WO2017202012A1 - 一种基于水分运移的自动喷灌系统与方法 - Google Patents

一种基于水分运移的自动喷灌系统与方法 Download PDF

Info

Publication number
WO2017202012A1
WO2017202012A1 PCT/CN2016/110050 CN2016110050W WO2017202012A1 WO 2017202012 A1 WO2017202012 A1 WO 2017202012A1 CN 2016110050 W CN2016110050 W CN 2016110050W WO 2017202012 A1 WO2017202012 A1 WO 2017202012A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sprinkling
plant
parameter
area
Prior art date
Application number
PCT/CN2016/110050
Other languages
English (en)
French (fr)
Inventor
刘鹏飞
胡永光
江丰
阿散蒂艾瑞克•阿莫阿
王升
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2017202012A1 publication Critical patent/WO2017202012A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/003Controls for self-acting watering devices

Definitions

  • the invention relates to the field of agricultural water-saving irrigation and automatic control, in particular to an automatic sprinkler irrigation system and method based on moisture migration.
  • Chinese Patent Application No. 201410560607.5 discloses a method for automatic grassland irrigation.
  • the humidity soil moisture sensor controls its corresponding irrigation nozzle for irrigation until the soil moisture is higher than the warning humidity.
  • Chinese Patent Application No. 201510598783.2 discloses a fully automatic sprinkler drip irrigation control system, which mentions that when the humidity in a certain area is lowered, the irrigation device closest to the desired area there moves on the irrigation rack to The required area for irrigation. However, it is not considered whether the plant is arid when the humidity is lowered, and the timing of the irrigation stop has not been mentioned in the patent.
  • the object of the present invention is to provide an automatic sprinkler irrigation system and method based on moisture migration, to realize automation and precision of sprinkler irrigation in different regions, and to save water resources.
  • An automatic sprinkler irrigation system based on moisture migration including main pipe (1), water pump (2), check valve (3), filter (4), flow meter (5), main pipe (6), branch pipe (7) a solenoid valve (8), a pressure gauge (9), characterized by further comprising: a plant stem diameter change sensor (10), a soil moisture sensor (11), a temperature sensor (12), a net radiation sensor (13), a vertical pipe (14), a spray head (15), a drain valve (16), a controller (17); the main pipe (1) is connected with a water pump (2), a check valve (3), and a filter (4) ), flow meter (5), pressure gauge (9); the main pipe (6) A plurality of branch pipes (7) are respectively connected to the upper pipe; the branch pipe (7) is sequentially connected with a solenoid valve (8), a pressure gauge (9), a vertical pipe (14), a drain valve (16), and a vertical pipe ( 14) Connect the nozzle (15).
  • the spray head (15) is located above the plant canopy, and the type of the spray head (15) is selected according to the sprinkling intensity; the spray head strength of 2 mm/h can be selected as the type 3103 nozzle (15), and the spray irrigation intensity is 4 mm/h.
  • Model No. 3430 (15) when the sprinkler strength is 6mm/h, the nozzle type 5022 (15) can be selected.
  • Each plant stem diameter change sensor (10), soil moisture sensor (11), temperature sensor (12) and net radiation sensor (13) are placed in the field where the field needs to be sprinkled, and each of the areas is placed with a plant stem diameter Change sensor (10), soil moisture sensor (11), temperature sensor (12) and net radiation sensor (13), plant stem diameter change sensor (10), soil moisture sensor (11), temperature sensor (12) and net
  • the radiation sensors (13) are respectively connected to the input end of the controller (17); the water pump (2) and each electromagnetic valve (8) are connected to the output end of the controller (17).
  • the soil moisture sensor (11) is located at a depth below the surface of the region Z 1, soil moisture sensor (11) placed parallel to the probe ground level.
