WO2017201746A1 - 气动升降梯及控制方法 - Google Patents

气动升降梯及控制方法 Download PDF

Info

Publication number
WO2017201746A1
WO2017201746A1 PCT/CN2016/083714 CN2016083714W WO2017201746A1 WO 2017201746 A1 WO2017201746 A1 WO 2017201746A1 CN 2016083714 W CN2016083714 W CN 2016083714W WO 2017201746 A1 WO2017201746 A1 WO 2017201746A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
elevator car
car
shaft
pressure
Prior art date
Application number
PCT/CN2016/083714
Other languages
English (en)
French (fr)
Inventor
胡津铭
Original Assignee
胡津铭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胡津铭 filed Critical 胡津铭
Priority to PCT/CN2016/083714 priority Critical patent/WO2017201746A1/zh
Publication of WO2017201746A1 publication Critical patent/WO2017201746A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/04Kinds or types of lifts in, or associated with, buildings or other structures actuated pneumatically or hydraulically

Definitions

  • the invention relates to a lifting device for transporting people or goods in a building, in particular to a pneumatic lifting platform and a control method.
  • the lifting devices commonly used in the prior art include escalators, elevators, etc., because the escalator takes up a large space and needs to pass through the escalator. Multiple transfers, therefore, the use of escalators is greatly limited.
  • the elevator is mainly composed of a car, a balance system, a traction system and a guiding system.
  • the elevator of this structure inevitably wears mechanical parts after a long time of operation, when the mechanical parts When a mechanical failure occurs due to wear, there is a possibility that a falling event will occur and a danger may occur.
  • the existing elevators generally adopt the form of a brake to prevent the occurrence of a falling ladder event.
  • the brake will lock and avoid falling, but the situation of the brake is a rigid brake.
  • the brake is suddenly locked, the first person in the elevator may cause injury, and at the same time, it may damage the components such as the elevator guide rail.
  • the present invention provides a starting lifting device capable of ensuring the safety of a passenger.
  • the pneumatic lift of the present invention comprises two or more elevator shafts, an elevator car running up and down in the elevator shaft, and a control device, wherein the elevator shaft comprises an integrally arranged lifting shaft and a buffer shaft, the buffer The hoistway is a sealed hoistway at a lower end of the hoistway; wherein a vent is provided at an upper end of the hoistway, and an inflator and a deflation device are connected at a lower end of the hoistway; and each of the hoistway is provided with a gas-tight elevator door;
  • the elevator shaft is low in the hoistway
  • the space at the bottom of the elevator car is a closed space
  • the control device is configured to control start and stop of the inflator and the deflation device to cause the elevator car to reach a designated floor;
  • the elevator car When the inflator is inflated into the confined space and reaches a rising pressure, the elevator car rises; when the deflation The elevator car descends as the device deflates from the confined space to achieve a lowering pressure.
  • the elevator car is provided with a weighing device for weighing the load; and further includes an air pressure sensor for measuring the pressure in the sealed space, the air pressure sensor and the weighing device communicating with the control device Connected, the control device controls the inflator and the deflation device according to data transmitted by the weighing device and the air pressure sensor.
  • the weighing device includes a cylindrical pressure sensor disposed at a center of the floor of the car housing and a support plate disposed on the cylindrical pressure sensor; or
  • the weighing device includes a tension sensor disposed at a center of a ceiling of the car housing and a cage coupled to the tension sensor.
  • a brake device is disposed outside the elevator car, and the elevator shaft is provided with a position sensor corresponding to the position of each floor, the position sensor is in communication with the control device, and the control device is based on the signal of the position sensor The brake device is controlled.
  • the braking device includes a plurality of sub-brake devices uniformly disposed along the circumferential direction of the elevator car, the sub-brake device including an electromagnet, a spring, and a curved brake pad;
  • the car of the elevator car a groove is disposed on the housing, the curved brake pad is hinged at one end in the groove, and two ends of the spring are respectively connected to the brake pad and the bottom surface of the groove, and the electromagnet is disposed on the bottom surface of the groove;
  • the electromagnet When the electromagnet is energized, the arc-shaped brake pads are sucked, all in the groove, and when the electromagnet is de-energized, the arc-shaped brake pad is spring-embeded to fit the elevator shaft;
  • the elevator shaft is a ferromagnetic pipe, and one or more brake electromagnets or electromagnetic coils are disposed on the car casing of the elevator car.
  • the elevator shaft has a circular cross section, and at least one guiding rib or guiding chute is disposed along the axis of the elevator shaft side wall, and the elevator car corresponds to the guiding rib or the guiding chute A guide chute or a guide rib is provided, and the guide groove is in sliding engagement with the guide rib.
  • the elevator shaft is provided with two guiding chutes
  • the elevator car is provided with two guiding ribs
  • the guiding slots are insulated from the side walls of the elevator shaft, and the guiding ribs and the guiding ribs are
  • the car housings of the elevator car are insulated from each other; the two guiding chutes are respectively electrically connected to the positive and negative poles of the power source, and the control device in the elevator car and the lighting device are electrically connected to the two guiding ribs.
  • the top of the car is provided with a vent
  • the top of the elevator shaft is provided with a ventilating chamber
  • the venting chamber is in communication with the outside atmosphere
  • the two ports of the inflator are respectively connected to the bottom of the hoistway
  • the end is in communication with the venting chamber
  • two ports of the deflation device are respectively in communication with a bottom end of the hoistway and the venting chamber.
  • the lower part of the buffer shaft is connected to the faulty inflating device through a pipeline, and the pipeline is provided with a one-way a valve; a lower side of the hoistway is also provided with a manual bleed valve.
  • the hoistway of the pneumatic lift of the present invention is damaged.
  • the air pressure change in the hoistway is a gradual process, causing the elevator car to fall slowly, when the height of the bottom of the elevator car is lower than that of the hoistway
  • a closed space will be formed under the elevator car.
  • the elevator car will stop moving after a period of damping motion, and no rigid collision will occur during the whole process, which will not cause harm to personnel.
  • the elevator shaft of the pneumatic lift of the present invention is a buffer shaft at the lower end. If the inflator is damaged or the damage point of the elevator shaft occurs at the bottom, a fall event occurs, and when the bottom of the elevator car falls into the buffer shaft, the buffer shaft and the elevator The bottom of the car forms a closed space, and air is present in the space, thus forming a gas damping device that protects the personnel inside the elevator from harm.
  • the present invention provides a control method for a pneumatic lift according to any one of the above: the control method is:
  • step 4 judging whether the elevator has reached the target floor, if it is reached, it stops, if it is not reached, it returns to step 3;
  • control method is:
  • the predetermined floor target floor-1
  • the predetermined floor target floor-1
  • the elevator car when the air is filled into the sealed space, the air pressure gradually increases, and when the thrust of the air pressure to the elevator car is greater than the sum of the gravity of the person or the object in the elevator car and the car, the elevator car The car rises, when the thrust of the air pressure to the elevator car is less than the sum of the gravity of the elevator car and the person or article in the car, the elevator car descends, according to the above principle, by filling or releasing the gas into the confined space, It can drive the rise and fall of the elevator car.
  • Figure 1 is a schematic structural view of a pneumatic lift of the present invention
  • Figure 2 is a schematic view of the brake pad of the brake device of the pneumatic lift of the present invention when it is sucked;
