WO2017202002A1 - 基于骨传导的听力健康检测系统及方法 - Google Patents

基于骨传导的听力健康检测系统及方法 Download PDF

Info

Publication number
WO2017202002A1
WO2017202002A1 PCT/CN2016/108818 CN2016108818W WO2017202002A1 WO 2017202002 A1 WO2017202002 A1 WO 2017202002A1 CN 2016108818 W CN2016108818 W CN 2016108818W WO 2017202002 A1 WO2017202002 A1 WO 2017202002A1
Authority
WO
WIPO (PCT)
Prior art keywords
hearing
user
preset
bone conduction
vibration frequency
Prior art date
Application number
PCT/CN2016/108818
Other languages
English (en)
French (fr)
Inventor
张贯京
Original Assignee
深圳市易特科信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市易特科信息技术有限公司 filed Critical 深圳市易特科信息技术有限公司
Publication of WO2017202002A1 publication Critical patent/WO2017202002A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/121Audiometering evaluating hearing capacity
    • A61B5/125Audiometering evaluating hearing capacity objective methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/38Acoustic or auditory stimuli

Definitions

  • the present invention relates to the field of hearing detection, and more particularly to a hearing health detection system and method based on bone conduction.
  • the hearing test is in a silent environment (inter-quiet), the hearing-impaired patient is sitting in the silent room, and the earphones worn outside the ear are connected and transmitted with an audiometer placed outside the silent room. Audio signal, the audiometer is operated by a doctor or audiologist and the patient's pure tone audiogram is recorded (audiograms patients pass the paper audiogram to the fitter, and the fitter reads the hearing from the audiogram (decibel) - frequency (Hz) Data and manual input of hearing aid fitting software, start hearing aid fitting and debugging in the general office or store environment.
  • the main object of the present invention is to provide a hearing health detection system and method based on bone conduction, which aims to solve the technical problem that the existing hearing test has many uncertain factors. Problem solution
  • the present invention provides a bone conduction-based hearing health detection system, which is operated in a data center, and the data center is connected to a bone conduction hearing detecting device through a network, and the data center stores a plurality of The preset vibration frequency, the bone conduction-based hearing health detection system includes:
  • a closing module configured to close a vibration function of the bone conduction hearing detecting device
  • an obtaining module configured to acquire a preset number of user brain electrical data from the bone conduction hearing detecting device, and calculate standard EEG data of the user;
  • a selection module configured to select a preset vibration frequency
  • a control module configured to control the bone conduction hearing detecting device to generate sound according to the preset vibration frequency
  • an acquiring module configured to acquire brain electrical data corresponding to the preset vibration frequency
  • an analysis module configured to: if the ratio of the EEG data corresponding to the preset vibration frequency to the standard EEG data exceeds a preset range, analyze the current time of the user according to the sound generated by the preset vibration frequency The degree of hearing, recording the current level of hearing of the user;
  • control module is further configured to control the bone conduction hearing detecting device to play a preset listening training recording if the hearing hearing abnormality of the user is determined according to the current hearing degree of the user;
  • the control module is further configured to determine, according to the current hearing degree of the user, the degree of hearing of the user at a preset historical point, and determine the decrease range of the user's hearing in the preset interval Within the preset amplitude range, the bone conduction hearing detecting device is controlled to play an early warning recording.
  • the data center is further connected to the hospital information system through a network, and if the hearing of the user is abnormal, the contact information of the doctor who diagnoses the hearing is searched from the medical information system, and The physician establishes a remote communication connection.
  • the standard EEG data of the user is a mean value of a preset number of user EEG data.
  • the analysis module is specifically configured to:
  • the degree of hearing of the user is confirmed according to the decibel value of the analysis and the degree of hearing of the human ear.
  • the selection module is further specifically configured to:
  • the bone conduction hearing detecting device comprises an electrode piece and a bone conduction earphone
  • the control module is specifically configured to control the electrode piece to acquire user brain electricity data, and control the bone conduction earphone according to the preset The vibration frequency produces sound.
  • the present invention also provides a hearing health detection method based on bone conduction, which is applied to a data center, wherein the data center is connected to a bone conduction hearing detecting device through a network, and the data center stores a plurality of pre- Set the vibration frequency, the method includes:
  • the control is performed.
  • the bone conduction hearing detecting device plays an early warning recording.
  • the standard EEG data of the user is a mean value of a preset number of user EEG data.
  • the step of analyzing the current hearing degree of the user according to the sound generated by the preset vibration frequency comprises the following steps:
  • the degree of hearing of the user is confirmed according to the decibel value of the analysis and the degree of hearing of the human ear.
  • the method further includes the following steps:
  • the bone conduction-based hearing health detection system and method of the present invention adopts the above technical solution, and the technical effects are as follows:
  • the invention can remotely test the user's hearing, and train the user's hearing, and adopt The method of bone conduction is used for hearing detection, which further improves the accuracy of hearing detection.
  • FIG. 1 is a schematic diagram of an application environment of a bone conduction-based hearing health detection system according to the present invention
  • FIG. 2 is a schematic diagram of functional modules of a preferred embodiment of the bone conduction-based hearing health detection system of the present invention [0041] FIG.
  • FIG. 3 is a flow chart of a preferred embodiment of a bone conduction-based hearing health detection method of the present invention.
  • FIG. 4 is a schematic view of a preferred embodiment of the bone conduction hearing detecting device of the present invention.
  • FIG. 1 is a schematic diagram of an application environment of a bone conduction-based hearing health detection system according to the present invention.
  • the bone conduction based hearing health detection system 20 of the present invention operates in the data center 2.
  • the data center 2 is communicatively coupled to the hospital information system 4 via the network 3 to obtain a contact information of the doctor diagnosing the hearing from the hospital information system 4, so that the doctor can remotely handle the degree of hearing of the user.
  • the hospital information system 4 provides a data import interface (for example, an application program interface).
  • a data import interface for example, an application program interface
  • the device or system accessing the data import interface can obtain the doctor's contact information from the hospital information system 4.
  • the network 3 may be a wired communication network or a wireless communication network.
  • the network 3 is preferably a wireless communication network including, but not limited to, a GSM network, a GPRS network, a CDMA network, a TD-SCDMA network, a WiMAX network, a TD-LTE network, an FDD-LTE network, and the like.
  • the data center 2 is connected to the bone conduction hearing detecting device 5 via the network 3.
  • the bone conduction hearing detecting device 5 is used for detecting the degree of hearing of the user, and the hearing training can be performed at the hearing level of the user to restore the hearing of the user.
  • the bone conduction hearing detecting device 5 includes a device body 500 and an electrode sheet 5. 0.
  • the device body 500 has a circular ring structure, and the inner surface of the device body 500 is provided with one or more electrode sheets 50, and the bone conduction earphones 51 are connected to the device body 500 through wires, the microphone
  • the device 52 is connected to the device body 500 by a wire, and the communication module 53 is disposed in the device body 500.
  • the electrode sheet 50 on the inner surface of the device body 500 is in close contact with the user's head, and the electrode sheet 50 is used to acquire user brain electrical data.
  • the bone conduction earpiece 51 is worn in the user's ear for generating vibration to transmit sound through bone conduction, and to measure the user's hearing level in conjunction with user brain electrical data.
  • the microphone 52 is used to acquire the sound of the user's speech, and the degree of the user's voice training is detected by the voice of the user's voice.
  • the user's EEG data includes, but is not limited to, various types of EEG data such as EEG voltage, EEG current, and EEG frequency.
  • user EEG data also includes information such as daytime.
  • the user EEG data includes only one type of EEG data, for example, user EEG data. Includes only EEG current (or EEG voltage or EEG frequency) and daytime
  • the device body 500 may further be a strip structure.
  • the two ends of the device body 500 of the strip structure are respectively provided with a first buckle 54 and a second buckle 55. After the first buckle 54 and the second buckle 55 are connected, the device body 500 of the annular structure can be formed.
  • the communication module 53 is configured to receive a control command sent by the data center 2, and the bone conduction hearing detecting device 5 operates according to the control instruction, for example, starting the electrode sheet 50, shutting down or starting the device.
  • the bone conduction earphone 51 and the like are described.
  • the communication module 53 is a wireless communication interface with remote wireless communication functions, for example, a communication interface supporting communication technologies such as GSM, GPRS, WCDMA, CDMA, TD-SCDMA, WiMAX, TD-LTE, and FDD-LTE.
  • the data center 2 is a server of a cloud platform or a data center, and can better manage and manage data transmission capability and data storage capability of the cloud platform or the data center. / or assist in the bone conduction hearing detection device 5 connected to the data center 2.
  • FIG. 2 it is a functional block diagram of a preferred embodiment of the bone conduction-based hearing health detection system of the present invention.
  • the bone conduction-based hearing health detection system 20 is applied to the data center 2 as shown in FIG.
  • the data center 2 includes, but is not limited to, hearing conduction based on bone conduction
  • the detection system 20, the storage unit 22, the processing unit 24, and the communication unit 26 are included in the bone conduction-based hearing health detection system 20.
  • the storage unit 22 may be a read only storage unit ROM, an electrically erasable storage unit EEPRO M, a flash storage unit FLASH or a solid hard disk.
  • the processing unit 24 may be a central processing unit (CPU), a microcontroller (MCU), a data processing chip, or an information processing unit having a data processing function.
  • CPU central processing unit
  • MCU microcontroller
  • data processing chip or an information processing unit having a data processing function.
  • the communication unit 26 is a wireless communication interface with remote wireless communication functions, for example, supports communication technologies such as GSM, GPRS, WCDMA, CDMA, TD-SCDMA, WiMAX, TD-LTE, FDD-LT E, and the like. Communication interface.
