WO2017199952A1 - Buckle, vehicle-mounted system, and seatbelt system - Google Patents

Buckle, vehicle-mounted system, and seatbelt system Download PDF

Info

Publication number
WO2017199952A1
WO2017199952A1 PCT/JP2017/018361 JP2017018361W WO2017199952A1 WO 2017199952 A1 WO2017199952 A1 WO 2017199952A1 JP 2017018361 W JP2017018361 W JP 2017018361W WO 2017199952 A1 WO2017199952 A1 WO 2017199952A1
Authority
WO
WIPO (PCT)
Prior art keywords
occupant
buckle
sensor
output
information
Prior art date
Application number
PCT/JP2017/018361
Other languages
French (fr)
Japanese (ja)
Inventor
青木 洋
Original Assignee
タカタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカタ株式会社 filed Critical タカタ株式会社
Publication of WO2017199952A1 publication Critical patent/WO2017199952A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/18Anchoring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/48Control systems, alarms, or interlock systems, for the correct application of the belt or harness

Definitions

  • the present invention relates to a buckle, an in-vehicle system, and a seat belt system.
  • a buckle that includes a buckle switch that detects connection with a tongue attached to a seat belt of a vehicle and an occupant sensor that detects the presence or absence of an occupant on a seat by infrared rays (for example, Patent Document 1 reference). Based on the detection result of the buckle switch, it is possible to determine whether or not the tongue is connected, and based on the detection result of the occupant sensor, it is possible to determine whether there is an occupant on the seat.
  • Patent Document 2 a buckle equipped with a sensor that detects the breathing state of an occupant on a vehicle seat with infrared rays is known (see, for example, Patent Document 2).
  • physiological information such as the presence / absence information of an occupant and the breathing state of the occupant as occupant information.
  • the occupant detection function required for the occupant sensor for detecting the occupant may differ depending on whether the seat belt is worn or not.
  • one aspect of the present invention provides a buckle, an in-vehicle system, and a seat belt system that can operate different types of occupant detection functions depending on whether the seat belt is attached or not. With the goal.
  • a body portion connectable with a tongue attached to a vehicle seat belt;
  • a buckle switch for detecting the presence or absence of connection between the tongue and the main body;
  • An occupant sensor for detecting an occupant on a seat of the vehicle, The occupant sensor is provided with a buckle that switches the detection function of the occupant using the detection state of the buckle switch.
  • An in-vehicle system includes the buckle and a receiving device that receives detection information from the occupant sensor.
  • a vehicle seat belt A tongue attached to the seat belt; A buckle connectable with the tongue, The buckle is A buckle switch for detecting whether or not the tongue and the buckle are connected; An occupant sensor for detecting an occupant on a seat of the vehicle, A seat belt system is provided in which the occupant sensor switches the detection function of the occupant using the detection state of the buckle switch.
  • the occupant sensor switches the occupant detection function using the detection state of the buckle switch. Accordingly, the occupant sensor can switch the occupant detection function in accordance with a situation where the tongue and the buckle are connected (that is, a situation where the seat belt is worn). Alternatively, the occupant sensor can switch the occupant detection function according to a situation where the tongue and the buckle are not connected (that is, a situation where the seat belt is not worn). Therefore, different types of occupant detection functions can be activated depending on whether the seat belt is worn or not.
  • FIG. 1 is a diagram illustrating an example of a configuration of a seat belt system 1 according to an embodiment.
  • the seat belt system 1 is an example of a system mounted on a vehicle.
  • the seat belt system 1 includes, for example, a seat belt 4, a retractor 3, a shoulder anchor 6, a tongue 7, and a buckle 8.
  • the seat belt 4 is an example of a webbing that restrains the occupant 11 sitting on the seat 2 of the vehicle, and is a belt-like member that is wound around the retractor 3 so that it can be pulled out.
  • the belt anchor 5 at the tip of the seat belt 4 is fixed to the floor of the vehicle body or the seat 2.
  • the shoulder anchor 6 is an example of a belt insertion tool through which the seat belt 4 is inserted, and is a member that guides the seat belt 4 pulled out from the retractor 3 toward the shoulder of the occupant.
  • the tongue 7 is an example of a belt insertion tool through which the seat belt 4 is inserted, and is a component that is slidably attached to the seat belt 4 guided by the shoulder anchor 6.
  • the buckle 8 is a part to which the tongue 7 is detachably connected, and is fixed to the floor of the vehicle body or the seat 2, for example.
  • the buckle 8 has a main body 8a and a stay 8b.
  • the main body 8a is a part to which the tongue 7 is detachably connected.
  • the stay 8 b is an example of a support member that supports the main body 8 a of the buckle 8.
  • the stay 8b is fixed to the floor of the vehicle body or the seat 2.
  • the portion of the seat belt 4 between the shoulder anchor 6 and the tongue 7 is a shoulder belt portion 9 that restrains the chest and shoulders of the occupant.
  • the portion of the seat belt 4 between the belt anchor 5 and the tongue 7 is a lap belt portion 10 that restrains the occupant's waist.
  • FIG. 2 is a view showing the occupant 11 sitting on the seat 2 from a viewpoint from above.
  • FIG. 2 shows the backrest of the seat 2.
  • the breathing of the occupant 11 seated on the seat 2 causes the body surface of the occupant 11 (for example, the surface of the waist, the surface of the abdomen, the surface of the chest, etc.) to be slightly displaced.
  • the body surface of the occupant 11 for example, the surface of the waist, the surface of the abdomen, the surface of the chest, etc.
  • the breathing of the occupant 11 can be detected by detecting the displacement of the body surface of the occupant 11.
  • the buckle 8 has a sensor 20 provided on the main body 8a as means for detecting the displacement of the body surface of the occupant 11.
  • the sensor 20 may be provided on the stay 8b.
  • the buckle 8 is disposed below the side of the occupant 11 sitting on the seat 2.
  • the sensor 20 is provided on the side portion of the buckle 8 on the occupant 11 side.
  • the sensor 20 may be a means for detecting displacement in the body of the occupant 11.
  • the sensor 20 is an example of an object detection unit that detects the movement of an object on the vehicle seat 2 in a non-contact manner.
  • the object on the seat 2 is not limited to the occupant 11, and includes objects other than the person such as the occupant 11.
  • the sensor 20 outputs a sensor output signal whose waveform changes according to the movement of the object on the seat 2.
  • the “movement of the object” is not limited to the movement of the surface of the object, and may be movement inside the object.
  • the sensor 20 detects, for example, the movement of an object on the vehicle seat 2 in a non-contact manner by transmitting and receiving radio waves.
  • the sensor 20 detects a movement of an object on the seat surface by transmitting a radio wave toward the upper side of the seat surface of the seat 2 of the vehicle and receiving a reflected wave with respect to the transmitted radio wave.
  • radio waves transmitted and received by the sensor 20 include VHF band (Very High Frequency) radio waves, UHF (Ultra-High Frequency) band, SHF (Super High Frequency) band microwaves, and the like.
  • the VHF band represents a frequency band of 30 MHz to 0.3 GHz.
  • the UHF band represents a frequency band of 0.3 GHz to 3 GHz.
  • the SHF band represents a frequency band of 3 G to 30 GHz.
  • the senor 20 may be an object detection unit that detects the movement of an object on the vehicle seat 2 in a non-contact manner from a change in capacitance between the object and the sensor electrode of the sensor 20.
  • FIG. 3 is a block diagram showing an example of the configuration of the in-vehicle system 1A.
  • the in-vehicle system 1A includes a buckle 8 and an ECU 100.
  • the buckle 8 includes a main body 8a, a buckle switch 13, and an occupant sensor 12.
  • ECU stands for Electronic Control Unit.
  • the main body 8a is a part that can be connected to the tongue 7 (see FIG. 1).
  • the main body 8 a includes a buckle switch 13 and an occupant sensor 12.
  • the buckle switch 13 is an example of a connection detection unit that detects the connection between the tongue 7 and the main body 8a.
  • the buckle switch 13 detects whether or not the seat belt 4 is worn by detecting whether or not the tongue 7 and the main body 8a are connected.
  • the buckle switch 13 detects a state in which the tongue 7 and the main body 8a are not connected as a state in which the seat belt 4 is not worn (a state in which the seat belt 4 is not worn).
  • the buckle switch 13 detects a state in which the tongue 7 and the main body 8a are connected as a state in which the seat belt 4 is worn (a state in which the seat belt 4 is worn).
  • the occupant sensor 12 switches whether to output the presence / absence information of the occupant 11 on the seat 2 or the physiological information of the occupant 11 on the seat 2 using the detection state of the buckle switch 13.
  • the detection state of the buckle switch 13 includes a connection non-detection state in which the buckle switch 13 does not detect the connection between the tongue 7 and the main body portion 8a, and a connection between the tongue 7 and the main body portion 8a. And the connected detection state.
  • the occupant sensor 12 includes a sensor 20, a presence / absence information detection unit 26, and a physiological information detection unit 27.
  • the sensor 20 detects the movement of the occupant 11 on the seat 2 and outputs a sensor output signal corresponding to the movement.
  • the presence / absence information detection unit 26 has a presence / absence information detection function for detecting whether or not the occupant 11 is present based on the sensor output signal output from the sensor 20 and outputting presence / absence information indicating the presence or absence of the occupant 11. Have.
  • the presence / absence information detection unit 26 may have a presence / absence information detection function that outputs remind information that prompts the occupant 11 to attach the seat belt 4 based on the presence / absence information of the occupant 11.
  • the presence / absence information detection function is an example of a passenger detection function.
  • the physiological information detection unit 27 has a physiological information detection function for detecting and outputting the physiological information of the occupant 11 based on the sensor output signal output from the sensor 20.
  • the physiological information detection function is an example of an occupant detection function.
  • Physiological information includes vital sign information related to vital signs that are at least one of breathing and pulse.
  • vital sign information relating to respiration include the presence or absence of the current respiration, the current respiration cycle, the average respiration cycle, the spontaneous respiration cycle, the respiration variation, and the respiratory abnormality.
  • vital sign information related to the pulse include the presence / absence of the current pulse, the current pulse period, the average pulse period, pulse variation, and pulse abnormality.
  • the physiological information may include vital sign information related to vital signs such as a consciousness level and body temperature.
  • the physiological information detection unit 27 has a physiological information detection function that detects at least one vital sign information to detect a state such as yawning or drowsiness of the occupant 11 and outputs the detected result as physiological information. You may have.
  • the ECU 100 is an example of a receiving device that receives the presence / absence information and physiological information of the occupant 11.
  • the presence / absence information and physiological information of the occupant 11 are both examples of detection information by the occupant sensor 12.
  • the ECU 100 includes one or a plurality of electronic control devices that are separate from the buckle 8. The ECU 100 executes control using presence / absence information and physiological information.
  • the situation where the ECU 100 needs the presence / absence information of the occupant 11 and the situation where the ECU 100 needs the physiological information of the occupant 11 are not necessarily the same.
  • the ECU 100 determines whether the occupant 11 is not present or the occupant 11 is not wearing the seat belt 4. The necessity of the presence / absence information of the occupant 11 is higher than the above.
  • the occupant sensor 12 of the present embodiment uses the detection state of the buckle switch 13 to switch between the presence / absence information of the occupant 11 and the physiological information of the occupant 11 to output. Accordingly, the occupant sensor 12 can output physiological information of the occupant 11 in a situation where the tongue 7 and the buckle 8 are connected, for example, and in a situation where the tongue 7 and the buckle 8 are not connected, the occupant 11 Can be output. In this way, the occupant sensor 12 can output the presence / absence information and the physiological information by switching depending on the situation where the tongue 7 and the buckle 8 are connected or not connected. Different types of occupant information can be output. That is, the occupant sensor 12 can appropriately output the presence / absence information of the occupant 11 and the physiological information of the occupant 11.
  • the main body 8a of the buckle 8 has at least three terminals 14, 15, and 16, and the ECU 100 has at least three terminals 101, 102, and 103.
  • the in-vehicle system 1A includes a wiring 17 that connects the terminal 14 and the terminal 101 to each other, a wiring 18 that connects the terminal 15 and the terminal 102 to each other, and a wiring 19 that connects the terminal 16 and the terminal 103 to each other.
  • FIG. 4 is a side view showing an example of the main body 8 a of the buckle 8.
  • FIG. 5 is a perspective view showing an example of the main body 8 a of the buckle 8.
  • FIG. 6 is a plan view showing an example of the main body 8a of the buckle 8 from the viewpoint from the passenger side.
  • the main body 8 a has an insertion port 8 c into which the metal plate of the tongue 7 is inserted, and a button 8 d for the occupant to perform the detaching operation of the tongue 7.
  • the sensor 20 is built in the side surface portion of the main body portion 8a on the seat 2 side (occupant side sitting on the seat 2).
  • the sensor 20 is a sensor that transmits and receives radio waves
  • the sensor 20 is provided between the shielding plate 21 and the side surface on the sheet 2 side of the main body 8a so that the radio waves are not radiated in unnecessary directions. It is preferable to arrange
  • the shielding plate 21 is built in the main body 8 a and shields radio waves radiated from the sensor 20.
  • FIG. 7 is a diagram showing an example of a radio wave radiation state in a side view of the buckle 8.
  • FIG. 8 is a diagram illustrating an example of a radio wave radiation state when the buckle 8 is viewed from above.
  • Radio wave radiation range varies depending on the antenna that transmits and receives radio waves and the frequency of radio waves.
  • the antenna may be mounted on the sensor 20 in a state where the antenna is tilted in the direction in which the occupant is present, or the directivity of the antenna may be controlled in the direction in which the occupant is present.
  • the radio wave transmitted from the transmitting antenna of the sensor 20 provided on the buckle 8 is reflected by an object on the sheet, and the reflected antenna receives the reflected wave.
  • the sensor 20 changes the standing wave ratio (SWR), the reflected wave reflection intensity, the propagation delay time of the reflected wave with respect to the transmitted wave, the phase change between the transmitted wave and the reflected wave, and transmission. Measure at least one of the frequency changes between the wave and the reflected wave.
  • the sensor 20 can detect a relative position change between the object (detection target) on the sheet 2 and the sensor 20 by measuring at least one of these changes.
  • these changes include the distance between the sensor 20 and the detection target, the size of the detection target, the shape of the reflection surface of the detection target, the physical properties of the detection target (for example, a metal plane, Affected by the surface of the human body).
  • the sensor 20 when transmitting and receiving radio waves of 100 MHz to 5 GHz, the sensor 20 measures a change in the standing wave ratio and detects a relative position change with respect to the detection target based on the measurement result. For example, when transmitting and receiving radio waves of 10 GHz to 100 GHz, the sensor 20 measures changes in the standing wave ratio, propagation delay time, and Doppler frequency, and detects changes in relative position with the detection target based on the measurement results. .
  • the sensor 20 is an electrostatic sensor that drives the sensor electrode of the sensor 20 at a frequency of, for example, 30 kHz to 1 MHz, the change in capacitance between the detection target and the sensor electrode is measured, and the measurement result Based on this, a change in relative position with the detection object is detected.
  • the radio wave is radiated toward the upper side of the sheet 2 with a spread angle of 40 ° or more and 90 ° or less. If the directivity of the radio wave is narrowed, a relative position change in a narrow range can be detected. Conversely, if the directivity of the radio wave is widened, a relative position change in a wide range can be detected.
  • the detection accuracy of the relative position change is strongly influenced by the situation in the vicinity of the sensor 20. Therefore, even if a plurality of sensors other than the sensor 20 are present in the vehicle interior, or even if the directivity of the radio wave slightly deviates from the desired spread angle, the sensor 20 changes in relative position with respect to the detection target. Can be detected with high accuracy.
  • the side surface of the buckle 8 faces, for example, the waist side surface of the occupant 11 sitting on the seat 2.
  • the radio wave transmitted from the sensor 20 at a predetermined spread angle is reflected by the seat 2 and the abdomen (including the flank) of the occupant 11, and the reflected wave arrives at the sensor 20. Therefore, the sensor 20 detects the relative position change between the buckle 8 and the abdomen (including the flank) in addition to the relative position change between the buckle 8 and the waist.
  • the flank expands and approaches the sensor 20, and the front part of the stomach protrudes toward the front side of the vehicle, increasing the radio wave reflection area.
  • the intensity of the reflected wave increases.
  • the chest of the occupant 11 expands, and the tension of the seat belt 4 increases, so the buckle 8 is drawn toward the occupant 11 side. This further increases the intensity of the reflected wave.
  • the flank is squeezed away from the sensor 20, and the front part of the abdomen is squeezed toward the rear of the vehicle to reduce the radio wave reflection area.
  • the intensity of the reflected wave is reduced.
  • the tension of the seat belt 4 decreases due to the chest of the occupant 11 being deflated, so that the buckle 8 moves away from the occupant 11. Thereby, the intensity of the reflected wave is further reduced.
  • the breathing motion of the occupant 11 can be grasped as the strength of the reflected wave.
  • the occupant 11 can detect the respiration.
  • the frequency of the radio wave is included in a frequency band that reacts to blood flow, the pulse of the occupant 11 can be detected.
  • FIG. 9 is a diagram illustrating an example of the configuration of the sensor 20.
  • the sensor 20 includes an oscillating unit 22, an output unit 23, a detecting unit 24, and an antenna 25.
  • the oscillation unit 22 generates a signal that oscillates at a specific stable frequency.
  • the output unit 23 feeds power to the antenna 25 based on the signal generated by the oscillation unit 22. If the matching of the antenna 25 is good, a radio wave is radiated from the antenna 25 into the space while the reflection loss at the antenna 25 is suppressed.
  • the standing wave ratio (SWR) refers to the ratio of the magnitude of the reflected wave to the magnitude of the traveling wave flowing from the output unit 23 to the antenna 25. If the output is stable, a change in the reflected wave from the detection target appears as a change in SWR. Synchronously with the breathing of the occupant 11, the SWR changes periodically as the buckle 8 moves or the detection object moves.
  • the detection unit 24 detects a received wave (reflected wave) and converts a change received by a high-frequency radio wave (transmitted wave) into a low-frequency change.
  • detection by the detection unit 24 include amplitude detection, frequency detection, and phase detection.
  • phase detection the phase of the traveling wave of the output unit 23 is compared with the phase of the received wave including the reflected wave, and an I component having the same phase as the traveling wave and a Q component having a 90 ° phase difference with respect to the traveling wave are obtained. And output as a detection output converted to a low frequency.
  • the detection output is an example of a sensor output signal whose waveform changes according to the movement of the object.
  • the magnitude of the detection output amplitude is calculated by I 2 + Q 2 .
  • the effective power of the detection output is calculated by multiplying the voltage by the I component (in-phase component) of the current or by multiplying the current by the I component of the voltage. By calculating the tangent of the I component and the Q component, the phase change of the reflected wave with respect to the traveling wave can be obtained.
  • the detection output includes a periodic vital sign signal component representing a vital sign that is at least one of respiration and pulse and an aperiodic movement signal component representing movement (body movement) of an object.
  • FIG. 10 is a diagram illustrating an example of a configuration of a Doppler sensor 20 ⁇ / b> A that is a specific example of the sensor 20.
  • the Doppler sensor 20A can detect the displacement of the detection object with higher accuracy from the phase change of the reflected wave with respect to the traveling wave due to the Doppler effect.
  • the Doppler sensor 20A can detect the Doppler frequency proportional to the phase change rate of the reflected wave with respect to the traveling wave by performing phase detection of the transmitted wave and the reflected wave. Based on the Doppler frequency, it is possible to derive the relative speed between the Doppler sensor 20A and the detection target. Further, when the Doppler sensor 20A selectively detects the Doppler frequency, vehicle vibration, pulse, and respiration can be easily separated.
  • the frequency of vehicle vibration is 5 Hz to 20 Hz. Specific examples of vehicle vibrations include vibrations due to vehicle travel and vibrations due to impacts on the vehicle.
  • the frequency of the pulse is 1 Hz to 3 Hz, and the frequency of respiration is 0.5 Hz to 0.2 Hz.
  • Vehicle vibration having a large amplitude and a high frequency is converted to a high frequency as a Doppler frequency. Therefore, since the vehicle vibration can be easily removed by the filter, the movement signal component synchronized with the movement (body movement) of the object and the vital sign signal synchronized with the vital sign that is at least one of respiration and pulse. It becomes easy to selectively extract the components.
  • the Doppler sensor 20A uses the Doppler effect to output a Doppler frequency signal (I output and Q output) corresponding to the frequency difference (Doppler frequency) between the transmitted wave and the reflected wave.
  • the I output and the Q output are voltage signals having a phase difference of 90 ° ( ⁇ / 2).
  • the Doppler sensor 20A includes, for example, an oscillator 33, a transmission antenna 31, a reception antenna 32, a delay circuit 35, and mixers 34 and 36.
  • a radio wave (for example, a microwave) is transmitted from the transmission antenna 31 by the oscillation signal of the oscillator 33.
  • the radio wave transmitted from the transmission antenna 31 is reflected by the detection object on the sheet 2, and the reception antenna 32 receives the reflected wave.
  • the delay circuit 35 delays the phase of the received signal of the receiving antenna 32 by 90 ° ( ⁇ / 2).
  • the mixer 34 receives the oscillation signal from the oscillator 33 and the reception signal from the reception antenna 32 to generate an I output (I component).
  • the mixer 36 receives the oscillation signal of the oscillator 33 and the reception signal of the reception antenna 32 whose phase is delayed by the delay circuit 35, and generates a Q output (Q component).
  • the transmission antenna 31 and the reception antenna 32 are, for example, planar patch antennas formed in a quadrangular shape. There may be a plurality of transmission antennas 31 and reception antennas 32, respectively.
  • FIG. 11 is a diagram illustrating an example of the relationship between the movement of the detection target and the detection output.
  • FIG. 11A shows the movement of the detection object.
  • the horizontal axis represents the number of samplings, and the vertical axis represents the amount of phase change of the reflected wave with respect to the traveling wave.
  • FIG. 11B shows the detection output (I output and Q output).
  • the horizontal axis represents the number of samplings, and the vertical axis represents the amplitude of the detection output.
  • the MPU 30 demodulates the I output and Q output shown in FIG. 11 (b) and calculates the phase change (rotation) of the reflected wave with respect to the traveling wave,
  • the movement signal component shown in FIG. 11A can be detected.
  • FIG. 12 is a diagram illustrating an example of the relationship between the displacement of the body surface of the occupant 11 and the detection output.
  • FIG. 12A shows the displacement of the body surface of the occupant 11.
  • FIG. 12B shows the detection output (I output and Q output).
  • the horizontal axis represents the number of samplings, and the vertical axis represents the amplitude of the detection output.
  • the MPU 30 demodulates the I output and the Q output shown in FIG. 12B and calculates the phase change (rotation) of the reflected wave with respect to the traveling wave.
  • the displacement of the body surface shown in FIG. 12 (a) can be detected.
  • FIG. 13 is a diagram illustrating an example of the configuration of the buckle switch 13 and the ECU 100A.
  • the ECU 100A is an example of the ECU 100.
  • the buckle switch 13 includes a hall sensor 40, a transistor 41, a current source 42, and a resistor 43.
  • the buckle switch 13 notifies the ECU 100A of the detection state of the buckle switch 13 via the two wires 18 and 19.
  • the ECU 100A includes a detection resistor 106 that pulls up the wiring 18 to the DC power source 105 of the power supply voltage VB, and an information reception unit 107 that detects the detection voltage Vs generated at both ends of the detection resistor 106.
  • the power supply voltage VB is, for example, 12V.
  • the detection voltage Vs is generated when the detection current Ia flows through the detection resistor 106.
  • the detection current Ia flows through a route of the DC power source 105, the detection resistor 106, the wiring 18, the transistor 41, the wiring 19, and the ground 104.
  • the hall sensor 40 is compared with the case where the tongue 7 and the buckle 8 are connected (when the buckle switch 13 is on) and when the tongue 7 and the buckle 8 are not connected (when the buckle switch 13 is off). Thus, the base current for driving the transistor 41 is increased.
  • the current value of the detection current Ia is 7 mA or less when the buckle switch 13 is off, and is 12 mA or more when the buckle switch 13 is on.