  • Figure 3 is a schematic view showing the brake pad of the brake device of the pneumatic lift of the present invention when it is opened;
  • Figure 4 is a schematic view of the pneumatic lift of the present invention with guide ribs and guide chutes;
  • Fig. 5 is an enlarged view of I of Fig. 4.
  • the pneumatic lift of the embodiment includes two or more elevator shafts, an elevator car 2 running up and down in the elevator shaft, and a control device
  • the elevator shaft 1 includes an integrated elevator shaft 101 and a buffer shaft 102
  • the buffer shaft 102 is a sealed shaft located at a lower end of the hoistway 101; wherein an upper end of the hoistway 101 is provided with a vent, and a lower end of the hoistway 101 is provided with a venting port and an inflation port 103,
  • the venting port and the inflation port 103 are connected with an inflating device and a deflation device; each layer of the hoistway is provided with a gas-tight elevator door;
  • At least at the bottom of the elevator car 2 is provided with a sealing section that is airtight with the elevator shaft 1 (here, the air seal is relatively sealed, and the gas is allowed to leak under the condition of ensuring accurate operation of the elevator); the elevator shaft
  • the space inside 1 below the bottom of the elevator car is a closed space;
  • the control device is configured to control start and stop of the inflator and the deflation device to cause the elevator car to reach a designated floor;
  • the elevator car 2 ascends when the inflator is inflated into the confined space and reaches a rising pressure; the elevator car 2 when the deflating device deflates from the confined space to reach a descending pressure decline.
  • the elevator car 2 and the elevator shaft 1 below it constitute a closed space.
  • the air pressure gradually increases, and when the air pressure is greater than the elevator car 2 and the lift of the elevator car 2
  • the elevator car 2 rises, and when the thrust of the air pressure to the elevator car 2 is less than the sum of the gravity of the elevator car 2 and the person or article in the car, the elevator car
  • the rise and fall of the elevator car 2 can be driven by charging or discharging the gas into the sealed space.
  • a weighing device 203 is disposed in the elevator car 2 to facilitate monitoring the total weight of personnel and articles in the car at any time, and to supplement the air pressure at any time, thereby ensuring the stability of the elevator car 2.
  • the elevator car 2 is driven up and down by the lower closed space, so the gravity of the elevator car 2 is always close to the pressure applied by the lower gas to the elevator car 2, and when the elevator car 2 is in a falling ladder, That is, when the hoistway 101 at a certain location is damaged, the air pressure in the lower portion of the elevator car 2 is a gradual process, causing the elevator car 2 to slowly descend.
  • a closed space is formed below the elevator car 2, and the elevator car 2 will stop after a certain damping motion, so that the elevator does not fall during the process. Rigid contact will occur and will not pose a hazard to personnel.
  • the elevator shaft 1 of the pneumatic elevator of the present embodiment is a buffer shaft 102 at the lower end. If the elevator falling event occurs due to damage of the inflator or damage to the bottom of the elevator shaft 101, when the bottom of the elevator car 2 falls into the buffer shaft 102, The buffer shaft 102 forms a closed space with the bottom of the elevator car 2, and air is present in the space, thereby forming a gas damping device, which can protect the personnel in the elevator from being harmed.
  • the buffer shaft 102 is below the ground floor of the building. During the operation of the elevator, the buffer shaft 102 is not worn. The function of the buffer shaft 102 is to form a gas damping to meet the falling car. .
  • the elevator car 2 includes a car housing 201 and a weighing device disposed at the bottom of the car housing 201.
  • the airtight sensor is disposed in the sealed space, and the air pressure sensor is called
  • the heavy device is in communication with the control device, and the control device controls the inflator and the deflation device according to data transmitted by the weighing device and the air pressure sensor.
  • the weighing device includes a cylindrical pressure sensor 203 disposed at the center of the bottom surface of the car housing 201 and is disposed at the cylindrical pressure a support plate 202 on the force sensor 203;
  • the elevator car 2 of the embodiment is provided with a weighing device.
  • the weighing device measures the current load capacity and transmits the load to the control device, and the air pressure sensor measures the air pressure in the current confined space. The measured air pressure is transmitted to the control device, and the control device needs to be inflated or deflated according to the load capacity and the current air pressure.
  • the cylindrical pressure sensor 203 in the elevator car 2 of the present embodiment is disposed at the center of the floor of the elevator car 2, and a support plate 202 is disposed on the cylindrical pressure sensor 203 so that the personnel in the elevator are non-uniform In the distributed state, the support plate 202 still transmits the weight to the center of the bottom plate of the car housing 201 through the cylindrical pressure sensor 203. Since the force point of the car housing 201 is always at the center point of the bottom plate, the car The tilting phenomenon does not occur, so that the car can run smoothly.
  • the weighing apparatus of this embodiment may also adopt another manner: the weighing apparatus includes a tension sensor disposed at a center of a ceiling of the car housing and a cage connected to the tension sensor. This method can also weigh the load of the elevator car and also ensure the verticality of the elevator car.
  • the outer side of the elevator car is provided with a braking device, and the position of each floor of the elevator shaft is provided with a position sensor, the position sensor and the The control device communicates, and the control device controls the brake device in accordance with a signal from the position sensor.
  • the brake device includes a plurality of sub-brake devices uniformly disposed along the circumferential direction of the elevator car 2, the sub-brake device including an electromagnet, a spring 301 and a curved brake pad 302; the car of the elevator car 2 A groove is disposed on the casing 201, and one end of the arc brake pad 302 is hinged in the groove, and two ends of the spring 301 are respectively connected to the arc brake pad 302 and the bottom surface of the groove, the electromagnet Arranging on the bottom surface of the groove; when the electromagnet is energized, the arc-shaped brake pad 302 is sucked, all in the groove, and when the electromagnet is de-energized, the arc-shaped brake pad 302 is ejected by the spring 301 And attach to the elevator shaft 1 .
  • the rate at which the elevator car 2 can be lifted and lowered and the position of the stop can be adjusted by the rate at which the gas is charged or discharged.
  • the gas is simply charged or placed. It is adjusted to stop the parking of the hall-class car 2, and the parking position of the elevator car 2 cannot be accurately controlled.
  • the elevator car 2 is inevitably damped during the stop, making the stoppage time-consuming.
  • the present embodiment provides a brake device for the elevator car 2, the exact position of the elevator car 2 is measured by the position sensor, and the elevator car 2 is controlled to accurately and quickly stop by the brake device.
  • the total weight of the articles in the elevator car 2 when the article is placed in the elevator car 2 or the person entering or leaving the elevator car 2 It is a process of abrupt changes, and the process of venting or deflation into a confined space is a gradual process. Therefore, the elevator car 2 may suddenly sink when the house items or the personnel entering the elevator car 2 are caused. In the case of the situation, when the article is taken out or the person is taken out, the elevator car 2 suddenly rises. Therefore, a brake device is provided on the elevator to ensure the stability of the elevator in the process of picking up and dropping the cargo.
  • a plurality of braking devices may be disposed on the elevator shaft 1, and a braking device is to be disposed on the elevator shaft 1, and a braking is required at a position corresponding to each floor.
  • the apparatus complicates the structure of the pneumatic lift of the present embodiment, and at the same time, the provision of the brake device on the elevator shaft 1 is liable to cause a deterioration in sealing performance when the elevator car 2 and the elevator shaft 1 move with each other. Therefore, the present embodiment employs a method of providing a brake device on the elevator car 2.
