WO2017201987A1 - Film de nanomatériau composite antistatique et procédé pour sa préparation - Google Patents

Film de nanomatériau composite antistatique et procédé pour sa préparation Download PDF

Info

Publication number
WO2017201987A1
WO2017201987A1 PCT/CN2016/106203 CN2016106203W WO2017201987A1 WO 2017201987 A1 WO2017201987 A1 WO 2017201987A1 CN 2016106203 W CN2016106203 W CN 2016106203W WO 2017201987 A1 WO2017201987 A1 WO 2017201987A1
Authority
WO
WIPO (PCT)
Prior art keywords
fgnrs
cnfs
tpu
film
composite
Prior art date
Application number
PCT/CN2016/106203
Other languages
English (en)
Chinese (zh)
Inventor
郑玉婴
陈宇
杨隽逸
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2017201987A1 publication Critical patent/WO2017201987A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the invention belongs to the technical field of preparation of polymer composite films, and particularly relates to an antistatic composite nano material film and a preparation method thereof.
  • Thermoplastic polyurethane is a new generation of synthetic polymer materials. It is a linear multi-block copolymer composed of a hard segment and a soft segment. TPU not only has excellent high stretchability, non-toxicity, high transparency, oil resistance, but also a new environmentally friendly material. Based on the above performance advantages, TPU can replace a variety of traditional materials, widely used in medical devices, food packaging, shoe materials, composite materials and other fields. However, due to the essential characteristics of the polymer, its volume resistivity ( ⁇ v ) is generally as high as 10 12 to 10 15 ⁇ cm, which easily accumulates static electricity and is dangerous. At the same time, some small molecules such as oxygen and water vapor easily permeate, greatly Limits the application of TPU film materials in electrical and barrier applications. Therefore, further improving the performance of TPU and making it functional is the focus of research.
  • Graphene nanoribbons can be thought of as a single layer of graphene, a thin strip of quasi-one-dimensional graphene nanomaterial composed of carbon atoms. Due to its unique structural properties, it has excellent electrical, barrier and mechanical properties.
  • Carbon nanofibers are one-dimensional carbon materials, which are between carbon nanotubes and carbon fibers, and generally have a diameter between 50 nm and 200 nm. They have not only small defect area, large specific surface area, but also excellent specific modulus. , specific strength and electrical properties. Both of these are ideal nanofillers that improve the antistatic and barrier properties of the film.
  • the object of the present invention is to provide an antistatic composite nano material film and a preparation method thereof according to the deficiencies of the prior art.
  • the invention combines the FGNRs-CNFs intercalation with the TPU matrix to make the composite film have excellent antistatic properties and barrier properties.
  • Antistatic composite nano material film FGNRs-CNFs nanocomposite is dispersed in TPU matrix, and film is prepared after coating: said FGNRs are graphene oxide nanobelts (GONRs) via silicon germanium coupling agent KH550 ( ⁇ -aminopropyltriethoxysilane) modified, and then modified by hydrazine hydrate: wherein, in FGNRs-CNFs nanocomposites, the mass ratio of FGNRs to CNFs is 4:1; FGNRs -CNFs nanocomposites account for 0.2% to 1.5% by mass of the TPU matrix.
  • GONRs graphene oxide nanobelts
  • KH550 ⁇ -aminopropyltriethoxysilane
  • the CNFs have a diameter of 50 to 150 nm and an aspect ratio of 100 to 500.
  • step (1) the temperature of the silicon oxide coupling agent KH550 modified graphene oxide nanobelt is: 60 ° C, the modification time is 24 h; the temperature of the hydrazine hydrate reduction FGONRs is 100 ° C, and the reaction time is 6 h.
  • step (2) the swelling temperature of TPU in DMF is 60 ° C for 24 h; the concentration of FGNRs in the dispersion is 0.002 mg ⁇ mL -1 ; the drying temperature is 70 ° C, and the drying time is 24 h.
  • the environment-friendly composite film material obtained by the method of the invention has excellent antistatic property and barrier property. It can be applied to precision electronic packaging and electronic equipment in actual production, and has broad practical application value.
