WO2017199749A1 - Laminated lc filter - Google Patents

Laminated lc filter Download PDF

Info

Publication number
WO2017199749A1
WO2017199749A1 PCT/JP2017/017130 JP2017017130W WO2017199749A1 WO 2017199749 A1 WO2017199749 A1 WO 2017199749A1 JP 2017017130 W JP2017017130 W JP 2017017130W WO 2017199749 A1 WO2017199749 A1 WO 2017199749A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
electrode
resonator
filter
parallel resonator
Prior art date
Application number
PCT/JP2017/017130
Other languages
French (fr)
Japanese (ja)
Inventor
登 塩川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017199749A1 publication Critical patent/WO2017199749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/075Ladder networks, e.g. electric wave filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a multilayer LC filter. More specifically, the present invention relates to a small-sized multilayer LC in which an attenuation pole having a sufficient attenuation is formed in the vicinity of a passband and impedance matching between input and output is achieved. Regarding filters.
  • An LC filter that forms a circuit network with inductors and capacitors on a signal line connecting an input terminal and an output terminal and allows only a signal having a desired frequency to pass through is widely used in electronic circuits.
  • Patent Document 1 Japanese Patent Publication No. 2008-529360 discloses such an LC filter.
  • FIG. 11 and 12 show the LC filter 1000 disclosed in Patent Document 1.
  • FIG. 11 is an equivalent circuit diagram of the LC filter 1000.
  • FIG. 12 is a plan view of the LC filter 1000.
  • the LC filter 1000 includes an input terminal (input node) 101 and an output terminal (output node) 102.
  • the LC filter 1000 includes an LC parallel resonator 103 in which an inductor L01 and a capacitor C01 are connected in parallel between an input terminal 101 and an output terminal 102, an inductor L03, an inductor L05, and an inductor L06 in this order. Connected in series.
  • a capacitor C03 is connected in parallel with the LC parallel resonator 103, the inductor L03, and the inductor L05 connected in series.
  • the LC filter 1000 includes an LC series resonator 104 in which a capacitor C02 and an inductor L02 are connected in series between a connection point between the input terminal 101, the LC parallel resonator 103 and the capacitor C03, and the ground. It is connected. Further, an LC series resonator 105 in which an inductor L04 and a capacitor C04 are connected in series is connected between a connection point of the inductor L03 and the inductor L05 and the ground. Each of the LC series resonators 104 and 105 plays a role of forming an attenuation pole in the vicinity of the pass band of the LC filter 1000.
  • the LC filter 1000 has symmetry between the input and output because the LC series resonator 105 is connected between the connection point of the inductor L03 and the inductor L05 located substantially at the center of the signal line and the ground. It has an advantage that impedance matching between input and output is relatively easy.
  • the LC filter 1000 is relatively easy to match the impedance between the input and output. However, if the impedance needs to be adjusted with higher accuracy, a new matching capacitor or inductor is added. There was a case that had to be added to. In this case, the LC filter 1000 has a problem that the size becomes large.
  • the size of the inductor electrode constituting the inductor is increased instead of a method of newly adding a matching inductor.
  • the inductor electrode of the inductor L04 is configured to expand only in the plane direction.
  • the inductor electrode of the inductor L04 has to be increased in the plane direction, and the size of the LC filter 1000 in the plane direction is increased.
  • the laminated LC filter of the present invention includes a laminate in which a plurality of dielectric layers are laminated, and an interlayer between the laminates.
  • the series resonator inductor and the LC series resonator capacitor are connected in series, and one of the two LC parallel resonator split inductors and the LC series resonator inductor branch between one layer of the multilayer body. And when the laminated body is seen through in the laminating direction and one split inductor for LC parallel resonator and one inductor for LC series resonator are viewed, the inside of the spiral pattern constituted by the inductor electrode of one inductor The winding axis of the other inductor is arranged.
  • the LC series resonator may be connected to the ground via another element or circuit.
  • the winding axis of one inductor may be arranged inside the spiral pattern constituted by the inductor electrode of the other inductor. In this case, the magnetic coupling between one inductor and the other inductor can be made stronger.
  • the winding direction of the spiral pattern constituted by the inductor electrode of one inductor and the winding direction of the spiral pattern constituted by the inductor electrode of the other inductor can be reversed. In this case, adjustment can be made so that the magnetic coupling between one inductor and the other inductor is strong.
  • the winding direction of the spiral pattern constituted by the inductor electrode of one inductor and the winding direction of the spiral pattern constituted by the inductor electrode of the other inductor can be made the same direction. In this case, adjustment can be made so that the magnetic coupling between one inductor and the other inductor becomes weak.
  • the inductance value of one LC parallel resonator split inductor branched from the LC series resonator inductor in one layer of the laminate is the other LC parallel resonator split inductor inductance value.
  • the inductance value of the magnetically coupled LC series resonator inductor can be increased by the other LC parallel resonator split inductor.
  • At least one capacitor may be further connected to at least one of the signal line connecting the input terminal and the LC parallel resonator and the signal line connecting the LC parallel resonator and the output terminal. In this case, the impedance between the input and output can be adjusted by the capacitor.