  • the braking device of this embodiment may also adopt another mode: the elevator shaft is a ferromagnetic pipe, and more than one brake electromagnet or electromagnetic coil is disposed on the car casing of the elevator car. .
  • the electromagnet or the electromagnetic coil is energized, and the elevator car is adsorbed together with the elevator shaft to achieve the purpose of braking.
  • the cross section of the elevator shaft 1 is circular, and an anti-rotation device 4 is disposed between the elevator car and the elevator shaft, and the anti-rotation device 4 includes Two guiding chutes 403 disposed along the axial direction of the elevator shaft 1 and two guiding ribs 404 disposed on the elevator car 2 are disposed on the elevator shaft 2, and the guiding chutes 403 are insulated from the side walls of the elevator shaft 1.
  • the guiding rib 404 is insulatively connected to the car casing 201 of the elevator car 2; the two guiding chutes 403 are respectively electrically connected to the positive and negative poles of the power source, and the control device in the elevator car 2 And the lighting device is electrically connected to the two guiding ribs 404.
  • the cross section of the elevator shaft 1 is circular.
  • the door of the elevator car 2 and the door of the elevator shaft 1 cannot be aligned, and the elevator car 2 of the present embodiment is provided.
  • Two guide ribs 404 are provided, and two guide chutes 403 are provided on the elevator shaft 1, so that the elevator car 2 can be prevented from rotating.
  • the guiding rib 404 and the outer side are wrapped with the guiding rib insulating shell 402, and the outer side of the guiding sliding slot 403 is also wrapped with the guiding sliding slot insulating shell 401, so that the guiding rib 404 is insulated from the elevator car 2, and the sliding guide is slidable.
  • the slot 403 is insulated from the elevator shaft 1, and then the positive and negative poles of the power supply are respectively connected to the two guiding chutes 403.
  • the control device, the lighting device and the like in the elevator car 2 can be powered from the two guiding ribs 404.
  • the upper connection forms a loop, so that it is not necessary to separately provide a cable reel and the like, so that the structure of the elevator is simple and clear.
  • the guide ribs and the guide chutes of this embodiment are not limited to two, but two guide ribs and two guide chutes are required for electrical conduction.
  • the elevator shaft 1 of the present embodiment is elliptical or polygonal, and the elliptical or polygonal hoistway allows the elevator car 2 to have only the degree of freedom of up and down movement, and has no rotational freedom.
  • 404 there is also no need to provide a guide chute 403 for the elevator shaft 1. Therefore, the control device, the lighting device, and the like in the elevator car 2 in this embodiment need to be electrically connected to the power source through a cable, and the cable can be coiled on the cable tray at the bottom of the buffer shaft 102 or at the top of the elevator shaft 101.
  • the cable reel rotates as the elevator car 2 moves up and down to discharge or wind up the cable.
  • the position of the cable reel in this embodiment is preferably at the top of the hoistway 101 so that only the gas is present in the lower portion of the elevator car 2, ensuring that the elevator car 2 is in a safe state at all times.
  • the embodiment also has a similar solution to the above solution: the elevator shaft 1 is circular, and a guiding rib 404 is disposed outside the elevator car 2, and a guiding chute 403 is arranged in the elevator shaft 1 to cooperate with the guiding rib 404, due to the elevator
  • the car 2 has only a degree of freedom of rotation and vertical movement in the elevator shaft 1, and even if there is only one guiding rib 404, the rotational freedom of the elevator car 2 can be eliminated. At this time, one guiding rib 404 cannot lift the elevator.
  • the power supply unit in the car 2 is connected to the power source, so it is also necessary to provide a cable drum.
  • the top of the car is provided with a vent
  • the top of the elevator shaft 1 is provided with a ventilating chamber
  • the venting chamber is in communication with the outside atmosphere
  • the two ports of the inflator are respectively
  • the bottom end of the hoistway 101 is in communication with the ventilating chamber
  • two ports of the deflation device are respectively in communication with the bottom end of the hoistway 101 and the ventilating chamber.
  • a ventilating chamber is provided at the top of the hoistway 1 to prevent dust from being carried into the hoistway 1 due to the flow of air when the elevator is raised or lowered.
  • the ventilation chamber cannot discharge the gas in time or replenish the gas in time, which may cause the air pressure above the elevator car 2 to be greater than or less than the atmospheric pressure due to the elevator.
  • the interior of the car 2 communicates with the hoistway space above the elevator car 2, which also causes the air pressure of the elevator car 2 to be equal to the atmospheric pressure, which is detrimental to the occupant's physical health. Therefore, in this embodiment, two ports of the inflator are respectively communicated with the bottom end of the hoistway 101 and the ventilating chamber, and two ports of the venting device are respectively connected to the bottom of the hoistway 101. The end is in communication with the venting chamber.
  • the lower portion of the buffer shaft 102 is connected with a faulty inflating device, and a pipe for connecting the buffer shaft 102 and the fault inflating device is provided with a check valve.
  • the lower end of the hoistway 101 is also provided with a manual deflation valve.
  • the faulty inflator is connected to the bottom of the buffer shaft 102, and the elevator car 2 is inflated into the buffer shaft 102 by the faulty inflator.
  • the check valve is provided with a check valve on the pipeline, so that the buffer shaft 102 can only replenish the gas inward, but cannot be outward.
  • the gas is vented so that the protection of the buffer shaft 102 is always present.
  • the elevator car 2 falls into a ladder. Due to the gas pressure, the elevator car 2 will stop moving after the damping motion, but the position of stopping the movement is uncontrollable. Therefore, the present embodiment
  • a manual deflation valve is disposed at the lower end of the hoistway 101. If the position where the elevator car 2 is stopped is not convenient for rescue the personnel in the elevator, the deflation can be performed through the manual deflation valve to move the elevator car 2 to a proper position. The personnel in the elevator car 2 are then rescued.
  • the embodiment provides a control method for a pneumatic elevator according to any of the above embodiments, wherein the control method is:
  • step 4 judging whether the elevator has reached the target floor, if it is reached, it stops, if it is not reached, it returns to step 3;
  • the air pressure when the air is filled into the sealed space, the air pressure gradually increases, and when the thrust of the air pressure to the elevator car is greater than the sum of the gravity of the person or the object in the elevator car and the car, the elevator The car rises, and the pressure at this time is the rising pressure.
  • the thrust of the air pressure on the elevator car is less than the sum of the gravity of the elevator car and the person or article in the car, the elevator car descends, and the pressure at this time is decreased.
  • the pressure can drive the rise and fall of the elevator car by charging or discharging the gas into the sealed space.
  • This embodiment provides another control method for the pneumatic elevator of each embodiment, and the control method is:
  • the predetermined floor target floor-1
  • the predetermined floor target floor-1
  • the target floor in this embodiment is the floor to which the occupant is to arrive. It can be seen that in the embodiment, the elevator car starts to slow down at an earlier level, so that the stopping process of the elevator car becomes smooth, and at the same time, Slowing down the speed of the elevator car also facilitates the accuracy of the elevator car's stopping position.
  • the air pressure when the air is filled into the sealed space, the air pressure gradually increases, and when the thrust of the air pressure to the elevator car is greater than the sum of the gravity of the person or the object in the elevator car and the car, the elevator The car rises, and the pressure at this time is the rising pressure.
  • the thrust of the air pressure on the elevator car is less than the sum of the gravity of the elevator car and the person or article in the car, the elevator car descends, and the pressure at this time is decreased.
  • the pressure can drive the rise and fall of the elevator car by charging or discharging the gas into the sealed space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Abstract