  • the FGNRs obtained by hydrazine hydrazine reduction have the characteristics of low defect and compact structure. Due to the introduction of KH550, the oleophilic property is improved, and the uniform dispersion in DMF is realized. The excellent dispersibility provides the basis for preparing the composite film;
  • the nano-filler FGNRs-CNFs are stably dispersed in TPU and have good compatibility with the matrix: the nano-carbon fibers are crossed between the graphene nano-belts, and the network structure is formed.
  • the nano-carbon fibers support the nano-belts as skeletons, and the nano-belts are distributed parallel to the matrix. This unique network structure provides the basis for high barrier properties and excellent antistatic properties;
  • the preparation method of the invention is scientific and reasonable, the process is simple, and the operability is strong.
  • the preparation of the TPU composite nano material film is safe and environmentally friendly, and is especially suitable for the film materials of precision electronic packaging and electronic equipment; at the same time, it is closely following the current trend of high electronic development.
  • the development of composite new materials has broad prospects and uses in the actual high-end electronics industry.
  • A is the FTIR spectrum of (a) GONRs, (b) FGONRs and (c) FGNRs, and B is the dispersion of (1) GONRs, (2) FGONRs and (3) FGNRs-CNFs in DMF (solution The concentration is 0.5 mg ⁇ mL -1 , after standing for 15 days);
  • Figure 2 is a scanning electron microscopy analysis (SEM) of the FGNRs-CNFs/TPU composite film samples after quenching of the quenched section;
  • Figure 3 is a graph showing the oxygen transmission rate of a pure TPU film and a TPU composite film when different nanofillers are added;
  • Figure 4 is a graph showing the volume resistivity of a pure TPU film and a TPU composite film with different nanofillers added.
  • a preparation method of antistatic composite nano material film the specific steps are as follows:
  • TPU film material was completely obtained by drying in a dry box at 70 ° C for 24 hours until the solvent was evaporated.
  • 7.5 g of fully dried TPU was swollen in 60 mL of DMF at 60 ° C for 24 h to obtain a viscous TPU solution: then a DMF solution containing 0.06 g of FGNRs was taken in a volume ratio, and 0.015 g of CNFs was added at 100 W for 1 h to form FGNRs:
  • the CNFs is a 4:1 homogeneous mixed solution, mixed with the swollen TPU; mechanically stirred for 5 h, the mixture is ultrasonicated for 1 h to remove the bubbles therein, and then coated on a coater with a 0.08 mm film, and finally dried in a dry box at 70 ° C for 24 h.
  • the solvent was evaporated to obtain a 1.0 wt% FGNRs-CNFs/TPU composite film.
  • the bubbles were then coated on a film applicator with a 0.08 mm film, and finally dried in a dry box at 70 ° C for 24 h until the solvent was evaporated to obtain a 1.5 wt% FGNRs-CNFs/TPU composite film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne un film de nanomatériau composite antistatique et un procédé pour sa préparation. D'abord, des nanobandes d'oxyde de graphène ont été préparées à l'aide d'un procédé de Hummers modifié et modifiées à l'aide de KH550 pour obtenir des KGONR, qui ont ensuite été réduits à l'aide d'hydrate d'hydrazine pour obtenir des FGNR. Ensuite, les FGNR ont été mélangés avec des CNF dans des conditions ultrasonores pour former des nanocomposites. Enfin, un film composite FGNR-CNF/TPU a été préparé à l'aide d'un procédé de coulage en solution avec une résine TPU comme matrice. Dans la présente invention, les FGNR sont fixés aux CNF du squelette pour former une structure de réseau FGNR-CNF stable, ce qui facilite la dispersion uniforme des FGNR dans le TPU. L'intercalation des FGNR-CNF et la matrice de TPU sont étroitement combinées de telle sorte que le film composite présente d'excellentes propriétés antistatiques et d'excellentes propriétés de barrière, peut être appliqué dans des matériaux électroniques précis de plus en plus perfectionnés et présente un large potentiel d'application.
PCT/CN2016/106203 2016-05-24 2016-11-17 Film de nanomatériau composite antistatique et procédé pour sa préparation WO2017201987A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610346604.0 2016-05-24
CN201610346604.0A CN105968777B (zh) 2016-05-24 2016-05-24 一种抗静电复合纳米材料薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2017201987A1 true WO2017201987A1 (fr) 2017-11-30