  • the bone conduction-based hearing health detection system 20 includes, but is not limited to, a shutdown module 200, an acquisition module 210, a selection module 220, a control module 230, a determination module 240, and an analysis module 250.
  • the module referred to in the present invention refers to a series of computer program instruction segments that can be executed by the processing unit 24 of the data center 2 and that are capable of performing fixed functions, which are stored in the storage unit 22 of the data center 2.
  • the closing module 200 is for closing the vibration function of the bone conduction hearing detecting device 5. Specifically, the closing module 200 sends a closing command to the bone conduction hearing detecting device 5, and the bone conduction hearing detecting device 5 closes the bone conduction earphone 51 after receiving the closing instruction, so that the bone conduction earphone 51 does not generate. vibration. It should be noted that the bone conduction earphone 51 does not generate vibration, and it is more accurate to detect the brain electrical data of the auditory region of the brain through the electrode sheet 50 while the user is in a quiet state.
  • the obtaining module 210 is configured to acquire a preset number (for example, thirty pens) of user brain electrical data from the bone conduction hearing detecting device 5, and calculate standard EEG data of the user.
  • a preset number for example, thirty pens
  • each user's EEG data includes, but is not limited to, various types of EEG data such as EEG voltage, EEG current, and EEG frequency.
  • each user's EEG data also includes information such as daytime.
  • each user's EEG data includes only one type of EEG data, for example, each user's EEG. The data only includes EEG current (or EEG voltage or EEG frequency) and daytime.
  • the electrode sheet 50 of the bone conduction hearing detecting device 5 when the user's head carries the bone conduction hearing detecting device 5, the electrode sheet 50 of the bone conduction hearing detecting device 5 generates one every predetermined time interval (for example, 2 seconds)
  • the user's EEG data ie, including EEG voltage, EEG current, EEG frequency, and inter-day data
  • the acquisition module 210 acquires a preset number of user EEGs from the bone conduction hearing detecting device 5 data.
  • the electrode sheet 50 generates a user brain electrical data every predetermined time interval (for example, 2 seconds).
  • the bone conduction hearing detecting device 5 includes a plurality of electrode sheets 50
  • the plurality of electrode sheets 50 generate a user brain electrical data every predetermined time interval (for example, 2 seconds)
  • each user The electroencephalogram data is the mean value of the user's brain electrical data generated by the plurality of electrode sheets 50 at the same inter-turn point.
  • each EEG voltage is the mean value of the EEG voltage generated by the plurality of electrode sheets 50 at the same inter-turn point
  • each EEG current is the EEG generated by the plurality of electrode sheets 50 at the same inter-turn point.
  • the mean value of the current, each EEG frequency is the mean value of the EEG frequency generated by the plurality of electrode sheets 50 at the same inter-turn point.
  • the user's surrounding environment should choose a quiet environment to avoid noise interference in the surrounding noisy environment.
  • the standard EEG data of the user includes a standard EEG current (or a standard EEG voltage or a standard EEG frequency).
  • the obtaining module 210 is specifically configured to:
  • the user's standard EEG data is calculated according to a preset number of user EEG data, and the user's standard EEG data is the average of the preset number of user EEG data. For example, if the preset number of user EEG data is ten strokes, the standard EEG data of the user is the average value of the ten user EEG data, specifically, the standard EEG voltage is pre- Setting a mean value of the EEG voltage, wherein the standard EEG current is a mean value of a preset number of EEG currents, and the standard EEG frequency is a mean value of a preset number of EEG frequencies
  • the selection module is configured to select a preset vibration frequency by 220.
  • a plurality of preset vibration frequencies are pre-stored in the storage unit 22 of the data center 2.
  • the selection module 220 selects in order from the minimum preset vibration frequency. It should be noted that the preset vibration frequency is set according to the degree of hearing of the human ear.
  • the degree of hearing of the human ear published by the World Health Organization in 1997, it is divided into five types, namely, the normal hearing degree (ie, the hearing loss is less than or equal to 25 decibels), mild hearing (ie, hearing loss between 26-40 decibels), moderate hearing (ie, hearing loss between 41-60 decibels), and severe hearing (ie, hearing loss between 61-80 decibels) Extremely severe hearing (ie, hearing loss greater than or equal to 81 decibels).
  • the user's hearing level can also be determined by the preset vibration frequency.
  • the selection module 220 selects a plurality of preset vibration frequencies from small to large, if the user The ear can only hear more than 50 centimeters, and the user's hearing level is moderate.
  • the control module 230 is configured to control the bone conduction hearing detecting device 5 to generate a voice head according to the preset vibration frequency.
  • the acquiring module 210 is further configured to acquire EEG data corresponding to the preset vibration frequency. Specifically, when the bone conduction earphone 51 vibrates, the acquisition module 210 acquires user brain power data from the electrode sheet 50.
  • the determining module 240 is configured to determine whether a ratio of the EEG data corresponding to the preset vibration frequency to the standard EEG data exceeds a preset range (eg, 120%). Specifically, if the ratio of the EEG data corresponding to the preset vibration frequency to the standard EEG data exceeds a preset range (for example, 120%), it indicates that the user's brain auditory region generates the preset vibration frequency. The sound is responsive, and the user hears the sound produced by the preset vibration frequency.
  • a preset range eg, 120%)
  • the EEG data of the auditory area of the brain will have a significant amplification, if the amplification exceeds 20%, indicating that the user heard the sound.
  • all the preset vibration frequencies for example, fifty preset vibration frequencies in this embodiment
  • each of the preset vibration frequencies corresponds to the EEG data and the If the ratio of the standard EEG data does not exceed the preset range, the flow directly proceeds to step S17.
  • the analysis module 250 is configured to analyze the user's hearing according to the sound generated by the preset vibration frequency. Degree, record the user's current hearing level.
  • the analyzing module analyzes the hearing degree of the user according to the sound generated by the preset vibration frequency as: (1) acquiring a sound generated by the preset vibration frequency; (2) analyzing The decibel value of the sound; (3) According to the analysis of the decibel value and the degree of hearing of the human ear, confirm the user's hearing level, for example, the sound has a decibel value of fifty decibels, then the user's hearing degree is moderate Hearing level.
  • the analysis module 250 further stores the degree of hearing of the current inter-day analysis of the user in the storage unit 22.
  • the degree of hearing of the user stored in the storage unit 22 is represented by a number, for example, a number "1" indicates a normal hearing degree, and a number “2" indicates a “mild hearing degree”.
  • the number “3” means “moderate hearing level”
  • the number "4" means “severity hearing level”
  • the number "5" means “very severe hearing level”. In this embodiment, the larger the number, the worse the hearing of the user.
  • each preset vibration frequency corresponds to the brain electricity
  • the ratio of the data to the standard EEG data does not exceed a preset range, and the analysis module 250 determines that the user's hearing level is a very severe hearing degree.
  • the determining module 240 is configured to determine whether the user's hearing is normal according to the current hearing degree of the user. Specifically, the determining module 240 determines whether the degree of hearing is a number "1", and if the current hearing degree of the user is not a number "1", indicating that the user's hearing is abnormal.
  • the control module 230 is further configured to control the bone conduction hearing detecting device 5 to play a preset hearing training recording.
  • the pre-set listening training recordings that are played include, but are not limited to, recordings of phonemes, syllables, words, and phrase training, which, in turn, can promote speech development in young children.
  • the pre-set listening training recordings included, the recording of psychological comfort can delay the hearing loss of the elderly.
  • the control module 230 further searches for the contact information of the doctor who diagnoses the hearing from the medical information system 4, and establishes a remote communication connection with the doctor, and remotely trains the user's hearing through the doctor.
  • control module 230 is further configured to prompt the user to speak, and collect the voice of the user's voice through the microphone 53 to determine the degree of the user's voice training to further adjust the content of the listening training recording.
  • the determining module 240 is further configured to compare the hearing degree of the current user with the hearing degree of the user at a preset historical point (for example, a day before the three months), and determine the user. Whether the decrease in hearing exceeds the preset amplitude within the preset interval (ie, the interval between the historical time points and the current time).
  • the user's hearing loss refers to an increase in the number of the user's current hearing degree corresponding to the user's hearing degree at the preset historical point (eg, current The number corresponding to the degree of hearing is "3", and the number corresponding to the degree of hearing three months ago is "1", indicating that the user's hearing level has decreased within three months).
  • the determining module 240 determines whether the falling extent of the user's hearing in the preset inter-segment exceeds two spans (ie, the number corresponding to the current hearing degree of the user and the user's preset historical time) The number of hearing corresponds to a number greater than the number two) If the user's hearing loss in the preset interval exceeds two spans, it indicates that the user's hearing decline exceeds the preset amplitude within the preset interval. Otherwise, if the user's hearing declines within the preset interval There are no more than two spans to end the process directly. Specifically, if the user's hearing level reaches the severe hearing level from the normal hearing level within the preset interval, it indicates that the user's physical condition may have other symptoms in the preset interval, and the user needs to be reminded.
  • the control module 230 is further configured to control the bone conduction hearing detecting device 5 to play the early warning recording.
  • the warning recording is "Your hearing level has changed from mild hearing to severe hearing within three months, and hearing is severely reduced in the short term. It is recommended that you go to the hospital for a detailed examination.”
  • the user's physical condition can be alerted to remind the user and diagnose.
  • FIG. 3 there is shown a flow chart of a preferred embodiment of the bone conduction-based hearing health detecting method of the present invention.
  • the bone conduction-based hearing health detection method is applied to the data center 2, and the method includes the following steps:
  • Step S11 The closing module 200 turns off the vibration function of the bone conduction hearing detecting device 5. Specifically, the closing module 200 sends a closing command to the bone conduction hearing detecting device 5, and the bone conduction hearing detecting device 5 closes the bone conduction earphone 51 after receiving the closing instruction, so that the bone conduction earphone 51 does not generate vibration. It should be noted that the bone conduction earphone 51 does not generate vibration, so that the detection of the brain electrical data of the auditory region of the brain by the electrode sheet 50 is more accurate when the user is in a quiet state.