  • the information receiving unit 107 can determine whether the buckle switch 13 is on or off based on the change in the detection voltage Vs due to the change in the detection current Ia. For example, when the buckle switch 13 generates a voltage higher than a predetermined threshold between the terminal 15 and the terminal 16 (that is, the detection voltage Vs having a voltage value lower than the predetermined determination threshold is detected. If it is determined that the buckle switch 13 is off. On the other hand, when the buckle switch 13 generates a voltage lower than the threshold value between the terminal 15 and the terminal 16 (that is, the detection voltage Vs having a voltage value higher than the determination threshold value is detected). ), It is determined that the buckle switch 13 is on.
  • the power supply voltage of the Hall sensor 40 is supplied from the terminal 15.
  • FIG. 14 is a diagram illustrating an example of the configuration of the buckle switch 13 and the ECU 100B.
  • the ECU 100B is an example of the ECU 100. Even if the detection resistor is inserted in series with the ground line as shown, the information receiving unit 107 can receive the detection state of the buckle switch 13 as in the case of FIG.
  • the configuration of the buckle switch 13 is the same as that in FIG.
  • the ECU 100B includes a detection resistor 108 that pulls down the wiring 19 to the ground 104, and an information reception unit 107 that detects a detection voltage Vs generated at both ends of the detection resistor 108.
  • the information receiving unit 107 can determine whether the buckle switch 13 is on or off based on the change in the detection voltage Vs due to the change in the detection current Ia.
  • FIG. 15 is a diagram showing an example of the configuration of the main body 8a of the buckle 8. As shown in FIG. Terminals 14, 15, and 16 are connected to ECU 100 via wires 17, 18, and 19, respectively (see FIG. 3).
  • the main body 8 a has a buckle switch 13 and an occupant sensor 12.
  • the occupant sensor 12 includes, for example, a sensor 20, an MPU (Micro-Processing Unit) 30, a regulator 29, and input / output circuits (capacitor 37, diodes 38 and 39, resistors 47 and 48, a transistor 46, and the like).
  • the ground 28 of the main body 8 a is connected to the terminal 16.
  • the sensor 20 and the MPU 30 are driven with a voltage (eg, 2.5 V) that is step-down regulated by the regulator 29.
  • the drive current (current consumption) of the sensor 20 and the MPU 30 is about 5 mA in total.
  • the presence / absence information detection unit 26 and the physiological information detection unit 27 are realized by the MPU 30.
  • a sensor output signal converted into a low frequency by detection by the sensor 20 is input to the MPU 30.
  • the MPU 30 determines whether or not the occupant 11 exists by executing a predetermined presence / absence determination process on the detection output (an example of the sensor output signal) output from the sensor 20.
  • the MPU 30 outputs presence / absence information indicating whether or not the occupant 11 is present from the terminals 14 and 16 by switching the transistor 46.
  • the MPU 30 (physiological information detection unit 27) detects the physiological information of the occupant 11 by executing a predetermined physiological information detection process on the detection output output from the sensor 20.
  • the MPU 30 outputs the physiological information of the occupant 11 from the terminals 14 and 16 by switching the transistor 46.
  • the MPU 30 (physiological information detection unit 27) detects a cycle of a vital sign signal component representing a vital sign that is at least one of respiration and pulse from the detection output output from the sensor 20, for example.
  • the MPU 30 has a function of extracting significant features such as the movement of the detection target object from the input sensor output signal and selectively extracting a periodic change in vital signs of breathing or pulse.
  • the detection state of the buckle switch 13 is input to the MPU 30 via the resistor 45.
  • the MPU 30 switches between presence / absence information output and physiological information output based on the detection state input via the resistor 45.
  • the MPU 30 detects the presence / absence of the occupant 11 and the physiological state using separate processing logics. For example, when an occupant gets in and sits on the seat 2, the MPU 30 performs processing such as classification such as whether the detected movement is a human movement or a movement of a non-human movement in order to respond to the rapid movement of the occupant. And seating of the occupant 11 is reliably detected. Since the seating is premised after the on-state of the buckle switch 13 is detected, the MPU 30 switches from the presence / absence determination processing logic to the physiological information detection processing logic.
  • the MPU 30 may execute both processing logics in parallel. Since the electronic circuit incorporated in the buckle 8 is small and inexpensive and requires power saving, it is preferable to use a power saving processor. However, a small microprocessor may run out of RAM (Random Access Memory) for intermediate processing.
  • RAM Random Access Memory
  • the MPU 30 changes the determination threshold according to the difference in switch information (detection state) of the buckle switch 13 and commonly uses the arithmetic processing part.
  • the MPU 30 uses the RAM redundantly by switching the arithmetic processing logic itself according to the difference in the switch information (detection state) of the buckle switch 13.
  • the internal processing of the MPU 30 it is possible to reduce the necessary resources of the processor, so that a great economic advantage can be obtained in the case of commercialization.
  • the buckle 8 may include a light emitting diode 44 which is an example of a light emitting unit.
  • the light emitting diode 44 is provided in the main body portion 8 a so as to be visible to the occupant 11.
  • the MPU 30 changes the light emission mode of the light emitting diode 44 according to the difference in the detection state of the buckle switch 13, for example.
  • the MPU 30 can make the occupant 11 easily recognize the position of the buckle 8 or prompt the occupant 11 to attach the seat belt 4 by turning on the light emitting diode 44 when the buckle switch 13 is off.
  • the MPU 30 changes the light emission mode of the light emitting diode 44 according to changes in physiological information, for example.
  • the MPU 30 blinks the light emitting diode 44 in synchronization with the detected respiration cycle. As a result, the breathing state of the occupant 11 can be recognized by the blinking of light.
  • FIG. 16 is a timing chart showing an example of the voltage output of the buckle switch 13 and the voltage output of the occupant sensor 12.
  • FIG. 16 shows an example of operation waveforms of the configuration shown in FIG. In FIG. 16, after the occupant sensor 12 detects a change from the absence of the occupant to the presence and the buckle switch 13 detects the switching from the buckle off to the buckle on, An example of switching to output of respiratory cycle information is shown.
  • the buckle off indicates that the buckle switch 13 is off
  • the buckle on indicates that the buckle switch 13 is on.
  • the transistor 41 When the tongue 7 and the buckle 8 are not connected, the transistor 41 is off (the buckle switch 13 is off). Since the transistor 41 is turned off, the output voltage at both ends of the buckle switch 13 (the voltage between the terminal 15 and the terminal 16) is higher than the threshold Th1.
  • the buckle switch 13 outputs a voltage higher than the threshold value Th ⁇ b> 1 from the terminals 15 and 16 as a signal indicating an unconnected state in which the tongue 7 and the buckle 8 are not connected.
  • the MPU 30 executes the presence / absence determination of the occupant 11 when a voltage higher than the threshold Th1 is detected via the resistor 45.
  • the MPU 30 When the presence of the occupant 11 is not detected, the MPU 30 always turns off the transistor 46, thereby increasing the output voltage (the voltage between the terminal 14 and the terminal 16) at both ends of the occupant sensor 12 above the threshold Th2. .
  • the occupant sensor 12 outputs a voltage higher than the threshold Th ⁇ b> 2 from the terminals 14 and 16 as absence information of the occupant 11.
  • the MPU 30 detects the presence of the occupant 11.
  • the MPU 30 turns on / off the transistor 46 to output a first period pulse voltage that repeatedly crosses the threshold Th2.
  • the occupant sensor 12 outputs the pulse voltage of the first cycle from the terminals 14 and 16 as the presence information of the occupant 11.
  • the transistor 41 When the tongue 7 and the buckle 8 are connected, the transistor 41 is turned on (the buckle switch 13 is turned on). When the transistor 41 is turned on, the output voltage across the buckle switch 13 is lower than the threshold Th1.
  • the buckle switch 13 outputs a voltage lower than the threshold value Th ⁇ b> 1 from the terminals 15 and 16 as a signal indicating a connection state in which the tongue 7 and the buckle 8 are connected.
  • the MPU 30 detects the physiological information of the occupant 11 when a voltage lower than the threshold Th1 is detected via the resistor 45.
  • the MPU 30 regards the occupant 11 as wearing the seat belt 4 and detects physiological information such as a respiratory cycle.
  • the MPU 30 turns on / off the transistor 46 to output a second period pulse voltage that repeatedly crosses the threshold Th2.
  • the occupant sensor 12 outputs the pulse voltage of the second period from the terminals 14 and 16 as physiological information of the occupant 11.
  • the second cycle is different from the first cycle.
  • the second period is longer than the first period, but may be shorter than the first period.
  • the MPU 30 may change the second cycle in proportion to the cycle such as breathing or pulse, or may output a code pulse representing a stable state or unstable state such as breathing or pulse.
  • FIG. 17 is a timing chart showing an example of the current output of the buckle switch 13 and the current output of the occupant sensor 12.
  • FIG. 17 shows an example of operation waveforms of the configuration shown in FIG. 15 as in the case of FIG.
  • the occupant sensor 12 detects a change from the absence of the occupant to the presence
  • the buckle switch 13 detects the change from the buckle off to the buckle on.
  • An example of switching from the output of presence information to the output of occupant breathing cycle information will be shown.
  • the output current i-Hole (the current flowing through the resistor 43) of the buckle switch 13 is lower than the threshold Th3.
  • the buckle switch 13 outputs an output current i-Hole having a level lower than the threshold Th3 from the terminal 15 as a signal indicating a non-connected state where the tongue 7 and the buckle 8 are not connected.
  • the MPU 30 When the output current i-Hole having a level lower than the threshold Th3 is detected through the resistor 45, the MPU 30 performs the presence / absence determination of the occupant 11.
  • the MPU 30 reduces the output current i-Out (current flowing through the resistor 47) of the occupant sensor 12 by always turning off the transistor 46 when the presence of the occupant 11 is not detected.
  • the occupant sensor 12 outputs an output current (sum of i-Out and i-Sense) at a level lower than the threshold value Th4 from the terminal 14 as non-existence information of the occupant 11.
  • i-Sense is a power supply current supplied to the regulator 29.
  • the MPU 30 detects the presence of the occupant 11.
  • the MPU 30 turns on / off the transistor 46 to output a third period pulse current that repeatedly crosses the threshold Th4.
  • the occupant sensor 12 outputs the pulse current of the third period from the terminal 14 as the presence information of the occupant 11.
  • the buckle switch 13 When the buckle switch 13 is on, the output current i-Hole of the buckle switch 13 is higher than the threshold Th3.
  • the buckle switch 13 outputs an output current i-Hole having a level higher than the threshold Th3 from the terminal 15 as a signal indicating a connection state in which the tongue 7 and the buckle 8 are connected.
  • the MPU 30 detects the physiological information of the occupant 11.
  • the MPU 30 regards the occupant 11 as wearing the seat belt 4 and detects physiological information such as a respiratory cycle.
  • the buckle switch 13 is detected to be on, the MPU 30 turns on / off the transistor 46 to output a pulse current having a fourth period that repeatedly crosses the threshold Th4.
  • the occupant sensor 12 outputs a pulse current of the fourth period from the terminal 14 as physiological information of the occupant 11.
  • the fourth cycle is different from the third cycle.
  • the fourth period is longer than the third period, but may be shorter than the third period.
  • the MPU 30 may change the fourth cycle in proportion to the cycle such as breathing or pulse, or may output a code pulse representing a stable state or unstable state such as breathing or pulse.
  • the occupant sensor 12 switches the presence / absence information and the physiological information according to the switching of the detection state of the buckle switch 13, as shown in FIGS. To do.
  • the output of presence information and physiological information can be switched in synchronization with the switching timing of the buckle 8 and the tongue 7 from the coupling to the non-coupling or the switching timing from the non-coupling to the coupling.
  • the occupant sensor 12 outputs physiological information when the buckle switch 13 does not detect the connection between the buckle 8 and the tongue 7 as shown in FIGS. Output presence / absence information.
  • the buckle switch 13 detects the connection, the occupant sensor 12 outputs physiological information without outputting presence / absence information.
  • the ECU 100 can easily determine that the information supplied from the occupant sensor 12 is presence / absence information when the buckle switch 13 is detected to be off, and the occupant sensor 12 when the buckle switch 13 is detected to be on. Can be easily determined as physiological information.
  • the occupant sensor 12 may switch from the output of the presence information to the output of the physiological information after a predetermined time has elapsed after detecting the switching of the buckle switch 13 from OFF to ON.
  • the occupant sensor 12 may switch from outputting physiological information to outputting presence / absence information after a predetermined time has elapsed after detecting switching of the buckle switch 13 from on to off.
  • the occupant sensor 12 outputs the non-existence information of the occupant 11 when the presence of the occupant 11 is not detected and the connection between the buckle 8 and the tongue 7 is not detected by the buckle switch 13. .
  • the occupant sensor 12 outputs physiological information of the occupant 11 when the presence of the occupant 11 is detected and the connection is not detected by the buckle switch 13.
  • the occupant sensor 12 may output remind information that prompts the user to wear the seat belt 4 when the presence of the occupant 11 is detected and the connection is not detected by the buckle switch 13.
  • the occupant sensor 12 determines the physiology of the occupant 11 from the output of the presence / absence information of the occupant 11. Switch to output information. Thereby, even if the connection of the buckle 8 and the tongue 7 is not detected by the buckle switch 13 while the output of the presence information of the occupant 11 is continued, the ECU 100 can start receiving physiological information.
  • the occupant sensor 12 detects the presence of the occupant 11 and the remind information that prompts the user to attach the seat belt 4 from the output of the presence / absence information of the occupant 11 when a state where the connection is not detected by the buckle switch 13 has elapsed. You may switch to the output.
  • the occupant sensor 12 may output the presence information of the occupant 11 as remind information for urging the user to wear the seat belt 4.
  • the ECU 100 turns on the air conditioner and the seat heater. This is effective in saving energy.
  • the ECU 100 can output a belt remind alarm when the wearing of the seat belt 4 is not detected by the buckle switch 13 within a predetermined time after the presence information by the occupant sensor 12 is detected.
  • the ECU 100 can display the vital sign information of the occupant 11 on the display based on the physiological information supplied from the occupant sensor 12.
  • the ECU 100 may display the vital sign information itself on the display, but may display information obtained based on the vital sign information (for example, information that prompts the occupant 11 to take a break) on the display.
  • the ECU 100 may display information prompting the occupant 11 to take a break (for example, information pronounced of a break such as a coffee cup) when the occurrence frequency of yawning or drowsiness exceeds a predetermined level. Good.
  • the buckle 8 includes terminals 14 and 16 as output terminals shared for outputting presence / absence information and physiological information (see, for example, FIG. 3). As a result, the number of wires connecting the buckle 8 and the ECU 100 can be reduced.
  • compatibility with a buckle in which the occupant sensor 12 is not mounted can be ensured. That is, without changing the connection interface with the buckle 8 on the ECU 100 side, the ECU 100 can acquire the detection state of the buckle switch 13 even if a buckle on which the occupant sensor 12 is not mounted is connected.
  • FIG. 18 is a block diagram illustrating an example of the configuration of the in-vehicle system 1B. The description of the same configuration as that of the first embodiment is omitted or simplified by using the above description.
  • the main body 8 a of the buckle 8 has at least two terminals 15 and 16, and the ECU 100 has at least two terminals 102 and 103.
  • the in-vehicle system 1B includes a wiring 18 that connects the terminal 15 and the terminal 102 to each other, and a wiring 19 that connects the terminal 16 and the terminal 103 to each other.
  • the buckle 8 includes terminals 15 and 16 as output terminals shared by the detection state of the buckle switch 13, presence / absence information, and physiological information. As a result, the number of wires connecting the buckle 8 and the ECU 100 can be further reduced.
  • the buckle 8 outputs a signal obtained by superimposing the output information (presence / absence information or physiological information) of the occupant sensor 12 on the detection state of the buckle switch 13 from the terminals 15 and 16 by voltage modulation or current modulation.
  • FIG. 19 is a diagram showing an example of the configuration of the main body 8a of the buckle 8. As shown in FIG. FIG. 19 shows an embodiment in which two outputs of the buckle switch 13 and the occupant sensor 12 are integrated in accordance with the output specification of one buckle switch 13.
  • the two output currents are summed. For example, when the sum of i-Sense and i-Out is the same as the output current i-Hole, the total current is doubled, which may exceed the current supply capability of the ECU 100.
  • the main body 8a of the buckle 8 includes a transistor 49 on the ground side of the transistor 41 and the Hall sensor 40.
  • the MPU 30 can cut the output current i-Hole by turning off the transistor 49.
  • the MPU 30 turns on the transistor 49 to flow the output current i-Hole.
  • the MPU 30 flows the output current i-Hole, and at the same time cuts the current I-Out by turning off the transistor 46. Thereby, the current supplied to the buckle 8 by the ECU 100 on the information receiving side is kept at one buckle switch 13.
  • FIG. 20 is a timing chart showing an example of the voltage output of the buckle switch 13 and the voltage output of the occupant sensor 12.
  • FIG. 20 shows an example of operation waveforms of the configuration shown in FIG. In FIG. 20, the occupant sensor 12 detects a change from the absence of the occupant to the presence, and the buckle switch 13 detects the change from the buckle off to the buckle on. An example of switching to output of respiratory cycle information is shown.
  • FIG. 20 shows an embodiment in which the output of the occupant sensor 12 is superimposed on the output of the buckle switch 13.
  • the transistor 41 When the tongue 7 and the buckle 8 are not connected, the transistor 41 is off (the buckle switch 13 is off). Since the transistor 41 is turned off, the output voltage at both ends of the buckle switch 13 (the voltage between the terminal 15 and the terminal 16) is higher than the threshold Th5. The buckle switch 13 outputs a voltage higher than the threshold Th5 from the terminals 15 and 16 as a signal indicating a non-connected state where the tongue 7 and the buckle 8 are not connected.
  • the MPU 30 executes the presence / absence determination of the occupant 11 when a voltage higher than the threshold Th5 is detected through the resistor 45.
  • the MPU 30 When the presence of the occupant 11 is not detected, the MPU 30 always turns off the transistor 46, thereby increasing the output voltage (voltage between the terminal 15 and the terminal 16) at both ends of the occupant sensor 12 above the threshold Th5. .
  • the occupant sensor 12 outputs a voltage higher than the threshold Th5 from the terminals 15 and 16 as the absence information of the occupant 11.
  • the MPU 30 detects the presence of the occupant 11.
  • the MPU 30 turns on / off the transistor 46 to output a pulse voltage having a first cycle that repeatedly crosses the threshold Th5.
  • the occupant sensor 12 outputs the pulse voltage of the first cycle from the terminals 15 and 16 as the presence information of the occupant 11.
  • the transistor 41 When the tongue 7 and the buckle 8 are connected, the transistor 41 is turned on (the buckle switch 13 is turned on). When the transistor 41 is turned on, the output voltage across the buckle switch 13 is lower than the threshold value Th5. The buckle switch 13 outputs a voltage lower than the threshold value Th ⁇ b> 5 from the terminals 15 and 16 as a signal indicating a connection state in which the tongue 7 and the buckle 8 are connected.
  • the MPU 30 detects the physiological information of the occupant 11 when a voltage lower than the threshold Th5 is detected through the resistor 45.
  • the MPU 30 regards the occupant 11 as wearing the seat belt 4 and detects physiological information such as a respiratory cycle.
  • the MPU 30 turns on / off the transistor 46 to output a pulse voltage having a second period that repeatedly crosses the threshold Th5.
  • the occupant sensor 12 outputs the pulse voltage of the second period from the terminals 15 and 16 as physiological information of the occupant 11.
  • the second cycle is different from the first cycle.
  • the second period is longer than the first period, but may be shorter than the first period.
  • the buckle switch 13 outputs the voltage when it is off.
  • the occupant sensor 12 detects the occupant's seating, the occupant sensor 12 superimposes on the output voltage of the buckle switch 13 a belt remind signal (that is, an occupant 11 presence signal) that prompts the user to fasten the seat belt 4.
  • the MPU 30 of the occupant sensor 12 outputs an on-pulse of 10 msec once per second, for example (see FIG. 20).
  • the ECU 100 can receive the belt remind signal by detecting the 10 msec on-pulse.
  • the buckle switch 13 When the buckle 8 and the tongue 7 are connected, the buckle switch 13 outputs the voltage when it is on.
  • the MPU 30 of the occupant sensor 12 detects respiration by the sensor 20, the MPU 30 outputs an off pulse of 10 msec in synchronization with the detected respiration cycle (see FIG. 20). For example, the MPU 30 outputs an off pulse of 10 msec once every 2 seconds.
  • the ECU 100 can receive the respiratory cycle by detecting the 10 msec off-pulse.
  • the buckle 8 can be shared regardless of whether the ECU has a configuration capable of receiving presence / absence information and physiological information. That is, it is possible to determine whether or not to equip the vehicle with a belt reminder system or a physiological information detection system simply by replacing the buckle.
  • FIG. 21 is a timing chart showing an example of the current output of the buckle switch 13 and the current output of the occupant sensor 12.
  • FIG. 21 shows an example of the operation waveform of the configuration shown in FIG. 19 as in the case of FIG.
  • the occupant sensor 12 detects the change from the absence of the occupant to the presence
  • the buckle switch 13 detects the change from the buckle off to the buckle on.
  • An example of switching from the output of presence information to the output of occupant respiratory cycle information will be shown.
  • FIG. 21 shows an example in which the current value of i-Out is approximately halved with respect to i-Hole.
  • the ECU100 determines that the buckle switch 13 is OFF when it is detected that a current lower than the current threshold Th12 is output from the terminal 15. On the other hand, when it is detected that a current higher than the current threshold Th12 is output from the terminal 15, the ECU 100 determines that the buckle switch 13 is on.
  • the ECU 100 detects that a current lower than the current threshold Th13 is output from the terminal 15, Is determined not to exist. When it is detected that a current lower than the current threshold Th12 is output from the terminal 15, the ECU 100 detects a pulse straddling the current threshold Th13 as occupant presence information. When it is detected that a current higher than the current threshold Th12 is output from the terminal 15, the ECU 100 detects a pulse straddling the current threshold Th11 as physiological information.
  • FIG. 22 is a timing chart showing another example of the current output of the buckle switch 13 and the current output of the occupant sensor 12.
  • FIG. 22 shows an example of the operation waveform of the configuration shown in FIG. 19 as in the case of FIG. In FIG. 22, as in the case of FIG. 20, the occupant sensor 12 detects a change from the absence of the occupant to the presence, and the buckle switch 13 detects the change from the buckle off to the buckle on. An example of switching from the output of presence information to the output of occupant respiratory cycle information will be shown.
  • ECU100 determines that the buckle switch 13 is ON when it is detected that the current within the first current value range R1 is output from the terminal 15. On the other hand, when it is detected that the current within the second current value range R2 is output from the terminal 15, the ECU 100 determines that the buckle switch 13 is off.
  • the ECU 100 determines that no occupant is present.
  • the ECU 100 detects a pulse straddling the current threshold Th6 as occupant presence information.
  • the ECU 100 detects, as physiological information, a pulse that straddles the current threshold value Th7 in the first current value range R1 when it is detected that the current in the first current value range R1 is output from the terminal 15. To do.
  • presence / absence information and physiological information generated by the occupant sensor 12 may be output from a communication terminal which is at least one of the terminals 14, 15, and 16 by a predetermined communication method.
  • Specific examples of communication methods include LIN (Local Interconnect Network) and CAN (Controller Area Network).
  • the occupant sensor 12 can encode presence / absence information and physiological information as communication data and transmit the encoded data as serial data.
  • the serial data can include the detection state of the buckle switch. Therefore, the ECU on the receiving side can receive not only the presence / absence information and physiological information but also the detection state of the buckle switch 13 only with the serial communication data.
  • the occupant sensor 12 may once transmit the detection state of the buckle switch 13 to the ECU 100 and switch the detection function of the occupant 11 using the detection state of the buckle switch 13 transmitted from the ECU 100. Furthermore, the occupant sensor 12 may switch the detection function of the occupant 11 or the type of detection information to be output according to vehicle information transmitted from the ECU 100 (information that cannot be obtained only by the buckle).
  • the occupant sensor 12 may be a means for detecting the movement of the occupant by electromagnetic waves such as infrared rays, or may be a means for detecting the movement of the occupant by temperature.
  • the occupant sensor 12 may output the body temperature or blood pressure of the occupant 11 to the ECU 100 as vital sign information.
  • the seat 2 may be a front seat of the vehicle or a rear seat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Educational Technology (AREA)
  • Biomedical Technology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Developmental Disabilities (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Automotive Seat Belt Assembly (AREA)