Family

ID=56955685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106203 WO2017201987A1 (fr) 2016-05-24 2016-11-17 Film de nanomatériau composite antistatique et procédé pour sa préparation

Country Status (2)

Country Link
CN (1) CN105968777B (fr)
WO (1) WO2017201987A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892134A (zh) * 2018-08-02 2018-11-27 青岛在宇工贸有限公司 一种复合石墨烯电热膜的制备方法
CN109679098A (zh) * 2019-01-03 2019-04-26 华东理工大学 石榴型闭孔二氧化硅-含氟聚苯并二噁唑复合薄膜的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968777B (zh) * 2016-05-24 2018-09-18 福州大学 一种抗静电复合纳米材料薄膜及其制备方法
CN107099095A (zh) * 2017-05-23 2017-08-29 海南大学 具有双导电网络结构的碳纳米粒子/tpv复合材料的制备方法
CN109438968A (zh) * 2018-09-11 2019-03-08 苏州市雄林新材料科技有限公司 一种汽车头枕用高阻隔tpu薄膜及其制备方法
CN112375368B (zh) * 2020-09-28 2021-08-13 厦门大学 一种碳系柔性导电膜、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131890A1 (fr) * 2010-04-22 2011-10-27 Arkema France Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104448366A (zh) * 2014-12-17 2015-03-25 福州大学 一种管道内衬用高阻隔性tpu薄膜及其制备方法
CN105086425A (zh) * 2015-09-17 2015-11-25 福州大学 层叠状功能化石墨烯纳米带/tpu复合材料及其制备
CN105968777A (zh) * 2016-05-24 2016-09-28 福州大学 一种抗静电复合纳米材料薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530686B (zh) * 2015-01-16 2017-11-17 福州大学 一种功能石墨烯/tpu薄膜及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131890A1 (fr) * 2010-04-22 2011-10-27 Arkema France Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104448366A (zh) * 2014-12-17 2015-03-25 福州大学 一种管道内衬用高阻隔性tpu薄膜及其制备方法
CN105086425A (zh) * 2015-09-17 2015-11-25 福州大学 层叠状功能化石墨烯纳米带/tpu复合材料及其制备
CN105968777A (zh) * 2016-05-24 2016-09-28 福州大学 一种抗静电复合纳米材料薄膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892134A (zh) * 2018-08-02 2018-11-27 青岛在宇工贸有限公司 一种复合石墨烯电热膜的制备方法
CN109679098A (zh) * 2019-01-03 2019-04-26 华东理工大学 石榴型闭孔二氧化硅-含氟聚苯并二噁唑复合薄膜的制备方法
CN109679098B (zh) * 2019-01-03 2021-05-28 华东理工大学 石榴型闭孔二氧化硅-含氟聚苯并二噁唑复合薄膜的制备方法

Also Published As

Publication number Publication date
CN105968777A (zh) 2016-09-28
CN105968777B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2017201987A1 (fr) Film de nanomatériau composite antistatique et procédé pour sa préparation
Li et al. Facile preparation, characterization and performance of noncovalently functionalized graphene/epoxy nanocomposites with poly (sodium 4-styrenesulfonate)
Song et al. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets
Li et al. Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer
Zhang et al. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning
Guo et al. Improved interfacial properties for largely enhanced thermal conductivity of poly (vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes
Chen et al. Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers
Itapu et al. A review in graphene/polymer composites
Choudhary et al. Polymer/carbon nanotube nanocomposites
CN103183847B (zh) 一种高介电常数低介电损耗的石墨烯弹性体纳米复合材料及其制备方法
Shang et al. The synthesis of graphene nanoribbon and its reinforcing effect on poly (vinyl alcohol)
Liu et al. Controllable reduction of graphene oxide and its application during the fabrication of high dielectric constant composites
Wang et al. Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite
Tunckol et al. Polymerized ionic liquid functionalized multi-walled carbon nanotubes/polyetherimide composites
Ahmad et al. Exfoliated graphene reinforced polybenzimidazole nanocomposite with improved electrical, mechanical and thermal properties
WO2016041310A1 (fr) Film d'étanchéité imperméable à l'eau et isolant contre l'oxygène, son procédé de préparation et son utilisation
Zhou et al. Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes
Zheming et al. Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers
Tang et al. Epoxy-based high-k composites with low dielectric loss caused by reactive core-shell-structured carbon nanotube hybrids
Cui et al. Preparation of poly (propylene carbonate)/graphite nanoplates-spherical nanocrystal cellulose composite with improved glass transition temperature and electrical conductivity
Wu et al. Dispersion of nano-carbon filled polyimide composites using self-degradated low molecular poly (amic acid) as impurity-free dispersant
CN103408895A (zh) 一种石墨烯环氧树脂复合材料的制备方法
CN114854087A (zh) 一种具备双导热网络的聚酰亚胺复合材料及其制备方法
Zhan et al. EMI shielding, thermal and antibacterial performances of ecofriendly castor oil–based waterborne polyurethane favored by combining carbon nanotube and cetyltrimethylammonium bromide
Awasthi et al. Synthesis and characterization of carbon nanotube–polyethylene oxide composites

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902971

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902971

Country of ref document: EP

Kind code of ref document: A1