一种气动升降梯,包括电梯井道(1)、电梯轿厢(2)和控制装置,所述电梯井道(1)包括升降井道(101)和缓冲井道(102),所述缓冲井道(102)设置在所述升降井道(101)的下端并与所述升降井道(101)连接,所述升降井道(101)的下端连接有充气装置和放气装置;所述电梯轿厢(2)底部与所述电梯井道(1)密封配合;所述电梯井道(1)内低于所述电梯轿厢(2)底部的空间为密闭空间;当所述充气装置向密闭空间内充气时,所述电梯轿厢(2)上升,当所述放气装置从所述密闭空间内放气时,所述电梯轿厢(2)下降;所述控制装置用于控制所述电梯轿厢的启动和停止。这样发生坠梯时不会发生电梯轿厢(2)与其他结构刚性碰撞的情况,安全系数高。

Description

气动升降梯及控制方法 技术领域
本发明涉及一种用于楼房中运送人员或货物的升降装置,具体的说是一种气动升降梯及控制方法。
背景技术
随着土地资源越来越稀缺,现在的建筑规划都规划为高层结构,这种高层结构能够最大程度的利用有限的土地资源,也就能够利用既有的资源创造出最大限度的价值。随着高层结构的建筑发展,用于运送人员或货物升降的装置也广泛的应用,现有技术下常见的升降装置有扶梯、电梯等,由于扶梯占用的空间大,并且在乘坐扶梯时需要经过多次换乘,因此,扶梯的使用受到极大的限制。目前应用最广泛的是电梯,电梯主要由轿厢、平衡系统、曳引系统和导向系统等构成,这种结构的电梯在在长时间运行后不可避免的会出现机械零件的磨损,当机械零件由于出现磨损而发生机械失灵的状况时,就有可能发生坠梯的事件,容易发生危险。现有的电梯一般采用抱闸的形式来防止坠梯事件的发生,当电梯出现事故时,抱闸会抱死,避免坠梯,但是这种抱闸制动的情况属于刚性制动,当抱闸突然抱死时,首先对电梯里的人员有可能造成伤害,同时还有可能对电梯导轨等部件造成损坏。
发明内容
针对上述问题,本发明提供一种能够保证乘梯人员安全的启动升降装置。
为达到上述目的,本发明气动升降梯,包括两层以上的电梯井道、在电梯井道内上下运行的电梯轿厢和控制装置,所述电梯井道包括一体设置的升降井道和缓冲井道,所述缓冲井道为位于所述升降井道的下端的密封井道;其中,升降井道上端设有通气口,在所述升降井道的下端连接有充气装置和放气装置;每层井道设有气密封的电梯门;
至少在所述电梯轿厢底部设有与所述电梯井道气密封(此处的气密封是相对密封,在保证电梯准确运行情况下,允许气体泄露)配合的密封段;所述电梯井道内低于所述电梯轿厢底部的空间为密闭空间;
所述控制装置用于控制所述充气装置和放气装置的启动和停止,以使电梯轿厢达到指定的楼层;
当所述充气装置向密闭空间内充气并达到上升压力时,所述电梯轿厢上升;当所述放气 装置从所述密闭空间内放气以达到下降压力时,所述电梯轿厢下降。
进一步地,所述电梯轿厢上设有用于称量载重的称重装置;还包括一个用于测量所述密闭空间内压力的气压传感器,所述气压传感器和称重装置与所述控制装置通讯连接,所述控制装置控制依据称重装置、气压传感器传输的数据控制所述充气装置和放气装置。
具体地,所述称重装置包括设置在轿厢壳体底板中心的柱形压力传感器以及设置在柱形压力传感器上的承托板;或者,
所述称重装置包括设置在轿厢壳体顶板中心的拉力传感器以及与所述拉力传感器连接的吊笼。
进一步地,所述电梯轿厢外侧设置有制动装置,所述电梯井道对应每个楼层的位置设置有位置传感器,所述位置传感器与所述控制装置通讯,所述控制装置依据位置传感器的信号控制所述制动装置。
具体地,所述制动装置包括沿电梯轿厢周向均匀设置的若干个子制动装置,所述子制动装置包括电磁铁、弹簧和弧形制动片;所述电梯轿厢的轿厢壳体上设置有沟槽,所述弧形制动片一端铰接在沟槽内,所述弹簧的两端分别与制动片和沟槽底面连接,所述电磁铁设置在沟槽底面上;当电磁铁通电时,所述弧形制动片被吸合,全部在沟槽内,当电磁铁断电时,所述弧形制动片被弹簧弹出,与所述电梯井道贴合;
或,所述的电梯井道为铁磁管道,在所述的电梯轿厢的轿厢壳体上设置有一个以上的制动电磁铁或电磁线圈。
进一步地,所述电梯井道的截面为圆形,所述电梯井道侧壁上沿轴线设置有至少一根导向肋或导向滑槽,所述电梯轿厢上对应所述的导向肋或导向滑槽设置有导向滑槽或导向肋,所述导向槽与所述导向肋滑动配合。
具体地,所述电梯井道上设置有两条所述导向滑槽,所述电梯轿厢上设置有两根导向肋,所述导向槽与电梯井道的侧壁绝缘连接,所述导向肋与所述电梯轿厢的轿厢壳体绝缘连接;所述两条导向滑槽分别与电源的正负极电连接,所述电梯轿厢内的控制装置以及照明装置的与两根导向肋电连接。
进一步地,所述轿厢顶部设置有通风口,所述电梯井道顶部设置有换气室,所述换气室与外界大气连通,所述充气装置的两个气口分别与所述升降井道的底端和所述换气室连通,所述放气装置的两个气口分别与所述升降井道的底端和所述换气室连通。
进一步地,所述缓冲井道下部通过管道连通有故障充气装置,所述的管道上设置有单向 阀;所述升降井道的下端还设置有手动放气阀。
本发明气动升降梯的升降井道发生破坏,电梯轿厢在发生坠梯时,升降井道中的气压变化是一个渐变过程,使电梯轿厢缓慢下落,当电梯轿厢底部的高度低于升降井道的破坏点时,电梯轿厢下方会重新形成一个密闭空间,电梯轿厢会在一段时间的阻尼运动之后停止运动,在整个过程中不会发生刚性碰撞,不会对人员形成危害。
本发明气动升降梯的电梯井道在下端是缓冲井道,如果充气装置发生损坏或升降井道的破坏点发生在底部,发生电梯坠落事件,当电梯轿厢的底部坠落入缓冲井道时,缓冲井道与电梯轿厢底部形成密闭的空间,空间内存在空气,从而形成了一个气体阻尼装置,能够保护电梯内的人员不会受到伤害。
为达到上述目的,本发明提供一种上述任意一项所述的气动升降梯的控制方法:所述的控制方法为:
1)测量当前电梯轿厢内的载荷,并计算驱动当前轿厢自重以及载荷所需的上升压力或下降压力;
2)测量密闭空间的当前气压,计算当前气压与所述上升压力或下降压力的压力差值;
3)按控制指令充气或放气以控制电梯向上或向下运动;
4)判断电梯是否达到目标楼层,达到则停止,未达到,则返回步骤3;
或,所述的控制方法为:
测量当前电梯轿厢内的载荷,并计算驱动当前轿厢自重以及载荷所需的上升压力或下降压力;
测量密闭空间的当前气压,计算当前气压与所述上升压力或下降压力的压力差值;
按控制指令控制电梯向上或向下运动;
计算补充所述压力差值所需要充入或放出的气体量,充入或放出相应量的气体,关闭制动装置,控制电梯向上或向下运动;
测量当前电梯轿厢的位置是否达到预定楼层;
达到则减缓充气或放气速度;
测量当前电梯轿厢的位置是否达到目标楼层,当电梯轿厢到达目标位置时,停止充气或放气,开启制动装置,控制电梯轿厢停止在目标位置;
其中,上升时,预定楼层=目标楼层-1,下降时,预定楼层=目标楼层-1。
本发明气动升降梯控制方法,当向密闭空间内充入空气时,气压逐渐的增加,当气压对电梯轿厢的推力大于电梯轿厢与轿厢内的人或物品的重力总和时,电梯轿厢上升,当气压对电梯轿厢的推力小于所述电梯轿厢与轿厢内的人或物品的重力总和时,电梯轿厢下降,根据上述原理,通过向密闭空间内充入或放出气体,能够驱动电梯轿厢的上升和下降。
由于密闭空间内空气压力的推力与电梯轿厢和轿厢内承载量的总和接近,当电梯井道发生破坏时,密闭空间内的气体压力变化时一个渐变的过程,使电梯轿厢不会发生与其他结构的刚性碰撞,从而能够保护电梯内人员的安全。