Abstract

Provided is a buckle comprising: a main body that can be connected to a tongue attached to a seatbelt of a vehicle; a buckle switch that detects whether the tongue and the main body are connected; and an occupant sensor that detects an occupant in the seat of the vehicle. The occupant sensor switches the function of detection of the occupant using the detection state of the buckle switch. Also provided are: a vehicle-mounted system comprising the buckle and a receiving device that receives the information detected by the occupant sensor; and a seatbelt system comprising the buckle.

Description

バックル、車載システム及びシートベルトシステムBuckle, in-vehicle system and seat belt system
 本発明は、バックル、車載システム及びシートベルトシステムに関する。 The present invention relates to a buckle, an in-vehicle system, and a seat belt system.
 従来、車両のシートベルトに取り付けられるタングとの連結を検出するバックルスイッチと、シート上の乗員の有無を赤外線によって検出する乗員センサとを備える、バックルが知られている(例えば、特許文献1を参照)。バックルスイッチの検出結果に基づいて、タングとの連結有無を判定することができ、乗員センサの検出結果に基づいて、シート上の乗員の存否を判定することができる。 2. Description of the Related Art Conventionally, a buckle is known that includes a buckle switch that detects connection with a tongue attached to a seat belt of a vehicle and an occupant sensor that detects the presence or absence of an occupant on a seat by infrared rays (for example, Patent Document 1 reference). Based on the detection result of the buckle switch, it is possible to determine whether or not the tongue is connected, and based on the detection result of the occupant sensor, it is possible to determine whether there is an occupant on the seat.
 また、車両のシート上の乗員の呼吸状態を赤外線により検知するセンサを備えたバックルが知られている(例えば、特許文献2を参照)。 Also, a buckle equipped with a sensor that detects the breathing state of an occupant on a vehicle seat with infrared rays is known (see, for example, Patent Document 2).
 このように、乗員の存否情報や乗員の呼吸状態などの生理的情報を乗員情報として検出する技術が存在する。 Thus, there is a technique for detecting physiological information such as the presence / absence information of an occupant and the breathing state of the occupant as occupant information.
特開2000-219102号公報JP 2000-219102 A 特開2013-216187号公報JP 2013-216187 A
 乗員を検出する乗員センサに求められる乗員検出機能は、シートベルトが装着されている状況又は装着されていない状況に応じて異なる場合がある。しかしながら、上述の従来のバックルでは、シートベルトが装着されている状況又は装着されていない状況に応じて異なる種類の乗員検出機能を働かせることは難しい。 The occupant detection function required for the occupant sensor for detecting the occupant may differ depending on whether the seat belt is worn or not. However, with the above-described conventional buckle, it is difficult to use different types of occupant detection functions depending on the situation where the seat belt is worn or not.
 そこで、本発明の一態様は、シートベルトが装着されている状況又は装着されていない状況に応じて異なる種類の乗員検出機能を働かせることができる、バックル、車載システム及びシートベルトシステムを提供することを目的とする。 Accordingly, one aspect of the present invention provides a buckle, an in-vehicle system, and a seat belt system that can operate different types of occupant detection functions depending on whether the seat belt is attached or not. With the goal.
 上記目的を達成するため、本発明の第1の態様では、
 車両のシートベルトに取り付けられたタングと連結可能な本体部と、
 前記タングと前記本体部との連結の有無を検知するバックルスイッチと、
 前記車両のシート上の乗員を検出する乗員センサとを備え、
 前記乗員センサは、前記バックルスイッチの検知状態を利用して、前記乗員の検出機能を切り替える、バックルが提供される。
In order to achieve the above object, in the first aspect of the present invention,
A body portion connectable with a tongue attached to a vehicle seat belt;
A buckle switch for detecting the presence or absence of connection between the tongue and the main body;
An occupant sensor for detecting an occupant on a seat of the vehicle,
The occupant sensor is provided with a buckle that switches the detection function of the occupant using the detection state of the buckle switch.
 また、上記目的を達成するため、本発明の第2の態様では、
 当該バックルと、前記乗員センサによる検出情報を受信する受信装置とを備える、車載システムが提供される。
In order to achieve the above object, in the second aspect of the present invention,
An in-vehicle system is provided that includes the buckle and a receiving device that receives detection information from the occupant sensor.
 また、上記目的を達成するため、本発明の第3の態様では、
 車両のシートベルトと、
 前記シートベルトに取り付けられたタングと、
 前記タングと連結可能なバックルとを備え、
 前記バックルは、
 前記タングと前記バックルとの連結の有無を検知するバックルスイッチと、
 前記車両のシート上の乗員を検出する乗員センサとを備え、
 前記乗員センサは、前記バックルスイッチの検知状態を利用して、前記乗員の検出機能を切り替える、シートベルトシステムが提供される。
In order to achieve the above object, in the third aspect of the present invention,
A vehicle seat belt,
A tongue attached to the seat belt;
A buckle connectable with the tongue,
The buckle is
A buckle switch for detecting whether or not the tongue and the buckle are connected;
An occupant sensor for detecting an occupant on a seat of the vehicle,
A seat belt system is provided in which the occupant sensor switches the detection function of the occupant using the detection state of the buckle switch.
 本発明の上記の態様によれば、前記乗員センサは、前記バックルスイッチの検知状態を利用して、前記乗員の検出機能を切り替える。これにより、前記乗員センサは、前記タングと前記バックルとが連結している状況(すなわち、前記シートベルトが装着されている状況)に応じて前記乗員の検出機能を切り替えできる。又は、前記乗員センサは、前記タングと前記バックルとが連結していない状況(すなわち、前記シートベルトが装着されていない状況)に応じて前記乗員の検出機能を切り替えできる。したがって、前記シートベルトが装着されている状況又は装着されていない状況に応じて異なる種類の乗員検出機能を働かせることができる。 According to the above aspect of the present invention, the occupant sensor switches the occupant detection function using the detection state of the buckle switch. Accordingly, the occupant sensor can switch the occupant detection function in accordance with a situation where the tongue and the buckle are connected (that is, a situation where the seat belt is worn). Alternatively, the occupant sensor can switch the occupant detection function according to a situation where the tongue and the buckle are not connected (that is, a situation where the seat belt is not worn). Therefore, different types of occupant detection functions can be activated depending on whether the seat belt is worn or not.
シートベルトシステムの構成の一例を示す図である。It is a figure which shows an example of a structure of a seatbelt system. シートに座っている乗員を上方からの視点で示す図である。It is a figure which shows the passenger | crew sitting on the seat from the viewpoint from upper direction. 車載システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a vehicle-mounted system. バックルの本体部の一例を示す側面図である。It is a side view which shows an example of the main-body part of a buckle. バックルの本体部の一例を示す斜視図である。It is a perspective view which shows an example of the main-body part of a buckle. バックルの本体部の一例を示す平面図である。It is a top view which shows an example of the main-body part of a buckle. 電波の放射状態の一例をバックルの側面視で示す図である。It is a figure which shows an example of the radiation | emission state of an electromagnetic wave by the side view of a buckle. 電波の放射状態の一例をバックルの上面視で示す図である。It is a figure which shows an example of the radiation | emission state of an electromagnetic wave by the top view of a buckle. センサの構成の一例を示す図である。It is a figure which shows an example of a structure of a sensor. センサの一具体例であるドップラーセンサの構成の一例を示す図である。It is a figure which shows an example of a structure of the Doppler sensor which is a specific example of a sensor. 検知対象物の移動と検波出力との関係の一例を示す図である。It is a figure which shows an example of the relationship between the movement of a detection target object, and a detection output. 乗員の体表の変位と検波出力との関係の一例を示す図である。It is a figure which shows an example of the relationship between the displacement of a passenger | crew's body surface, and a detection output. バックルスイッチ及び受信装置の構成の一例を示す図である。It is a figure which shows an example of a structure of a buckle switch and a receiver. バックルスイッチ及び受信装置の他の構成の一例を示す図である。It is a figure which shows an example of the other structure of a buckle switch and a receiver. バックルの本体部の構成の一例を示す図である。It is a figure which shows an example of a structure of the main-body part of a buckle. バックルスイッチの電圧出力及び乗員センサの電圧出力の一例を示すタイミングチャートである。It is a timing chart which shows an example of the voltage output of a buckle switch, and the voltage output of a crew member sensor. バックルスイッチの電流出力及び乗員センサの電流出力の一例を示すタイミングチャートである。It is a timing chart which shows an example of the current output of a buckle switch, and the current output of a crew member sensor. 車載システムの構成の他の一例を示すブロック図である。It is a block diagram which shows another example of a structure of a vehicle-mounted system. バックルの本体部の他の構成の一例を示す図である。It is a figure which shows an example of the other structure of the main-body part of a buckle. バックルスイッチの電圧出力及び乗員センサの電圧出力の一例を示すタイミングチャートである。It is a timing chart which shows an example of the voltage output of a buckle switch, and the voltage output of a crew member sensor. バックルスイッチの電流出力及び乗員センサの電流出力の一例を示すタイミングチャートである。It is a timing chart which shows an example of the current output of a buckle switch, and the current output of a crew member sensor. バックルスイッチの電流出力及び乗員センサの電流出力の一例を示すタイミングチャートである。It is a timing chart which shows an example of the current output of a buckle switch, and the current output of a crew member sensor. バックルスイッチの電圧出力及び乗員センサの電圧出力の一例を示すタイミングチャートである。It is a timing chart which shows an example of the voltage output of a buckle switch, and the voltage output of a crew member sensor.
 以下、本発明に係る実施形態を図面を参照して説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 <第1の実施形態>
 図1は、一実施形態に係るシートベルトシステム1の構成の一例を示す図である。シートベルトシステム1は、車両に搭載されるシステムの一例である。シートベルトシステム1は、例えば、シートベルト4と、リトラクタ3と、ショルダーアンカー6と、タング7と、バックル8とを備える。
<First Embodiment>
FIG. 1 is a diagram illustrating an example of a configuration of a seat belt system 1 according to an embodiment. The seat belt system 1 is an example of a system mounted on a vehicle. The seat belt system 1 includes, for example, a seat belt 4, a retractor 3, a shoulder anchor 6, a tongue 7, and a buckle 8.
 シートベルト4は、車両のシート2に座る乗員11を拘束するウェビングの一例であり、リトラクタ3に引き出し可能に巻き取られる帯状部材である。シートベルト4の先端のベルトアンカー5は、車体の床又はシート2に固定される。 The seat belt 4 is an example of a webbing that restrains the occupant 11 sitting on the seat 2 of the vehicle, and is a belt-like member that is wound around the retractor 3 so that it can be pulled out. The belt anchor 5 at the tip of the seat belt 4 is fixed to the floor of the vehicle body or the seat 2.
 リトラクタ3は、シートベルト4の巻き取り又は引き出しを可能にする巻き取り装置の一例であり、車両衝突時等の所定値以上の減速度が車両に加わると、シートベルト4がリトラクタ3から引き出されることを制限する。リトラクタ3は、シート2又はシート2の近傍の車体に固定される。 The retractor 3 is an example of a take-up device that enables the seat belt 4 to be taken up or pulled out, and the seat belt 4 is pulled out from the retractor 3 when a deceleration of a predetermined value or more is applied to the vehicle during a vehicle collision or the like. Limit that. The retractor 3 is fixed to the seat 2 or a vehicle body near the seat 2.
 ショルダーアンカー6は、シートベルト4が挿通するベルト挿通具の一例であり、リトラクタ3から引き出されたシートベルト4を乗員の肩部の方へガイドする部材である。 The shoulder anchor 6 is an example of a belt insertion tool through which the seat belt 4 is inserted, and is a member that guides the seat belt 4 pulled out from the retractor 3 toward the shoulder of the occupant.
 タング7は、シートベルト4が挿通するベルト挿通具の一例であり、ショルダーアンカー6によりガイドされたシートベルト4にスライド可能に取り付けられた部品である。 The tongue 7 is an example of a belt insertion tool through which the seat belt 4 is inserted, and is a component that is slidably attached to the seat belt 4 guided by the shoulder anchor 6.
 バックル8は、タング7が着脱可能に連結される部品であり、例えば、車体の床又はシート2に固定される。 The buckle 8 is a part to which the tongue 7 is detachably connected, and is fixed to the floor of the vehicle body or the seat 2, for example.
 バックル8は、本体部8aと、ステー8bとを有する。本体部8aは、タング7が着脱可能に連結される部位である。ステー8bは、バックル8の本体部8aを支持する支持部材の一例である。ステー8bは、車体の床又はシート2に固定される。 The buckle 8 has a main body 8a and a stay 8b. The main body 8a is a part to which the tongue 7 is detachably connected. The stay 8 b is an example of a support member that supports the main body 8 a of the buckle 8. The stay 8b is fixed to the floor of the vehicle body or the seat 2.
 タング7がバックル8に係合された状態で、ショルダーアンカー6とタング7との間のシートベルト4の部分が、乗員の胸部及び肩部を拘束するショルダーベルト部9である。タング7がバックル8に係合された状態で、ベルトアンカー5とタング7との間のシートベルト4の部分が、乗員の腰部を拘束するラップベルト部10である。 In the state where the tongue 7 is engaged with the buckle 8, the portion of the seat belt 4 between the shoulder anchor 6 and the tongue 7 is a shoulder belt portion 9 that restrains the chest and shoulders of the occupant. In a state where the tongue 7 is engaged with the buckle 8, the portion of the seat belt 4 between the belt anchor 5 and the tongue 7 is a lap belt portion 10 that restrains the occupant's waist.
 図2は、シート2に座っている乗員11を上方からの視点で示す図である。図2には、シート2の背もたれが示されている。 FIG. 2 is a view showing the occupant 11 sitting on the seat 2 from a viewpoint from above. FIG. 2 shows the backrest of the seat 2.
 シート2に着座している乗員11の呼吸によって、乗員11の体表(例えば、腰部の表面、腹部の表面、胸部の表面など)は微妙に変位する。例えば、乗員11が息を吸うと、乗員11の体表は車両前後方向及び車幅方向に膨らみ、乗員11が息を吐くと、乗員11の体表は車両前後方向及び車幅方向に萎む。したがって、乗員11の体表の変位を検知することによって、乗員11の呼吸を検出することができる。 The breathing of the occupant 11 seated on the seat 2 causes the body surface of the occupant 11 (for example, the surface of the waist, the surface of the abdomen, the surface of the chest, etc.) to be slightly displaced. For example, when the occupant 11 inhales, the body surface of the occupant 11 expands in the vehicle front-rear direction and the vehicle width direction, and when the occupant 11 exhales, the body surface of the occupant 11 contracts in the vehicle front-rear direction and the vehicle width direction. . Therefore, the breathing of the occupant 11 can be detected by detecting the displacement of the body surface of the occupant 11.
 バックル8は、乗員11の体表の変位を検知する手段として、本体部8aに設けられたセンサ20を有する。センサ20は、ステー8bに設けられてもよい。バックル8は、シート2に座っている乗員11の側部の下方に配置されている。センサ20は、バックル8の乗員11側の側面部に設けられている。センサ20は、乗員11の体内の変位を検知する手段でもよい。 The buckle 8 has a sensor 20 provided on the main body 8a as means for detecting the displacement of the body surface of the occupant 11. The sensor 20 may be provided on the stay 8b. The buckle 8 is disposed below the side of the occupant 11 sitting on the seat 2. The sensor 20 is provided on the side portion of the buckle 8 on the occupant 11 side. The sensor 20 may be a means for detecting displacement in the body of the occupant 11.
 センサ20は、車両のシート2上の物体の動きを非接触で検知する物体検知部の一例である。シート2上の物体には、乗員11に限られず、乗員11のような人以外の物が含まれる。センサ20は、シート2上の物体の動きに応じて波形が変化するセンサ出力信号を出力する。なお、「物体の動き」とは、物体の表面の動きに限られず、物体の内部の動きでもよい。 The sensor 20 is an example of an object detection unit that detects the movement of an object on the vehicle seat 2 in a non-contact manner. The object on the seat 2 is not limited to the occupant 11, and includes objects other than the person such as the occupant 11. The sensor 20 outputs a sensor output signal whose waveform changes according to the movement of the object on the seat 2. The “movement of the object” is not limited to the movement of the surface of the object, and may be movement inside the object.
 センサ20は、例えば、車両のシート2上の物体の動きを電波の送受により非接触で検知する。センサ20は、車両のシート2の座面の上方に向けて電波を送信し、送信した電波に対する反射波を受信することによって、当該座面上の物体の動きを検知する。 The sensor 20 detects, for example, the movement of an object on the vehicle seat 2 in a non-contact manner by transmitting and receiving radio waves. The sensor 20 detects a movement of an object on the seat surface by transmitting a radio wave toward the upper side of the seat surface of the seat 2 of the vehicle and receiving a reflected wave with respect to the transmitted radio wave.
 センサ20が送受する電波の具体例として、VHF帯(Very High Frequency)の電波、UHF(Ultra-High Frequency)帯やSHF(Super High Frequency)帯のマイクロ波などが挙げられる。VHF帯は、30MHz~0.3GHzの周波数帯を表す。UHF帯は、0.3GHz~3GHzの周波数帯を表す。SHF帯は、3G~30GHzの周波数帯を表す。 Specific examples of radio waves transmitted and received by the sensor 20 include VHF band (Very High Frequency) radio waves, UHF (Ultra-High Frequency) band, SHF (Super High Frequency) band microwaves, and the like. The VHF band represents a frequency band of 30 MHz to 0.3 GHz. The UHF band represents a frequency band of 0.3 GHz to 3 GHz. The SHF band represents a frequency band of 3 G to 30 GHz.
 あるいは、センサ20は、車両のシート2上の物体の動きを、当該物体とセンサ20のセンサ電極との間の静電容量の変化より非接触で検知する物体検知部でもよい。 Alternatively, the sensor 20 may be an object detection unit that detects the movement of an object on the vehicle seat 2 in a non-contact manner from a change in capacitance between the object and the sensor electrode of the sensor 20.
 図3は、車載システム1Aの構成の一例を示すブロック図である。車載システム1Aは、バックル8と、ECU100とを備える。バックル8は、本体部8aと、バックルスイッチ13と、乗員センサ12とを有する。ECUは、Electronic Control Unitの略語を表す。 FIG. 3 is a block diagram showing an example of the configuration of the in-vehicle system 1A. The in-vehicle system 1A includes a buckle 8 and an ECU 100. The buckle 8 includes a main body 8a, a buckle switch 13, and an occupant sensor 12. ECU stands for Electronic Control Unit.
 本体部8aは、タング7(図1参照)と連結可能な部位である。図3に示される例では、本体部8aは、バックルスイッチ13と、乗員センサ12とを内蔵する。 The main body 8a is a part that can be connected to the tongue 7 (see FIG. 1). In the example shown in FIG. 3, the main body 8 a includes a buckle switch 13 and an occupant sensor 12.
 バックルスイッチ13は、タング7と本体部8aとの連結を検知する連結検知手段の一例である。バックルスイッチ13は、タング7と本体部8aとの連結の有無を検知することによって、シートベルト4の装着の有無を検知する。バックルスイッチ13は、タング7と本体部8aとが連結されていない状態を、シートベルト4が装着されていない状態(シートベルト4の非装着状態)として検知する。一方、バックルスイッチ13は、タング7と本体部8aとが連結されている状態を、シートベルト4が装着されている状態(シートベルト4の装着状態)として検知する。 The buckle switch 13 is an example of a connection detection unit that detects the connection between the tongue 7 and the main body 8a. The buckle switch 13 detects whether or not the seat belt 4 is worn by detecting whether or not the tongue 7 and the main body 8a are connected. The buckle switch 13 detects a state in which the tongue 7 and the main body 8a are not connected as a state in which the seat belt 4 is not worn (a state in which the seat belt 4 is not worn). On the other hand, the buckle switch 13 detects a state in which the tongue 7 and the main body 8a are connected as a state in which the seat belt 4 is worn (a state in which the seat belt 4 is worn).
 乗員センサ12は、バックルスイッチ13の検知状態を利用して、シート2上の乗員11の存否情報を出力するかシート2上の乗員11の生理的情報を出力するかを切り替える。バックルスイッチ13の検知状態には、バックルスイッチ13がタング7と本体部8aとの連結を検知していない連結非検知状態と、バックルスイッチ13がタング7と本体部8aとの連結を検知している連結検知状態とが含まれる。 The occupant sensor 12 switches whether to output the presence / absence information of the occupant 11 on the seat 2 or the physiological information of the occupant 11 on the seat 2 using the detection state of the buckle switch 13. The detection state of the buckle switch 13 includes a connection non-detection state in which the buckle switch 13 does not detect the connection between the tongue 7 and the main body portion 8a, and a connection between the tongue 7 and the main body portion 8a. And the connected detection state.
 乗員センサ12は、センサ20と、存否情報検出部26と、生理的情報検出部27とを有する。 The occupant sensor 12 includes a sensor 20, a presence / absence information detection unit 26, and a physiological information detection unit 27.
 センサ20は、シート2上の乗員11の動きを検出し、当該動きに応じたセンサ出力信号を出力する。 The sensor 20 detects the movement of the occupant 11 on the seat 2 and outputs a sensor output signal corresponding to the movement.
 存否情報検出部26は、センサ20から出力されるセンサ出力信号に基づいて、乗員11が存在しているのか否かを検出し、乗員11の存否を表す存否情報を出力する存否情報検出機能を有する。存否情報検出部26は、乗員11の存否情報に基づいて、シートベルト4の装着を乗員11に促すリマインド情報を出力する存否情報検出機能を有してもよい。存否情報検出機能は、乗員の検出機能の一例である。 The presence / absence information detection unit 26 has a presence / absence information detection function for detecting whether or not the occupant 11 is present based on the sensor output signal output from the sensor 20 and outputting presence / absence information indicating the presence or absence of the occupant 11. Have. The presence / absence information detection unit 26 may have a presence / absence information detection function that outputs remind information that prompts the occupant 11 to attach the seat belt 4 based on the presence / absence information of the occupant 11. The presence / absence information detection function is an example of a passenger detection function.
 生理的情報検出部27は、センサ20から出力されるセンサ出力信号に基づいて、乗員11の生理的情報を検出して出力する生理的情報検出機能を有する。生理的情報検出機能は、乗員の検出機能の一例である。 The physiological information detection unit 27 has a physiological information detection function for detecting and outputting the physiological information of the occupant 11 based on the sensor output signal output from the sensor 20. The physiological information detection function is an example of an occupant detection function.
 生理的情報には、呼吸と脈拍の少なくとも一方であるバイタルサインに関するバイタルサイン情報が含まれる。呼吸に関するバイタルサイン情報の具体例として、現在の呼吸の有無、現在の呼吸周期、平均呼吸周期、自発呼吸周期、呼吸ばらつき、呼吸異常などが挙げられる。脈拍に関するバイタルサイン情報の具体例として、現在の脈拍の有無、現在の脈拍周期、平均脈拍周期、脈拍ばらつき、脈拍異常などが挙げられる。また、生理的情報には、意識レベルや体温などのバイタルサインに関するバイタルサイン情報が含まれてもよい。 Physiological information includes vital sign information related to vital signs that are at least one of breathing and pulse. Specific examples of vital sign information relating to respiration include the presence or absence of the current respiration, the current respiration cycle, the average respiration cycle, the spontaneous respiration cycle, the respiration variation, and the respiratory abnormality. Specific examples of vital sign information related to the pulse include the presence / absence of the current pulse, the current pulse period, the average pulse period, pulse variation, and pulse abnormality. The physiological information may include vital sign information related to vital signs such as a consciousness level and body temperature.
 生理的情報検出部27は、少なくとも一つのバイタルサイン情報を分析することによって、乗員11のあくびや眠気などの状態を検出し、その検出した結果を生理的情報として出力する生理的情報検出機能を有してもよい。 The physiological information detection unit 27 has a physiological information detection function that detects at least one vital sign information to detect a state such as yawning or drowsiness of the occupant 11 and outputs the detected result as physiological information. You may have.
 ECU100は、乗員11の存否情報及び生理的情報を受信する受信装置の一例である。乗員11の存否情報及び生理的情報は、いずれも、乗員センサ12による検出情報の一例である。ECU100は、バックル8とは別体の一つ又は複数の電子制御装置により構成されている。ECU100は、存否情報及び生理的情報を使用する制御を実行する。 The ECU 100 is an example of a receiving device that receives the presence / absence information and physiological information of the occupant 11. The presence / absence information and physiological information of the occupant 11 are both examples of detection information by the occupant sensor 12. The ECU 100 includes one or a plurality of electronic control devices that are separate from the buckle 8. The ECU 100 executes control using presence / absence information and physiological information.
 ECU100が乗員11の存否情報を必要とする状況とECU100が乗員11の生理的情報を必要とする状況とは、同じとは限らない。例えば、タング7とバックル8とが連結している状況では、乗員11が存在しているとみなすことができるので、ECU100にとって乗員11の存否情報に比べて乗員11の生理的情報の必要性が高い。一方、タング7とバックル8とが連結していない状況では、乗員11が存在していないのか乗員11がシートベルト4を装着していないのかの判定をするため、ECU100にとって乗員11の生理的情報に比べて乗員11の存否情報の必要性が高い。 The situation where the ECU 100 needs the presence / absence information of the occupant 11 and the situation where the ECU 100 needs the physiological information of the occupant 11 are not necessarily the same. For example, in the situation where the tongue 7 and the buckle 8 are connected, it can be considered that the occupant 11 is present, and therefore the ECU 100 needs the physiological information of the occupant 11 compared to the presence / absence information of the occupant 11. high. On the other hand, in the situation where the tongue 7 and the buckle 8 are not connected, the ECU 100 determines whether the occupant 11 is not present or the occupant 11 is not wearing the seat belt 4. The necessity of the presence / absence information of the occupant 11 is higher than the above.