  • the temperature sensor (12) and the net radiation meter (13) are located above the sprinkling height of the area, and are shielded from obstacles to accurately measure the temperature of the area and the intensity of the solar radiation.
  • the type of the plant stem diameter change sensor (10) is selected according to the diameter of the plant rhizome; SD-5M is selected when the plant rhizome diameter is 5 mm to 25 mm, and SD-6M is selected when the plant rhizome diameter is 20 mm to 70 mm;
  • the plant stem diameter change sensor (10) is buried at the depth of the active root system, and the plant stem diameter change sensor (10) is supported on the plant root system.
  • An automatic sprinkler irrigation method based on moisture migration comprising the following steps:
  • Step 1 input the ideal penetration depth in the controller (17), that is, the root depth of the plant; input the slope of each sprinkling area, the sprinkling intensity of each sprinkling area, and the type of soil;
  • Step 2 When the growth of the stem diameter of a certain area becomes negative, that is, when the diameter of the plant stem is lower than the previous day, the water pump (2) is started, and the electromagnetic valve (8) on the branch pipe (7) of the area is opened; otherwise The solenoid valve (8) in this area remains closed;
  • Step 3 After the sprinkler system is operated, when the soil moisture at Z 1 according to the mathematical model changes, the solenoid valve (8) on the branch pipe (7) in the region is closed.
  • Step 4 when the soil moisture at all the sprinkling areas Z 1 changes, the water pump (2) is turned off;
  • Step 5 after the sprinkling is finished, keep the controller (17) open and wait for the next irrigation cycle.
  • the parameter ⁇ is an environmental parameter, and the corresponding fuzzy control query table is queried by the data measured by the temperature sensor (12) and the net radiation sensor (13) in real time, and the value of the parameter ⁇ is obtained;
  • the parameter ⁇ is the system parameter, and the corresponding fuzzy control query table is obtained by inputting the slope of each region and the sprinkling intensity of each sprinkling area to obtain the value of the parameter ⁇ ;
  • the parameter ⁇ is the soil parameter, and the corresponding parameter ⁇ is obtained according to the input soil type;
  • the parameter Z F is the ideal penetration depth of the input, ie the root depth of the plant.
  • the crop water condition reflects the equilibrium dynamics of soil water supply and crop transpiration demand in the root zone.
  • the transpiration rate is greater than the root water absorption rate, the water deficit occurs in the body.
  • the crop uses the stored water in the stored water organs (stems, leaves, etc.). Resulting in a decrease in the volume of stored water organs. So when the stem diameter shows a negative growth (the maximum stem diameter on a given day is less than the maximum of the previous day), this day is the beginning of water stress. Therefore, when the diameter of the stem of the plant is deteriorated, the timing of opening the water pump (2) and the electromagnetic valve (8) can accurately determine the lack of water in the plant. When the soil moisture at Z 1 changes, the solenoid valve (8) is closed, and the final penetration depth after the end of moisture penetration can reach the desired penetration depth.
  • the invention inputs the ideal penetration depth, the slope of each region, the sprinkling intensity of each sprinkling area and the type of soil in the controller (17), and when the plant stem diameter change sensor (10) in a certain area detects the growth of the plant stem diameter
  • the controller (17) controls the water pump (2) to start, the system operates, and opens the solenoid valve (8) on the branch pipe (7) in the area.
  • the water flow passes through the main pipe (1), the main pipe (6), the branch pipe (7), and finally is sprayed down the plant canopy and the soil through the spray head (15).
  • the controller (17) closes the solenoid valve (8) at the zone, stops the sprinkling, opens the drain valve (16) on the branch pipe (7), drains Water in the pipeline.