  • An impedance matching LC circuit may be further connected to at least one of a signal line connecting the input terminal and the LC parallel resonator and a signal line connecting the LC parallel resonator and the output terminal.
  • the impedance between the input and output can be further adjusted by the impedance matching LC circuit.
  • the impedance matching LC circuit for example, an LC parallel resonator can be connected.
  • Another LC series resonator is connected between at least one of the signal line connecting the input terminal and the LC parallel resonator, and the signal line connecting the LC parallel resonator and the output terminal, and the ground. Also good.
  • an attenuation pole can be formed in the vicinity of the pass band by the LC series resonator.
  • the LC series resonator is connected between the connection point of the two split inductors for the LC parallel resonator located substantially in the center of the signal line and the ground. Furthermore, one LC parallel resonator split inductor branched from the LC series resonator inductor in one layer of the multilayer body is magnetically coupled to the LC series resonator inductor. Therefore, the multilayer LC filter of the present invention can adjust the impedance by increasing or decreasing the magnetic coupling, so that no matching inductor or capacitor is added to achieve impedance matching. Alternatively, impedance matching can be achieved by adding a small amount of matching inductors and capacitors.
  • FIG. 1 is a perspective view of a multilayer LC filter 100 according to a first embodiment.
  • 2 is an exploded perspective view of a multilayer LC filter 100.
  • FIG. 3 is an equivalent circuit diagram of the multilayer LC filter 100.
  • FIG. 4A is an equivalent circuit diagram showing a preferred LC filter X used in the simulation experiment.
  • FIG. 4B is a characteristic diagram of the LC filter X.
  • FIG. 5A is an equivalent circuit diagram showing an LC filter Y for comparison used in the simulation experiment.
  • FIG. 5B is a characteristic diagram of the LC filter Y.
  • 3 is an exploded perspective view of a main part of the multilayer LC filter 100.
  • FIG. 5 is a graph showing frequency characteristics of the multilayer LC filter 1100.
  • FIG. 5 is a graph showing frequency characteristics of the multilayer LC filter 200.
  • FIG. 6 is an equivalent circuit diagram of an LC filter 1000 disclosed in Patent Document 1.
  • FIG. 2 is a plan view of an LC filter 1000.
  • each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIG. 1 is a perspective view
  • FIG. 2 is an exploded perspective view
  • FIG. 3 is an equivalent circuit diagram.
  • the laminated LC filter 100 includes a rectangular parallelepiped laminated body 1 made of ceramic, for example, as shown in FIG. That is, the laminate 1 includes an upper main surface, a lower main surface, a pair of end surfaces and a pair of side surfaces that connect the two main surfaces.
  • the end face is a face located on the short side when viewed in the plane direction.
  • the side surface is a surface located on the long side when viewed in the planar direction.
  • An input terminal 2 is formed on one end face of the laminate 1, and an output terminal 3 is formed on the other end face.
  • a pair of ground terminals 4a and 4b are formed on both side surfaces of the laminate 1.
  • the input terminal 2, the output terminal 3, and the ground terminals 4a and 4b are formed to extend to the lower main surface and the upper main surface of the multilayer body 1, respectively.
  • the input terminal 2, the output terminal 3, and the ground terminals 4a and 4b can be formed of, for example, a metal whose main component is Ag, Cu, or an alloy thereof.
  • a plating layer mainly composed of Ni, Sn, Au or the like may be formed over one layer or a plurality of layers as necessary.
  • the multilayer body 1 has a structure in which dielectric layers 1a to 1r are sequentially laminated from the bottom.
  • capacitor electrodes 5a to 5h Between the dielectric layers 1a to 1r, capacitor electrodes 5a to 5h, relay electrodes 6a to 6n, inductor electrodes 7a to 7k, and extraction electrodes 8a are formed. Also, via electrodes 9a to 9p are formed through the dielectric layers 1b to 1q.
  • the relay electrodes 6a to 6n are electrodes for ensuring the connection between the via conductor provided in the upper dielectric layer and the via electrode provided in the lower dielectric layer.
  • the extraction electrode 8a is an electrode for connecting to a terminal.
  • the capacitor electrodes 5a to 5h, the relay electrodes 6a to 6n, the inductor electrodes 7a to 7k, and the extraction electrode 8a formed on the dielectric layers will be described for each of the dielectric layers 1a to 1r.
  • the input terminal 2, the output terminal 3, and the ground terminals 4a and 4b formed in the dielectric layer will be described.
  • An input terminal 2 is formed on one end face of the dielectric layer 1a, and an output terminal 3 is formed on the other end face.
  • a pair of ground terminals 4a and 4b are formed on both side surfaces of the dielectric layer 1a.
  • the input terminal 2, the output terminal 3, and the ground terminals 4a and 4b are each formed to extend to the lower main surface of the dielectric layer 1a.
  • a capacitor electrode 5a is formed on the upper main surface of the dielectric layer 1a.
  • the capacitor electrode 5a also has a function as a ground electrode.
  • the capacitor electrode 5a is connected to the ground terminals 4a and 4b.
  • a capacitor electrode 5b is formed on the upper main surface of the dielectric layer 1b.