  • Step S12 The acquisition module 210 acquires a preset quantity from the bone conduction hearing detecting device 5 (for example)
  • each user's EEG data includes, but is not limited to, various types of EEG data such as EEG voltage, EEG current, and EEG frequency.
  • each user's EEG data also includes information such as daytime.
  • each user's EEG data includes only one type of EEG data, for example, each user's EEG. The data only includes EEG current (or EEG voltage or EEG frequency) and daytime.
  • the electrode sheet 50 of the bone conduction hearing detecting device 5 when the user's head carries the bone conduction hearing detecting device 5, the electrode sheet 50 of the bone conduction hearing detecting device 5 generates one every predetermined time interval (for example, 2 seconds).
  • Pen user's EEG data That is, including the EEG voltage, the EEG current, the EEG frequency, and the data between the diurnals, the acquisition module 210 acquires a preset number of user EEG data from the bone conduction hearing detection device 5.
  • the bone conduction hearing detecting device 5 includes only one electrode sheet 50, the electrode sheet 5
  • the bone conduction hearing detecting device 5 includes a plurality of electrode sheets 50
  • the plurality of electrode sheets 50 generate a user brain electrical data every predetermined time interval (for example, 2 seconds), each user
  • the electroencephalogram data is the mean value of the user's brain electrical data generated by the plurality of electrode sheets 50 at the same inter-turn point.
  • each EEG voltage is the mean value of the EEG voltage generated by the plurality of electrode sheets 50 at the same inter-turn point
  • each EEG current is the EEG generated by the plurality of electrode sheets 50 at the same inter-turn point.
  • the average value of the current, each EEG frequency is a plurality of electrode sheets 5
  • the user's surrounding environment should choose a quiet environment to avoid noise interference caused by the surrounding noisy environment.
  • the standard EEG data of the user includes a standard EEG voltage, a standard EEG current, and a standard EEG frequency.
  • the obtaining module 210 is specifically configured to:
  • the user's standard EEG data is calculated according to a preset number of user EEG data, and the user's standard EEG data is the average of the preset number of user EEG data. For example, if the preset number of user EEG data is ten strokes, the standard EEG data of the user is the average value of the ten user EEG data, specifically, the standard EEG voltage is pre- Setting a mean value of the EEG voltage, wherein the standard EEG current is a mean value of a preset number of EEG currents, and the standard EEG frequency is a mean value of a preset number of EEG frequencies
  • Step S13 The selection module 220 selects a preset vibration frequency. Select a preset vibration frequency.
  • a plurality of preset vibration frequencies are pre-stored in the storage unit 22 of the data center 2.
  • the selection module 220 selects in order from the minimum preset vibration frequency. It should be noted that the preset vibration frequency is set according to the degree of hearing of the human ear.
  • the degree of hearing of the human ear published by the World Health Organization in 1997, it is divided into five types, namely, the normal hearing degree (ie, the hearing loss is less than or equal to 25 decibels), mild hearing (ie, hearing loss between 26-40 decibels), moderate hearing (ie, hearing loss between 41-60 decibels), severe hearing (ie, hearing loss between 61-80 decibels) Extreme Severe hearing (ie, hearing loss greater than or equal to 81 decibels).
  • the user's hearing level can also be determined by the preset vibration frequency.
  • the selection module 220 selects a plurality of preset vibration frequencies from small to large. If the user's ear can only hear sounds of more than fifty centimeters, the user's hearing level is moderate.
  • Step S14 The control module 230 controls the bone conduction hearing detecting device 5 to generate sound according to the preset vibration frequency.
  • Step S15 The acquiring module 210 acquires electroencephalogram data corresponding to the preset vibration frequency. Specifically, when the bone conduction earphone 51 vibrates, the acquisition module 210 acquires user brain electrical data from the electrode sheet 50.
  • Step S16 The determining module 240 determines whether the ratio of the EEG data corresponding to the preset vibration frequency to the standard EEG data exceeds a preset range (for example, 120%). In this embodiment, if the ratio of the EEG data corresponding to the preset vibration frequency to the standard EEG data exceeds a preset range, the flow proceeds to a step S17. If the ratio of the EEG data corresponding to the preset vibration frequency to the standard EEG data does not exceed the preset range, the flow returns to Step S13.
  • a preset range for example, 120%).
  • the ratio of the EEG data corresponding to the preset vibration frequency to the standard EEG data exceeds a preset range (for example, 120%), it indicates that the user's brain auditory region generates the preset vibration frequency. The sound is responsive, and the user hears the sound produced by the preset vibration frequency.
  • a preset range for example, 120%
  • the EEG data of the auditory area of the brain will have a significant amplification, if the amplification exceeds 20%, indicating that the user heard the sound.
  • step S17 if all the preset vibration frequencies (for example, fifty preset vibration frequencies in this embodiment) have been applied to the bone conduction earphone 51, and each of the preset vibration frequencies corresponds to the EEG data and the If the ratio of the standard EEG data does not exceed the preset range, the flow directly proceeds to step S17.
  • all the preset vibration frequencies for example, fifty preset vibration frequencies in this embodiment
  • Step S17 The analysis module 250 analyzes the degree of hearing of the user according to the sound generated by the preset vibration frequency, and records the current hearing degree of the user.
  • the analyzing module analyzes the hearing degree of the user according to the sound generated by the preset vibration frequency as: (1) acquiring a sound generated by the preset vibration frequency; (2) analyzing The decibel value of the sound; (3) According to the analysis of the decibel value and the degree of hearing of the human ear, confirm the user's hearing level, for example, the sound has a decibel value of fifty decibels, then the user's hearing degree is moderate Listening course Degree.
  • the analysis module 250 further stores the degree of hearing of the current inter-day analysis of the user in the storage unit 22.
  • the degree of hearing of the user stored in the storage unit 22 is represented by a number, for example, a number "1" indicates a normal hearing degree, and a number “2" indicates a “mild hearing degree”.
  • the number “3” means “moderate hearing level”
  • the number "4" means “severe hearing level”
  • the number "5" means “very severe hearing degree”. In this embodiment, the larger the number, the worse the hearing of the user.
  • each preset vibration frequency corresponds to the brain electricity
  • the ratio of the data (e.g., EEG current) to the standard EEG data (e.g., standard EEG current) does not exceed a predetermined range, and the analysis module 250 determines that the user's hearing level is a very severe hearing level.
  • Step S18 The determining module 240 determines whether the user's hearing is normal according to the current hearing degree of the user. If the user's hearing is normal, the process is directly ended. If the user's hearing is not normal, the flow proceeds to step S19. Specifically, the determining module 240 determines whether the degree of hearing is a number "1". If the current hearing degree of the user is not a number "1", it indicates that the user's hearing is abnormal.
  • Step S19 The control module 230 controls the bone conduction hearing detecting device 5 to play a preset hearing training recording.
  • the preset listening training recordings that are played include, but are not limited to, recordings of phonemes, syllables, words, and phrase training, which can promote the speech development of young children.
  • the pre-set listening training recordings included, psychological comfort recordings can delay the hearing loss of the elderly.
  • the control module 230 further searches for the contact information of the doctor who diagnoses the hearing from the medical information system 4, and establishes a remote communication connection with the doctor, and remotely trains the user's hearing through the doctor. Let the user have a sense of participation, and thus further improve the effect of listening training.
  • the control module 230 is further configured to prompt the user to speak, and collect the voice of the user's voice through the microphone 53 to determine the degree of the user's voice training to further adjust the content of the hearing training recording.
  • Step S20 The determining module 240 compares the hearing degree of the current user with the hearing degree of the user at a preset historical time point (for example, the time point of three months ago), and determines the user. Whether the decline in hearing exceeds the preset range within the preset interval (ie, the interval between the historical points to the current time) Degree.
  • the user's hearing loss refers to an increase in the number of the user's current hearing degree corresponding to the user's hearing degree at the preset historical point (eg, current The number corresponding to the degree of hearing is "3", and the number corresponding to the degree of hearing three months ago is "1", indicating that the user's hearing level has decreased within three months).
  • the determining module 240 determines whether the falling extent of the user's hearing in the preset inter-segment exceeds two spans (ie, the number corresponding to the current hearing degree of the user and the user's preset historical time) The number of hearing corresponds to a number greater than the number two
  • step S21 if the user's hearing loss in the preset interval exceeds two spans, indicating that the user's hearing decline exceeds the preset amplitude within the preset interval, the flow proceeds to step S21, otherwise, if the preset interval is The user's hearing loss did not exceed two spans, ending the process directly. Specifically, if the user's hearing level reaches the severe hearing level from the normal hearing level within the preset interval, it indicates that the user's physical condition may have other symptoms in the preset interval, and the user needs to be reminded.
  • Step S21 The control module 230 controls the bone conduction hearing detecting device 5 to play an early warning recording.
  • the warning recording is "Your hearing level has changed from mild hearing to severe hearing in three months, and hearing is severely reduced in the short term. It is recommended that you go to the hospital for a detailed examination.”
  • the user's physical condition can be alerted to remind the user and diagnose.
  • the bone conduction-based hearing health detection system and method of the present invention adopts the above technical solutions, and the technical effects are as follows:
  • the invention can remotely test the user's hearing, and train the user's hearing, and adopt The method of bone conduction is used for hearing detection, which further improves the accuracy of hearing detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Multimedia (AREA)
  • Otolaryngology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种基于骨传导的听力健康检测系统(20)及方法,该方法包括:选择一个预设振动频率(S13);控制骨传导听力检测装置(5)按照该预设振动频率产生声音(S14);获取该预设振动频率对应的脑电数据(S15);若该预设振动频率对应的脑电数据与标准脑电数据的比值超过预设范围(S16),根据该声音分析用户当前时间的听力程度(S17);若所述用户的听力不正常时(S18),播放预设听力训练录音(S19);若用户听力的下降幅度在预设时间段内超过预设幅度时(S20),播放预警录音(S21)。该方法可以远程对用户的听力进行测试,并对用户的听力进行训练,且采用骨传导的方式进行听力检测,进一步提高了听力检测的精确度。