附图说明
图1是本发明气动升降梯的结构示意图;
图2是本发明气动升降梯的制动装置的制动片吸合时的示意图;
图3为本发明气动升降梯的制动装置的制动片弹开时的示意图;
图4是本发明气动升降梯的带有导向肋和导向滑槽的示意图;
图5是图4的Ⅰ处放大图。
具体实施方式
下面结合说明书附图对本发明做进一步的描述。
实施例1
如图1所示,本实施例气动升降梯,包括两层以上的电梯井道1、在电梯井道内上下运行的电梯轿厢2和控制装置,所述电梯井道1包括一体设置的升降井道101和缓冲井道102,所述缓冲井道102为位于所述升降井道101的下端的密封井道;其中,升降井道101上端设有通气口,在所述升降井道101的下端设置有放气口和充气口103,所述放气口和充气口103连接有充气装置和放气装置;每层井道设有气密封的电梯门;
至少在所述电梯轿厢2底部设有与所述电梯井道1气密封(此处的气密封是相对密封,在保证电梯准确运行情况下,允许气体泄露)配合的密封段;所述电梯井道1内低于所述电梯轿厢底部的空间为密闭空间;
所述控制装置用于控制所述充气装置和放气装置的启动和停止,以使电梯轿厢达到指定的楼层;
当所述充气装置向密闭空间内充气并达到上升压力时,所述电梯轿厢2上升;当所述放气装置从所述密闭空间内放气以达到下降压力时,所述电梯轿厢2下降。
本实施例中,电梯轿厢2与其下方的电梯井道1构成了密闭空间,当向密闭空间内充入空气时,气压逐渐的增加,当气压对电梯轿厢2的推力大于电梯轿厢2与轿厢内的人或物品的重力总和时,电梯轿厢2上升,当气压对电梯轿厢2的推力小于所述电梯轿厢2与轿厢内的人或物品的重力总和时,电梯轿厢2下降,根据上述原理,通过向密闭空间内充入或放出气体,能够驱动电梯轿厢2的上升和下降。
由于电梯内人和货物的数量不同的情况下,电梯轿厢2的总重量也不同,因此,当向轿厢内进入人员或放入货物时,需要随时为密闭空间补充相应的气压,因此,本实施例在电梯轿厢2内设置了称重装置203,以便于随时监测轿厢内人员和物品的总重量,随时补充气压,能够保证电梯轿厢2的稳定性。
本实施例气动升降梯的通过下部的密闭空间驱动电梯轿厢2上下,因此电梯轿厢2的重力始终与下部气体对电梯轿厢2施加的压力相近,电梯轿厢2在发生坠梯时,也就是某一位置的升降井道101发生破坏时,电梯轿厢2下部的气压是一个渐变的过程,使电梯轿厢2缓慢下降。当电梯轿厢2底部的高度低于发生破坏的位置时,电梯轿厢2下方就又形成了一个密闭空间,电梯轿厢2会经过一段阻尼运动后停止,这样,电梯的坠落过程中始终不会发生刚性的接触,不会对人员形成危害。
本实施例气动升降梯的电梯井道1在下端是缓冲井道102,如果由于充气装置发生损坏或者升降井道101底部发生破坏而发生电梯坠落事件,当电梯轿厢2的底部坠落入缓冲井道102时,缓冲井道102与电梯轿厢2底部形成密闭的空间,空间内存在空气,从而形成了一个气体阻尼装置,能够保护电梯内的人员不会受到伤害。本实施例的气动升降梯中,缓冲井道102在楼房的底层地面之下,在电梯运行的过程中,不会对缓冲井道102形成磨损,缓冲井道102的作用是形成气体阻尼承接坠落的轿厢。
实施例2
在上述实施例的基础上,所述电梯轿厢2包括轿厢壳体201和设置在轿厢壳体201底部的称重装置,所述密闭空间内设置有气压传感器,所述气压传感器和称重装置与所述控制装置通讯连接,所述控制装置控制依据称重装置、气压传感器传输的数据控制所述充气装置和放气装置。
所述称重装置包括设置在轿厢壳体201底面中心的柱形压力传感器203和设置在柱形压 力传感器203上的承托板202;
本实施例的电梯轿厢2内设置有称重装置,在人员进出过程中,称重装置测量当前的载重量,并将载重量传递到控制装置,气压传感器测量当前的密闭空间内的气压并将测得的气压传递到控制装置,控制装置根据载重量以及当前的气压计算需要充气还是需要放气,。
本实施例的电梯轿厢2内的柱形压力传感器203设置在电梯轿厢2底板中心处,并且,在柱形压力传感器203上设置有承托板202,这样当电梯内的人员处于非均匀分布状态时,承托板202依然会将重量通过柱形压力传感器203传递到轿厢壳体201底板的中心,由于轿厢壳体201的受力点始终在底板的中心点,因此,轿厢不会发生倾斜的现象,从而,轿厢能够顺利运行。
本实施例的称重装置还可以采用另一种方式:所述称重装置包括设置在轿厢壳体顶板中心的拉力传感器以及与所述拉力传感器连接的吊笼。这种方式也能够称量电梯轿厢的载重,同时也能够保证电梯轿厢的竖直。
实施例3
在上述实施例的基础上,如图2~3所示,所述电梯轿厢外侧设置有制动装置,所述电梯井道对应每个楼层的位置设置有位置传感器,所述位置传感器与所述控制装置通讯,所述控制装置依据位置传感器的信号控制所述制动装置。
所述制动装置包括沿电梯轿厢2周向均匀设置的若干个子制动装置,所述子制动装置包括电磁铁、弹簧301和弧形制动片302;所述电梯轿厢2的轿厢壳体201上设置有沟槽,所述弧形制动片302一端铰接在沟槽内,所述弹簧301的两端分别与弧形制动片302和沟槽底面连接,所述电磁铁设置在沟槽底面上;当电磁铁通电时,所述弧形制动片302被吸合,全部在沟槽内,当电磁铁断电时,所述弧形制动片302被弹簧301弹出,与所述电梯井道1贴合。
首先,在不安装制动装置时,可以通过气体充入或放出的速率调节电梯轿厢2升降的速率以及停靠的位置,但是,由于压缩气体的阻尼特性,单纯的靠调节气体充入或放出来调节殿堂级轿厢2停靠,不能精确的控制电梯轿厢2的停靠位置,同时,由于压缩气体的阻尼特性,在停靠时不可避免的会使电梯轿厢2发生阻尼运动,使停靠耗时增长,因此,本实施例为电梯轿厢2设置了制动装置,通过位置传感器测量电梯轿厢2的准确位置并通过制动装置控制电梯轿厢2精确快速的停靠。
其次,由于在想电梯轿厢2内放置物品或进出人员的时候,电梯轿厢2内的物品总重量 是一个突变的过程,而向密闭空间内补气或放气的过程是一个渐变的过程,因此,导致电梯轿厢2内房屋物品或进入人员的时候可能会出现电梯轿厢2突然下沉的状况,而取出物品或者走出人员时出现电梯轿厢2突然上升的情况,因此,在电梯上设置制动装置,保证电梯在上下人员以及取放货物的过程中的稳定性。
另外,本实施例还可以有另外一种实施例方式,可以在电梯井道1上设置若干制动装置,而要在电梯井道1上设置制动装置,需要在对应每一楼层的位置设置制动装置,使本实施例的气动升降梯的结构变得复杂,同时,在电梯井道1上设置制动装置还容易导致电梯轿厢2与电梯井道1发生相互运动时的密封性能变差。因此,本实施例采用在电梯轿厢2上设置制动装置的方式。
本实施例的制动装置还可以采用另一种方式:所述的电梯井道为铁磁管道,在所述的电梯轿厢的轿厢壳体上设置有一个以上的制动电磁铁或电磁线圈。当需要制动时,为电磁铁或电磁线圈通电,时电梯轿厢与电梯井道吸附在一起,达到制动的目的。
实施例4
在上述实施例的基础上,如图4~5所示,所述电梯井道1的截面为圆形,电梯轿厢与电梯井道之间设置有防转装置4,所述防转装置4包括所述在电梯井道2上的沿电梯井道1轴向设置的两条导向滑槽403和设置在电梯轿厢2上两根导向肋404,所述导向滑槽403与电梯井道1的侧壁绝缘连接,所述导向肋404与所述电梯轿厢2的轿厢壳体201绝缘连接;所述两条导向滑槽403分别与电源的正负极电连接,所述电梯轿厢2内的控制装置以及照明装置的与两根导向肋404电连接。