  • the controller (17) closes all solenoid valves (8) and pumps (2), ends the irrigation, and waits for the next irrigation cycle.
  • the present invention has the beneficial effects.
  • the invention utilizes the soil type, slope and other conditions of planting plants, which will affect the characteristics of water migration after the irrigation process, and because the difference of weather factors in different regions plays an important role in the water demand of the plants, Plant stem diameter changes are monitored separately for each area to effectively irrigate the plants.
  • the invention also provides a theoretical basis for determining the timing of irrigation start and stop in sprinkler irrigation, can make sprinkler irrigation autonomous and precise, and can save a large amount of labor and water resources.
  • Figure 1 is a schematic view showing the composition and structure of a sprinkler irrigation system of the present invention.
  • Figure 2 is a flow chart of the sprinkler control system of the present invention.
  • the system composition and structure of the present invention are as shown in Fig. 1, including the main pipe 1, the water pump 2, the check valve 3, the filter 4, the flow meter 5, the main pipe 6, the branch pipe 7, the solenoid valve 8, the pressure gauge 9, the plant stem Rod diameter change sensor 10, soil moisture sensor 11, temperature sensor 12, net radiation sensor 13, riser 14, nozzle 15, drain valve 16, controller 17; water pump 2, check valve 3, filter 4, pressure gauge 9, flow meter 5; the main pipe 6 is connected to the branch pipe 7 of each area; the electromagnetic valve 8, the pressure gauge 9, the vertical pipe 14, the drain valve 16 are sequentially connected to each branch pipe 7;
  • the connecting nozzle 15; each of the plant stem diameter change sensor 10, the soil moisture sensor 11, the temperature sensor 12, and the net radiation sensor 13 are placed in different areas of the field, each of which is placed with a plant stem diameter change sensor 10, a soil moisture sensor 11
  • the temperature sensor 12 and the net radiation sensor 13 are connected to the input end of the controller 17; the water pump 2 and each solenoid valve 8 are connected to the output end of the controller 17.
  • the soil in the sprinkler irrigation area is soil clay, and the test tea tree is Anji white tea, which is about 7 years old.
  • the root diameter of the tea tree measured by the test was 35 cm. The working process of the sprinkler irrigation is further described below.
  • Step 1 Enter the ideal penetration depth in the controller 17, that is, the root depth of the tea tree is 35 cm; input the slope of the test area 1, area 2 and area 3, 0°, 5°, 15°; input the sprinkling intensity of each sprinkler area , both are 4mm/h; the type of soil input is all soil clay.
  • Step 2 When the growth of the stem diameter of a certain area becomes negative, that is, when the diameter of the plant stem is lower than the previous day, the water pump 2 is started, and the electromagnetic valve 8 on the branch pipe 7 of the area is opened; otherwise, the electromagnetic valve of the area is made 8 remains off.
  • the growth of the stem diameter of the plant in the second region was negative, and the growth of the other regions was positive, so the solenoid valve 8 and the water pump 2 on the second branch 7 of the region were opened.
  • the third step calculate the value of Z 1 .
  • the data of the temperature sensor 12 in the area 2 is 35 °C, the data of the net radiation sensor 13 is 400wat/m2, the corresponding fuzzy control query table is queried, and the parameter ⁇ is 0.8; the slope of the area 2 is 5°, and the sprinkling intensity is 4 mm/h.
  • Step 4 After the sprinkler system is operated for 45 minutes, the soil moisture sensor 11 at 16.8 cm detects a change in soil moisture, and closes the solenoid valve 8 on the two branches 7 of the region.
  • Step 5 Turn off the pump 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Nozzles (AREA)