Description

基于骨传导的听力健康检测系统及方法 技术领域
[0001] 本发明涉及听力检测领域, 尤其涉及一种基于骨传导的听力健康检测系统及方 法。
背景技术
[0002] 听力测试是在静音环境下 (静音间) , 听障患者坐在静音间内, 用戴在耳朵外 面的耳机 (headphone)与放在静音间外面的听力计 (audiometer)相互连接和传送音 频信号, 由医生或听力师操作听力计和记录患者的纯音听力图 (audiograms 患 者将纸质听力图交给验配师, 验配师再从听力图读取听力 (分贝) -频率 (赫兹 ) 数据并手工输入助听器验配软件, 在普通诊室或商店环境下幵始助听器验配 调试。
[0003] 然而, 上述听力测试中, 需要吋间长、 成本高、 人为不确定因素多、 不适于社 区家庭和偏远乡村。 因此, 有必要提供一种基于骨传导的听力健康检测系统, 能够远程对用户的听力进行测试, 并对用户的听力进行训练。
技术问题
[0004] 本发明的主要目的在于提供一种基于骨传导的听力健康检测系统及方法, 旨在 解决现有的听力测试人为不确定因素多的技术问题。 问题的解决方案
技术解决方案
[0005] 为实现上述目的, 本发明提供了一种基于骨传导的听力健康检测系统, 运行于 数据中心, 所述数据中心通过网络与骨传导听力检测装置连接, 所述数据中心 存储有多个预设振动频率, 所述基于骨传导的听力健康检测系统包括:
[0006] 关闭模块, 用于关闭所述骨传导听力检测装置的振动功能;
[0007] 获取模块, 用于从所述骨传导听力检测装置获取预设数量的用户脑电数据, 并 计算用户的标准脑电数据;
[0008] 选择模块, 用于选择一个预设振动频率; [0009] 控制模块, 用于控制所述骨传导听力检测装置按照该预设振动频率产生声音; [0010] 获取模块, 用于获取该预设振动频率对应的脑电数据;
[0011] 分析模块, 用于若该预设振动频率对应的脑电数据与所述标准脑电数据的比值 超过预设范围, 根据该预设振动频率所产生的声音分析该用户当前吋间的听力 程度, 记录该用户当前吋间的听力程度;
[0012] 所述控制模块, 还用于若根据该用户当前吋间的听力程度判定所述用户的听力 不正常吋, 控制所述骨传导听力检测装置播放预设听力训练录音; 及
[0013] 所述控制模块, 还用于若根据该用户当前吋间的听力程度与该用户在预设历史 吋间点的听力程度进行比较后, 判定用户听力的下降幅度在预设吋间段内超过 预设幅度吋, 控制所述骨传导听力检测装置播放预警录音。
[0014] 优选的, 所述数据中心还通过网络与医院信息系统连接, 用于若所述用户的听 力不正常吋, 从所述医用信息系统中搜索出诊断听力的医生的联系方式, 并与 所述医生建立远程通信连接。
[0015] 优选的, 所述用户的标准脑电数据为预设数量的用户脑电数据的均值。
[0016] 优选的, 所述分析模块具体用于:
[0017] 获取该预设振动频率所产生的声音;
[0018] 分析出该声音的分贝值; 及
[0019] 根据分析的分贝值与人耳听力程度进行比较, 确认用户的听力程度。
[0020] 优选的, 所述选择模块还具体用于:
[0021] 若该预设振动频率对应的脑电数据与所述标准脑电数据的比值超过预设范围, 选择下一个预设振动频率。
[0022] 优选的, 所述骨传导听力检测装置包括电极片、 骨传导耳机, 所述控制模块具 体用于控制所述电极片以获取用户脑电数据, 控制所述骨传导耳机按照该预设 振动频率产生声音。
[0023] 另一方面, 本发明还提供一种基于骨传导的听力健康检测方法, 应用于数据中 心, 所述数据中心通过网络与骨传导听力检测装置连接, 所述数据中心存储有 多个预设振动频率, 该方法包括:
[0024] 关闭所述骨传导听力检测装置的振动功能; [0025] 从所述骨传导听力检测装置获取预设数量的用户脑电数据, 并计算用户的标准 脑电数据;
[0026] 选择一个预设振动频率;
[0027] 控制所述骨传导听力检测装置按照该预设振动频率产生声音;
[0028] 获取该预设振动频率对应的脑电数据;
[0029] 若该预设振动频率对应的脑电数据与所述标准脑电数据的比值超过预设范围, 根据该预设振动频率所产生的声音分析该用户当前吋间的听力程度, 记录该用 户当前吋间的听力程度;
[0030] 若根据该用户当前吋间的听力程度判定所述用户的听力不正常吋, 控制所述骨 传导听力检测装置播放预设听力训练录音; 及
[0031] 若根据该用户当前吋间的听力程度与该用户在预设历史吋间点的听力程度进行 比较后, 判定用户听力的下降幅度在预设吋间段内超过预设幅度吋, 控制所述 骨传导听力检测装置播放预警录音。
[0032] 优选的, 所述用户的标准脑电数据为预设数量的用户脑电数据的均值。
[0033] 优选的, 所述根据该预设振动频率所产生的声音分析该用户当前吋间的听力程 度的步骤包括如下步骤:
[0034] 获取该预设振动频率所产生的声音;
[0035] 分析出该声音的分贝值; 及
[0036] 根据分析的分贝值与人耳听力程度进行比较, 确认用户的听力程度。
[0037] 优选的, 所述方法还包括如下步骤:
[0038] 若该预设振动频率对应的脑电数据与所述标准脑电数据的比值超过预设范围, 选择下一个预设振动频率。 发明的有益效果
有益效果
[0039] 本发明所述基于骨传导的听力健康检测系统及方法采用上述技术方案, 带来的 技术效果为: 本发明能够远程对用户的听力进行测试, 并对用户的听力进行训 练, 且采用骨传导的方式进行听力检测, 进一步提高了听力检测的精确度。 对附图的简要说明 附图说明
[0040] 图 1是本发明基于骨传导的听力健康检测系统的应用环境示意图;
[0041] 图 2是本发明基于骨传导的听力健康检测系统的优选实施例的功能模块示意图
[0042] 图 3是本发明基于骨传导的听力健康检测方法的优选实施例的流程图;
[0043] 图 4是本发明中骨传导听力检测装置的优选实施例的示意图。
[0044]
[0045] 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0046] 为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效, 详细 说明如下。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用 于限定本发明。
[0047] 参照图 1所示, 图 1是本发明基于骨传导的听力健康检测系统的应用环境示意图 。 本发明中的基于骨传导的听力健康检测系统 20运行于数据中心 2。 所述数据中 心 2通过网络 3与医院信息系统 4通信连接, 以从所述医院信息系统 4获取诊断听 力的医生的联系方式, 使得医生针对用户的听力程度能够远程处理。
[0048] 在本实施例中, 所述医院信息系统 4提供数据导入接口 (例如, 应用程序接口
, Application Program Interface, API) , 接入该数据导入接口的设备或系统都可 以从所述医院信息系统 4中获取医生的联系方式。
[0049] 所述网络 3可以是有线通讯网络或无线通讯网络。 所述网络 3优选为无线通讯网 络, 包括但不限于, GSM网络、 GPRS网络、 CDMA网络、 TD-SCDMA网络、 W iMAX网络、 TD-LTE网络、 FDD-LTE网络等无线传输网络。
[0050] 所述数据中心 2通过所述网络 3与骨传导听力检测装置 5连接。 所述骨传导听力 检测装置 5用于对用户的听力程度进行检测, 同吋可以用户的听力程度进行听力 训练, 以恢复用户的听力。
[0051] 具体地说, 如图 4所示, 所述骨传导听力检测装置 5包括装置本体 500、 电极片 5 0、 骨传导耳机 51、 麦克风 52及通信模块 53。