 そこで、本実施形態の乗員センサ12は、バックルスイッチ13の検知状態を利用して、乗員11の存否情報と乗員11の生理的情報とを切り替えて出力する。これにより、乗員センサ12は、例えば、タング7とバックル8とが連結している状況では、乗員11の生理的情報を出力でき、タング7とバックル8とが連結していない状況では、乗員11の存否情報を出力できる。このように、乗員センサ12は、タング7とバックル8とが連結している状況又は連結していない状況に応じて、存否情報と生理的情報とを切り替えて出力できるので、車両の状況に応じて異なる種類の乗員情報を出力することが可能となる。つまり、乗員センサ12は、乗員11の存否情報と乗員11の生理的情報とを必要とする状況で適切に出力できる。 Therefore, the occupant sensor 12 of the present embodiment uses the detection state of the buckle switch 13 to switch between the presence / absence information of the occupant 11 and the physiological information of the occupant 11 to output. Accordingly, the occupant sensor 12 can output physiological information of the occupant 11 in a situation where the tongue 7 and the buckle 8 are connected, for example, and in a situation where the tongue 7 and the buckle 8 are not connected, the occupant 11 Can be output. In this way, the occupant sensor 12 can output the presence / absence information and the physiological information by switching depending on the situation where the tongue 7 and the buckle 8 are connected or not connected. Different types of occupant information can be output. That is, the occupant sensor 12 can appropriately output the presence / absence information of the occupant 11 and the physiological information of the occupant 11.
 図3に示される例では、バックル8の本体部8aは、少なくとも3つの端子14,15,16を有し、ECU100は、少なくとも3つの端子101,102,103を有する。車載システム1Aは、端子14と端子101とを相互に接続する配線17と、端子15と端子102とを相互に接続する配線18と、端子16と端子103とを相互に接続する配線19とを備える。 In the example shown in FIG. 3, the main body 8a of the buckle 8 has at least three terminals 14, 15, and 16, and the ECU 100 has at least three terminals 101, 102, and 103. The in-vehicle system 1A includes a wiring 17 that connects the terminal 14 and the terminal 101 to each other, a wiring 18 that connects the terminal 15 and the terminal 102 to each other, and a wiring 19 that connects the terminal 16 and the terminal 103 to each other. Prepare.
 図4は、バックル8の本体部8aの一例を示す側面図である。図5は、バックル8の本体部8aの一例を示す斜視図である。図6は、乗員側からの視点でバックル8の本体部8aの一例を示す平面図である。本体部8aは、タング7の金属プレートが挿入される挿入口8cと、乗員がタング7の着脱操作をするためのボタン8dとを有する。 FIG. 4 is a side view showing an example of the main body 8 a of the buckle 8. FIG. 5 is a perspective view showing an example of the main body 8 a of the buckle 8. FIG. 6 is a plan view showing an example of the main body 8a of the buckle 8 from the viewpoint from the passenger side. The main body 8 a has an insertion port 8 c into which the metal plate of the tongue 7 is inserted, and a button 8 d for the occupant to perform the detaching operation of the tongue 7.
 センサ20は、本体部8aのシート2側(シート2に座っている乗員側)の側面部に内蔵される。センサ20が電波を送受するセンサである場合、電波が不要な方向に放射されることが抑制されるように、センサ20は、遮蔽板21と、本体部8aのシート2側の側面との間に配置されることが好ましい。遮蔽板21は、本体部8aに内蔵され、センサ20から放射された電波を遮蔽する。 The sensor 20 is built in the side surface portion of the main body portion 8a on the seat 2 side (occupant side sitting on the seat 2). When the sensor 20 is a sensor that transmits and receives radio waves, the sensor 20 is provided between the shielding plate 21 and the side surface on the sheet 2 side of the main body 8a so that the radio waves are not radiated in unnecessary directions. It is preferable to arrange | position. The shielding plate 21 is built in the main body 8 a and shields radio waves radiated from the sensor 20.
 図7は、電波の放射状態の一例をバックル8の側面視で示す図である。図8は、電波の放射状態の一例をバックル8の上面視で示す図である。 FIG. 7 is a diagram showing an example of a radio wave radiation state in a side view of the buckle 8. FIG. 8 is a diagram illustrating an example of a radio wave radiation state when the buckle 8 is viewed from above.
 電波の放射範囲は、電波を送受するアンテナや電波の周波数によって異なる。アンテナは乗員がいる方向に傾いた状態でセンサ20に実装されてもよいし、乗員がいる方向にアンテナの指向性が制御されてもよい。 Radio wave radiation range varies depending on the antenna that transmits and receives radio waves and the frequency of radio waves. The antenna may be mounted on the sensor 20 in a state where the antenna is tilted in the direction in which the occupant is present, or the directivity of the antenna may be controlled in the direction in which the occupant is present.
 バックル8に設けられたセンサ20の送信アンテナから送信された電波は、シート上の物体で反射され、その反射波をセンサ20の受信アンテナが受信する。センサ20は、定在波比(SWR:Standing Wave Ratio)の変化、反射波の反射強度の変化、反射波の送信波に対する伝搬遅延時間の変化、送信波と反射波との位相の変化、送信波と反射波との周波数の変化の少なくとも一つを測定する。センサ20は、これらの変化の少なくとも一つを測定することによって、シート2上の物体(検知対象物)とセンサ20との相対位置変化を検知できる。 The radio wave transmitted from the transmitting antenna of the sensor 20 provided on the buckle 8 is reflected by an object on the sheet, and the reflected antenna receives the reflected wave. The sensor 20 changes the standing wave ratio (SWR), the reflected wave reflection intensity, the propagation delay time of the reflected wave with respect to the transmitted wave, the phase change between the transmitted wave and the reflected wave, and transmission. Measure at least one of the frequency changes between the wave and the reflected wave. The sensor 20 can detect a relative position change between the object (detection target) on the sheet 2 and the sensor 20 by measuring at least one of these changes.
 なお、定在波比等のこれらの変化は、センサ20と検知対象物との距離、検知対象物の大きさ、検知対象物の反射面の形、検知対象物の物性(例えば、金属平面、人体の表面など)に影響を受ける。 Note that these changes such as the standing wave ratio include the distance between the sensor 20 and the detection target, the size of the detection target, the shape of the reflection surface of the detection target, the physical properties of the detection target (for example, a metal plane, Affected by the surface of the human body).
 センサ20は、例えば、100MHz~5GHzの電波を送受する場合、定在波比の変化を測定し、その測定結果に基づいて検知対象物との相対位置変化を検知する。センサ20は、例えば、10GHz~100GHzの電波を送受する場合、定在波比、伝搬遅延時間及びドップラー周波数の変化を測定し、その測定結果に基づいて検知対象物との相対位置変化を検知する。 For example, when transmitting and receiving radio waves of 100 MHz to 5 GHz, the sensor 20 measures a change in the standing wave ratio and detects a relative position change with respect to the detection target based on the measurement result. For example, when transmitting and receiving radio waves of 10 GHz to 100 GHz, the sensor 20 measures changes in the standing wave ratio, propagation delay time, and Doppler frequency, and detects changes in relative position with the detection target based on the measurement results. .
 なお、センサ20は、例えば30kHz~1MHzの周波数でセンサ20のセンサ電極を駆動する静電センサである場合、検知対象物とセンサ電極との間の静電容量の変化を測定し、その測定結果に基づいて検知対象物との相対位置変化を検知する。 When the sensor 20 is an electrostatic sensor that drives the sensor electrode of the sensor 20 at a frequency of, for example, 30 kHz to 1 MHz, the change in capacitance between the detection target and the sensor electrode is measured, and the measurement result Based on this, a change in relative position with the detection object is detected.
 本実施例では、図7及び図8に示されるように、電波は40°以上90°以下の広がり角度でシート2の上方に向けて放射される。電波の指向性を絞れば、狭い範囲の相対位置変化を検知することができ、逆に、電波の指向性を広げれば、広い範囲の相対位置変化を検知することができる。 In this embodiment, as shown in FIGS. 7 and 8, the radio wave is radiated toward the upper side of the sheet 2 with a spread angle of 40 ° or more and 90 ° or less. If the directivity of the radio wave is narrowed, a relative position change in a narrow range can be detected. Conversely, if the directivity of the radio wave is widened, a relative position change in a wide range can be detected.
 なお、検知対象物がセンサ20の近傍に位置する場合、相対位置変化の検知精度は、センサ20の近傍の状況に強く影響される。したがって、センサ20以外の複数のセンサが車室内に存在していても、あるいは、電波の指向性が所望の広がり角度に対して多少ずれても、センサ20は、検知対象物との相対位置変化を高精度に検知できる。 In addition, when the detection target is located in the vicinity of the sensor 20, the detection accuracy of the relative position change is strongly influenced by the situation in the vicinity of the sensor 20. Therefore, even if a plurality of sensors other than the sensor 20 are present in the vehicle interior, or even if the directivity of the radio wave slightly deviates from the desired spread angle, the sensor 20 changes in relative position with respect to the detection target. Can be detected with high accuracy.
 図1及び図2に示されるように、バックル8の側面は、例えば、シート2に座っている乗員11の腰部側面と対向する。センサ20から所定の広がり角で送信された電波は、シート2及び乗員11の腹部(脇腹を含む)で反射し、その反射波がセンサ20に到来する。したがって、センサ20は、バックル8と腰部との相対位置変化に加えて、バックル8と腹部(脇腹を含む)との相対位置変化を検知する。 1 and 2, the side surface of the buckle 8 faces, for example, the waist side surface of the occupant 11 sitting on the seat 2. The radio wave transmitted from the sensor 20 at a predetermined spread angle is reflected by the seat 2 and the abdomen (including the flank) of the occupant 11, and the reflected wave arrives at the sensor 20. Therefore, the sensor 20 detects the relative position change between the buckle 8 and the abdomen (including the flank) in addition to the relative position change between the buckle 8 and the waist.
 例えば、乗員11が息を吸うと、脇腹は膨らんでセンサ20に近づき、腹前部は車両前方側にせり出して電波の反射面積が大きくなる。その結果、反射波の強度が大きくなる。特に乗員11がシートベルト4を着用した状態で息を吸うと、乗員11の胸部が膨らむことによりシートベルト4の張力が増加するので、バックル8は乗員11側に引き寄せられる。これにより、反射波の強度が更に大きくなる。 For example, when the occupant 11 inhales, the flank expands and approaches the sensor 20, and the front part of the stomach protrudes toward the front side of the vehicle, increasing the radio wave reflection area. As a result, the intensity of the reflected wave increases. In particular, when the occupant 11 inhales while wearing the seat belt 4, the chest of the occupant 11 expands, and the tension of the seat belt 4 increases, so the buckle 8 is drawn toward the occupant 11 side. This further increases the intensity of the reflected wave.
 逆に、乗員11が息を吐くと、脇腹はしぼんでセンサ20から遠ざかり、腹前部は車両後方側にしぼんで電波の反射面積が小さくなる。その結果、反射波の強度が小さくなる。特に乗員11がシートベルト4を着用した状態で息を吐くと、乗員11の胸部がしぼむことによりシートベルト4の張力が減少するので、バックル8は乗員11から離れる。これにより、反射波の強度が更に小さくなる。 Conversely, when the occupant 11 exhales, the flank is squeezed away from the sensor 20, and the front part of the abdomen is squeezed toward the rear of the vehicle to reduce the radio wave reflection area. As a result, the intensity of the reflected wave is reduced. In particular, when the occupant 11 exhales while wearing the seat belt 4, the tension of the seat belt 4 decreases due to the chest of the occupant 11 being deflated, so that the buckle 8 moves away from the occupant 11. Thereby, the intensity of the reflected wave is further reduced.
 つまり、乗員11の呼吸動作は、反射波の強弱として捉えることができる。反射波の強弱を検知し、呼吸に同期した信号の周波数を分析して捉えることで、乗員11の呼吸を検知することができる。あるいは、電波の周波数が血流に反応する周波数帯に含まれる場合、乗員11の脈拍を検知することができる。 That is, the breathing motion of the occupant 11 can be grasped as the strength of the reflected wave. By detecting the intensity of the reflected wave and analyzing and capturing the frequency of the signal synchronized with the respiration, the occupant 11 can detect the respiration. Alternatively, when the frequency of the radio wave is included in a frequency band that reacts to blood flow, the pulse of the occupant 11 can be detected.
 このように、シートベルト4の非装着時も呼吸検知が可能となるが、特に、シートベルト4の装着時は、乗員11の体表の変位に応じてシートベルト4が変位し、シートベルト4の変位に応じて、タング7を介してバックル8が変位する。したがって、従来方式より安定した呼吸及び脈拍の検知が可能になる。 In this way, breathing can be detected even when the seat belt 4 is not worn. In particular, when the seat belt 4 is worn, the seat belt 4 is displaced according to the displacement of the body surface of the occupant 11, and the seat belt 4 The buckle 8 is displaced via the tongue 7 in accordance with the displacement of. Therefore, it is possible to detect respiration and pulse more stably than the conventional method.
 図9は、センサ20の構成の一例を示す図である。センサ20は、発振部22と、出力部23と、検波部24と、アンテナ25とを有する。 FIG. 9 is a diagram illustrating an example of the configuration of the sensor 20. The sensor 20 includes an oscillating unit 22, an output unit 23, a detecting unit 24, and an antenna 25.
 発振部22は、特定の安定した周波数で発振する信号を生成する。出力部23は、発振部22により生成された信号に基づいて、アンテナ25に給電する。アンテナ25のマッチングが良好であると、アンテナ25での反射ロスが抑えられた状態で、空間に電波がアンテナ25から放射される。定在波比(SWR)とは、出力部23からアンテナ25に流れる進行波の大きさに対する反射波の大きさの比をいう。出力が安定していれば、検知対象物からの反射波の変化がSWRの変化として現れる。乗員11の呼吸に同期して、バックル8が移動する又は検知対象物が移動することにより、SWRが周期的に変化する。 The oscillation unit 22 generates a signal that oscillates at a specific stable frequency. The output unit 23 feeds power to the antenna 25 based on the signal generated by the oscillation unit 22. If the matching of the antenna 25 is good, a radio wave is radiated from the antenna 25 into the space while the reflection loss at the antenna 25 is suppressed. The standing wave ratio (SWR) refers to the ratio of the magnitude of the reflected wave to the magnitude of the traveling wave flowing from the output unit 23 to the antenna 25. If the output is stable, a change in the reflected wave from the detection target appears as a change in SWR. Synchronously with the breathing of the occupant 11, the SWR changes periodically as the buckle 8 moves or the detection object moves.
 検波部24は、受信波(反射波)を検波し、高周波の電波(送信波)が受けた変化を低周波の変化に変換する。 The detection unit 24 detects a received wave (reflected wave) and converts a change received by a high-frequency radio wave (transmitted wave) into a low-frequency change.
 検波部24による検波の具体例として、振幅検波、周波数検波、位相検波が挙げられる。位相検波では、出力部23の進行波の位相と反射波を含む受信波の位相とが比較され、進行波と同位相のI成分と、進行波に対して90°位相が異なるQ成分とが、低周波に変換された検波出力として出力される。検波出力は、物体の動きに応じて波形が変化するセンサ出力信号の一例である。 Specific examples of detection by the detection unit 24 include amplitude detection, frequency detection, and phase detection. In the phase detection, the phase of the traveling wave of the output unit 23 is compared with the phase of the received wave including the reflected wave, and an I component having the same phase as the traveling wave and a Q component having a 90 ° phase difference with respect to the traveling wave are obtained. And output as a detection output converted to a low frequency. The detection output is an example of a sensor output signal whose waveform changes according to the movement of the object.
 検波出力の振幅の大きさは、I+Qにより計算される。検波出力の実効電力は、電圧に電流のI成分(同相成分)を乗算するか、電流に電圧のI成分を乗算することによって演算される。I成分とQ成分のタンジェントが演算されることにより、進行波に対する反射波の位相変化が得られる。検波出力には、呼吸と脈拍の少なくとも一方であるバイタルサインを表す周期的なバイタルサイン信号成分や、物体の移動(体動)を表す非周期的な移動信号成分が含まれる。 The magnitude of the detection output amplitude is calculated by I 2 + Q 2 . The effective power of the detection output is calculated by multiplying the voltage by the I component (in-phase component) of the current or by multiplying the current by the I component of the voltage. By calculating the tangent of the I component and the Q component, the phase change of the reflected wave with respect to the traveling wave can be obtained. The detection output includes a periodic vital sign signal component representing a vital sign that is at least one of respiration and pulse and an aperiodic movement signal component representing movement (body movement) of an object.
 図10は、センサ20の一具体例であるドップラーセンサ20Aの構成の一例を示す図である。 FIG. 10 is a diagram illustrating an example of a configuration of a Doppler sensor 20 </ b> A that is a specific example of the sensor 20.
 ドップラーセンサ20Aは、ドップラー効果により、進行波に対する反射波の位相変化から検知対象物の変位をより精度良く検知できる。検知対象物が動くと、反射波の位相が変化し、その位相の変化速度に応じたビート周波数で定在波が変化する。したがって、ドップラーセンサ20Aは、送信波と反射波との位相検波を行うことによって、進行波に対する反射波の位相変化速度に比例するドップラー周波数を検出できる。ドップラー周波数により、ドップラーセンサ20Aと検知対象物との相対速度を導出することが可能である。また、ドップラーセンサ20Aがドップラー周波数を選択的に検知することで、車両振動と脈拍と呼吸とを容易に分別することができる。 The Doppler sensor 20A can detect the displacement of the detection object with higher accuracy from the phase change of the reflected wave with respect to the traveling wave due to the Doppler effect. When the detection object moves, the phase of the reflected wave changes, and the standing wave changes at a beat frequency corresponding to the phase change speed. Therefore, the Doppler sensor 20A can detect the Doppler frequency proportional to the phase change rate of the reflected wave with respect to the traveling wave by performing phase detection of the transmitted wave and the reflected wave. Based on the Doppler frequency, it is possible to derive the relative speed between the Doppler sensor 20A and the detection target. Further, when the Doppler sensor 20A selectively detects the Doppler frequency, vehicle vibration, pulse, and respiration can be easily separated.
 車両振動の周波数は、5Hz~20Hzである。車両振動の具体例として、車両の走行による振動、車両への衝撃による振動などが挙げられる。脈拍の周波数は、1Hzから3Hzであり、呼吸の周波数は0.5Hz~0.2Hzである。ドップラーセンサ20Aと検知対象物との相対速度が速いほど、ドップラー周波数は高い周波数に変換される。振幅が大きく周波数の高い車両振動は、ドップラー周波数として高い周波数に変換される。したがって、車両振動はフィルタによって容易に除去されることが可能であるので、物体の移動(体動)に同期する移動信号成分と、呼吸と脈拍の少なくとも一方であるバイタルサインに同期するバイタルサイン信号成分とを選択的に抽出することが容易になる。 The frequency of vehicle vibration is 5 Hz to 20 Hz. Specific examples of vehicle vibrations include vibrations due to vehicle travel and vibrations due to impacts on the vehicle. The frequency of the pulse is 1 Hz to 3 Hz, and the frequency of respiration is 0.5 Hz to 0.2 Hz. The higher the relative speed between the Doppler sensor 20A and the detection object, the higher the Doppler frequency is converted. Vehicle vibration having a large amplitude and a high frequency is converted to a high frequency as a Doppler frequency. Therefore, since the vehicle vibration can be easily removed by the filter, the movement signal component synchronized with the movement (body movement) of the object and the vital sign signal synchronized with the vital sign that is at least one of respiration and pulse. It becomes easy to selectively extract the components.
 ドップラーセンサ20Aは、ドップラー効果を利用し、送信波と反射波との周波数差(ドップラー周波数)に応じたドップラー周波数信号(I出力及びQ出力)を出力する。I出力とQ出力は、位相差が90°(π/2)異なる電圧信号である。 The Doppler sensor 20A uses the Doppler effect to output a Doppler frequency signal (I output and Q output) corresponding to the frequency difference (Doppler frequency) between the transmitted wave and the reflected wave. The I output and the Q output are voltage signals having a phase difference of 90 ° (π / 2).
 ドップラーセンサ20Aは、例えば、発振器33と、送信アンテナ31と、受信アンテナ32と、遅延回路35と、ミキサ34,36とを有する。発振器33の発振信号により、電波(例えば、マイクロ波)が送信アンテナ31から送信される。送信アンテナ31から送信された電波は、シート2上の検知対象物で反射し、受信アンテナ32は、その反射波を受信する。遅延回路35は、受信アンテナ32の受信信号の位相を90°(π/2)遅らせる。ミキサ34は、発振器33の発振信号と受信アンテナ32の受信信号とが入力されることにより、I出力(I成分)を生成する。ミキサ36は、発振器33の発振信号と、遅延回路35により位相が遅れた受信アンテナ32の受信信号とが入力されることにより、Q出力(Q成分)を生成する。 The Doppler sensor 20A includes, for example, an oscillator 33, a transmission antenna 31, a reception antenna 32, a delay circuit 35, and mixers 34 and 36. A radio wave (for example, a microwave) is transmitted from the transmission antenna 31 by the oscillation signal of the oscillator 33. The radio wave transmitted from the transmission antenna 31 is reflected by the detection object on the sheet 2, and the reception antenna 32 receives the reflected wave. The delay circuit 35 delays the phase of the received signal of the receiving antenna 32 by 90 ° (π / 2). The mixer 34 receives the oscillation signal from the oscillator 33 and the reception signal from the reception antenna 32 to generate an I output (I component). The mixer 36 receives the oscillation signal of the oscillator 33 and the reception signal of the reception antenna 32 whose phase is delayed by the delay circuit 35, and generates a Q output (Q component).
 送信アンテナ31及び受信アンテナ32は、例えば、四角形に形成された平面状のパッチアンテナである。送信アンテナ31及び受信アンテナ32は、それぞれ、複数あってもよい。 The transmission antenna 31 and the reception antenna 32 are, for example, planar patch antennas formed in a quadrangular shape. There may be a plurality of transmission antennas 31 and reception antennas 32, respectively.
 図11は、検知対象物の移動と検波出力との関係の一例を示す図である。図11(a)は、検知対象物の移動を示す。横軸は、サンプリング数を表し、縦軸は、進行波に対する反射波の位相変化量を表す。図11(b)は、検波出力(I出力とQ出力)を示す。横軸は、サンプリング数を表し、縦軸は、検波出力の振幅を表す。検波出力に基づいて、検知対象物の移動に同期する移動信号成分を判別することが可能である。例えば、MPU30(図15参照。詳細は後述)は、図11(b)に示されるI出力及びQ出力を復調して、進行波に対する反射波の位相の変化(回転)を演算することによって、図11(a)に示される移動信号成分を検出できる。 FIG. 11 is a diagram illustrating an example of the relationship between the movement of the detection target and the detection output. FIG. 11A shows the movement of the detection object. The horizontal axis represents the number of samplings, and the vertical axis represents the amount of phase change of the reflected wave with respect to the traveling wave. FIG. 11B shows the detection output (I output and Q output). The horizontal axis represents the number of samplings, and the vertical axis represents the amplitude of the detection output. Based on the detection output, it is possible to determine a movement signal component synchronized with the movement of the detection target. For example, the MPU 30 (see FIG. 15, details will be described later) demodulates the I output and Q output shown in FIG. 11 (b) and calculates the phase change (rotation) of the reflected wave with respect to the traveling wave, The movement signal component shown in FIG. 11A can be detected.
 図12は、乗員11の体表の変位と検波出力との関係の一例を示す図である。図12(a)は、乗員11の体表の変位を示す。図12(b)は、検波出力(I出力とQ出力)を示す。横軸は、サンプリング数を表し、縦軸は、検波出力の振幅を表す。検波出力に基づいて、乗員11の体表の変位を検出することが可能である。例えば、MPU30(図15参照。詳細は後述)は、図12(b)に示されるI出力及びQ出力を復調して、進行波に対する反射波の位相の変化(回転)を演算することによって、図12(a)に示される体表の変位を検出できる。 FIG. 12 is a diagram illustrating an example of the relationship between the displacement of the body surface of the occupant 11 and the detection output. FIG. 12A shows the displacement of the body surface of the occupant 11. FIG. 12B shows the detection output (I output and Q output). The horizontal axis represents the number of samplings, and the vertical axis represents the amplitude of the detection output. Based on the detection output, it is possible to detect the displacement of the body surface of the occupant 11. For example, the MPU 30 (see FIG. 15, details will be described later) demodulates the I output and the Q output shown in FIG. 12B and calculates the phase change (rotation) of the reflected wave with respect to the traveling wave. The displacement of the body surface shown in FIG. 12 (a) can be detected.
 図13は、バックルスイッチ13及びECU100Aの構成の一例を示す図である。ECU100Aは、ECU100の一例である。 FIG. 13 is a diagram illustrating an example of the configuration of the buckle switch 13 and the ECU 100A. The ECU 100A is an example of the ECU 100.
 バックルスイッチ13は、ホールセンサ40と、トランジスタ41と、電流源42と、抵抗43とを有する。バックルスイッチ13は、2本の配線18,19を介してバックルスイッチ13の検知状態をECU100Aに通知する。ECU100Aは、電源電圧VBの直流電源105に配線18をプルアップ接続する検出抵抗106と、検出抵抗106の両端に発生する検出電圧Vsを検出する情報受信部107とを備える。電源電圧VBは、例えば12Vである。 The buckle switch 13 includes a hall sensor 40, a transistor 41, a current source 42, and a resistor 43. The buckle switch 13 notifies the ECU 100A of the detection state of the buckle switch 13 via the two wires 18 and 19. The ECU 100A includes a detection resistor 106 that pulls up the wiring 18 to the DC power source 105 of the power supply voltage VB, and an information reception unit 107 that detects the detection voltage Vs generated at both ends of the detection resistor 106. The power supply voltage VB is, for example, 12V.
 検出電圧Vsは、検出電流Iaが検出抵抗106に流れることによって発生する。検出電流Iaは、直流電源105、検出抵抗106、配線18、トランジスタ41、配線19、グランド104の経路で流れる。 The detection voltage Vs is generated when the detection current Ia flows through the detection resistor 106. The detection current Ia flows through a route of the DC power source 105, the detection resistor 106, the wiring 18, the transistor 41, the wiring 19, and the ground 104.
 ホールセンサ40は、タング7とバックル8とが連結しているとき(バックルスイッチ13がオンのとき)、タング7とバックル8とが連結していないとき(バックルスイッチ13がオフのとき)に比べて、トランジスタ41を駆動するベース電流を増加させる。例えば、検出電流Iaの電流値は、バックルスイッチ13がオフのとき7mA以下となり、バックルスイッチ13がオンのとき12mA以上となる。 The hall sensor 40 is compared with the case where the tongue 7 and the buckle 8 are connected (when the buckle switch 13 is on) and when the tongue 7 and the buckle 8 are not connected (when the buckle switch 13 is off). Thus, the base current for driving the transistor 41 is increased. For example, the current value of the detection current Ia is 7 mA or less when the buckle switch 13 is off, and is 12 mA or more when the buckle switch 13 is on.