  • a capacitor electrode 5c and a relay electrode 6a are formed on the upper main surface of the dielectric layer 1c.
  • a relay electrode 6b and an inductor electrode 7a are formed on the upper main surface of the dielectric layer 1d.
  • Relay electrodes 6c and 6d and an extraction electrode 8a are formed on the upper main surface of the dielectric layer 1e.
  • the extraction electrode 8 a is connected to the output terminal 3.
  • Relay electrodes 6e and 6f and an inductor electrode 7b are formed on the upper main surface of the dielectric layer 1f.
  • a relay electrode 6g and an inductor electrode 7c are formed on the upper main surface of the dielectric layer 1g.
  • Inductor electrodes 7d and 7e are formed on the upper main surface of the dielectric layer 1h.
  • Inductor electrodes 7f and 7g are formed on the upper main surface of the dielectric layer 1i.
  • Inductor electrodes 7h and 7i are formed on the upper main surface of the dielectric layer 1j.
  • An inductor electrode 7j and a relay electrode 6h are formed on the upper main surface of the dielectric layer 1k.
  • An inductor electrode 7k and a relay electrode 6i are formed on the upper main surface of the dielectric layer 1l.
  • Relay electrodes 6j and 6k and a capacitor electrode 5d are formed on the upper main surface of the dielectric layer 1m.
  • the capacitor electrode 5 d is connected to the output terminal 3.
  • a relay electrode 61 and a capacitor electrode 5e are formed on the upper main surface of the dielectric layer 1n.
  • a relay electrode 6m and a capacitor electrode 5f are formed on the upper main surface of the dielectric layer 1o.
  • a relay electrode 6n and a capacitor electrode 5g are formed on the upper main surface of the dielectric layer 1p.
  • the capacitor electrode 5 g is connected to the input terminal 2.
  • a capacitor electrode 5h is formed on the upper main surface of the dielectric layer 1q.
  • An input terminal 2 is formed on one end face of the dielectric layer 1r, and an output terminal 3 is formed on the other end face.
  • a pair of ground terminals 4a and 4b are formed on both side surfaces of the dielectric layer 1a.
  • the input terminal 2, the output terminal 3, and the ground terminals 4a and 4b are each formed to extend to the upper main surface of the dielectric layer 1a.
  • the via electrode 9a connects the capacitor electrode 5b and the relay electrode 6a.
  • the via electrode 9b connects the capacitor electrode 5c and one end of the inductor electrode 7a.
  • the via electrode 9c connects the extraction electrode 8a and one end of the inductor electrode 7b.
  • the via electrode 9d connects the other end of the inductor electrode 7b and one end of the inductor electrode 7c.
  • the via electrode 9e connects the other end of the inductor electrode 7a and the other end of the inductor electrode 7c via the relay electrodes 6d and 6f.
  • the via electrode 9f connects the relay electrode 6a and one end of the inductor electrode 7d via the relay electrodes 6b, 6c, 6e, and 6g.
  • the via electrode 9g connects the branch point X provided in the middle of the inductor electrode 7c and one end of the inductor electrode 7e.
  • the via electrode 9h connects the other end of the inductor electrode 7d and one end of the inductor electrode 7f.
  • the via electrode 9i connects the other end of the inductor electrode 7e and one end of the inductor electrode 7g.
  • the via electrode 9j connects the other end of the inductor electrode 7f and one end of the inductor electrode 7h.
  • the via electrode 9k connects the other end of the inductor electrode 7g and one end of the inductor electrode 7i.
  • the via electrode 9l connects the other end of the inductor electrode 7h and one end of the inductor electrode 7j.
  • the via electrode 9m connects the other end of the inductor electrode 7j and one end of the inductor electrode 7k.
  • the via electrode 9n connects the other end of the inductor electrode 7i and the capacitor electrode 5e via the relay electrodes 6h, 6i, 6k.
  • the via electrode 9o connects the capacitor electrode 5e and the capacitor electrode 5f.
  • the via electrode 9p connects the other end of the inductor electrode 7k and the capacitor electrode 5h via the relay electrodes 6j, 6l, 6m, and 6n.
  • the capacitor electrodes 5a to 5h, the relay electrodes 6a to 6n, the inductor electrodes 7a to 7k, and the extraction electrode 8a can be formed of, for example, Ag, Cu, or a metal mainly composed of these alloys.
  • the multilayer LC filter 100 according to the first embodiment having the above structure can be manufactured by a general manufacturing method conventionally used for manufacturing a multilayer LC filter.
  • the multilayer LC filter 100 according to the first embodiment having the above structure has an equivalent circuit shown in FIG.
  • a capacitor C1 In the laminated LC filter 100, a capacitor C1, a capacitor C2, and an LC parallel resonator LC1 are sequentially connected to a signal line connecting the input terminal 2 and the output terminal 3.
  • the LC parallel resonator LC1 is configured by connecting in parallel two LC parallel resonator split inductors L2 and L3 and an LC parallel resonator capacitor C4.
  • the term “divided inductor” originally functions even with a single inductor, but is intentionally divided into a plurality of inductors (L 2, L 3).