[0052] 所述装置本体 500为圆环形结构, 所述装置本体 500的内表面设置一个或多个电 极片 50, 所述骨传导耳机 51通过导线与所述装置本体 500连接, 所述麦克风 52通 过导线与所述装置本体 500连接, 所述通信模块 53设置于所述装置本体 500内。
[0053] 当所述装置本体 500套在用户的头部, 所述装置本体 500内表面的电极片 50紧贴 于用户头部, 所述电极片 50用于获取用户脑电数据。 所述骨传导耳机 51佩戴于 用户的耳朵内, 用于产生振动以通过骨传导传递声音, 并结合用户脑电数据测 试用户的听力程度。 所述麦克风 52用于获取用户说话的声音, 并通过用户说话 的声音检测用户声音训练的程度。
[0054] 所述用户脑电数据包括, 但不限于, 脑电电压、 脑电电流及脑电频率等多种类 型的脑电数据。 此外, 用户脑电数据还包括吋间等信息。 进一步地, 为了避免 后续计算是出现多种类型数据 (即脑电电压、 脑电电流及脑电频率) 相互干扰 , 用户脑电数据仅包括一种类型的脑电数据, 例如, 用户脑电数据仅包括脑电 电流 (或脑电电压或脑电频率) 及吋间
[0055] 在其它本实施例中, 所述装置本体 500还可以是条形结构, 所述条形结构的装 置本体 500的两端分别设置有第一卡扣 54及第二卡扣 55, 所述第一卡扣 54及第二 卡扣 55连接后, 可以形成环形结构的装置本体 500。
[0056] 所述通信模块 53用于接收所述数据中心 2发送过来的控制指令, 所述骨传导听 力检测装置 5根据所述控制指令操作, 例如, 启动所述电极片 50, 关闭或启动所 述骨传导耳机 51等。 所述的通信模块 53为一种具有远程无线通讯功能的无线通 讯接口, 例如, 支持 GSM、 GPRS、 WCDMA、 CDMA、 TD-SCDMA、 WiMAX 、 TD-LTE、 FDD-LTE等通讯技术的通讯接口。
[0057] 进一步地, 如图 1所示, 所述数据中心 2是云平台或数据中心的某一台服务器, 通过云平台或数据中心的数据传输能力及数据存储能力, 可以更好地管理及 /或 协助与该数据中心 2连接的骨传导听力检测装置 5。
[0058] 参照图 2所示, 是本发明基于骨传导的听力健康检测系统的优选实施例的功能 模块示意图。 在本实施例中, 结合图 1所示, 所述基于骨传导的听力健康检测系 统 20应用于数据中心 2。 该数据中心 2包括, 但不仅限于, 基于骨传导的听力健 康检测系统 20、 存储单元 22、 处理单元 24及通讯单元 26。
[0059] 所述的存储单元 22可以为一种只读存储单元 ROM, 电可擦写存储单元 EEPRO M、 快闪存储单元 FLASH或固体硬盘等。
[0060] 所述的处理单元 24可以为一种中央处理器 (Central Processing Unit, CPU) 、 微控制器 (MCU) 、 数据处理芯片、 或者具有数据处理功能的信息处理单元。
[0061] 所述的通讯单元 26为一种具有远程无线通讯功能的无线通讯接口, 例如, 支持 GSM、 GPRS、 WCDMA、 CDMA、 TD-SCDMA、 WiMAX、 TD-LTE、 FDD-LT E等通讯技术的通讯接口。
[0062] 所述基于骨传导的听力健康检测系统 20包括, 但不局限于, 关闭模块 200、 获 取模块 210、 选择模块 220、 控制模块 230、 判断模块 240及分析模块 250。 本发明 所称的模块是指一种能够被所述数据中心 2的处理单元 24执行并且能够完成固定 功能的一系列计算机程序指令段, 其存储在所述数据中心 2的存储单元 22中。
[0063] 所述关闭模块 200用于关闭所述骨传导听力检测装置 5的振动功能。 具体地说, 所述关闭模块 200发送关闭指令至所述骨传导听力检测装置 5, 所述骨传导听力 检测装置 5接收到关闭指令后关闭骨传导耳机 51, 使得所述骨传导耳机 51不产生 振动。 需要说明的是, 所述骨传导耳机 51不产生振动, 用户处于安静的状态下 通过所述电极片 50检测大脑听觉区域的脑电数据会更加准确。
[0064] 所述获取模块 210用于从所述骨传导听力检测装置 5获取预设数量 (例如, 三十 笔) 的用户脑电数据, 并计算用户的标准脑电数据。
[0065] 在本实施例中, 每笔用户脑电数据包括, 但不限于, 脑电电压、 脑电电流、 脑 电频率等多种类型的脑电数据。 此外, 每笔用户脑电数据还包括吋间等信息。 为了避免后续计算是出现多种类型数据 (即脑电电压、 脑电电流及脑电频率) 相互干扰, 每笔用户脑电数据仅包括一种类型的脑电数据, 例如, 每笔用户脑 电数据仅包括脑电电流 (或脑电电压或脑电频率) 及吋间。
[0066] 具体而言, 当用户的头部带上所述骨传导听力检测装置 5吋, 所述骨传导听力 检测装置 5的电极片 50每隔预设吋间 (例如, 2秒) 产生一笔用户的脑电数据 ( 即包括脑电电压、 脑电电流、 脑电频率及吋间的数据) , 所述获取模块 210从所 述骨传导听力检测装置 5中获取预设数量的用户脑电数据。 [0067] 需要说明的是, 若所述骨传导听力检测装置 5仅包括一个电极片 50, 该电极片 5 0每隔预设吋间 (例如, 2秒) 产生一笔用户脑电数据。
[0068] 若所述骨传导听力检测装置 5包括多个电极片 50, 所述多个电极片 50每隔预设 吋间 (例如, 2秒) 产生的一笔用户脑电数据, 每笔用户脑电数据为所述多个电 极片 50在同一吋间点所产生的用户脑电数据的均值。 具体地说, 每笔脑电电压 为多个电极片 50在同一吋间点所产生的脑电电压的均值, 每笔脑电电流为多个 电极片 50在同一吋间点所产生的脑电电流的均值, 每笔脑电频率为多个电极片 5 0在同一吋间点所产生的脑电频率的均值。
[0069] 此外, 为了提高获取脑电数据的精确度, 用户所处的周围环境应该选择安静的 环境, 避免周边嘈杂的环境造成噪音干扰。
[0070] 进一步地, 所述用户的标准脑电数据包括标准脑电电流 (或标准脑电电压或标 准脑电频率) 。
[0071] 所述获取模块 210具体用于:
[0072] 根据预设数量的用户脑电数据计算用户的标准脑电数据, 所述用户的标准脑电 数据为预设数量的用户脑电数据的均值。 举例而言, 若所述预设数量的用户脑 电数据为十笔, 所述用户的标准脑电数据为该十笔用户脑电数据的均值, 具体 地说, 所述标准脑电电压为预设数量的脑电电压的均值, 所述标准脑电电流为 预设数量的脑电电流的均值, 所述标准脑电频率为预设数量的脑电频率的均值
[0073] 所述选择模块用于 220选择一个预设振动频率。 在本实施例中, 所述数据中心 2 的存储单元 22中预先储存有多个预设振动频率。 所述选择模块 220按照顺序从最 小的预设振动频率幵始进行选择。 需要说明的是, 所述预设振动频率是根据人 耳听力程度进行设置, 例如, 根据 1997年世界卫生组织公布的人耳听力程度分 为五种, 分别为正常听力程度 (即听力损失小于等于 25分贝) 、 轻度听力程度 (即听力损失介于 26-40分贝) 、 中度听力程度 (即听力损失介于 41-60分贝) 、 重度听力程度 (即听力损失介于 61-80分贝) 、 极重度听力程度 (即听力损失大 于等于 81分贝) 。 如此一来, 通过所述预设振动频率, 也可以判断出用户的听 力程度。 例如, 所述选择模块 220按照从小到大选择多个预设振动频率, 若用户 的耳朵仅能听到五十分贝以上的声音, 则用户的听力程度为中度听力程度。
[0074] 所述控制模块 230用于控制所述骨传导听力检测装置 5按照该预设振动频率产生 声首。
[0075] 所述获取模块 210还用于获取该预设振动频率对应的脑电数据。 具体地说, 当 所述骨传导耳机 51振动吋, 所述获取模块 210从所述电极片 50上获取用户脑电数 据。