 したがって、情報受信部107は、検出電流Iaの変化による検出電圧Vsの変化に基づいて、バックルスイッチ13のオン又はオフを判定できる。例えば、情報受信部107は、バックルスイッチ13が所定の閾値よりも高い電圧を端子15と端子16との間に発生させる場合(つまり、所定の判定閾値よりも電圧値が低い検出電圧Vsが検出された場合)、バックルスイッチ13がオフであると判定する。一方、情報受信部107は、バックルスイッチ13が当該閾値よりも低い電圧を端子15と端子16との間に発生させる場合(つまり、当該判定閾値よりも電圧値が高い検出電圧Vsが検出された場合)、バックルスイッチ13がオンであると判定する。 Therefore, the information receiving unit 107 can determine whether the buckle switch 13 is on or off based on the change in the detection voltage Vs due to the change in the detection current Ia. For example, when the buckle switch 13 generates a voltage higher than a predetermined threshold between the terminal 15 and the terminal 16 (that is, the detection voltage Vs having a voltage value lower than the predetermined determination threshold is detected. If it is determined that the buckle switch 13 is off. On the other hand, when the buckle switch 13 generates a voltage lower than the threshold value between the terminal 15 and the terminal 16 (that is, the detection voltage Vs having a voltage value higher than the determination threshold value is detected). ), It is determined that the buckle switch 13 is on.
 例えば、バックルスイッチ13がオンのときのホールセンサ40に印加される電圧の最小値は4V以上となるように設計されるため、ホールセンサ40の電源電圧は、端子15から供給される。 For example, since the minimum voltage applied to the Hall sensor 40 when the buckle switch 13 is on is designed to be 4 V or more, the power supply voltage of the Hall sensor 40 is supplied from the terminal 15.
 図14は、バックルスイッチ13及びECU100Bの構成の一例を示す図である。ECU100Bは、ECU100の一例である。検出抵抗は図示のようにグランドラインに直列に挿入されても、図13の場合と同様に、情報受信部107は、バックルスイッチ13の検知状態を受信できる。 FIG. 14 is a diagram illustrating an example of the configuration of the buckle switch 13 and the ECU 100B. The ECU 100B is an example of the ECU 100. Even if the detection resistor is inserted in series with the ground line as shown, the information receiving unit 107 can receive the detection state of the buckle switch 13 as in the case of FIG.
 バックルスイッチ13の構成は、図13の場合と同一である。ECU100Bは、グランド104に配線19をプルダウン接続する検出抵抗108と、検出抵抗108の両端に発生する検出電圧Vsを検出する情報受信部107とを備える。情報受信部107は、図13の場合と同様に、検出電流Iaの変化による検出電圧Vsの変化に基づいて、バックルスイッチ13のオン又はオフを判定できる。 The configuration of the buckle switch 13 is the same as that in FIG. The ECU 100B includes a detection resistor 108 that pulls down the wiring 19 to the ground 104, and an information reception unit 107 that detects a detection voltage Vs generated at both ends of the detection resistor 108. As in the case of FIG. 13, the information receiving unit 107 can determine whether the buckle switch 13 is on or off based on the change in the detection voltage Vs due to the change in the detection current Ia.
 図15は、バックル8の本体部8aの構成の一例を示す図である。端子14,15,16は、それぞれ、配線17,18,19を介して、ECU100に接続される(図3参照)。 FIG. 15 is a diagram showing an example of the configuration of the main body 8a of the buckle 8. As shown in FIG. Terminals 14, 15, and 16 are connected to ECU 100 via wires 17, 18, and 19, respectively (see FIG. 3).
 図15の場合、本体部8aは、バックルスイッチ13と、乗員センサ12とを有する。乗員センサ12は、例えば、センサ20、MPU(Micro-Processing Unit)30と、レギュレータ29と、入出力回路(キャパシタ37、ダイオード38,39、抵抗47,48、トランジスタ46など)とを有する。本体部8aのグランド28は、端子16に接続されている。 In the case of FIG. 15, the main body 8 a has a buckle switch 13 and an occupant sensor 12. The occupant sensor 12 includes, for example, a sensor 20, an MPU (Micro-Processing Unit) 30, a regulator 29, and input / output circuits (capacitor 37, diodes 38 and 39, resistors 47 and 48, a transistor 46, and the like). The ground 28 of the main body 8 a is connected to the terminal 16.
 センサ20及びMPU30は、レギュレータ29により降圧レギュレートされた電圧(例えば、2.5V)で駆動される。センサ20及びMPU30の駆動電流(消費電流)は、合わせて5mA程度である。 The sensor 20 and the MPU 30 are driven with a voltage (eg, 2.5 V) that is step-down regulated by the regulator 29. The drive current (current consumption) of the sensor 20 and the MPU 30 is about 5 mA in total.
 存否情報検出部26及び生理的情報検出部27(図3参照)は、MPU30により実現される。MPU30には、センサ20による検波により低周波に変換されたセンサ出力信号が入力される。 The presence / absence information detection unit 26 and the physiological information detection unit 27 (see FIG. 3) are realized by the MPU 30. A sensor output signal converted into a low frequency by detection by the sensor 20 is input to the MPU 30.
 MPU30(存否情報検出部26)は、センサ20から出力された検波出力(センサ出力信号の一例)について所定の存否判定処理を実行することによって、乗員11が存在するか否かを判定する。MPU30は、トランジスタ46をスイッチングさせることによって、乗員11が存在するか否かを表す存否情報を端子14,16から出力する。 The MPU 30 (presence / absence information detection unit 26) determines whether or not the occupant 11 exists by executing a predetermined presence / absence determination process on the detection output (an example of the sensor output signal) output from the sensor 20. The MPU 30 outputs presence / absence information indicating whether or not the occupant 11 is present from the terminals 14 and 16 by switching the transistor 46.
 MPU30(生理的情報検出部27)は、センサ20から出力された検波出力について所定の生理的情報検出処理を実行することによって、乗員11の生理的情報を検出する。MPU30は、トランジスタ46をスイッチングさせることによって、乗員11の生理的情報を端子14,16から出力する。 The MPU 30 (physiological information detection unit 27) detects the physiological information of the occupant 11 by executing a predetermined physiological information detection process on the detection output output from the sensor 20. The MPU 30 outputs the physiological information of the occupant 11 from the terminals 14 and 16 by switching the transistor 46.
 MPU30(生理的情報検出部27)は、例えば、センサ20から出力された検波出力から、呼吸と脈拍の少なくとも一方であるバイタルサインを表すバイタルサイン信号成分の周期を検出する。MPU30は、入力されたセンサ出力信号から、検知対象物の動きなどの有意な特徴を抽出し、呼吸又は脈拍のバイタルサインの周期的な変化を選択的に取り出す機能を有する。 The MPU 30 (physiological information detection unit 27) detects a cycle of a vital sign signal component representing a vital sign that is at least one of respiration and pulse from the detection output output from the sensor 20, for example. The MPU 30 has a function of extracting significant features such as the movement of the detection target object from the input sensor output signal and selectively extracting a periodic change in vital signs of breathing or pulse.
 バックルスイッチ13の検知状態は、抵抗45を介して、MPU30に入力される。MPU30は、抵抗45を介して入力された検知状態に基づいて、存否情報の出力と生理的情報の出力とを切り替える。 The detection state of the buckle switch 13 is input to the MPU 30 via the resistor 45. The MPU 30 switches between presence / absence information output and physiological information output based on the detection state input via the resistor 45.
 乗員11の有無と生理的状態(例えば、呼吸)とは、検出する周波数や距離のレンジが異なるため、MPU30は、乗員11の有無と生理的状態とを別々の処理ロジックを用いて検出する。たとえば乗員が乗り込んでシート2に着座する場合、MPU30は、乗員の速い動きに対応するため、検出された動きが人の動きなのか人以外の物の動きなのかなどのクラス分け等の処理を行い、確実に乗員11の着座を検出する。バックルスイッチ13のオンが検出された後は、着座が前提となるので、MPU30は、存否判定処理ロジックから生理的情報検出処理ロジックに切り替える。 Since the presence / absence of the occupant 11 and the physiological state (for example, respiration) differ in the frequency and distance ranges to be detected, the MPU 30 detects the presence / absence of the occupant 11 and the physiological state using separate processing logics. For example, when an occupant gets in and sits on the seat 2, the MPU 30 performs processing such as classification such as whether the detected movement is a human movement or a movement of a non-human movement in order to respond to the rapid movement of the occupant. And seating of the occupant 11 is reliably detected. Since the seating is premised after the on-state of the buckle switch 13 is detected, the MPU 30 switches from the presence / absence determination processing logic to the physiological information detection processing logic.
 MPU30の処理能力に余裕がある場合は、MPU30は、両方の処理ロジックを並行して実行してよい。バックル8に内蔵される電子回路には、小型、安価で省電力が求められるため、省電力のプロセッサが用いられることが好ましい。しかし、小型のマイクロプロセッサでは、中間処理に使用されるRAM(Random Access Memory)の容量が足りなくなる場合がある。 When there is room in the processing capacity of the MPU 30, the MPU 30 may execute both processing logics in parallel. Since the electronic circuit incorporated in the buckle 8 is small and inexpensive and requires power saving, it is preferable to use a power saving processor. However, a small microprocessor may run out of RAM (Random Access Memory) for intermediate processing.
 そこで、MPU30は、バックルスイッチ13のスイッチ情報(検知状態)の違いに応じて判定閾値を変更し演算処理部分を共通利用する。あるいは、MPU30は、バックルスイッチ13のスイッチ情報(検知状態)の違いに応じて演算処理ロジック自体を切り替えてRAMを重複利用する。このように、MPU30の内部処理の切り替えが行われることによって、プロセッサの必要なリソースを減らすことができるので、製品化の場合には大きな経済的メリットが得られる。 Therefore, the MPU 30 changes the determination threshold according to the difference in switch information (detection state) of the buckle switch 13 and commonly uses the arithmetic processing part. Alternatively, the MPU 30 uses the RAM redundantly by switching the arithmetic processing logic itself according to the difference in the switch information (detection state) of the buckle switch 13. As described above, by switching the internal processing of the MPU 30, it is possible to reduce the necessary resources of the processor, so that a great economic advantage can be obtained in the case of commercialization.
 バックル8は、発光部の一例である発光ダイオード44を備えてもよい。発光ダイオード44は、例えば、乗員11に視認可能なように本体部8aに設けられている。 The buckle 8 may include a light emitting diode 44 which is an example of a light emitting unit. For example, the light emitting diode 44 is provided in the main body portion 8 a so as to be visible to the occupant 11.
 MPU30は、例えば、バックルスイッチ13の検知状態の違いに応じて発光ダイオード44の発光態様を変更する。MPU30は、バックルスイッチ13がオフのとき、発光ダイオード44を点灯させることによって、バックル8の位置を乗員11に容易に視認させたり、シートベルト4の装着を乗員11に促したりできる。 The MPU 30 changes the light emission mode of the light emitting diode 44 according to the difference in the detection state of the buckle switch 13, for example. The MPU 30 can make the occupant 11 easily recognize the position of the buckle 8 or prompt the occupant 11 to attach the seat belt 4 by turning on the light emitting diode 44 when the buckle switch 13 is off.
 MPU30は、例えば、生理的情報の変化に応じて発光ダイオード44の発光態様を変更する。MPU30は、検出された呼吸の周期に同期して、発光ダイオード44を明滅させる。これにより、乗員11の呼吸の状態が光の明滅により認識可能となる。 The MPU 30 changes the light emission mode of the light emitting diode 44 according to changes in physiological information, for example. The MPU 30 blinks the light emitting diode 44 in synchronization with the detected respiration cycle. As a result, the breathing state of the occupant 11 can be recognized by the blinking of light.
 図16は、バックルスイッチ13の電圧出力及び乗員センサ12の電圧出力の一例を示すタイミングチャートである。図16は、図15に示される構成の動作波形の一例を示す。図16は、乗員センサ12が乗員の不存在から存在への変化を検出し、バックルスイッチ13がバックルオフからバックルオンへの切り替えを検出後、乗員センサ12が乗員の存在情報の出力から乗員の呼吸周期情報の出力に切り替える例を示す。 FIG. 16 is a timing chart showing an example of the voltage output of the buckle switch 13 and the voltage output of the occupant sensor 12. FIG. 16 shows an example of operation waveforms of the configuration shown in FIG. In FIG. 16, after the occupant sensor 12 detects a change from the absence of the occupant to the presence and the buckle switch 13 detects the switching from the buckle off to the buckle on, An example of switching to output of respiratory cycle information is shown.
 バックルオフとは、バックルスイッチ13がオフのことを示し、バックルオンとは、バックルスイッチ13がオンのことを示す。 The buckle off indicates that the buckle switch 13 is off, and the buckle on indicates that the buckle switch 13 is on.
 タング7とバックル8とが連結されていないとき、トランジスタ41がオフしている(バックルスイッチ13がオフ)。トランジスタ41のオフにより、バックルスイッチ13の両端の出力電圧(端子15と端子16との間の電圧)は、閾値Th1よりも高い。バックルスイッチ13は、タング7とバックル8とが連結されていない非連結状態を表す信号として、閾値Th1よりも高い電圧を、端子15,16から出力する。 When the tongue 7 and the buckle 8 are not connected, the transistor 41 is off (the buckle switch 13 is off). Since the transistor 41 is turned off, the output voltage at both ends of the buckle switch 13 (the voltage between the terminal 15 and the terminal 16) is higher than the threshold Th1. The buckle switch 13 outputs a voltage higher than the threshold value Th <b> 1 from the terminals 15 and 16 as a signal indicating an unconnected state in which the tongue 7 and the buckle 8 are not connected.
 MPU30は、閾値Th1よりも高い電圧が抵抗45を介して検出されている場合、乗員11の存否判定を実行する。 The MPU 30 executes the presence / absence determination of the occupant 11 when a voltage higher than the threshold Th1 is detected via the resistor 45.
 MPU30は、乗員11の存在が検知されていないとき、トランジスタ46を常時オフさせることによって、乗員センサ12の両端の出力電圧(端子14と端子16との間の電圧)を閾値Th2よりも高くする。乗員センサ12は、閾値Th2よりも高い電圧を乗員11の不存在情報として端子14,16から出力する。 When the presence of the occupant 11 is not detected, the MPU 30 always turns off the transistor 46, thereby increasing the output voltage (the voltage between the terminal 14 and the terminal 16) at both ends of the occupant sensor 12 above the threshold Th2. . The occupant sensor 12 outputs a voltage higher than the threshold Th <b> 2 from the terminals 14 and 16 as absence information of the occupant 11.
 バックルスイッチ13がオフであり且つ乗員11の存在が検知されていないときに乗員が車両に乗り込むと、MPU30は、乗員11の存在を検知する。MPU30は、乗員11の存在が検知されているとき、トランジスタ46をオン/オフさせることによって、閾値Th2を繰り返し跨ぐ第1の周期のパルス電圧を出力する。乗員センサ12は、第1の周期のパルス電圧を乗員11の存在情報として端子14,16から出力する。 When the occupant gets into the vehicle when the buckle switch 13 is off and the presence of the occupant 11 is not detected, the MPU 30 detects the presence of the occupant 11. When the presence of the occupant 11 is detected, the MPU 30 turns on / off the transistor 46 to output a first period pulse voltage that repeatedly crosses the threshold Th2. The occupant sensor 12 outputs the pulse voltage of the first cycle from the terminals 14 and 16 as the presence information of the occupant 11.
 タング7とバックル8とが連結されると、トランジスタ41がオンする(バックルスイッチ13がオン)。トランジスタ41のオンにより、バックルスイッチ13の両端の出力電圧は、閾値Th1よりも低い。バックルスイッチ13は、タング7とバックル8とが連結されている連結状態を表す信号として、閾値Th1よりも低い電圧を、端子15,16から出力する。 When the tongue 7 and the buckle 8 are connected, the transistor 41 is turned on (the buckle switch 13 is turned on). When the transistor 41 is turned on, the output voltage across the buckle switch 13 is lower than the threshold Th1. The buckle switch 13 outputs a voltage lower than the threshold value Th <b> 1 from the terminals 15 and 16 as a signal indicating a connection state in which the tongue 7 and the buckle 8 are connected.
 MPU30は、閾値Th1よりも低い電圧が抵抗45を介して検出されている場合、乗員11の生理的情報の検出を実行する。 The MPU 30 detects the physiological information of the occupant 11 when a voltage lower than the threshold Th1 is detected via the resistor 45.
 MPU30は、閾値Th1よりも低い電圧が抵抗45を介して検出されている場合、乗員11はシートベルト4を装着したとみなし、呼吸周期などの生理的情報を検出する。MPU30は、バックルスイッチ13のオンが検知されているとき、トランジスタ46をオン/オフさせることによって、閾値Th2を繰り返し跨ぐ第2の周期のパルス電圧を出力する。乗員センサ12は、第2の周期のパルス電圧を乗員11の生理的情報として端子14,16から出力する。 When the voltage lower than the threshold value Th1 is detected via the resistor 45, the MPU 30 regards the occupant 11 as wearing the seat belt 4 and detects physiological information such as a respiratory cycle. When it is detected that the buckle switch 13 is on, the MPU 30 turns on / off the transistor 46 to output a second period pulse voltage that repeatedly crosses the threshold Th2. The occupant sensor 12 outputs the pulse voltage of the second period from the terminals 14 and 16 as physiological information of the occupant 11.
 第2の周期は、第1の周期と異なる。図示の例では、第2の周期は、第1の周期よりも長いが、第1の周期よりも短くてもよい。あるいは、MPU30は、呼吸や脈拍などの周期に比例して第2の周期を変更してもよいし、呼吸や脈拍などの安定状態又は不安定状態を表すコードパルスを出力してもよい。 The second cycle is different from the first cycle. In the illustrated example, the second period is longer than the first period, but may be shorter than the first period. Alternatively, the MPU 30 may change the second cycle in proportion to the cycle such as breathing or pulse, or may output a code pulse representing a stable state or unstable state such as breathing or pulse.
 図17は、バックルスイッチ13の電流出力及び乗員センサ12の電流出力の一例を示すタイミングチャートである。図17は、図16の場合と同様、図15に示される構成の動作波形の一例を示す。図17は、図16の場合と同様、乗員センサ12が乗員の不存在から存在への変化を検出し、バックルスイッチ13がバックルオフからバックルオンへの変化を検出後、乗員センサ12が乗員の存在情報の出力から乗員の呼吸周期情報の出力に切り替える例を示す。 FIG. 17 is a timing chart showing an example of the current output of the buckle switch 13 and the current output of the occupant sensor 12. FIG. 17 shows an example of operation waveforms of the configuration shown in FIG. 15 as in the case of FIG. In FIG. 17, as in the case of FIG. 16, the occupant sensor 12 detects a change from the absence of the occupant to the presence, and the buckle switch 13 detects the change from the buckle off to the buckle on. An example of switching from the output of presence information to the output of occupant breathing cycle information will be shown.
 バックルスイッチ13がオフのときは、バックルスイッチ13の出力電流i-Hole(抵抗43を流れる電流)は、閾値Th3よりも低い。バックルスイッチ13は、タング7とバックル8とが連結されていない非連結状態を表す信号として、閾値Th3よりも低いレベルの出力電流i-Holeを、端子15から出力する。 When the buckle switch 13 is off, the output current i-Hole (the current flowing through the resistor 43) of the buckle switch 13 is lower than the threshold Th3. The buckle switch 13 outputs an output current i-Hole having a level lower than the threshold Th3 from the terminal 15 as a signal indicating a non-connected state where the tongue 7 and the buckle 8 are not connected.
 MPU30は、閾値Th3よりも低いレベルの出力電流i-Holeが抵抗45を介して検出されている場合、乗員11の存否判定を実行する。 When the output current i-Hole having a level lower than the threshold Th3 is detected through the resistor 45, the MPU 30 performs the presence / absence determination of the occupant 11.
 MPU30は、乗員11の存在が検知されていないとき、トランジスタ46を常時オフさせることによって、乗員センサ12の出力電流i-Out(抵抗47を流れる電流)を低くする。乗員センサ12は、閾値Th4よりも低いレベルの出力電流(i-Outとi-Senseの和)を乗員11の不存在情報として端子14から出力する。i-Senseは、レギュレータ29に供給される電源電流である。 The MPU 30 reduces the output current i-Out (current flowing through the resistor 47) of the occupant sensor 12 by always turning off the transistor 46 when the presence of the occupant 11 is not detected. The occupant sensor 12 outputs an output current (sum of i-Out and i-Sense) at a level lower than the threshold value Th4 from the terminal 14 as non-existence information of the occupant 11. i-Sense is a power supply current supplied to the regulator 29.
 バックルスイッチ13がオフであり且つ乗員11の存在が検知されていないときに乗員が乗り込むと、MPU30は、乗員11の存在を検知する。MPU30は、乗員11の存在が検知されているとき、トランジスタ46をオン/オフさせることによって、閾値Th4を繰り返し跨ぐ第3の周期のパルス電流を出力する。乗員センサ12は、第3の周期のパルス電流を乗員11の存在情報として端子14から出力する。 If the occupant gets in when the buckle switch 13 is off and the presence of the occupant 11 is not detected, the MPU 30 detects the presence of the occupant 11. When the presence of the occupant 11 is detected, the MPU 30 turns on / off the transistor 46 to output a third period pulse current that repeatedly crosses the threshold Th4. The occupant sensor 12 outputs the pulse current of the third period from the terminal 14 as the presence information of the occupant 11.
 バックルスイッチ13がオンのときは、バックルスイッチ13の出力電流i-Holeは、閾値Th3よりも高い。バックルスイッチ13は、タング7とバックル8とが連結している連結状態を表す信号として、閾値Th3よりも高いレベルの出力電流i-Holeを、端子15から出力する。 When the buckle switch 13 is on, the output current i-Hole of the buckle switch 13 is higher than the threshold Th3. The buckle switch 13 outputs an output current i-Hole having a level higher than the threshold Th3 from the terminal 15 as a signal indicating a connection state in which the tongue 7 and the buckle 8 are connected.
 MPU30は、閾値Th3よりも高いレベルの出力電流i-Holeが抵抗45を介して検出されている場合、乗員11の生理的情報の検出を実行する。 When the output current i-Hole having a level higher than the threshold Th3 is detected via the resistor 45, the MPU 30 detects the physiological information of the occupant 11.
 MPU30は、閾値Th3よりも高いレベルの出力電流i-Holeが抵抗45を介して検出されている場合、乗員11はシートベルト4を装着したとみなし、呼吸周期などの生理的情報を検出する。MPU30は、バックルスイッチ13がオンが検知されているとき、トランジスタ46をオン/オフさせることによって、閾値Th4を繰り返し跨ぐ第4の周期のパルス電流を出力する。乗員センサ12は、第4の周期のパルス電流を乗員11の生理的情報として端子14から出力する。 When the output current i-Hole having a level higher than the threshold value Th3 is detected via the resistor 45, the MPU 30 regards the occupant 11 as wearing the seat belt 4 and detects physiological information such as a respiratory cycle. When the buckle switch 13 is detected to be on, the MPU 30 turns on / off the transistor 46 to output a pulse current having a fourth period that repeatedly crosses the threshold Th4. The occupant sensor 12 outputs a pulse current of the fourth period from the terminal 14 as physiological information of the occupant 11.
 第4の周期は、第3の周期と異なる。図示の例では、第4の周期は、第3の周期よりも長いが、第3の周期よりも短くてもよい。あるいは、MPU30は、呼吸や脈拍などの周期に比例して第4の周期を変更してもよいし、呼吸や脈拍などの安定状態又は不安定状態を表すコードパルスを出力してもよい。 The fourth cycle is different from the third cycle. In the illustrated example, the fourth period is longer than the third period, but may be shorter than the third period. Alternatively, the MPU 30 may change the fourth cycle in proportion to the cycle such as breathing or pulse, or may output a code pulse representing a stable state or unstable state such as breathing or pulse.
 このように、第1の実施形態では、乗員センサ12は、図16及び図17に示されるように、バックルスイッチ13の検知状態の切り替えに応じて、存否情報と生理的情報とを切り替えて出力する。これにより、バックル8とタング7との連結から非連結への切り替えタイミング又は非連結から連結への切り替えタイミングに同期して、存否情報と生理的情報との出力の切り替えが可能となる。 Thus, in the first embodiment, the occupant sensor 12 switches the presence / absence information and the physiological information according to the switching of the detection state of the buckle switch 13, as shown in FIGS. To do. Thereby, the output of presence information and physiological information can be switched in synchronization with the switching timing of the buckle 8 and the tongue 7 from the coupling to the non-coupling or the switching timing from the non-coupling to the coupling.
 また、第1の実施形態では、乗員センサ12は、図16及び図17に示されるように、バックルスイッチ13がバックル8とタング7との連結を検知していないとき、生理的情報を出力せずに存否情報を出力する。一方、乗員センサ12は、バックルスイッチ13が当該連結を検知しているとき、存否情報を出力せずに生理的情報を出力する。これにより、ECU100は、バックルスイッチ13のオフが検出されているときには、乗員センサ12から供給される情報は存否情報と容易に判定でき、バックルスイッチ13のオンが検出されているときには、乗員センサ12から供給される情報は生理的情報と容易に判定できる。 In the first embodiment, the occupant sensor 12 outputs physiological information when the buckle switch 13 does not detect the connection between the buckle 8 and the tongue 7 as shown in FIGS. Output presence / absence information. On the other hand, when the buckle switch 13 detects the connection, the occupant sensor 12 outputs physiological information without outputting presence / absence information. Thus, the ECU 100 can easily determine that the information supplied from the occupant sensor 12 is presence / absence information when the buckle switch 13 is detected to be off, and the occupant sensor 12 when the buckle switch 13 is detected to be on. Can be easily determined as physiological information.
 また、乗員センサ12は、図16又は図17において、バックルスイッチ13のオフからオンへの切り替えを検知してから所定時間経過後に、存在情報の出力から生理的情報の出力に切り替えてもよい。また、乗員センサ12は、図16又は図17において、バックルスイッチ13のオンからオフへの切り替えを検知してから所定時間経過後に、生理的情報の出力から存否情報の出力に切り替えてもよい。 Further, in FIG. 16 or FIG. 17, the occupant sensor 12 may switch from the output of the presence information to the output of the physiological information after a predetermined time has elapsed after detecting the switching of the buckle switch 13 from OFF to ON. In addition, in FIG. 16 or FIG. 17, the occupant sensor 12 may switch from outputting physiological information to outputting presence / absence information after a predetermined time has elapsed after detecting switching of the buckle switch 13 from on to off.
 また、図23に示されるように、乗員センサ12は、乗員11の存在が検出されず且つバックル8とタング7との連結がバックルスイッチ13により検知されないとき、乗員11の不存在情報を出力する。一方、乗員センサ12は、乗員11の存在が検出され且つ当該連結がバックルスイッチ13により検知されないとき、乗員11の生理的情報を出力する。あるいは、乗員センサ12は、乗員11の存在が検出され且つ当該連結がバックルスイッチ13により検知されないとき、シートベルト4の装着を促すリマインド情報を出力してもよい。 23, the occupant sensor 12 outputs the non-existence information of the occupant 11 when the presence of the occupant 11 is not detected and the connection between the buckle 8 and the tongue 7 is not detected by the buckle switch 13. . On the other hand, the occupant sensor 12 outputs physiological information of the occupant 11 when the presence of the occupant 11 is detected and the connection is not detected by the buckle switch 13. Alternatively, the occupant sensor 12 may output remind information that prompts the user to wear the seat belt 4 when the presence of the occupant 11 is detected and the connection is not detected by the buckle switch 13.