  • the LC parallel resonator LC1 mainly plays a role of forming a high-frequency attenuation pole.
  • the capacitors C1 and C2 mainly play a role of matching impedance between the input and output of the multilayer LC filter 100, respectively.
  • the multilayer LC filter 100 includes an LC series resonator LC2 in which an LC series resonator inductor L1 and an LC series resonator capacitor C3 are connected in series between a connection point between the capacitor C1 and the capacitor C2 and the ground. It is connected.
  • the LC series resonator LC2 plays a role of forming a low-frequency attenuation pole as a high-pass filter.
  • the multilayer LC filter 100 includes a connection point between the LC parallel resonator split inductor L2 and the LC parallel resonator split inductor L3, and a connection point between the LC series resonator inductor L1 and the LC series resonator capacitor C3.
  • An LC series resonator LC3 in which an inductor L4 for LC series resonator and a capacitor C5 for LC series resonator are connected in series is connected. It can be said that the LC series resonator LC3 is connected to the ground via the LC series resonator capacitor C3.
  • the LC series resonator LC3 plays a role of forming an attenuation pole on a higher frequency side than the attenuation pole formed by the LC parallel resonator LC1.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled.
  • an LC series resonator LC3 (an LC series resonator inductor L4 and an LC series resonator capacitor C5) is connected to a connection point between the LC parallel resonator split inductor L2 and the LC parallel resonator split inductor L3. Therefore, it is excellent in symmetry between input and output, and it is easy to match impedance between input and output.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled, and the LC parallel resonator split inductor L3 strengthens the inductance value of the LC series resonator inductor L4. ing. Therefore, the inductance value of the LC series resonator inductor L4 can be increased without increasing the inductor electrode of the LC series resonator inductor L4.
  • the present inventor conducted the following simulation experiment in order to confirm the effect of the multilayer LC filter 100 described above.
  • a preferred LC filter X whose equivalent circuit is shown in FIG. 4A and an LC filter Y for comparison whose equivalent circuit is shown in FIG. 4A
  • the preferred LC filter X has an equivalent circuit close to the multilayer LC filter 100 according to the first embodiment, as shown in FIG. That is, in the LC filter X, the LC parallel resonator LC1 is connected to a signal line connecting the input terminal 2 and the output terminal 3.
  • the LC series resonator inductor L4 and the LC series resonator capacitor C5 are connected between the connection point of the LC parallel resonator split inductor L2 and the LC parallel resonator split inductor L3 of the LC parallel resonator LC1 and the ground.
  • An LC series resonator LC3 connected in series is connected.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled.
  • the LC filter Y for comparison is for the LC series resonator between the connection point between the LC parallel resonator split inductor L3 and the output terminal 3, and the ground.
  • An LC series resonator LC13 in which an inductor L14 and an LC series resonator capacitor C15 are connected in series is connected.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L14 are not magnetically coupled.
  • Table 1 compares the inductance value of the main inductor of the LC filter X and the inductance value of the main inductor of the LC filter Y.
  • the inductor L4 for the LC series resonator of the LC filter X and the inductor L14 for the LC series resonator of the LC filter Y have greatly different inductance values. Specifically, the inductance value of the LC series resonator inductor L4 is 0.4 nH, whereas the inductance value of the LC series resonator inductor L14 is 1.0 nH. In the LC filter Y, the LC parallel resonator split inductor L3 and the LC series resonator inductor L14 are hardly magnetically coupled.
  • the inductance value of the series resonator inductor L14 had to be increased to 1.0 nH.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled, and the LC parallel resonator split inductor L3 strengthens the inductance value of the LC series resonator inductor L4. Therefore, the inductance value of the LC series resonator inductor L4 can be reduced.
  • FIG. 4 (B) shows the frequency characteristics of the LC filter X.
  • FIG. 5B shows frequency characteristics of the LC filter Y.
  • the preferred LC filter X has an attenuation pole having a predetermined attenuation in the vicinity of the pass band, and impedance matching between the input and output is achieved.
  • the LC filter Y for comparison has an attenuation pole having a predetermined attenuation amount in the vicinity of the pass band. Is not removed. This is considered to be because the LC series resonator LC13 is connected between the connection point between the LC parallel resonator split inductor L3 and the output terminal 3 and the ground.
  • the LC filter Y has to increase the inductance value of the inductor L14 for the LC series resonator. For example, when the LC filter Y is configured as a multilayer LC filter, the shape of the LC filter Y increases. is doing.
  • the capacitor C1 is mainly composed of a capacitance formed between the capacitor electrode 5g and the capacitor electrode 5h.
  • the capacitor electrode 5g is connected to the input terminal 2.
  • the capacitor C2 is mainly composed of a capacitance formed between the capacitor electrode 5h and the capacitor electrode 5f.
  • the LC parallel resonator capacitor C4 is mainly composed of a capacitor formed between the capacitor electrode 5e and the capacitor electrode 5d.
  • the capacitor electrode 5e is connected to the capacitor electrode 5f of the capacitor C2 via the via electrode 9o. Further, the capacitor electrode 5d is connected to the output terminal 3.