[0076] 所述判断模块 240用于判断该预设振动频率对应的脑电数据与所述标准脑电数 据的比值是否超过预设范围 (例如, 120%) 。 具体而言, 若该预设振动频率对 应的脑电数据与所述标准脑电数据的比值超过预设范围 (例如, 120%) , 则表 明用户的大脑听觉区域对该预设振动频率所产生的声音有响应, 用户听到了该 预设振动频率所产生的声音。 一般而言, 相比于用户处于安静状态下的脑电数 据 (即标准脑电数据) , 若用户听到了声音, 大脑的听觉区域的脑电数据会有 一个明显的放大, 若放大的幅度超过 20%, 则表明用户听到了声音。 进一步地, 若所有的预设振动频率 (例如, 本实施例中五十个预设振动频率) 都已经应用 于所述骨传导耳机 51, 且每一个预设振动频率对应的脑电数据与所述标准脑电 数据的比值均没有超过预设范围, 则流程直接进入步骤 S17。
[0077] 若该预设振动频率对应的脑电数据与所述标准脑电数据的比值超过预设范围, 所述分析模块 250用于根据该预设振动频率所产生的声音分析该用户的听力程度 , 记录该用户当前吋间的听力程度。
[0078] 具体而言, 所述分析模块根据该预设振动频率所产生的声音分析该用户的听力 程度的方式为: (1) 获取该预设振动频率所产生的声音; (2) 分析出该声音 的分贝值; (3) 根据分析的分贝值与人耳听力程度进行比较, 确认用户的听力 程度, 例如, 该声音的分贝值为五十分贝, 则该用户的听力程度为中度听力程 度。
[0079] 进一步地, 所述分析模块 250还将该用户当前吋间分析的听力程度存储于所述 存储单元 22中。 此外, 为了便于数据化的管理, 存储于所述存储单元 22中的所 述用户的听力程度用数字表示, 例如, 数字 "1"表示正常听力程度, 数字" 2"表示 "轻度听力程度", 数字" 3"表示"中度听力程度", 数字" 4"表示"重度听力程度", 数字" 5"表示"极重度听力程度"。 在本实施例中, 数字越大, 表明用户的听力越 差。
[0080] 进一步地, 若所有的预设振动频率 (例如, 本实施例中五十个预设振动频率) 都已经应用于所述骨传导耳机 51, 且每一个预设振动频率对应的脑电数据与所 述标准脑电数据的比值均没有超过预设范围, 所述分析模块 250认定用户的听力 程度为极重度听力程度。
[0081] 所述判断模块 240用于根据该用户当前吋间的听力程度判断该用户的听力是否 正常。 具体地说, 所述判断模块 240判断所述听力程度是否为数字 "1", 若该用户 当前吋间的听力程度不是数字" 1", 表示该用户的听力不正常。
[0082] 若所述用户当前吋间的听力不正常, 所述控制模块 230还用于控制所述骨传导 听力检测装置 5播放预设听力训练录音。 具体地说, 对于幼儿来说, 播放的预设 听力训练录音包括, 但不限于, 音素、 音节、 单词、 以及短句训练等录音, 如 此一来, 可以促进幼儿的言语发育。 对于老人来说, 播放的预设听力训练录音 包括, 心理安慰的录音, 如此一来, 可以延缓老人听力下降。 在其它实施例中 , 所述控制模块 230还从所述医用信息系统 4中搜索出诊断听力的医生的联系方 式, 并与所述医生建立远程通信连接, 通过医生对用户的听力进行远程训练, 让用户有参与感, 如此一来, 进一步提高听力训练的效果。 在其它实施例中, 所述控制模块 230还用于提示用户说话, 并通过麦克风 53收集用户说话的声音以 判定用户语音训练的程度, 以进一步调整听力训练录音的内容。
[0083] 所述判断模块 240还用于根据该用户当前吋间的听力程度与该用户在预设历史 吋间点 (例如, 三个月前的吋间点) 的听力程度进行比较, 判断用户听力的下 降幅度在预设吋间段 (即历史吋间点到当前吋间的间隔) 内是否超过预设幅度 。 在本实施例中, 所述用户听力下降是指该用户当前吋间的听力程度所对应的 数字与该用户在预设历史吋间点的听力程度所对应的数字相比增大 (例如, 当 前听力程度对应的数字为" 3", 三个月前听力程度对应的数字为" 1", 表明用户的 听力程度在三个月内下降了) 。 进一步地, 所述判断模块 240判断预设吋间段内 用户听力的下降幅度是否超过两个跨度 (即该用户当前吋间的听力程度所对应 的数字与该用户在预设历史吋间点的听力程度所对应的数字相比大于数字二) , 若预设吋间段内用户听力的下降幅度超过两个跨度, 表明用户听力的下降幅 度在预设吋间段内超过预设幅度, 否则, 若预设吋间段内用户听力的下降幅度 没有超过两个跨度, 直接结束流程。 具体而言, 若用户的听力程度在预设吋间 段内从正常听力程度到达重度听力程度, 表明用户的身体状况在预设吋间段内 可能还出现了其它症状, 需要及吋提醒用户。
[0084] 若用户听力的下降幅度在预设吋间段内超过预设幅度, 所述控制模块 230还用 于控制所述骨传导听力检测装置 5播放预警录音。 举例而言, 所述预警录音为"您 的听力程度在三个月内从轻度听力程度变成重度听力程度, 听力短期内下降严 重, 建议您去医院做详细检査"。 通过对用户听力程度的判断, 可以对用户的身 体状况进行预警, 提醒用户及吋诊断。
[0085] 参照图 3所示, 是本发明基于骨传导的听力健康检测方法的优选实施例的流程 图。 在本实施例中, 所述的基于骨传导的听力健康检测方法应用于数据中心 2, 该方法包括以下步骤:
[0086] 步骤 S11 : 所述关闭模块 200关闭所述骨传导听力检测装置 5的振动功能。 具体 地说, 所述关闭模块 200发送关闭指令至所述骨传导听力检测装置 5, 所述骨传 导听力检测装置 5接收到关闭指令后关闭骨传导耳机 51, 使得所述骨传导耳机 51 不产生振动。 需要说明的是, 所述骨传导耳机 51不产生振动, 如此一来, 用户 处于安静的状态下通过所述电极片 50检测大脑听觉区域的脑电数据会更加准确
[0087] 步骤 S12: 所述获取模块 210从所述骨传导听力检测装置 5获取预设数量 (例如
, 三十笔) 的用户脑电数据, 并计算用户的标准脑电数据。
[0088] 在本实施例中, 每笔用户脑电数据包括, 但不限于, 脑电电压、 脑电电流、 脑 电频率等多种类型的脑电数据。 此外, 每笔用户脑电数据还包括吋间等信息。 为了避免后续计算是出现多种类型数据 (即脑电电压、 脑电电流及脑电频率) 相互干扰, 每笔用户脑电数据仅包括一种类型的脑电数据, 例如, 每笔用户脑 电数据仅包括脑电电流 (或脑电电压或脑电频率) 及吋间。
[0089] 具体而言, 当用户的头部带上所述骨传导听力检测装置 5吋, 所述骨传导听力 检测装置 5的电极片 50每隔预设吋间 (例如, 2秒) 产生一笔用户的脑电数据 ( 即包括脑电电压、 脑电电流、 脑电频率及吋间的数据) , 所述获取模块 210从所 述骨传导听力检测装置 5中获取预设数量的用户脑电数据。
[0090] 需要说明的是, 若所述骨传导听力检测装置 5仅包括一个电极片 50, 该电极片 5
0每隔预设吋间 (例如, 2秒) 产生的一笔用户脑电数据。
[0091] 若所述骨传导听力检测装置 5包括多个电极片 50, 所述多个电极片 50每隔预设 吋间 (例如, 2秒) 产生的一笔用户脑电数据, 每笔用户脑电数据为所述多个电 极片 50在同一吋间点所产生的用户脑电数据的均值。 具体地说, 每笔脑电电压 为多个电极片 50在同一吋间点所产生的脑电电压的均值, 每笔脑电电流为多个 电极片 50在同一吋间点所产生的脑电电流的均值, 每笔脑电频率为多个电极片 5
0在同一吋间点所产生的脑电频率的均值。
[0092] 此外, 为了提高获取脑电数据的精确度, 用户所处的周围环境应该选择安静的 环境, 避免周边嘈杂的环境造成噪音干扰。
[0093] 进一步地, 若所述用户的标准脑电数据包括标准脑电电压、 标准脑电电流及标 准脑电频率。