Abstract

一种自动喷灌系统,包括主管(1)、水泵(2)、逆止阀(3)、过滤器(4)、流量表(5)、干管(6)、支管(7)、电磁阀(8)、压力表(9)、植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)、净辐射传感器(13)、竖管(14)、喷头(15)、泄水阀(16)、控制器(17);所述主管(1)上依次连接有水泵(2)、逆止阀(3)、过滤器(4)、流量表(5)、压力表(9);所述干管(6)上分别连接有多个支管(7);所述支管(7)上依次连接有电磁阀(8)、压力表(9)、竖管(14)、泄水阀(16);各个竖管(14)连接喷头(15)。该系统能够实现植物自动精确灌溉,满足植物水分的需求,提高了水分的利用效率。

Description

一种基于水分运移的自动喷灌系统与方法 技术领域
本发明涉及农业节水灌溉与自动控制领域,特别涉及一种基于水分运移的自动喷灌系统与方法。
背景技术
植物的生长过程中离不开水分的吸收,而植物是通过根系来吸收水分,故位于根系以下的水分是无效水。目前在实际生产中多数实习的灌溉方法还是大水漫灌,这种灌溉方法依赖于操作人员的实际经验,没有理论的支持。灌溉开启和关闭的时机依然靠人工摸索,有时会发生滞后,导致灌溉不及时,损失作物;会发生深层渗漏,导致不必要的水资源浪费。为了节约用水,缓解水资源短缺的问题,喷灌技术在灌溉领域中得到大力推广。
申请号201410560607.5的中国专利公开了一种草地自动灌溉的方法,该专利中提到土壤湿度感应器采集到草地上各个区域的土壤湿度后,将其与警戒湿度比较,挑选出土壤湿度低于警戒湿度的土壤湿度感应器,控制其对应的灌溉喷头进行灌溉,直至土壤湿度高于警戒湿度。该专利仅仅是根据土壤湿度的警戒湿度进行灌溉控制,但在该警戒湿度下植物是否处于缺水状态,而且未考虑深层渗漏的影响。
申请号201510598783.2的中国专利公开了一种全自动喷灌滴灌控制系统,该专利中提到当某一个区域中的湿度降低时,那里所需区域最近的所述灌溉装置在所述灌溉架上移动至所需区域,进行灌溉。但是没有考虑到该湿度降低时是否就是植物干旱的时刻,而且该专利中也尚未提及灌溉停止的时刻。
发明内容
本发明的目的在于提供一种基于水分运移的自动喷灌系统与方法,以实现不同区域喷灌的自动化和精准话,节约水资源。
为了解决以上的技术问题,本发明采用的技术方案如下:
一种基于水分运移的自动喷灌系统,包括主管(1)、水泵(2)、逆止阀(3)、过滤器(4)、流量表(5)、干管(6)、支管(7)、电磁阀(8)、压力表(9),其特征在于还包括:植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)、净辐射传感器(13)、竖管(14)、喷头(15)、泄水阀(16)、控制器(17);所述主管(1)上依次连接有水泵(2)、逆止阀(3)、过滤器(4)、流量表(5)、压力表(9);所述干管(6) 上分别连接有多个支管(7);所述支管(7)上依次连接有电磁阀(8)、压力表(9)、竖管(14)、泄水阀(16);各个竖管(14)连接喷头(15)。
所述喷头(15)位于植物冠层的上方,根据喷灌强度选择喷头(15)的型号;喷灌强度为2mm/h可以选择型号为3103的喷头(15),喷灌强度为4mm/h时可以选择型号为3430的喷头(15),喷灌强度为6mm/h时可以选择型号为5022的喷头(15)。