 例えば図23のように、乗員センサ12は、乗員11の存在が検出され且つ当該連結がバックルスイッチ13により検知されない状態が所定時間経過したとき、乗員11の存否情報の出力から、乗員11の生理的情報の出力に切り替える。これにより、乗員11の存在情報の出力が継続している状態でバックル8とタング7との連結がバックルスイッチ13により検知されなくても、ECU100は、生理的情報の受信を開始できる。 For example, as shown in FIG. 23, when the presence of the occupant 11 is detected and a state in which the connection is not detected by the buckle switch 13 has elapsed for a predetermined time, the occupant sensor 12 determines the physiology of the occupant 11 from the output of the presence / absence information of the occupant 11. Switch to output information. Thereby, even if the connection of the buckle 8 and the tongue 7 is not detected by the buckle switch 13 while the output of the presence information of the occupant 11 is continued, the ECU 100 can start receiving physiological information.
 あるいは、乗員センサ12は、乗員11の存在が検出され且つ当該連結がバックルスイッチ13により検知されない状態が所定時間経過したとき、乗員11の存否情報の出力から、シートベルト4の装着を促すリマインド情報の出力に切り替えてもよい。 Alternatively, the occupant sensor 12 detects the presence of the occupant 11 and the remind information that prompts the user to attach the seat belt 4 from the output of the presence / absence information of the occupant 11 when a state where the connection is not detected by the buckle switch 13 has elapsed. You may switch to the output.
 また、図23において、乗員センサ12は、乗員11の存在情報をシートベルト4の装着を促すリマインド情報として出力してもよい。 Further, in FIG. 23, the occupant sensor 12 may output the presence information of the occupant 11 as remind information for urging the user to wear the seat belt 4.
 また、例えば、ECU100は、バックルスイッチ13のオフ状態で乗員センサ12による存在情報が検出された場合、エアコンやシートヒータをオンさせる。これにより、エネルギーの省力に効果がある。 Also, for example, when the presence information is detected by the occupant sensor 12 with the buckle switch 13 in the off state, the ECU 100 turns on the air conditioner and the seat heater. This is effective in saving energy.
 例えば、ECU100は、乗員センサ12による存在情報が検出されてから所定時間内にシートベルト4の装着がバックルスイッチ13により検出されない場合、ベルトリマインド警報を出力できる。 For example, the ECU 100 can output a belt remind alarm when the wearing of the seat belt 4 is not detected by the buckle switch 13 within a predetermined time after the presence information by the occupant sensor 12 is detected.
 例えば、ECU100は、乗員センサ12から供給される生理的情報に基づいて、乗員11のバイタルサイン情報をディスプレイに表示させることができる。ECU100は、バイタルサイン情報そのものをディスプレイに表示させてもよいが、バイタルサイン情報に基づいて得られる情報(例えば、乗員11に休憩を促す情報)をディスプレイに表示させてもよい。具体的には、ECU100は、あくびや眠気などの発生頻度が所定レベルを超えた場合、乗員11に休憩を促す情報(例えば、コーヒーカップなどの休憩を連想させる情報)をディスプレイに表示させてもよい。 For example, the ECU 100 can display the vital sign information of the occupant 11 on the display based on the physiological information supplied from the occupant sensor 12. The ECU 100 may display the vital sign information itself on the display, but may display information obtained based on the vital sign information (for example, information that prompts the occupant 11 to take a break) on the display. Specifically, the ECU 100 may display information prompting the occupant 11 to take a break (for example, information reminiscent of a break such as a coffee cup) when the occurrence frequency of yawning or drowsiness exceeds a predetermined level. Good.
 また、第1の実施形態では、バックル8は、存否情報と生理的情報との出力に共用される出力端子として、端子14,16を備える(例えば、図3参照)。これにより、バックル8とECU100とを結ぶ配線数を減らすことができる。 Further, in the first embodiment, the buckle 8 includes terminals 14 and 16 as output terminals shared for outputting presence / absence information and physiological information (see, for example, FIG. 3). As a result, the number of wires connecting the buckle 8 and the ECU 100 can be reduced.
 また、第1の実施形態によれば、乗員センサ12が搭載されていないバックルとの互換性を確保することができる。つまり、ECU100側のバックル8との接続インターフェースを変更することなく、ECU100は、乗員センサ12が搭載されていないバックルが接続されても、バックルスイッチ13の検知状態を取得できる。 Further, according to the first embodiment, compatibility with a buckle in which the occupant sensor 12 is not mounted can be ensured. That is, without changing the connection interface with the buckle 8 on the ECU 100 side, the ECU 100 can acquire the detection state of the buckle switch 13 even if a buckle on which the occupant sensor 12 is not mounted is connected.
 <第2の実施形態>
 図18は、車載システム1Bの構成の一例を示すブロック図である。第1の実施形態と同様の構成についての説明は、上述の説明を援用することで省略又は簡略する。
<Second Embodiment>
FIG. 18 is a block diagram illustrating an example of the configuration of the in-vehicle system 1B. The description of the same configuration as that of the first embodiment is omitted or simplified by using the above description.
 図18に示される例では、バックル8の本体部8aは、少なくとも2つの端子15,16を有し、ECU100は、少なくとも2つの端子102,103を有する。車載システム1Bは、端子15と端子102とを相互に接続する配線18と、端子16と端子103とを相互に接続する配線19とを備える。 In the example shown in FIG. 18, the main body 8 a of the buckle 8 has at least two terminals 15 and 16, and the ECU 100 has at least two terminals 102 and 103. The in-vehicle system 1B includes a wiring 18 that connects the terminal 15 and the terminal 102 to each other, and a wiring 19 that connects the terminal 16 and the terminal 103 to each other.
 第2の実施形態では、バックル8は、バックルスイッチ13の検知状態と存否情報と生理的情報との出力に共用される出力端子として、端子15,16を備える。これにより、バックル8とECU100とを結ぶ配線数を更に減らすことができる。バックル8は、バックルスイッチ13の検知状態に乗員センサ12の出力情報(存否情報又は生理的情報)を重畳した信号を電圧変調又は電流変調により端子15,16から出力する。 In the second embodiment, the buckle 8 includes terminals 15 and 16 as output terminals shared by the detection state of the buckle switch 13, presence / absence information, and physiological information. As a result, the number of wires connecting the buckle 8 and the ECU 100 can be further reduced. The buckle 8 outputs a signal obtained by superimposing the output information (presence / absence information or physiological information) of the occupant sensor 12 on the detection state of the buckle switch 13 from the terminals 15 and 16 by voltage modulation or current modulation.
 図19は、バックル8の本体部8aの構成の一例を示す図である。図19は、1つのバックルスイッチ13の出力仕様に合わせて、バックルスイッチ13と乗員センサ12の2つの出力を統合した場合の実施例を示す。 FIG. 19 is a diagram showing an example of the configuration of the main body 8a of the buckle 8. As shown in FIG. FIG. 19 shows an embodiment in which two outputs of the buckle switch 13 and the occupant sensor 12 are integrated in accordance with the output specification of one buckle switch 13.
 バックルスイッチ13の出力と乗員センサ12の出力とを単純に結合すると、2つの出力電流の合算となる。例えば、i-Senseとi-Outの和が出力電流i-Holeと同じとき、合計電流が2倍となるので、ECU100の電流供給能力を超える場合がある。 If the output of the buckle switch 13 and the output of the occupant sensor 12 are simply combined, the two output currents are summed. For example, when the sum of i-Sense and i-Out is the same as the output current i-Hole, the total current is doubled, which may exceed the current supply capability of the ECU 100.
 これを避けるために、バックル8の本体部8aは、トランジスタ41及びホールセンサ40のグランド側にトランジスタ49を備える。MPU30は、トランジスタ49をオフすることによって、出力電流i-Holeをカットできる。MPU30は、バックルスイッチ13のオン状態又はオフ状態を周期的に検出するため、トランジスタ49をオンさせて、出力電流i-Holeを流す。MPU30は、出力電流i-Holeを流すと同時に、トランジスタ46をオフすることによって電流I-Outをカットする。これにより、情報受信側のECU100がバックル8に供給する電流は、バックルスイッチ13の1個分に保たれる。 In order to avoid this, the main body 8a of the buckle 8 includes a transistor 49 on the ground side of the transistor 41 and the Hall sensor 40. The MPU 30 can cut the output current i-Hole by turning off the transistor 49. In order to periodically detect the on state or the off state of the buckle switch 13, the MPU 30 turns on the transistor 49 to flow the output current i-Hole. The MPU 30 flows the output current i-Hole, and at the same time cuts the current I-Out by turning off the transistor 46. Thereby, the current supplied to the buckle 8 by the ECU 100 on the information receiving side is kept at one buckle switch 13.
 図20は、バックルスイッチ13の電圧出力及び乗員センサ12の電圧出力の一例を示すタイミングチャートである。図20は、図19に示される構成の動作波形の一例を示す。図20は、乗員センサ12が乗員の不存在から存在への変化を検出し、バックルスイッチ13がバックルオフからバックルオンへの切り替えを検出後、乗員センサ12が乗員の存在情報の出力から乗員の呼吸周期情報の出力に切り替える例を示す。 FIG. 20 is a timing chart showing an example of the voltage output of the buckle switch 13 and the voltage output of the occupant sensor 12. FIG. 20 shows an example of operation waveforms of the configuration shown in FIG. In FIG. 20, the occupant sensor 12 detects a change from the absence of the occupant to the presence, and the buckle switch 13 detects the change from the buckle off to the buckle on. An example of switching to output of respiratory cycle information is shown.
 図20は、バックルスイッチ13の出力に乗員センサ12の出力を重畳した実施例を示す。 FIG. 20 shows an embodiment in which the output of the occupant sensor 12 is superimposed on the output of the buckle switch 13.
 タング7とバックル8とが連結されていないとき、トランジスタ41がオフしている(バックルスイッチ13がオフ)。トランジスタ41のオフにより、バックルスイッチ13の両端の出力電圧(端子15と端子16との間の電圧)は、閾値Th5よりも高い。バックルスイッチ13は、タング7とバックル8とが連結されていない非連結状態を表す信号として、閾値Th5よりも高い電圧を、端子15,16から出力する。 When the tongue 7 and the buckle 8 are not connected, the transistor 41 is off (the buckle switch 13 is off). Since the transistor 41 is turned off, the output voltage at both ends of the buckle switch 13 (the voltage between the terminal 15 and the terminal 16) is higher than the threshold Th5. The buckle switch 13 outputs a voltage higher than the threshold Th5 from the terminals 15 and 16 as a signal indicating a non-connected state where the tongue 7 and the buckle 8 are not connected.
 MPU30は、閾値Th5よりも高い電圧が抵抗45を介して検出されている場合、乗員11の存否判定を実行する。 The MPU 30 executes the presence / absence determination of the occupant 11 when a voltage higher than the threshold Th5 is detected through the resistor 45.
 MPU30は、乗員11の存在が検知されていないとき、トランジスタ46を常時オフさせることによって、乗員センサ12の両端の出力電圧(端子15と端子16との間の電圧)を閾値Th5よりも高くする。乗員センサ12は、閾値Th5よりも高い電圧を乗員11の不存在情報として端子15,16から出力する。 When the presence of the occupant 11 is not detected, the MPU 30 always turns off the transistor 46, thereby increasing the output voltage (voltage between the terminal 15 and the terminal 16) at both ends of the occupant sensor 12 above the threshold Th5. . The occupant sensor 12 outputs a voltage higher than the threshold Th5 from the terminals 15 and 16 as the absence information of the occupant 11.
 バックルスイッチ13がオフであり且つ乗員11の存在が検知されていないときに乗員が車両に乗り込むと、MPU30は、乗員11の存在を検知する。MPU30は、乗員11の存在が検知されているとき、トランジスタ46をオン/オフさせることによって、閾値Th5を繰り返し跨ぐ第1の周期のパルス電圧を出力する。乗員センサ12は、第1の周期のパルス電圧を乗員11の存在情報として端子15,16から出力する。 When the occupant gets into the vehicle when the buckle switch 13 is off and the presence of the occupant 11 is not detected, the MPU 30 detects the presence of the occupant 11. When the presence of the occupant 11 is detected, the MPU 30 turns on / off the transistor 46 to output a pulse voltage having a first cycle that repeatedly crosses the threshold Th5. The occupant sensor 12 outputs the pulse voltage of the first cycle from the terminals 15 and 16 as the presence information of the occupant 11.
 タング7とバックル8とが連結されると、トランジスタ41がオンする(バックルスイッチ13がオン)。トランジスタ41のオンにより、バックルスイッチ13の両端の出力電圧は、閾値Th5よりも低い。バックルスイッチ13は、タング7とバックル8とが連結されている連結状態を表す信号として、閾値Th5よりも低い電圧を、端子15,16から出力する。 When the tongue 7 and the buckle 8 are connected, the transistor 41 is turned on (the buckle switch 13 is turned on). When the transistor 41 is turned on, the output voltage across the buckle switch 13 is lower than the threshold value Th5. The buckle switch 13 outputs a voltage lower than the threshold value Th <b> 5 from the terminals 15 and 16 as a signal indicating a connection state in which the tongue 7 and the buckle 8 are connected.
 MPU30は、閾値Th5よりも低い電圧が抵抗45を介して検出されている場合、乗員11の生理的情報の検出を実行する。 The MPU 30 detects the physiological information of the occupant 11 when a voltage lower than the threshold Th5 is detected through the resistor 45.
 MPU30は、閾値Th5よりも低い電圧が抵抗45を介して検出されている場合、乗員11はシートベルト4を装着したとみなし、呼吸周期などの生理的情報を検出する。MPU30は、バックルスイッチ13のオンが検知されているとき、トランジスタ46をオン/オフさせることによって、閾値Th5を繰り返し跨ぐ第2の周期のパルス電圧を出力する。乗員センサ12は、第2の周期のパルス電圧を乗員11の生理的情報として端子15,16から出力する。 When the voltage lower than the threshold value Th5 is detected via the resistor 45, the MPU 30 regards the occupant 11 as wearing the seat belt 4 and detects physiological information such as a respiratory cycle. When it is detected that the buckle switch 13 is turned on, the MPU 30 turns on / off the transistor 46 to output a pulse voltage having a second period that repeatedly crosses the threshold Th5. The occupant sensor 12 outputs the pulse voltage of the second period from the terminals 15 and 16 as physiological information of the occupant 11.
 第2の周期は、第1の周期と異なる。図示の例では、第2の周期は、第1の周期よりも長いが、第1の周期よりも短くてもよい。 The second cycle is different from the first cycle. In the illustrated example, the second period is longer than the first period, but may be shorter than the first period.
 たとえば、乗員11が着座しているがバックル8とタング7とが非連結のとき、バックルスイッチ13はオフ時の電圧を出力する。しかし、乗員センサ12は乗員の着座を検知しているため、シートベルト4を締めることを促すベルトリマインド信号(すなわち、乗員11の存在信号)をバックルスイッチ13の出力電圧に重畳する。乗員センサ12のMPU30は、たとえば、1秒間に1回、10msecのオンパルスを出力する(図20参照)。ECU100は、この10msecのオンパルスを検知することで、ベルトリマインド信号を受信できる。 For example, when the occupant 11 is seated but the buckle 8 and the tongue 7 are not connected, the buckle switch 13 outputs the voltage when it is off. However, since the occupant sensor 12 detects the occupant's seating, the occupant sensor 12 superimposes on the output voltage of the buckle switch 13 a belt remind signal (that is, an occupant 11 presence signal) that prompts the user to fasten the seat belt 4. The MPU 30 of the occupant sensor 12 outputs an on-pulse of 10 msec once per second, for example (see FIG. 20). The ECU 100 can receive the belt remind signal by detecting the 10 msec on-pulse.
 バックル8とタング7とが連結されると、バックルスイッチ13はオン時の電圧を出力する。乗員センサ12のMPU30は、センサ20により呼吸を検知した場合、検出された呼吸周期に同期して10msecのオフパルスを出力する(図20参照)。MPU30は、例えば、2秒間に1回、10msecのオフパルスを出力する。ECU100は、この10msecのオフパルスを検知することで、呼吸周期を受信できる。 When the buckle 8 and the tongue 7 are connected, the buckle switch 13 outputs the voltage when it is on. When the MPU 30 of the occupant sensor 12 detects respiration by the sensor 20, the MPU 30 outputs an off pulse of 10 msec in synchronization with the detected respiration cycle (see FIG. 20). For example, the MPU 30 outputs an off pulse of 10 msec once every 2 seconds. The ECU 100 can receive the respiratory cycle by detecting the 10 msec off-pulse.
 ECUが存否情報及び生理的情報を受信できない構成の場合、当該ECUは、バックル8から出力される極短い10msecのオンパルス及びオフパルスを検知できず、バックルスイッチ13の検知状態のみを検知できる。したがって、ECUが存否情報及び生理的情報を受信できる構成を有するか否かにかかわらず、バックル8の共通化が可能である。つまり、バックルの交換だけで、ベルトリマインダシステムや生理的情報検知システムを車両に装備するかしないかを決定することができる。 When the ECU cannot receive presence / absence information and physiological information, the ECU cannot detect the extremely short 10 msec on-pulse and off-pulse output from the buckle 8 and can detect only the detection state of the buckle switch 13. Therefore, the buckle 8 can be shared regardless of whether the ECU has a configuration capable of receiving presence / absence information and physiological information. That is, it is possible to determine whether or not to equip the vehicle with a belt reminder system or a physiological information detection system simply by replacing the buckle.
 図21は、バックルスイッチ13の電流出力及び乗員センサ12の電流出力の一例を示すタイミングチャートである。図21は、図20の場合と同様、図19に示される構成の動作波形の一例を示す。図21は、図20の場合と同様、乗員センサ12が乗員の不存在から存在への変化を検出し、バックルスイッチ13がバックルオフからバックルオンへの変化を検出後、乗員センサ12が乗員の存在情報の出力から乗員の呼吸周期情報の出力に切り替える例を示す。 FIG. 21 is a timing chart showing an example of the current output of the buckle switch 13 and the current output of the occupant sensor 12. FIG. 21 shows an example of the operation waveform of the configuration shown in FIG. 19 as in the case of FIG. In FIG. 21, as in the case of FIG. 20, the occupant sensor 12 detects the change from the absence of the occupant to the presence, and the buckle switch 13 detects the change from the buckle off to the buckle on. An example of switching from the output of presence information to the output of occupant respiratory cycle information will be shown.
 バックルスイッチ13の電流出力と乗員センサ12の電流出力とをまとめると、両者の出力電流が合算される。図21は、i-Holeに対してi-Outの電流値を約半分にした例を示す。 When the current output of the buckle switch 13 and the current output of the occupant sensor 12 are collected, the output currents of both are added together. FIG. 21 shows an example in which the current value of i-Out is approximately halved with respect to i-Hole.
 ECU100は、電流閾値Th12よりも低い電流が端子15から出力されることが検知された場合、バックルスイッチ13がオフであると判定する。一方、ECU100は、電流閾値Th12よりも高い電流が端子15から出力されることが検知された場合、バックルスイッチ13がオンであると判定する。 ECU100 determines that the buckle switch 13 is OFF when it is detected that a current lower than the current threshold Th12 is output from the terminal 15. On the other hand, when it is detected that a current higher than the current threshold Th12 is output from the terminal 15, the ECU 100 determines that the buckle switch 13 is on.
 また、ECU100は、電流閾値Th12よりも低い電流が端子15から出力されることが検知された場合において、電流閾値Th13よりも低い電流が端子15から出力されることが検知されているとき、乗員が存在しないと判定する。ECU100は、電流閾値Th12よりも低い電流が端子15から出力されることが検知されている場合において、電流閾値Th13を跨ぐパルスを乗員の存在情報として検知する。ECU100は、電流閾値Th12よりも高い電流が端子15から出力されることが検知されている場合において、電流閾値Th11を跨ぐパルスを生理的情報として検知する。 Further, when it is detected that a current lower than the current threshold Th12 is output from the terminal 15, the ECU 100 detects that a current lower than the current threshold Th13 is output from the terminal 15, Is determined not to exist. When it is detected that a current lower than the current threshold Th12 is output from the terminal 15, the ECU 100 detects a pulse straddling the current threshold Th13 as occupant presence information. When it is detected that a current higher than the current threshold Th12 is output from the terminal 15, the ECU 100 detects a pulse straddling the current threshold Th11 as physiological information.
 図22は、バックルスイッチ13の電流出力及び乗員センサ12の電流出力の他の一例を示すタイミングチャートである。図22は、図20の場合と同様、図19に示される構成の動作波形の一例を示す。図22は、図20の場合と同様、乗員センサ12が乗員の不存在から存在への変化を検出し、バックルスイッチ13がバックルオフからバックルオンへの変化を検出後、乗員センサ12が乗員の存在情報の出力から乗員の呼吸周期情報の出力に切り替える例を示す。 FIG. 22 is a timing chart showing another example of the current output of the buckle switch 13 and the current output of the occupant sensor 12. FIG. 22 shows an example of the operation waveform of the configuration shown in FIG. 19 as in the case of FIG. In FIG. 22, as in the case of FIG. 20, the occupant sensor 12 detects a change from the absence of the occupant to the presence, and the buckle switch 13 detects the change from the buckle off to the buckle on. An example of switching from the output of presence information to the output of occupant respiratory cycle information will be shown.
 ECU100は、第1の電流値範囲R1内の電流が端子15から出力されることが検知された場合、バックルスイッチ13がオンであると判定する。一方、ECU100は、第2の電流値範囲R2内の電流が端子15から出力されることが検知された場合、バックルスイッチ13がオフであると判定する。 ECU100 determines that the buckle switch 13 is ON when it is detected that the current within the first current value range R1 is output from the terminal 15. On the other hand, when it is detected that the current within the second current value range R2 is output from the terminal 15, the ECU 100 determines that the buckle switch 13 is off.
 また、ECU100は、第2の電流値範囲R2内の電流閾値Th6よりも低い電流が端子15から出力されることが検知されているとき、乗員が存在しないと判定する。ECU100は、第2の電流値範囲R2内の電流が端子15から出力されることが検知されている場合において、電流閾値Th6を跨ぐパルスを乗員の存在情報として検知する。ECU100は、第1の電流値範囲R1内の電流が端子15から出力されることが検知されている場合において、第1の電流値範囲R1内の電流閾値Th7を跨ぐパルスを生理的情報として検知する。 Further, when it is detected that a current lower than the current threshold Th6 within the second current value range R2 is output from the terminal 15, the ECU 100 determines that no occupant is present. When it is detected that a current within the second current value range R2 is output from the terminal 15, the ECU 100 detects a pulse straddling the current threshold Th6 as occupant presence information. The ECU 100 detects, as physiological information, a pulse that straddles the current threshold value Th7 in the first current value range R1 when it is detected that the current in the first current value range R1 is output from the terminal 15. To do.
 以上、バックル及び車載システムを実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。 As described above, the buckle and the in-vehicle system have been described in the embodiment, but the present invention is not limited to the above embodiment. Various modifications and improvements such as combinations and substitutions with some or all of the other embodiments are possible within the scope of the present invention.
 例えば、乗員センサ12により生成される存否情報及び生理的情報は、所定の通信方式で端子14,15,16のうちの少なくとも一つである通信端子から出力されてもよい。通信方式の具体例として、LIN(Local Interconnect Network)、CAN(Controller Area Network)などが挙げられる。乗員センサ12は、存否情報及び生理的情報を通信データとしてコード化し、シリアルデータとして送信できる。シリアルデータにはバックルスイッチの検知状態も含めることが可能である。したがって、受信側のECUは、シリアル通信データだけでも、存否情報及び生理的情報だけでなく、バックルスイッチ13の検知状態も受信できる。 For example, presence / absence information and physiological information generated by the occupant sensor 12 may be output from a communication terminal which is at least one of the terminals 14, 15, and 16 by a predetermined communication method. Specific examples of communication methods include LIN (Local Interconnect Network) and CAN (Controller Area Network). The occupant sensor 12 can encode presence / absence information and physiological information as communication data and transmit the encoded data as serial data. The serial data can include the detection state of the buckle switch. Therefore, the ECU on the receiving side can receive not only the presence / absence information and physiological information but also the detection state of the buckle switch 13 only with the serial communication data.
 乗員センサ12は、バックルスイッチ13の検知状態をECU100に一旦送信し、ECU100から送信されたバックルスイッチ13の検知状態を利用して、乗員11の検知機能を切り替えてもよい。さらに、乗員センサ12は、ECU100から送信された車両情報(バックルのみによって得られない情報)に応じて、乗員11の検知機能や、出力する検知情報の種類を切り替えてもよい。 The occupant sensor 12 may once transmit the detection state of the buckle switch 13 to the ECU 100 and switch the detection function of the occupant 11 using the detection state of the buckle switch 13 transmitted from the ECU 100. Furthermore, the occupant sensor 12 may switch the detection function of the occupant 11 or the type of detection information to be output according to vehicle information transmitted from the ECU 100 (information that cannot be obtained only by the buckle).
 また、乗員センサ12は、赤外線等の電磁波により乗員の動きを検知する手段でもよいし、温度により乗員の動きを検知する手段でもよい。乗員センサ12は、乗員11の体温又は血圧をバイタルサイン情報としてECU100に対して出力してもよい。 Further, the occupant sensor 12 may be a means for detecting the movement of the occupant by electromagnetic waves such as infrared rays, or may be a means for detecting the movement of the occupant by temperature. The occupant sensor 12 may output the body temperature or blood pressure of the occupant 11 to the ECU 100 as vital sign information.
 また、シート2は、車両の前側座席でもよいし、後部座席でもよい。 Further, the seat 2 may be a front seat of the vehicle or a rear seat.
 本国際出願は、2016年5月20日に出願した日本国特許出願第2016-101877号に基づく優先権を主張するものであり、日本国特許出願第2016-101877号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2016-101877 filed on May 20, 2016. The entire contents of Japanese Patent Application No. 2016-101877 are hereby incorporated by reference. Incorporated into.
1 シートベルトシステム
1A,1B 車載システム
8 バックル
8a 本体部
12 乗員センサ
13 バックルスイッチ
20 センサ
26 存否情報検出部
27 生理的情報検出部
28 グランド
40 ホールセンサ
44 発光ダイオード
100,100A,100B ECU
DESCRIPTION OF SYMBOLS 1 Seatbelt system 1A, 1B In-vehicle system 8 Buckle 8a Body part 12 Passenger sensor 13 Buckle switch 20 Sensor 26 Presence / absence information detection part 27 Physiological information detection part 28 Ground 40 Hall sensor 44 Light emitting diode 100, 100A, 100B ECU