[0094] 所述获取模块 210具体用于:
[0095] 根据预设数量的用户脑电数据计算用户的标准脑电数据, 所述用户的标准脑电 数据为预设数量的用户脑电数据的均值。 举例而言, 若所述预设数量的用户脑 电数据为十笔, 所述用户的标准脑电数据为该十笔用户脑电数据的均值, 具体 地说, 所述标准脑电电压为预设数量的脑电电压的均值, 所述标准脑电电流为 预设数量的脑电电流的均值, 所述标准脑电频率为预设数量的脑电频率的均值
[0096] 步骤 S13: 所述选择模块 220选择一个预设振动频率。 选择一个预设振动频率。
在本实施例中, 所述数据中心 2的存储单元 22中预先储存有多个预设振动频率。 所述选择模块 220按照顺序从最小的预设振动频率幵始进行选择。 需要说明的是 , 所述预设振动频率是根据人耳听力程度进行设置, 例如, 根据 1997年世界卫 生组织公布的人耳听力程度分为五种, 分别为正常听力程度 (即听力损失小于 等于 25分贝) 、 轻度听力程度 (即听力损失介于 26-40分贝) 、 中度听力程度 ( 即听力损失介于 41-60分贝) 、 重度听力程度 (即听力损失介于 61-80分贝) 、 极 重度听力程度 (即听力损失大于等于 81分贝) 。 如此一来, 通过所述预设振动 频率, 也可以判断出用户的听力程度。 例如, 所述选择模块 220按照从小到大选 择多个预设振动频率, 若用户的耳朵仅能听到五十分贝以上的声音, 则用户的 听力程度为中度听力程度。
[0097] 步骤 S14: 所述控制模块 230控制所述骨传导听力检测装置 5按照该预设振动频 率产生声音。
[0098] 步骤 S15: 所述获取模块 210获取该预设振动频率对应的脑电数据。 具体地说, 当所述骨传导耳机 51振动吋, 所述获取模块 210从所述电极片 50上获取用户脑电 数据。
[0099] 步骤 S16: 所述判断模块 240判断该预设振动频率对应的脑电数据与所述标准脑 电数据的比值是否超过预设范围 (例如, 120%) 。 在本实施例中, 若该预设振 动频率对应的脑电数据与所述标准脑电数据的比值超过预设范围, 流程进入步 骤 S17。 若该预设振动频率对应的脑电数据与所述标准脑电数据的比值没有超过 预设范围, 流程返回步骤 S13。 具体而言, 若该预设振动频率对应的脑电数据与 所述标准脑电数据的比值超过预设范围 (例如, 120%) , 则表明用户的大脑听 觉区域对该预设振动频率所产生的声音有响应, 用户听到了该预设振动频率所 产生的声音。 一般而言, 相比于用户处于安静状态下的脑电数据 (即标准脑电 数据) , 若用户听到了声音, 大脑的听觉区域的脑电数据会有一个明显的放大 , 若放大的幅度超过 20%, 则表明用户听到了声音。 进一步地, 若所有的预设振 动频率 (例如, 本实施例中五十个预设振动频率) 都已经应用于所述骨传导耳 机 51, 且每一个预设振动频率对应的脑电数据与所述标准脑电数据的比值均没 有超过预设范围, 则流程直接进入步骤 S17。
[0100] 步骤 S17: 所述分析模块 250根据该预设振动频率所产生的声音分析该用户的听 力程度, 记录该用户当前吋间的听力程度。
[0101] 具体而言, 所述分析模块根据该预设振动频率所产生的声音分析该用户的听力 程度的方式为: (1) 获取该预设振动频率所产生的声音; (2) 分析出该声音 的分贝值; (3) 根据分析的分贝值与人耳听力程度进行比较, 确认用户的听力 程度, 例如, 该声音的分贝值为五十分贝, 则该用户的听力程度为中度听力程 度。
[0102] 进一步地, 所述分析模块 250还将该用户当前吋间分析的听力程度存储于所述 存储单元 22中。 此外, 为了便于数据化的管理, 存储于所述存储单元 22中的所 述用户的听力程度用数字表示, 例如, 数字 "1"表示正常听力程度, 数字" 2"表示 "轻度听力程度", 数字" 3"表示"中度听力程度", 数字" 4"表示"重度听力程度", 数字" 5"表示"极重度听力程度"。 在本实施例中, 数字越大, 表明用户的听力越 差。
[0103] 进一步地, 若所有的预设振动频率 (例如, 本实施例中五十个预设振动频率) 都已经应用于所述骨传导耳机 51, 且每一个预设振动频率对应的脑电数据 (例 如, 脑电电流) 与所述标准脑电数据 (例如, 标准脑电电流) 的比值均没有超 过预设范围, 所述分析模块 250认定用户的听力程度为极重度听力程度。
[0104] 步骤 S18: 所述判断模块 240根据该用户当前吋间的听力程度判断该用户的听力 是否正常。 若所述用户的听力正常, 直接结束流程。 若所述用户的听力不正常 , 流程进入步骤 S19。 具体地说, 所述判断模块 240判断所述听力程度是否为数 字 "1", 若该用户当前吋间的听力程度不是数字" 1", 表示该用户的听力不正常。
[0105] 步骤 S19: 所述控制模块 230控制所述骨传导听力检测装置 5播放预设听力训练 录音。 具体地说, 对于幼儿来说, 播放的预设听力训练录音包括, 但不限于, 音素、 音节、 单词、 以及短句训练等录音, 如此一来, 可以促进幼儿的言语发 育。 对于老人来说, 播放的预设听力训练录音包括, 心理安慰的录音, 如此一 来, 可以延缓老人听力下降。 在其它实施例中, 所述控制模块 230还从所述医用 信息系统 4中搜索出诊断听力的医生的联系方式, 并与所述医生建立远程通信连 接, 通过医生对用户的听力进行远程训练, 让用户有参与感, 如此一来, 进一 步提高听力训练的效果。 在其它实施例中, 所述控制模块 230还用于提示用户说 话, 并通过麦克风 53收集用户说话的声音以判定用户语音训练的程度, 以进一 步调整听力训练录音的内容。
[0106] 步骤 S20: 所述判断模块 240根据该用户当前吋间的听力程度与该用户在预设历 史吋间点 (例如, 三个月前的吋间点) 的听力程度进行比较, 判断用户听力的 下降幅度在预设吋间段 (即历史吋间点到当前吋间的间隔) 内是否超过预设幅 度。 在本实施例中, 所述用户听力下降是指该用户当前吋间的听力程度所对应 的数字与该用户在预设历史吋间点的听力程度所对应的数字相比增大 (例如, 当前听力程度对应的数字为 "3", 三个月前听力程度对应的数字为" 1", 表明用户 的听力程度在三个月内下降了) 。 进一步地, 所述判断模块 240判断预设吋间段 内用户听力的下降幅度是否超过两个跨度 (即该用户当前吋间的听力程度所对 应的数字与该用户在预设历史吋间点的听力程度所对应的数字相比大于数字二
) , 若预设吋间段内用户听力的下降幅度超过两个跨度, 表明用户听力的下降 幅度在预设吋间段内超过预设幅度, 流程进入步骤 S21, 否则, 若预设吋间段内 用户听力的下降幅度没有超过两个跨度, 直接结束流程。 具体而言, 若用户的 听力程度在预设吋间段内从正常听力程度到达重度听力程度, 表明用户的身体 状况在预设吋间段内可能还出现了其它症状, 需要及吋提醒用户。
[0107] 步骤 S21 : 所述控制模块 230控制所述骨传导听力检测装置 5播放预警录音。 举 例而言, 所述预警录音为"您的听力程度在三个月内从轻度听力程度变成重度听 力程度, 听力短期内下降严重, 建议您去医院做详细检査"。 通过对用户听力程 度的判断, 可以对用户的身体状况进行预警, 提醒用户及吋诊断。
[0108] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
[0109] 本
工业实用性
[0110] 本发明所述基于骨传导的听力健康检测系统及方法采用上述技术方案, 带来的 技术效果为: 本发明能够远程对用户的听力进行测试, 并对用户的听力进行训 练, 且采用骨传导的方式进行听力检测, 进一步提高了听力检测的精确度。