各植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)和净辐射传感器(13)置于田间需要喷灌的区域,每个所述区域均放置有植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)和净辐射传感器(13),植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)和净辐射传感器(13)均分别与控制器(17)输入端连接;水泵(2)、各电磁阀(8)均与控制器(17)输出端连接。
所述土壤水分传感器(11)位于所述区域地表以下Z1深度处,土壤水分传感器(11)的探头平行于地面水平放置。
所述温度传感器(12)和净辐射表(13)位于所述区域的喷灌高度以上,无障碍物遮挡,以能够准确测得所述区域的温度和太阳辐射强度。
所述植物茎杆直径变化传感器(10)的类型是根据植物根茎直径进行选择;当植物根茎直径为5mm至25mm时选择SD-5M,当植物根茎直径为20mm至70mm时选择SD-6M;所述植物茎杆直径变化传感器(10)埋于活跃根系深度处,将植物茎杆直径变化传感器(10)加持在植物根系上。
一种基于水分运移的自动喷灌方法,其特征在于包括以下步骤:
步骤1,在控制器(17)中输入理想的渗透深度,即所述植物的根系深度;输入各个喷灌区域的坡度、各个喷灌区域的喷灌强度和土壤的类型;
步骤2,当某区域的植物茎直径增长变负时,即当天植物茎直径低于前一天时,启动水泵(2),并打开该区域支管(7)上的电磁阀(8);否则使该区域的电磁阀(8)保持关闭;
步骤3,喷灌系统运行后,当根据数学模型得到的Z1处的土壤水分变化时,关闭该区域支管(7)上的电磁阀(8)。
步骤4,当所有喷灌区域Z1处的土壤水分均变化时,关闭水泵(2);
步骤5,喷灌结束后,保持控制器(17)开启,等待下一个灌溉周期。
8.根据权利要求7所述的一种基于水分运移的自动喷灌方法,其特征在于所述步骤3中的数学模型为:
Z1=αβλZF
参数α为环境参数,通过温度传感器(12)和净辐射传感器(13)实时测得的数据查询相应的模糊控制查询表,得到参数α的数值;
参数β为系统参数,通过输入各个区域的坡度和各个喷灌区域的喷灌强度查询相应的模糊控制查询表,得到参数β的数值;
参数λ为土壤参数,根据输入的土壤类型得到相对应的参数λ;
参数ZF为输入理想的渗透深度,即所述植物的根系深度。
本发明的工作原理和过程。作物水分状况反映根区土壤水分供应和作物蒸腾需求的平衡动态,当蒸腾速率大于根系吸水速率时,体内出现水分亏缺,这时作物动用贮藏水分器官(茎、叶等)内的贮藏水分,导致贮藏水分器官体积减小。所以当茎直径出现负增长(某一天的茎直径最大值小于前一天的最大值),这一天即为水分胁迫的开始。故用植物茎直径变差作为水泵(2)和电磁阀(8)开启的时机能够准确的判断植物水分缺失的情况。当Z1处的土壤水分变化时关闭电磁阀(8),水分渗透结束后最终的渗透深度能够达到理想的渗透深度。
本发明在控制器(17)中输入理想的渗透深度、各个区域的坡度、各个喷灌区域的喷灌强度和土壤的类型,当某区域的植物茎杆直径变化传感器(10)检测到植物茎直径增长变负时,控制器(17)控制水泵(2)启动,系统运行,打开该区域支管(7)上的电磁阀(8)。水流依次通过主管(1)、干管(6)、支管(7),最后经过喷头(15)向下喷洒到植物冠层和土壤上。当该区域Z1深度处的土壤水分情况发生变化时,控制器(17)关闭该区域处的电磁阀(8),停止喷灌,打开支管(7)上的泄水阀(16),排干管路中的水。当所有喷灌区域的Z1处的土壤水分均发生变化时,控制器(17)关闭所有的电磁阀(8)和水泵(2),结束灌溉,等待下一次灌溉周期。
本发明具有的有益效果。本发明利用种植植物的土壤类型,坡度等条件的变化,会影响灌溉过程后水分的运移的特点,而且由于不同区域中天气因素的差异对植物的需水与否起着重要的影响,通过对各个区域分别监测植物茎杆直径变化,从而有效地对植物进行精准灌溉。本发明也为喷灌中如何确定灌溉起停的时机提供了理论依据,能够使得喷灌自主化和精准化,能够节约大量的劳动力和水资源。