  • the split inductor L2 for the LC parallel resonator is composed of a line connecting the via electrode 9n, the inductor electrode 7i, the via electrode 9k, the inductor electrode 7g, the via electrode 9i, the inductor electrode 7e, and the via electrode 9g.
  • the via electrode 9n is connected to the capacitor electrode 5e of the LC parallel resonator capacitor C4.
  • the via electrode 9n passes through the relay electrodes 6k, 6i, and 6h on the way.
  • the via electrode 9g is connected to the branch point X of the inductor electrode 7c.
  • the LC parallel resonator split inductor L3 is constituted by a line connecting the via electrode 9d, the inductor electrode 7b, the via electrode 9c, and the lead electrode 8a from the branch point X to one end of the inductor electrode 7c.
  • the extraction electrode 8a is connected to the output terminal 3.
  • the inductor L1 for the LC series resonator includes a via electrode 9p, an inductor electrode 7k, a via electrode 9m, an inductor electrode 7j, a via electrode 9l, an inductor electrode 7h, a via electrode 9j, an inductor electrode 7f, a via electrode 9h, an inductor electrode 7d, and a via electrode. 9f, a relay electrode 6a, and a line connecting the via electrode 9a.
  • the via electrode 9p is connected to the capacitor electrode 5h of the capacitor C1.
  • the via electrode 9a is connected to a capacitor electrode 5b of an LC series resonator capacitor C3 described later.
  • the via electrode 9p passes through the relay electrodes 6n, 6m, 6l, and 6j on the way.
  • the via electrode 9f passes through 6g, 6e, 6c, and 6b in the middle.
  • the LC series resonator capacitor C3 is mainly composed of a capacitor formed between the capacitor electrode 5b and the capacitor electrode 5a.
  • the capacitor electrode 5a also functions as a ground electrode and is connected to the ground terminals 4a and 4b.
  • the LC series resonator inductor L4 is constituted by a line connecting the via electrode 9e, the inductor electrode 7a, and the via electrode 9b from the branch point X to the other end of the inductor electrode 7c.
  • the via electrode 9b is connected to a capacitor electrode 5c of an LC series resonator capacitor C5 described later.
  • the via electrode 9e passes through the relay electrodes 6f and 6d on the way.
  • the LC series resonator capacitor C5 is mainly composed of a capacitor formed between the capacitor electrode 5c and the capacitor electrode 5b.
  • the capacitor electrode 5b is also an electrode of the LC series resonator capacitor C3.
  • the multilayer LC filter 100 according to the first embodiment having the above equivalent circuit and structure has the following characteristics.
  • the multilayer LC filter 100 includes a connection point between two LC parallel resonator split inductors L2 and L3, which is located substantially at the center of a signal line, and a ground (more precisely, an LC series resonator inductor L1 and an LC series resonator use). Since the LC series resonator LC3 is connected between the capacitor C3 and the capacitor C3), the symmetry between the input and output is excellent, and impedance matching between the input and output is easy to achieve.
  • the multilayer LC filter 100 includes an LC parallel resonator split inductor L3 and an LC series resonator inductor L4 that are branched at a branch point X of the inductor electrode 7c.
  • the inductor electrode 7c via electrode 9d, inductor electrode 7b, and via of the LC parallel resonator split inductor L3
  • the winding axis of the LC series resonator inductor L4 is arranged inside the spiral pattern constituted by the electrode 9c and the extraction electrode 8a.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled, and the inductance value of the LC series resonator inductor L4 is strengthened.
  • the multilayer LC filter 100 includes the LC parallel resonator split inductor L3 wound inside the spiral pattern formed by the inductor electrode 7c, via electrode 9e, inductor electrode 7a, and via electrode 9b of the LC series resonator inductor L4.
  • the rotation axis is arranged.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 have stronger magnetic coupling.
  • the multilayer LC filter 100 includes a winding direction of a spiral pattern constituted by the inductor electrode 7c, the via electrode 9d, the inductor electrode 7b, the via electrode 9c, and the extraction electrode 8a of the split inductor L3 for the LC parallel resonator, and an LC series.
  • the winding direction of the spiral pattern constituted by the inductor electrode 7c, the via electrode 9e, the inductor electrode 7a, and the via electrode 9b of the resonator inductor L4 is opposite to the winding direction.
  • the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 have stronger magnetic coupling.
  • the inductor L4 for LC series resonators can obtain a sufficiently large inductance value without increasing the inductor electrodes 7c and 7a (without increasing the spiral pattern).
  • the multilayer LC filter 100 is magnetically coupled so that the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are strengthened. Therefore, the inductor L4 for LC series resonator can obtain a sufficiently large inductance value without increasing the inductor electrodes 7c and 7a (without increasing the spiral pattern). As a result, the multilayer LC filter 100 has a large attenuation amount in the vicinity of the passband formed by the LC series resonator LC3 without increasing the size.
  • FIG. 7 shows the frequency characteristics of the multilayer LC filter 100 according to the first embodiment.
  • the multilayer LC filter 100 has an attenuation pole having a predetermined attenuation near the passband, and impedance matching between the input and output.