本实施例中,电梯井道1的截面为圆形,为了防止电梯轿厢2发生旋转,导致电梯轿厢2的门与电梯井道1的门不能对正,本实施例的电梯轿厢2上设置了两条导向肋404,并且在电梯井道1上设置了两条导向滑槽403,这样,能够防止电梯轿厢2发生旋转。
另外,本实施例中将导向肋404与外侧包裹了导向肋绝缘壳402,将导向滑槽403的外侧也包裹了导向滑槽绝缘壳401,使导向肋404与电梯轿厢2绝缘,导向滑槽403与电梯井道1绝缘,然后将电源的正负极分别与两条导向滑槽403连接,这样,电梯轿厢2内的控制装置、照明装置等需要电源的装置可以从两条导向肋404上连接形成回路,这样,就不需要单独设置电缆盘等设备,使电梯的结构简单明了。
本实施例的导向肋和导向滑槽并不局限与两根,但是需要有两根导向肋和两根导向滑槽用于导电。
实施例5
本实施例的电梯井道1为椭圆形或者多边形,椭圆形或者多边形的井道使电梯轿厢2只有上下运动的自由度,没有旋转自由度,本实施例中不需要为电梯轿厢2设置导向肋404,也不需要为电梯井道1设置导向滑槽403。因此,本实施例中的电梯轿厢2内的控制装置、照明装置等需要用电的装置需要通过电缆与电源电连接,电缆可以盘绕在缓冲井道102底部或者升降井道101顶部的电缆盘上,电缆盘随着电梯轿厢2的升降而旋转,以放出或盘起电缆。本实施例中的电缆盘设置的位置最好是在升降井道101的顶部,使电梯轿厢2的下部只存在气体,保证电梯轿厢2时刻都处于安全的状态。
本实施例还具有一个与上述方案相似的方案:电梯井道1为圆形,电梯轿厢2外侧设置一根导向肋404,电梯井道1内设置与导向肋404配合的导向滑槽403,由于电梯轿厢2在电梯井道1内只存在旋转和垂直运动的自由度,即使只有一根导向肋404,也能够使电梯轿厢2的旋转自由度消失,此时,一根导向肋404不能将电梯轿厢2内的供电装置连接到电源,因此,还需要设置电缆盘。
实施例6
在上述实施例的基础上,所述轿厢顶部设置有通风口,所述电梯井道1顶部设置有换气室,所述换气室与外界大气连通,所述充气装置的两个气口分别与所述升降井道101的底端和所述换气室连通,所述放气装置的两个气口分别与所述升降井道101的底端和所述换气室连通。
由于电梯轿厢2下部与电梯井道1密封配合,因此,需要避免在电梯轿厢2与电梯井道1之间落入灰尘,以减少电梯轿厢2与电梯井道1之间的摩擦力,也减少电梯轿厢2和电梯井道1的磨损,因此,本实施例在电梯井道1的顶部设置换气室,避免电梯上升或下降时由于空气的流动将灰尘带入电梯井道1内。但是,由于电梯轿厢2在上升或下降时电梯井道1的气体吞吐量大,换气室不能及时将气体排出或及时补充气体,会导致电梯轿厢2上方的气压大于或者小于大气压,由于电梯轿厢2内与电梯轿厢2上方的井道空间连通,也会导致电梯轿厢2的空气压力与大气压不等,这对乘坐者的身体健康不利。因此,本实施例将所述充气装置的两个气口分别与所述升降井道101的底端和所述换气室连通,所述放气装置的两个气口分别与所述升降井道101的底端和所述换气室连通。当轿厢上升时,抽取换气室的气体补充密封空间的气体,当轿厢下降时,抽取密封空间的气体补充换气室的气体。
实施例7
在上述实施例的基础上,所述缓冲井道102下部连通有故障充气装置,用于连通缓冲井道102和故障充气装置的管道上设置有单向阀。所述升降井道101的下端还设置有手动放气阀。
当电梯轿厢2坠落时,可能会发生电梯轿厢2停止运动后,电梯轿厢2的底部与缓冲井道102配合的现象。当发生这种现象时,需要将电梯轿厢2重新提高进入升降井道101,然后才能正常运行。本实施例在缓冲井道102底部连通故障充气装置,通过故障充气装置充气,将电梯轿厢2提高到缓冲井道102内,无需单独设置其他机械装置,结构简单,使用方便。另外,为了避免由于故障充气装置损坏而导致电梯轿厢2坠落时不能提供保护的状况,本实施例的管道上设置单向阀,从而缓冲井道102内只能向内补充气体,而不能向外排放气体,使缓冲井道102的保护作用始终存在。
当充气装置或电梯井道1发生破坏时,电梯轿厢2发生坠梯,由于气体压力的关系,电梯轿厢2会经过阻尼运动后停止运动,但是,停止运动的位置不可控制,因此,本实施例在升降井道101的下端设置手动放气阀,如果电梯轿厢2停止的位置不便于营救电梯内的人员,可以通过手动放气阀进行放气,使电梯轿厢2运动到合适的位置,然后对电梯轿厢2内的人员进行营救。
实施例8
本实施例提供一种上述任一实施例所述气动升降梯的控制方法,所述的控制方法为:
1)测量当前电梯轿厢内的载荷,并计算驱动当前轿厢自重以及载荷所需的上升压力或下降压力;
2)测量密闭空间的当前气压,计算当前气压与所述上升压力或下降压力的压力差值;
3)按控制指令充气或放气以控制电梯向上或向下运动;
4)判断电梯是否达到目标楼层,达到则停止,未达到,则返回步骤3;
本实施例气动升降梯控制方法,当向密闭空间内充入空气时,气压逐渐的增加,当气压对电梯轿厢的推力大于电梯轿厢与轿厢内的人或物品的重力总和时,电梯轿厢上升,此时的压力为上升压力,当气压对电梯轿厢的推力小于所述电梯轿厢与轿厢内的人或物品的重力总和时,电梯轿厢下降,此时的压力为下降压力,根据上述原理,通过向密闭空间内充入或放出气体,能够驱动电梯轿厢的上升和下降。
由于密闭空间内空气压力的推力与电梯轿厢和轿厢内承载量的总和接近,当电梯井道发生破坏时,密闭空间内的气体压力变化时一个渐变的过程,使电梯轿厢不会发生与其他结构 的刚性碰撞,从而能够保护电梯内人员的安全。
实施例9
本实施例提供另一种对各实施例的气动升降梯的控制方法,所述的控制方法为:
测量当前电梯轿厢内的载荷,并计算驱动当前轿厢自重以及载荷所需的上升压力或下降压力;
测量密闭空间的当前气压,计算当前气压与所述上升压力或下降压力的压力差值;
按控制指令控制电梯向上或向下运动;
计算补充所述压力差值所需要充入或放出的气体量,充入或放出相应量的气体,关闭制动装置,控制电梯向上或向下运动;
测量当前电梯轿厢的位置是否达到预定楼层;
达到则减缓充气或放气速度;
测量当前电梯轿厢的位置是否达到目标楼层,当电梯轿厢到达目标位置时,停止充气或放气,开启制动装置,控制电梯轿厢停止在目标位置;
其中,上升时,预定楼层=目标楼层-1,下降时,预定楼层=目标楼层-1。
本实施例中的目标楼层为乘坐人员要到达的楼层,由此可知,本实施例中电梯轿厢在提前一层开始减缓速度,使电梯轿厢的停靠过程变得平稳,同时,也能够使减缓了电梯轿厢的速度也有利于电梯轿厢停靠位置的精准。
本实施例气动升降梯控制方法,当向密闭空间内充入空气时,气压逐渐的增加,当气压对电梯轿厢的推力大于电梯轿厢与轿厢内的人或物品的重力总和时,电梯轿厢上升,此时的压力为上升压力,当气压对电梯轿厢的推力小于所述电梯轿厢与轿厢内的人或物品的重力总和时,电梯轿厢下降,此时的压力为下降压力,根据上述原理,通过向密闭空间内充入或放出气体,能够驱动电梯轿厢的上升和下降。
由于密闭空间内空气压力的推力与电梯轿厢和轿厢内承载量的总和接近,当电梯井道发生破坏时,密闭空间内的气体压力变化时一个渐变的过程,使电梯轿厢不会发生与其他结构的刚性碰撞,从而能够保护电梯内人员的安全。
以上,仅为本发明的较佳实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求所界定的保护范围为准。