附图说明
图1为本发明喷灌系统组成与结构示意图。
图2为本发明喷灌控制系统流程图。
图中:1主管,2水泵,3逆止阀,4过滤器,5流量表,6干管,7支管,8电磁阀,9压力表,10植物茎杆直径变化传感器,11土壤水分传感器,12温度传感器,13净辐射传感器,14竖管,15喷头,16泄水阀,17控制器。
具体实施方式
下面结合附图和实施例,对本方法的具体实施方式作进一步详细描述。以下 实施例用于说明本方法,但不用来限制本方法的范围。
以茶园中的茶树为例。
本发明的系统组成和结构如图1所示,包括主管1、水泵2、逆止阀3、过滤器4、流量表5、干管6、支管7、电磁阀8、压力表9、植物茎杆直径变化传感器10、土壤水分传感器11、温度传感器12、净辐射传感器13、竖管14、喷头15、泄水阀16、控制器17;主管1上依次连接水泵2、逆止阀3、过滤器4、压力表9、流量表5;干管6分别连接各区域的支管7;在各支管7上依次连接电磁阀8、压力表9、竖管14、泄水阀16;竖管14上连接喷头15;各植物茎杆直径变化传感器10、土壤水分传感器11、温度传感器12和净辐射传感器13置于田间不同区域,每个区域均放置有植物茎杆直径变化传感器10、土壤水分传感器11、温度传感器12和净辐射传感器13,各个传感器均与控制器17输入端连接;水泵2、各电磁阀8均与控制器17输出端连接。
在本例中,喷头15选用摇臂式喷头3430,设置在茶树冠层上方30到50cm处;控制器17采用三菱FX2N-32MR-001型可编程控制器;植物茎杆直径变化传感器10型号为SD-5M,选择茶树活跃层的根系进行加持传感器;土壤水分传感器11型号是CS616;温度传感器12型号为WZP-Pt100;净辐射传感器13型号为NR LITE2。根据茶园不同的环境参数将试验区域分为三个区域,分别为试验区域一、区域二和区域三。
喷灌区域土壤为壤粘土,供试茶树为安吉白茶,树龄约7年。试验测得的茶树根系深度为35cm。下面进一步介绍下喷灌的工作过程。
第一步:在控制器17中输入理想的渗透深度,即茶树的根系深度35cm;输入试验区域一、区域二和区域三的坡度0°、5°、15°;输入各个喷灌区域的喷灌强度,均为4mm/h;输入土壤的类型,均为壤粘土。
第二步:当某区域的植物茎直径增长变负时,即当天植物茎直径低于前一天时,启动水泵2,并打开该区域支管7上的电磁阀8;否则使该区域的电磁阀8保持关闭。在本例中测得区域二中的植物茎直径增长为负值,其余区域增长均为正值,故打开区域二支管7上的电磁阀8和水泵2。
第三步:计算Z1的值。区域二中温度传感器12数据为35℃,净辐射传感器13数据为400wat/m2,查询相应的模糊控制查询表,得到参数α为0.8;区域二的坡度为5°,喷灌强度为4mm/h,查询相应的模糊控制查询表,得到参数β为1;区域二的土壤为壤粘土,故参数λ为0.6;故Z1=αβλZF=0.8×1×0.6×35=16.8cm,在地面以下16.8cm处埋设土壤水分传感器11。
第四步:喷灌系统运行45分钟后,16.8cm处的土壤水分传感器11检测到土壤水分发生变化,关闭区域二支管7上的电磁阀8。
第五步:关闭水泵2。
第六步:喷灌结束后,保持控制器17开启,等待下一个灌溉周期。
以上实施方式仅用于说明本方法,而并非对本方法的限制,有关技术领域的普通技术人员,在不脱离本方法的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本方法的范畴,本方法的专利保护范围应由权利要求限定。