  • a multilayer LC filter in which an attenuation pole having a desired attenuation amount is formed in the vicinity of the passband and impedance matching between input and output is taken without increasing the size. Can be provided.
  • FIG. 8 shows a multilayer LC filter 200 according to the second embodiment. However, FIG. 8 is an exploded perspective view of the multilayer LC filter 200.
  • the multilayer LC filter 200 is modified in the shape and connection method of the electrodes in the multilayer body 1 of the multilayer LC filter 100 according to the first embodiment.
  • the basic equivalent circuit of the multilayer LC filter 200 is the same as that of the multilayer LC filter 100.
  • multilayer LC filter 200 and the multilayer LC filter 100 have different electrode shapes and connection methods in the multilayer body 1 as described above. The same code numbers are used.
  • winding of a spiral pattern of a split inductor L3 for an LC parallel resonator composed of an inductor electrode 7c, a via electrode 9d, an inductor electrode 7b, a via electrode 9c, and an extraction electrode 8a is performed.
  • the direction and the winding direction of the spiral pattern of the inductor L4 for an LC series resonator constituted by the inductor electrode 7c, the via electrode 9e, the inductor electrode 7a, and the via electrode 9b were reversed.
  • the spiral of the split inductor L3 for LC parallel resonators constituted by the inductor electrode 7c, the via electrode 9d, the inductor electrode 7b, the via electrode 9c, and the extraction electrode 8a.
  • the winding direction of the pattern and the winding direction of the spiral pattern of the inductor L4 for LC series resonator constituted by the inductor electrode 7c, the via electrode 9e, the inductor electrode 7a, and the via electrode 9b were set to be the same direction.
  • the magnetic coupling between the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 is weaker than in the multilayer LC filter 100.
  • FIG. 9 shows the frequency characteristics of the multilayer LC filter 200 according to the second embodiment.
  • the laminated LC filter 200 has an attenuation pole having a predetermined attenuation near the pass band, and impedance matching between the input and output.
  • the winding direction of the spiral pattern of the LC parallel resonator split inductor L3 and the winding direction of the spiral pattern of the LC series resonator inductor L4 are reversed according to the desired frequency characteristics.
  • the strength of magnetic coupling between the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 can be adjusted, and the frequency characteristics and the impedance between the input and output can be adjusted. it can.
  • FIG. 10 shows a multilayer LC filter 300 according to the third embodiment.
  • FIG. 10 is an equivalent circuit diagram of the multilayer LC filter 300.
  • the multilayer LC filter 300 is a modification of the circuit configuration of the multilayer LC filter 100 according to the first embodiment.
  • a capacitor C1 is connected between the input terminal 2 and the LC series resonator LC2.
  • an LC parallel resonator LC11 in which a capacitor C11 and an inductor L11 are connected in parallel is connected.
  • the multilayer LC filter 300 is easier to adjust the impedance between the input and output than the multilayer LC filter 100.
  • the multilayer LC filters 100 to 300 according to the first to third embodiments have been described above.
  • the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
  • the type of the LC filter is arbitrary, and various LC filters such as a band-pass filter, a high-pass filter, and a low-pass filter can be configured.
  • the circuit configuration is arbitrary except for the specified part, and various circuit configurations can be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Provided is a laminated LC filter in which an attenuation pole is formed near a pass band and in which impedance matching between input and output is performed. In the laminated LC filter, an LC parallel resonator LC1 has an LC parallel resonator inductor and an LC parallel resonator capacitor C4 connected in parallel. The LC parallel resonator inductor is divided into divided LC parallel resonator inductors L2, L3. An LC series resonator LC3 is connected between the ground and a point at which the divided LC parallel resonator inductors L2, L3 are connected to each other. The LC series resonator LC3 has an LC series resonator inductor L4 and an LC series resonator capacitor C5 connected in series. At one point between layers of a laminated body 1, the divided LC parallel resonator inductor L3 branches from the LC series resonator inductor L4. When the divided LC parallel resonator inductor L3 and the LC series resonator inductor L4 are viewed, a winding shaft of one of the inductors is disposed inside a spiral pattern formed of an inductor electrode of the other inductor.

Description

積層型LCフィルタMultilayer LC filter
 本発明は、積層型LCフィルタに関し、さらに詳しくは、通過帯域の近傍に十分な減衰量を有する減衰極が形成され、かつ、入出力間のインピーダンスの整合が取られた、小型の積層型LCフィルタに関する。 The present invention relates to a multilayer LC filter. More specifically, the present invention relates to a small-sized multilayer LC in which an attenuation pole having a sufficient attenuation is formed in the vicinity of a passband and impedance matching between input and output is achieved. Regarding filters.
 入力端子と出力端子とを繋ぐ信号ラインに、インダクタ、キャパシタによって回路網を構成し、所望の周波数の信号のみを通過させるLCフィルタが、電子回路に広く使用されている。 An LC filter that forms a circuit network with inductors and capacitors on a signal line connecting an input terminal and an output terminal and allows only a signal having a desired frequency to pass through is widely used in electronic circuits.
 特許文献1(特表2008-529360号公報)に、そのようなLCフィルタが開示
されている。
Patent Document 1 (Japanese Patent Publication No. 2008-529360) discloses such an LC filter.