Claims

权利要求书
[权利要求 1] 一种基于骨传导的听力健康检测系统, 运行于数据中心, 其特征在于
, 所述数据中心通过网络与骨传导听力检测装置连接, 所述数据中心 存储有多个预设振动频率, 所述基于骨传导的听力健康检测系统包括 : 关闭模块, 用于关闭所述骨传导听力检测装置的振动功能; 获取模 块, 用于从所述骨传导听力检测装置获取预设数量的用户脑电数据, 并计算用户的标准脑电数据; 选择模块, 用于选择一个预设振动频率 ; 控制模块, 用于控制所述骨传导听力检测装置按照该预设振动频率 产生声音; 获取模块, 用于获取该预设振动频率对应的脑电数据; 分 析模块, 用于若该预设振动频率对应的脑电数据与所述标准脑电数据 的比值超过预设范围, 根据该预设振动频率所产生的声音分析该用户 当前吋间的听力程度, 记录该用户当前吋间的听力程度; 所述控制模 块, 还用于若根据该用户当前吋间的听力程度判定所述用户的听力不 正常吋, 控制所述骨传导听力检测装置播放预设听力训练录音; 及所 述控制模块, 还用于若根据该用户当前吋间的听力程度与该用户在预 设历史吋间点的听力程度进行比较后, 判定用户听力的下降幅度在预 设吋间段内超过预设幅度吋, 控制所述骨传导听力检测装置播放预警 录首。
[权利要求 2] 如权利要求 1所述的基于骨传导的听力健康检测系统, 其特征在于, 所述数据中心还通过网络与医院信息系统连接, 用于若所述用户的听 力不正常吋, 从所述医用信息系统中搜索出诊断听力的医生的联系方 式, 并与所述医生建立远程通信连接。
[权利要求 3] 如权利要求 1所述的基于骨传导的听力健康检测系统, 其特征在于, 所述用户的标准脑电数据为预设数量的用户脑电数据的均值。
[权利要求 4] 如权利要求 1所述的基于骨传导的听力健康检测系统, 其特征在于, 所述分析模块具体用于: 获取该预设振动频率所产生的声音; 分析出 该声音的分贝值; 及根据分析的分贝值与人耳听力程度进行比较, 确 认用户的听力程度。
[权利要求 5] 如权利要求 1所述的基于骨传导的听力健康检测系统, 其特征在于, 所述选择模块还具体用于: 若该预设振动频率对应的脑电数据与所述 标准脑电数据的比值超过预设范围, 选择下一个预设振动频率。
[权利要求 6] 如权利要求 1所述的基于骨传导的听力健康检测系统, 其特征在于, 所述骨传导听力检测装置包括电极片、 骨传导耳机, 所述控制模块具 体用于控制所述电极片以获取用户脑电数据, 控制所述骨传导耳机按 照该预设振动频率产生声音。
[权利要求 7] —种基于骨传导的听力健康检测方法, 应用于数据中心, 其特征在于
, 所述数据中心通过网络与骨传导听力检测装置连接, 所述数据中心 存储有多个预设振动频率, 该方法包括: 关闭所述骨传导听力检测装 置的振动功能; 从所述骨传导听力检测装置获取预设数量的用户脑电 数据, 并计算用户的标准脑电数据; 选择一个预设振动频率; 控制所 述骨传导听力检测装置按照该预设振动频率产生声音; 获取该预设振 动频率对应的脑电数据; 若该预设振动频率对应的脑电数据与所述标 准脑电数据的比值超过预设范围, 根据该预设振动频率所产生的声音 分析该用户当前吋间的听力程度, 记录该用户当前吋间的听力程度; 若根据该用户当前吋间的听力程度判定所述用户的听力不正常吋, 控 制所述骨传导听力检测装置播放预设听力训练录音; 及若根据该用户 当前吋间的听力程度与该用户在预设历史吋间点的听力程度进行比较 后, 判定用户听力的下降幅度在预设吋间段内超过预设幅度吋, 控制 所述骨传导听力检测装置播放预警录音。
[权利要求 8] 如权利要求 7所述的基于骨传导的听力健康检测方法, 其特征在于, 所述用户的标准脑电数据为预设数量的用户脑电数据的均值。
[权利要求 9] 如权利要求 7所述的基于骨传导的听力健康检测方法, 其特征在于, 所述根据该预设振动频率所产生的声音分析该用户当前吋间的听力程 度的步骤包括如下步骤: 获取该预设振动频率所产生的声音; 分析出 该声音的分贝值; 及根据分析的分贝值与人耳听力程度进行比较, 确 认用户的听力程度。 [权利要求 10] 如权利要求 7所述的基于骨传导的听力健康检测方法, 其特征在于, 所述方法还包括如下步骤: 若该预设振动频率对应的脑电数据与所述 标准脑电数据的比值超过预设范围, 选择下一个预设振动频率。
PCT/CN2016/108818 2016-05-27 2016-12-07 基于骨传导的听力健康检测系统及方法 WO2017202002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610362611.XA CN106073796A (zh) 2016-05-27 2016-05-27 基于骨传导的听力健康检测系统及方法
CN201610362611.X 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017202002A1 true WO2017202002A1 (zh) 2017-11-30

Family

ID=57229819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108818 WO2017202002A1 (zh) 2016-05-27 2016-12-07 基于骨传导的听力健康检测系统及方法

Country Status (2)

Country Link
CN (1) CN106073796A (zh)
WO (1) WO2017202002A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106073796A (zh) * 2016-05-27 2016-11-09 深圳市易特科信息技术有限公司 基于骨传导的听力健康检测系统及方法
CN205795706U (zh) * 2016-05-28 2016-12-14 深圳市易特科信息技术有限公司 基于骨传导的听力检测装置
CN109157728B (zh) * 2018-06-25 2021-07-30 朱森标 脑骨共振促进睡眠的方法及枕头
CN113676824A (zh) * 2021-09-19 2021-11-19 武汉左点科技有限公司 一种助听器适应性训练方法及装置
CN115040117B (zh) * 2022-07-14 2023-03-21 陕西省人民医院 一种便携式听力测试评估方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2130500Y (zh) * 1992-08-18 1993-04-28 曲强 听力诊断仪
US6574513B1 (en) * 2000-10-03 2003-06-03 Brainmaster Technologies, Inc. EEG electrode assemblies
CN1663528A (zh) * 2005-03-25 2005-09-07 四川微迪数字技术有限公司 一种用于耳鸣诊断与治疗的装置
CN102137624A (zh) * 2008-07-24 2011-07-27 古巴神经科学中心 用于客观检测听觉障碍的方法和设备
CN103052012A (zh) * 2011-10-14 2013-04-17 奥迪康有限公司 基于听觉诱发电位的自动实时助听器验配
CN104144374A (zh) * 2013-05-06 2014-11-12 展讯通信(上海)有限公司 基于移动设备的辅助听力方法及系统
CN104918536A (zh) * 2012-12-12 2015-09-16 锋纳克公司 听力测定自测试
CN105580389A (zh) * 2013-08-20 2016-05-11 唯听助听器公司 具有分类器的助听器
CN106073796A (zh) * 2016-05-27 2016-11-09 深圳市易特科信息技术有限公司 基于骨传导的听力健康检测系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2130500Y (zh) * 1992-08-18 1993-04-28 曲强 听力诊断仪
US6574513B1 (en) * 2000-10-03 2003-06-03 Brainmaster Technologies, Inc. EEG electrode assemblies
CN1663528A (zh) * 2005-03-25 2005-09-07 四川微迪数字技术有限公司 一种用于耳鸣诊断与治疗的装置
CN102137624A (zh) * 2008-07-24 2011-07-27 古巴神经科学中心 用于客观检测听觉障碍的方法和设备
CN103052012A (zh) * 2011-10-14 2013-04-17 奥迪康有限公司 基于听觉诱发电位的自动实时助听器验配
CN104918536A (zh) * 2012-12-12 2015-09-16 锋纳克公司 听力测定自测试
CN104144374A (zh) * 2013-05-06 2014-11-12 展讯通信(上海)有限公司 基于移动设备的辅助听力方法及系统
CN105580389A (zh) * 2013-08-20 2016-05-11 唯听助听器公司 具有分类器的助听器
CN106073796A (zh) * 2016-05-27 2016-11-09 深圳市易特科信息技术有限公司 基于骨传导的听力健康检测系统及方法

Also Published As

Publication number Publication date
CN106073796A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5042398B1 (ja) 脳波記録装置、補聴器、脳波記録方法およびそのプログラム
US10959639B2 (en) EEG monitoring apparatus and method for presenting messages therein
WO2017202002A1 (zh) 基于骨传导的听力健康检测系统及方法
US9468401B2 (en) Method and system for self-managed sound enhancement
US9149202B2 (en) Device, method, and program for adjustment of hearing aid
JP5215508B1 (ja) 不快閾値推定システム、方法およびそのプログラム、補聴器調整システムおよび不快閾値推定処理回路
JP4690507B2 (ja) 語音明瞭度評価システム、その方法およびそのプログラム
US9288593B2 (en) Visually-based fitting of hearing devices
JP5215507B1 (ja) 不快音圧決定システム、その方法およびそのプログラム、補聴器調整システムおよび不快音圧決定装置
JP5406414B2 (ja) 不快音圧推定システム、不快音圧推定装置、不快音圧推定システムの作動方法およびそのコンピュータプログラム
EP3618456A1 (en) Own voice signal processing method
CN114830691A (zh) 包括压力评估器的听力设备
CN111768834A (zh) 一种可穿戴智能听力综合检测分析康复系统
JP4114392B2 (ja) 検査センター装置、端末装置、聴力補償方法、聴力補償方法プログラム記録媒体、聴力補償方法のプログラム
CN105631224B (zh) 一种健康监测方法、移动终端及健康监测系统
JP2016013316A (ja) 音声調整装置、及び音声再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16902986

Country of ref document: EP

Kind code of ref document: A1