Claims (8)

  1. 一种基于水分运移的自动喷灌系统,包括主管(1)、水泵(2)、逆止阀(3)、过滤器(4)、流量表(5)、干管(6)、支管(7)、电磁阀(8)、压力表(9),其特征在于还包括:植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)、净辐射传感器(13)、竖管(14)、喷头(15)、泄水阀(16)、控制器(17);所述主管(1)上依次连接有水泵(2)、逆止阀(3)、过滤器(4)、流量表(5)、压力表(9);所述干管(6)上分别连接有多个支管(7);所述支管(7)上依次连接有电磁阀(8)、压力表(9)、竖管(14)、泄水阀(16);各个竖管(14)连接喷头(15)。
  2. 根据权利要求1所述的一种基于水分运移的自动喷灌系统,其特征在于:所述喷头(15)位于植物冠层的上方,根据喷灌强度选择喷头(15)的型号;喷灌强度为2mm/h可以选择型号为3103的喷头(15),喷灌强度为4mm/h时可以选择型号为3430的喷头(15),喷灌强度为6mm/h时可以选择型号为5022的喷头(15)。
  3. 根据权利要求1所述的一种基于水分运移的自动喷灌系统,其特征在于:各植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)和净辐射传感器(13)置于田间需要喷灌的区域,每个所述区域均放置有植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)和净辐射传感器(13),植物茎杆直径变化传感器(10)、土壤水分传感器(11)、温度传感器(12)和净辐射传感器(13)均分别与控制器(17)输入端连接;水泵(2)、各电磁阀(8)均与控制器(17)输出端连接。
  4. 根据权利要求1所述的一种基于水分运移的自动喷灌系统,其特征在于:所述土壤水分传感器(11)位于所述区域地表以下Z1深度处,土壤水分传感器(11)的探头平行于地面水平放置。
  5. 根据权利要求1所述的一种基于水分运移的自动喷灌系统,其特征在于:所述温度传感器(12)和净辐射表(13)位于所述区域的喷灌高度以上,无障碍物遮挡,以能够准确测得所述区域的温度和太阳辐射强度。
  6. 根据权利要求1所述的一种基于水分运移的自动喷灌系统,其特征在于:所述植物茎杆直径变化传感器(10)的类型是根据植物根茎直径进行选择;当植物根茎直径为5mm至25mm时选择SD-5M,当植物根茎直径为20mm至70mm时选择SD-6M;所述植物茎杆直径变化传感器(10)埋于活跃根系深度处,将植物茎杆直径变化传感器(10)加持在植物根系上。
  7. 根据权利要求1-6所述的一种基于水分运移的自动喷灌系统的喷灌方法,其特征在于包括以下步骤:
    步骤1,在控制器(17)中输入理想的渗透深度,即所述植物的根系深度;输入各个喷灌区域的坡度、各个喷灌区域的喷灌强度和土壤的类型;
    步骤2,当某区域的植物茎直径增长变负时,即当天植物茎直径低于前一天时,启动水泵(2),并打开该区域支管(7)上的电磁阀(8);否则使该区域的电磁阀(8)保持关闭;
    步骤3,喷灌系统运行后,当根据数学模型得到的Z1处的土壤水分变化时,关闭该区域支管(7)上的电磁阀(8)。
    步骤4,当所有喷灌区域Z1处的土壤水分均变化时,关闭水泵(2);
    步骤5,喷灌结束后,保持控制器(17)开启,等待下一个灌溉周期。
  8. 根据权利要求7所述的一种基于水分运移的自动喷灌方法,其特征在于所述步骤3中的数学模型为:
    Z1=αβλZF
    参数α为环境参数,通过温度传感器(12)和净辐射传感器(13)实时测得的数据查询相应的模糊控制查询表,得到参数α的数值;
    参数β为系统参数,通过输入各个区域的坡度和各个喷灌区域的喷灌强度查询相应的模糊控制查询表,得到参数β的数值;
    参数λ为土壤参数,根据输入的土壤类型得到相对应的参数λ;
    参数ZF为输入理想的渗透深度,即所述植物的根系深度。
PCT/CN2016/110050 2016-05-24 2016-12-15 一种基于水分运移的自动喷灌系统与方法 WO2017202012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610349461.9 2016-05-24
CN201610349461.9A CN105993862A (zh) 2016-05-24 2016-05-24 一种基于水分运移的自动喷灌系统与方法