 図11、図12に、特許文献1に開示されたLCフィルタ1000を示す。ただし、図11は、LCフィルタ1000の等価回路図である。図12は、LCフィルタ1000の平面図である。 11 and 12 show the LC filter 1000 disclosed in Patent Document 1. FIG. However, FIG. 11 is an equivalent circuit diagram of the LC filter 1000. FIG. 12 is a plan view of the LC filter 1000.
 LCフィルタ1000は、入力端子(入力ノード)101と出力端子(出力ノード)102とを備える。 The LC filter 1000 includes an input terminal (input node) 101 and an output terminal (output node) 102.
 LCフィルタ1000は、入力端子101と出力端子102との間に、インダクタL01とキャパシタC01とが並列に接続されたLC並列共振器103と、インダクタL03と、インダクタL05と、インダクタL06とが、順に直列に接続されている。また、直列に接続されたLC並列共振器103、インダクタL03、インダクタL05と並列に、キャパシタC03が接続されている。 The LC filter 1000 includes an LC parallel resonator 103 in which an inductor L01 and a capacitor C01 are connected in parallel between an input terminal 101 and an output terminal 102, an inductor L03, an inductor L05, and an inductor L06 in this order. Connected in series. A capacitor C03 is connected in parallel with the LC parallel resonator 103, the inductor L03, and the inductor L05 connected in series.
 また、LCフィルタ1000は、入力端子101と、LC並列共振器103、キャパシタC03との接続点と、グランドとの間に、キャパシタC02とインダクタL02とが直列に接続されたLC直列共振器104が接続されている。さらに、インダクタL03とインダクタL05との接続点と、グランドとの間に、インダクタL04とキャパシタC04とが直列に接続されたLC直列共振器105が接続されている。LC直列共振器104、105は、それぞれ、LCフィルタ1000の通過帯域の近傍に、減衰極を形成する役割を果たしている。 The LC filter 1000 includes an LC series resonator 104 in which a capacitor C02 and an inductor L02 are connected in series between a connection point between the input terminal 101, the LC parallel resonator 103 and the capacitor C03, and the ground. It is connected. Further, an LC series resonator 105 in which an inductor L04 and a capacitor C04 are connected in series is connected between a connection point of the inductor L03 and the inductor L05 and the ground. Each of the LC series resonators 104 and 105 plays a role of forming an attenuation pole in the vicinity of the pass band of the LC filter 1000.
 なお、LCフィルタ1000は、信号ラインのほぼ中央に位置するインダクタL03とインダクタL05との接続点と、グランドとの間に、LC直列共振器105が接続されているため、入出力間の対称性に優れており、比較的入出力間のインピーダンスの整合を取りやすいという利点を備えている。 The LC filter 1000 has symmetry between the input and output because the LC series resonator 105 is connected between the connection point of the inductor L03 and the inductor L05 located substantially at the center of the signal line and the ground. It has an advantage that impedance matching between input and output is relatively easy.
特表2008-529360号公報Special table 2008-529360 gazette
 LCフィルタ1000は、上述したように、比較的入出力間のインピーダンスの整合を取りやすいものではあるが、さらに高い精度でインピーダンスを調整しなければならない場合には、整合用のキャパシタやインダクタを新たに追加しなければならない場合があった。この場合には、LCフィルタ1000は、大きさが大きくなってしまうという問題があった。 As described above, the LC filter 1000 is relatively easy to match the impedance between the input and output. However, if the impedance needs to be adjusted with higher accuracy, a new matching capacitor or inductor is added. There was a case that had to be added to. In this case, the LC filter 1000 has a problem that the size becomes large.
 また、LCフィルタにおいて、特にそうした調整の一環で、特定のインダクタのインダクタンス値を大きくしたい場合、整合用のインダクタを新たに追加する方法に代えて、そのインダクタを構成するインダクタ電極のサイズを大きくする方法もある。しかしながら、たとえば、LCフィルタ1000において、インダクタL04を構成するインダクタ電極のサイズを大きくしようとした場合、図12に示すように、インダクタL04のインダクタ電極は平面方向にのみ広がるように構成されているため、サイズを大きくするにはインダクタL04のインダクタ電極を平面方向に大きくしなければならず、LCフィルタ1000の平面方向の大きさが大きくなってしまうという問題があった。 In addition, in the LC filter, in particular, as part of such adjustment, when it is desired to increase the inductance value of a specific inductor, the size of the inductor electrode constituting the inductor is increased instead of a method of newly adding a matching inductor. There is also a method. However, for example, in the LC filter 1000, when the size of the inductor electrode constituting the inductor L04 is to be increased, as shown in FIG. 12, the inductor electrode of the inductor L04 is configured to expand only in the plane direction. In order to increase the size, the inductor electrode of the inductor L04 has to be increased in the plane direction, and the size of the LC filter 1000 in the plane direction is increased.