Claims (12)

  1.  車両のシートベルトに取り付けられたタングと連結可能な本体部と、
     前記タングと前記本体部との連結の有無を検知するバックルスイッチと、
     前記車両のシート上の乗員を検出する乗員センサとを備え、
     前記乗員センサは、前記バックルスイッチの検知状態を利用して、前記乗員の検出機能を切り替える、バックル。
    A body portion connectable with a tongue attached to a vehicle seat belt;
    A buckle switch for detecting the presence or absence of connection between the tongue and the main body;
    An occupant sensor for detecting an occupant on a seat of the vehicle,
    The occupant sensor is a buckle that switches a detection function of the occupant using a detection state of the buckle switch.
  2.  前記乗員センサは、前記検知状態の違いに応じて、前記乗員の検出機能を切り替える、請求項1に記載のバックル。 The buckle according to claim 1, wherein the occupant sensor switches a detection function of the occupant according to the difference in the detection state.
  3.  前記乗員センサは、前記検知状態の違いに応じて、前記乗員の存否情報と前記乗員の生理的情報とを切り替えて出力する、請求項1に記載のバックル。 The buckle according to claim 1, wherein the occupant sensor switches and outputs the occupant presence / absence information and the occupant physiological information according to the difference in the detection state.
  4.  前記乗員センサは、前記バックルスイッチが前記連結を検知していないとき、前記存否情報を出力し、前記バックルスイッチが前記連結を検知しているとき、前記生理的情報を出力する、請求項3に記載のバックル。 The occupant sensor outputs the presence / absence information when the buckle switch does not detect the connection, and outputs the physiological information when the buckle switch detects the connection. The listed buckle.
  5.  前記乗員センサは、前記バックルスイッチが前記連結を検知していないとき、前記生理的情報を出力せずに前記存否情報を出力し、前記バックルスイッチが前記連結を検知しているとき、前記存否情報を出力せずに前記生理的情報を出力する、請求項4に記載のバックル。 The occupant sensor outputs the presence / absence information without outputting the physiological information when the buckle switch does not detect the connection, and the presence / absence information when the buckle switch detects the connection. The buckle according to claim 4, wherein the physiological information is output without outputting.
  6.  前記乗員センサは、前記乗員の存在が検出され且つ前記連結が前記バックルスイッチにより検知されないとき、前記乗員の存否情報の出力から、前記シートベルトの装着を促すリマインド情報の出力に又は前記乗員の生理的情報の出力に切り替える、請求項1に記載のバックル。 When the presence of the occupant is detected and the connection is not detected by the buckle switch, the occupant sensor outputs from the output of the occupant presence / absence information to the output of remind information for prompting wearing of the seat belt or the physiology of the occupant The buckle according to claim 1, wherein the buckle is switched to output of target information.
  7.  前記乗員の存否情報と前記乗員の生理的情報との出力に共用される出力端子を備える、請求項1に記載のバックル。 The buckle according to claim 1, further comprising an output terminal shared for outputting the presence / absence information of the occupant and physiological information of the occupant.
  8.  前記バックルスイッチの検知状態と、前記乗員の存否情報と、前記乗員の生理的情報との出力に共用される出力端子を備える、請求項1に記載のバックル。 The buckle according to claim 1, further comprising an output terminal shared by the detection state of the buckle switch, the presence / absence information of the occupant, and the physiological information of the occupant.
  9.  前記出力端子は、前記バックルスイッチの検知状態に前記乗員センサによる検出情報を重畳した信号を出力する、請求項7に記載のバックル。 The buckle according to claim 7, wherein the output terminal outputs a signal in which detection information by the occupant sensor is superimposed on a detection state of the buckle switch.
  10.  前記出力端子は、通信端子である、請求項7に記載のバックル。 The buckle according to claim 7, wherein the output terminal is a communication terminal.
  11.  請求項1に記載のバックルと、前記乗員センサによる検出情報を受信する受信装置とを備える、車載システム。 An in-vehicle system comprising: the buckle according to claim 1; and a receiving device that receives detection information from the occupant sensor.
  12.  車両のシートベルトと、
     前記シートベルトに取り付けられたタングと、
     前記タングと連結可能なバックルとを備え、
     前記バックルは、
     前記タングと前記バックルとの連結の有無を検知するバックルスイッチと、
     前記車両のシート上の乗員を検出する乗員センサとを備え、
     前記乗員センサは、前記バックルスイッチの検知状態を利用して、前記乗員の検出機能を切り替える、シートベルトシステム。
    A vehicle seat belt,
    A tongue attached to the seat belt;
    A buckle connectable with the tongue,
    The buckle is
    A buckle switch for detecting whether or not the tongue and the buckle are connected;
    An occupant sensor for detecting an occupant on a seat of the vehicle,
    The occupant sensor uses a detection state of the buckle switch to switch the occupant detection function.
PCT/JP2017/018361 2016-05-20 2017-05-16 Buckle, vehicle-mounted system, and seatbelt system WO2017199952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-101877 2016-05-20
JP2016101877A JP6776002B2 (en) 2016-05-20 2016-05-20 Buckles, in-vehicle systems and seat belt systems

