-19 Esthesix Procédé et dispositif améliorés pour indiquer un cap C à un utilisateur
CN112629531A (zh) * 2019-09-24 2021-04-09 广东小天才科技有限公司 一种导航辅助方法、可穿戴设备、计算机设备和存储介质
CN112629531B (zh) * 2019-09-24 2024-05-14 广东小天才科技有限公司 一种导航辅助方法、可穿戴设备、计算机设备和存储介质
EP4273877A1 (de) * 2022-05-04 2023-11-08 DC Vision Systems GmbH Tragbares system sowie computerimplementiertes verfahren zur unterstützung einer person mit seheinschränkungen

Also Published As

Publication number Publication date
US10663316B2 (en) 2020-05-26
EP3470044A4 (en) 2020-05-13
US20180106636A1 (en) 2018-04-19
CN105748265A (zh) 2016-07-13
EP3470044A1 (en) 2019-04-17
CN105748265B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2017202081A1 (zh) 导航装置及方法
Shoval et al. NavBelt and the Guide-Cane [obstacle-avoidance systems for the blind and visually impaired]
JP6967717B2 (ja) アシスト装置及びアシスト装置の作動方法
Scheggi et al. Cooperative human-robot haptic navigation
JP2013091114A (ja) インタラクション操作システム
WO2015083183A1 (en) Hand wearable haptic feedback based navigation device
US9454915B2 (en) Electro tactile communication apparatus, method, and computer program product
JP2010246912A (ja) 動作矯正装置及びその制御方法とこれを用いた動作矯正サービスシステム
EP3260952B1 (en) Pseudo force device
EP3254121B1 (en) Center of gravity shifting force device
EP3253283B1 (en) Fan-driven force device
Bernieri et al. A low cost smart glove for visually impaired people mobility
Spiers et al. Development and experimental validation of a minimalistic shape-changing haptic navigation device
Alarcon et al. Design of a wearable haptic navigation tool for cyclists
JP4263921B2 (ja) 身体誘導装置
US20220296455A1 (en) Clothing item
JP2013075342A (ja) 関節角度予測装置及び関節角度予測方法
Aqeel et al. Skin stroking haptic feedback glove for assisting blinds in navigation
Liao et al. Robotic guidance system for visually impaired users running outdoors using haptic feedback
Molina et al. Vista wearable: Seeing through whole-body touch without contact
Nayak et al. Autonomous Human Navigation Using Wearable Multiple Laser Projection Suit
KR20220077599A (ko) 시각 장애우를 위한 길잡이 밴드
KR20240042953A (ko) 웨어러블 장치 및 그 장치를 제어하는 방법
KR20220144292A (ko) 웨어러블 장치를 이용한 사용자의 근체력을 측정하는 방법 및 장치
Chellali et al. Frequency modulation based vibrotactile feedback vs visual feedback in a multimodal interface for 3D pointing tasks in teleoperation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15554940

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 201747031248

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2017757657

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17757657

Country of ref document: EP

Kind code of ref document: A1