Publications (1)

Publication Number Publication Date
WO2017202012A1 true WO2017202012A1 (zh) 2017-11-30

Family

ID=57093216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110050 WO2017202012A1 (zh) 2016-05-24 2016-12-15 一种基于水分运移的自动喷灌系统与方法

Country Status (2)

Country Link
CN (1) CN105993862A (zh)
WO (1) WO2017202012A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401858A (zh) * 2018-05-28 2018-08-17 菏泽学院 一种种植业立体式多用途浇灌集成系统
CN111919715A (zh) * 2020-07-06 2020-11-13 胡云红 一种根据温度变化控制水分散发自动喷洒的园林补水装置
CN115005060A (zh) * 2022-07-11 2022-09-06 西北农林科技大学 一种耦合压缩空气储能的太阳能循环脉冲喷灌装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105993862A (zh) * 2016-05-24 2016-10-12 江苏大学 一种基于水分运移的自动喷灌系统与方法
CN106577180A (zh) * 2016-12-13 2017-04-26 中国科学院地理科学与资源研究所 一种快速确定微喷灌喷灌强度及微喷头选择布局的方法
CN107896946B (zh) * 2017-06-06 2023-02-28 江苏大学 一种恒压喷灌控制系统与方法
CN108415314A (zh) * 2018-01-19 2018-08-17 江苏大学 一种丘陵地区土壤水分分布及运移规律远程监测与分析系统及其工作方法
CN108549441A (zh) * 2018-05-17 2018-09-18 长沙修恒信息科技有限公司 一种基于物联网与智能作业车的综合农业监测方法
CN108693807B (zh) * 2018-05-17 2021-06-22 中南林业科技大学 一种基于物联网的数据采集与监控系统
CN112167027A (zh) * 2020-10-30 2021-01-05 江苏万木源建设集团有限公司 一种园林绿化用灌溉系统
CN117016360B (zh) * 2023-10-08 2023-12-01 长春职业技术学院 基于智慧农业的远程监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964685A (en) * 1974-04-09 1976-06-22 Carpano & Pons S.A. Lawn sprinkling and similar installations
CN1602668A (zh) * 2004-11-17 2005-04-06 中国农业科学院农田灌溉研究所 根据作物缺水逆境生理反应进行灌溉的控制方法及其装置
US20080115245A1 (en) * 2006-11-09 2008-05-15 Canyon Biotechnology Co. Ltd. Low nitrate vegetable and its cultivation system and method
CN201436843U (zh) * 2009-04-18 2010-04-14 无锡职业技术学院 一种节水灌溉系统
CN101946643A (zh) * 2010-08-18 2011-01-19 中国农业大学 作物需水状态检测方法
CN104584988A (zh) * 2015-01-12 2015-05-06 余姚市富金园艺灌溉设备有限公司 手机远程智能灌溉系统
CN105993862A (zh) * 2016-05-24 2016-10-12 江苏大学 一种基于水分运移的自动喷灌系统与方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563697B (zh) * 2013-11-05 2015-04-15 江苏大学 一种植物自动喷灌防霜系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964685A (en) * 1974-04-09 1976-06-22 Carpano & Pons S.A. Lawn sprinkling and similar installations
CN1602668A (zh) * 2004-11-17 2005-04-06 中国农业科学院农田灌溉研究所 根据作物缺水逆境生理反应进行灌溉的控制方法及其装置
US20080115245A1 (en) * 2006-11-09 2008-05-15 Canyon Biotechnology Co. Ltd. Low nitrate vegetable and its cultivation system and method
CN201436843U (zh) * 2009-04-18 2010-04-14 无锡职业技术学院 一种节水灌溉系统
CN101946643A (zh) * 2010-08-18 2011-01-19 中国农业大学 作物需水状态检测方法
CN104584988A (zh) * 2015-01-12 2015-05-06 余姚市富金园艺灌溉设备有限公司 手机远程智能灌溉系统
CN105993862A (zh) * 2016-05-24 2016-10-12 江苏大学 一种基于水分运移的自动喷灌系统与方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401858A (zh) * 2018-05-28 2018-08-17 菏泽学院 一种种植业立体式多用途浇灌集成系统
CN108401858B (zh) * 2018-05-28 2024-01-23 菏泽学院 一种种植业立体式多用途浇灌集成系统
CN111919715A (zh) * 2020-07-06 2020-11-13 胡云红 一种根据温度变化控制水分散发自动喷洒的园林补水装置
CN115005060A (zh) * 2022-07-11 2022-09-06 西北农林科技大学 一种耦合压缩空气储能的太阳能循环脉冲喷灌装置

Also Published As

Publication number Publication date
CN105993862A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2017202012A1 (zh) 一种基于水分运移的自动喷灌系统与方法
CN105794597B (zh) 一种根据植物根系分布进行分层恒压渗灌系统和方法
CN204466432U (zh) 一种温室大棚智能灌溉装置
CN103503741B (zh) 灌溉系统及应用该灌溉系统浇灌水紫树幼苗的方法
CN103210805B (zh) 设有立体式雾化喷灌系统的食用菌大棚及雾化喷灌方法
CN101816276A (zh) 适用于极端干旱区葡萄滴灌与微喷灌叠加的节水灌溉技术方式
CN104351019B (zh) 果园维护装置
CN203167741U (zh) 带远程控制功能的自动浇花器
WO2017070994A1 (zh) 物联网智能浇灌花盆及其制造方法
CN203872709U (zh) 一种葡萄树自动浇灌装置
Swamy et al. Microcontroller based drip irrigation system
CN103563718A (zh) 一种自动微滴灌溉系统
CN105266479A (zh) 一种智能花盆架
CN2904632Y (zh) 嵌入式植物培育装置
CN203775812U (zh) 雨水收集大棚
CN202489009U (zh) 新式花盆
CN206433496U (zh) 种植养护滴喷均衡供水系统
Nikolaou et al. Advances in irrigation/fertigation techniques in greenhouse soilless culture systems (SCS)
CN207969429U (zh) 具有排水功能的草莓种植系统
CN207011360U (zh) 一种规模化种植重楼的喷淋浇灌装置
CN112602577A (zh) 一种用于蔬菜种植的滴灌装置及其工作方法
CN205567202U (zh) 智能阳台盆景植物养殖系统
RU78033U1 (ru) Система автоматического полива растений для приусадебного хозяйства
CN205671164U (zh) 一种间歇性放水式自动浇花器
CN111279951A (zh) 一种马铃薯种植用节水滴灌技术

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902996

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902996

Country of ref document: EP

Kind code of ref document: A1