Claims (10)

  1. 一种气动升降梯,包括两层以上的电梯井道、在电梯井道内上下运行的电梯轿厢和控制装置,其特征在于:所述电梯井道包括一体设置的升降井道和缓冲井道,所述缓冲井道为位于所述升降井道的下端的密封井道;其中,升降井道上端设有通气口,在所述升降井道的下端连接有充气装置和放气装置;每层井道设有气密封的电梯门;
    至少在所述电梯轿厢底部设有与所述电梯井道气密封配合的密封段;所述电梯井道内低于所述电梯轿厢底部的空间为密闭空间;
    所述控制装置用于控制所述充气装置和放气装置的启动和停止,以使电梯轿厢达到指定的楼层;
    当所述充气装置向密闭空间内充气并达到上升压力时,所述电梯轿厢上升;当所述放气装置从所述密闭空间内放气以达到下降压力时,所述电梯轿厢下降。
  2. 如权利要求1所述气动升降梯,其特征在于:所述电梯轿厢上设有用于称量载重的称重装置;还包括一个用于测量所述密闭空间内压力的气压传感器,所述气压传感器和称重装置与所述控制装置通讯连接,所述控制装置控制依据称重装置、气压传感器传输的数据控制所述充气装置和放气装置。
  3. 如权利要求2所述气动升降梯,其特征在于:所述称重装置包括设置在轿厢壳体底板中心的柱形压力传感器以及设置在柱形压力传感器上的承托板;或者,
    所述称重装置包括设置在轿厢壳体顶板中心的拉力传感器以及与所述拉力传感器连接的吊笼。
  4. 如权利要求1或2所述气动升降梯,其特征在于:所述电梯轿厢外侧设置有制动装置,所述电梯井道对应每个楼层的位置设置有位置传感器,所述位置传感器与所述控制装置通讯,所述控制装置依据位置传感器的信号控制所述制动装置。
  5. 如权利要求4所述气动升降梯,其特征在于:所述制动装置包括沿电梯轿厢周向均匀设置的若干个子制动装置,所述子制动装置包括电磁铁、弹簧和弧形制动片;所述电梯轿厢的轿厢壳体上设置有沟槽,所述弧形制动片一端铰接在沟槽内,所述弹簧的两端分别与制动片和沟槽底面连接,所述电磁铁设置在沟槽底面上;当电磁铁通电时,所述弧形制动片被吸合,全部在沟槽内,当电磁铁断电时,所述弧形制动片被弹簧弹出,与所述电梯井道贴合;
    或,所述的电梯井道为铁磁管道,在所述的电梯轿厢的轿厢壳体上设置有一个以上的制动电磁铁或电磁线圈。
  6. 如权利要求1所述气动升降梯,其特征在于:所述电梯井道的截面为圆形,所述电梯井道侧壁上沿轴线设置有至少一根导向肋或导向滑槽,所述电梯轿厢上对应所述的导向肋或导向滑槽设置有导向滑槽或导向肋,所述导向槽与所述导向肋滑动配合。
  7. 如权利要求6所述气动升降梯,其特征在于:所述电梯井道上设置有两条所述导向滑槽,所述电梯轿厢上设置有两根导向肋,所述导向槽与电梯井道的侧壁绝缘连接,所述导向肋与所述电梯轿厢的轿厢壳体绝缘连接;所述两条导向滑槽分别与电源的正负极电连接,所述电梯轿厢内的控制装置以及照明装置的与两根导向肋电连接。
  8. 如权利要求1所述气动升降梯,其特征在于:所述轿厢顶部设置有通风口,所述电梯井道顶部设置有换气室,所述换气室与外界大气连通,所述充气装置的两个气口分别与所述升降井道的底端和所述换气室连通,所述放气装置的两个气口分别与所述升降井道的底端和所述换气室连通。
  9. 如权利要求1所述气动升降梯,其特征在于:所述缓冲井道下部通过管道连通有故障充气装置,所述的管道上设置有单向阀;所述升降井道的下端还设置有手动放气阀。
  10. 一种如权利要求1-9所述的任一权利要求所述的气动升降梯的控制方法,其特征在于:
    所述的控制方法为:
    1)测量当前电梯轿厢内的载荷,并计算驱动当前轿厢自重以及载荷所需的上升压力或下降压力;
    2)测量密闭空间的当前气压,计算当前气压与所述上升压力或下降压力的压力差值;
    3)按控制指令充气或放气以控制电梯向上或向下运动;
    4)判断电梯是否达到目标楼层,达到则停止,未达到,则返回步骤3;
    或,所述的控制方法为:
    测量当前电梯轿厢内的载荷,并计算驱动当前轿厢自重以及载荷所需的上升压力或下降压力;
    测量密闭空间的当前气压,计算当前气压与所述上升压力或下降压力的压力差值;
    按控制指令控制电梯向上或向下运动;
    计算补充所述压力差值所需要充入或放出的气体量,充入或放出相应量的气体,关闭制动装置,控制电梯向上或向下运动;
    测量当前电梯轿厢的位置是否达到预定楼层;
    达到则减缓充气或放气速度;
    测量当前电梯轿厢的位置是否达到目标楼层,当电梯轿厢到达目标位置时,停止充气或放气,开启制动装置,控制电梯轿厢停止在目标位置;
    其中,上升时,预定楼层=目标楼层-1,下降时,预定楼层=目标楼层-1。
PCT/CN2016/083714 2016-05-27 2016-05-27 气动升降梯及控制方法 WO2017201746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083714 WO2017201746A1 (zh) 2016-05-27 2016-05-27 气动升降梯及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083714 WO2017201746A1 (zh) 2016-05-27 2016-05-27 气动升降梯及控制方法