Publications (1)

Publication Number Publication Date
WO2017199952A1 true WO2017199952A1 (en) 2017-11-23

Family

ID=60325181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018361 WO2017199952A1 (en) 2016-05-20 2017-05-16 Buckle, vehicle-mounted system, and seatbelt system

Country Status (2)

Country Link
JP (1) JP6776002B2 (en)
WO (1) WO2017199952A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973108B2 (en) * 2018-01-23 2021-11-24 トヨタ車体株式会社 Pretensioner control device and pretensioner control method
JP6806723B2 (en) * 2018-03-22 2021-01-06 オートリブ ディベロップメント エービー Vehicles equipped with seatbelt buckle devices and seatbelt buckle devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219102A (en) * 1999-01-28 2000-08-08 Nsk Ltd Seat-belt device
JP2008044570A (en) * 2006-08-21 2008-02-28 Takata Corp Buckle, seat belt reminder device using this, and seat belt device provided with seat belt reminder device
JP2013092512A (en) * 2011-10-24 2013-05-16 Giga Tec:Kk Biological information detection system built-in lamp by microwave sensor
JP2013216187A (en) * 2012-04-06 2013-10-24 Autoliv Development Ab Seatbelt device
JP2015144796A (en) * 2014-02-03 2015-08-13 株式会社ギガテック Human body detection by microwave doppler sensor and biological monitoring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071825A (en) * 2000-08-31 2002-03-12 Toto Ltd Human body detecting device using microwave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219102A (en) * 1999-01-28 2000-08-08 Nsk Ltd Seat-belt device
JP2008044570A (en) * 2006-08-21 2008-02-28 Takata Corp Buckle, seat belt reminder device using this, and seat belt device provided with seat belt reminder device
JP2013092512A (en) * 2011-10-24 2013-05-16 Giga Tec:Kk Biological information detection system built-in lamp by microwave sensor
JP2013216187A (en) * 2012-04-06 2013-10-24 Autoliv Development Ab Seatbelt device
JP2015144796A (en) * 2014-02-03 2015-08-13 株式会社ギガテック Human body detection by microwave doppler sensor and biological monitoring method

Also Published As

Publication number Publication date
JP6776002B2 (en) 2020-10-28
JP2017206214A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6803679B2 (en) Buckle and in-vehicle system
US20100222687A1 (en) Method and system for monitoring vital body signs of a seated person
US20160001728A1 (en) Method and device for detecting the presence of objects in a passenger compartment of a vehicle
US20140361889A1 (en) Child Occupancy Monitoring System for a Vehicle Seat
US10672247B2 (en) Vehicle occupant detection device
US20060290516A1 (en) Distress signaling system, a body area network for anabling a distress signaling, method for signaling a condition of a distress and a vehicle arranged witha distress signaling system
US9527477B1 (en) Seat belt buckle tongue electromagnetic coupling with optional wireless sensor and/or actuator system
US11661028B2 (en) Seatbelt usage detection
LU93261B1 (en) Seat Belt Status Monitoring System
US20150360643A1 (en) Occupant sensing and classification system
WO2017199952A1 (en) Buckle, vehicle-mounted system, and seatbelt system
JP6707493B2 (en) Vehicle detection system
JP2010120493A (en) Biological signal detection device
US11607142B2 (en) Biosensor arrangement structure
CN110949311B (en) Seat belt detection device, method, system, vehicle, and storage medium
JP6840039B2 (en) Seat belt device
TWI592147B (en) Wearable objects around the body detection equipment
JP2021011126A (en) Occupant monitoring device
JP2018079826A (en) Device for detecting seat belt fastening
US11063474B2 (en) Wireless power supply system and non-transitory tangible computer-readable storage medium
CN212125060U (en) Safety belt detection device
JP2020056628A (en) Signal processor, sensor system, alarm system, and vehicle
CN215097464U (en) Intelligent safety belt, seat of vehicle and vehicle
CN210199948U (en) Safety reminding device for vehicle and new energy automobile
Udhyami et al. Ultra-Bandwidth Pulses for Vehicular Communications: A Systematic Review

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799376

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799376

Country of ref document: EP

Kind code of ref document: A1