Publications (1)

Publication Number Publication Date
WO2017201746A1 true WO2017201746A1 (zh) 2017-11-30

Family

ID=60412044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083714 WO2017201746A1 (zh) 2016-05-27 2016-05-27 气动升降梯及控制方法

Country Status (1)

Country Link
WO (1) WO2017201746A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716432A (zh) * 2021-09-09 2021-11-30 曾方 一种窗口式传菜电梯用轿厢及轿门
CN114524350A (zh) * 2021-12-15 2022-05-24 南通普思曼机械有限公司 一种货物搬运用激光技术的无断点式电梯轿厢门感应装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264485A (ja) * 1990-03-15 1991-11-25 Mitsubishi Heavy Ind Ltd 空気動力式昇降機
CN201354279Y (zh) * 2008-12-30 2009-12-02 上海市松江二中 带有失控保护装置的电梯
CN101955115A (zh) * 2010-10-28 2011-01-26 徐林波 气缸式风力电梯
CN102674104A (zh) * 2011-12-12 2012-09-19 杨茂亮 电梯气压安全装置
CN203079477U (zh) * 2012-12-28 2013-07-24 江南嘉捷电梯股份有限公司 气动电梯装置
CN204342224U (zh) * 2014-11-25 2015-05-20 昆山通祐电梯有限公司 一种多层真空气动电梯
CN104803263A (zh) * 2015-04-24 2015-07-29 昆山通祐电梯有限公司 气动电梯控制系统及控制方法
CN105819309A (zh) * 2016-05-27 2016-08-03 胡津铭 气动升降梯及控制方法
CN205634563U (zh) * 2016-05-27 2016-10-12 胡津铭 气动升降梯

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264485A (ja) * 1990-03-15 1991-11-25 Mitsubishi Heavy Ind Ltd 空気動力式昇降機
CN201354279Y (zh) * 2008-12-30 2009-12-02 上海市松江二中 带有失控保护装置的电梯
CN101955115A (zh) * 2010-10-28 2011-01-26 徐林波 气缸式风力电梯
CN102674104A (zh) * 2011-12-12 2012-09-19 杨茂亮 电梯气压安全装置
CN203079477U (zh) * 2012-12-28 2013-07-24 江南嘉捷电梯股份有限公司 气动电梯装置
CN204342224U (zh) * 2014-11-25 2015-05-20 昆山通祐电梯有限公司 一种多层真空气动电梯
CN104803263A (zh) * 2015-04-24 2015-07-29 昆山通祐电梯有限公司 气动电梯控制系统及控制方法
CN105819309A (zh) * 2016-05-27 2016-08-03 胡津铭 气动升降梯及控制方法
CN205634563U (zh) * 2016-05-27 2016-10-12 胡津铭 气动升降梯

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716432A (zh) * 2021-09-09 2021-11-30 曾方 一种窗口式传菜电梯用轿厢及轿门
CN113716432B (zh) * 2021-09-09 2023-07-21 南京超图中小企业信息服务有限公司 一种窗口式传菜电梯用轿厢及轿门
CN114524350A (zh) * 2021-12-15 2022-05-24 南通普思曼机械有限公司 一种货物搬运用激光技术的无断点式电梯轿厢门感应装置

Similar Documents

Publication Publication Date Title
CN105819309B (zh) 气动升降梯及控制方法
CN205634563U (zh) 气动升降梯
US4997060A (en) Apparatus for controlling the descent of a passenger carrying body
FI118684B (fi) Menetelmä ja järjestelmä hissin jarrujen kunnon testaamiseksi
ES2745502T3 (es) Verificación de la fuerza de frenado de un freno de ascensor
CN105438914A (zh) 一种轿厢式电梯防坠落安全系统
CN105253734A (zh) 一种电梯防坠落紧急装置
ES2659923T3 (es) Procedimiento para verificar una instalación de freno de ascensor, un procedimiento para la puesta en servicio de un sistema de ascensor y una instalación para la realización de una puesta en servicio
WO2017201746A1 (zh) 气动升降梯及控制方法
KR101974760B1 (ko) 엘리베이터 장치
CN205527144U (zh) 一种轿厢式电梯防坠落安全系统
JP2011195270A (ja) エレベータのブレーキ開放装置
WO2011055020A1 (en) Method and apparatus for reducing the swinging of the ropes of an elevator, and an elevator
CN107188002B (zh) 一种减震电梯及其控制方法
JP5673703B2 (ja) エレベーター
JP2007176624A (ja) エレベータ
JP4862296B2 (ja) エレベータの検査方法
CN108002187A (zh) 一种电梯用安全轿厢
CN206940172U (zh) 一种减震装置及设置有减震装置的电梯
CN205906847U (zh) 电梯防坠落安全控制系统
JP5250913B2 (ja) 昇降装置
JP4248678B2 (ja) エレベータ装置
JP5255164B2 (ja) エレベータのための避難用制御ユニットおよび昇降装置
JP5204187B2 (ja) エレベータのための避難用制御ユニットおよび昇降装置
JP2001233563A (ja) トラクション式エレベーターの救出運転装置及びその救出運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16902735

Country of ref document: EP

Kind code of ref document: A1