 本発明は、上述し他従の問題を解決するためになされたものであり、その手段として本発明の積層型LCフィルタは、複数の誘電体層が積層された積層体と、積層体の層間に形成された複数のインダクタ電極と、積層体の層間に形成された複数のキャパシタ電極と、誘電体層を貫通して形成された複数のビア電極と、積層体の表面に形成された入力端子と、積層体の表面に形成された出力端子と、を備え、複数のインダクタ電極によってインダクタが構成され、複数のキャパシタ電極によってキャパシタが構成され、入力端子と出力端子とを繋ぐ信号ラインに、LC並列共振器が接続され、そのLC並列共振器は、LC並列共振器用インダクタとLC並列共振器用キャパシタとが並列に接続されて構成され、LC並列共振器用インダクタは、少なくとも2つのLC並列共振器用分割インダクタに分割されて構成され、2つのLC並列共振器用分割インダクタの接続点とグランドとの間に、LC直列共振器が接続され、そのLC直列共振器は、LC直列共振器用インダクタとLC直列共振器用キャパシタとが直列に接続されて構成され、2つのLC並列共振器用分割インダクタのうちの一方と、LC直列共振器用インダクタとが、積層体の1つの層間において分岐され、かつ、積層体を積層方向に透視して、一方のLC並列共振器用分割インダクタとLC直列共振器用インダクタとを見た場合に、一方のインダクタのインダクタ電極によって構成される螺旋パターンの内側に、他方のインダクタの巻回軸が配置されているようにした。 The present invention has been made in order to solve the above-mentioned problems, and as a means therefor, the laminated LC filter of the present invention includes a laminate in which a plurality of dielectric layers are laminated, and an interlayer between the laminates. A plurality of inductor electrodes formed on the substrate, a plurality of capacitor electrodes formed between the layers of the multilayer body, a plurality of via electrodes formed through the dielectric layer, and an input terminal formed on the surface of the multilayer body And an output terminal formed on the surface of the multilayer body, an inductor is constituted by a plurality of inductor electrodes, a capacitor is constituted by a plurality of capacitor electrodes, and a signal line connecting the input terminal and the output terminal is provided with an LC A parallel resonator is connected, and the LC parallel resonator is configured by connecting an inductor for LC parallel resonator and a capacitor for LC parallel resonator in parallel, and the inductor for LC parallel resonator is The LC series resonator is divided into at least two LC parallel resonator split inductors, and an LC series resonator is connected between a connection point of the two LC parallel resonator split inductors and the ground. The series resonator inductor and the LC series resonator capacitor are connected in series, and one of the two LC parallel resonator split inductors and the LC series resonator inductor branch between one layer of the multilayer body. And when the laminated body is seen through in the laminating direction and one split inductor for LC parallel resonator and one inductor for LC series resonator are viewed, the inside of the spiral pattern constituted by the inductor electrode of one inductor The winding axis of the other inductor is arranged.
 なお、上記において、LC直列共振器は、他の素子や回路を介したうえでグランドに接続されても良い。 In the above, the LC series resonator may be connected to the ground via another element or circuit.
 さらに、他方のインダクタのインダクタ電極によって構成される螺旋パターンの内側に、一方のインダクタの巻回軸が配置されているようにしても良い。この場合には、一方のインダクタと他方のインダクタとの磁気結合をより強くすることができる。 Furthermore, the winding axis of one inductor may be arranged inside the spiral pattern constituted by the inductor electrode of the other inductor. In this case, the magnetic coupling between one inductor and the other inductor can be made stronger.
 一方のインダクタのインダクタ電極によって構成される螺旋パターンの巻回方向と、他方のインダクタのインダクタ電極によって構成される螺旋パターンの巻回方向とを逆方向にすることができる。この場合は、一方のインダクタと他方のインダクタとの磁気結合が強くなるように調整することができる。 The winding direction of the spiral pattern constituted by the inductor electrode of one inductor and the winding direction of the spiral pattern constituted by the inductor electrode of the other inductor can be reversed. In this case, adjustment can be made so that the magnetic coupling between one inductor and the other inductor is strong.
 あるいは、一方のインダクタのインダクタ電極によって構成される螺旋パターンの巻回方向と、他方のインダクタのインダクタ電極によって構成される螺旋パターンの巻回方向とを同方向にすることができる。この場合は、一方のインダクタと他方のインダクタとの磁気結合が弱くなるように調整することができる。 Alternatively, the winding direction of the spiral pattern constituted by the inductor electrode of one inductor and the winding direction of the spiral pattern constituted by the inductor electrode of the other inductor can be made the same direction. In this case, adjustment can be made so that the magnetic coupling between one inductor and the other inductor becomes weak.
 2つのLC共振器用分割インダクタのうち、積層体の1つの層間においてLC直列共振器用インダクタと分岐された一方のLC並列共振器用分割インダクタのインダクタンス値を、他方のLC並列共振器用分割インダクタのインダクタンス値よりも小さいものとすることができる。この場合には、インダクタンス値が小さくても、他方のLC並列共振器用分割インダクタによって、磁気結合されたLC直列共振器用インダクタのインダクタンス値を強めることができる。 Among the two LC resonator split inductors, the inductance value of one LC parallel resonator split inductor branched from the LC series resonator inductor in one layer of the laminate is the other LC parallel resonator split inductor inductance value. Can be smaller. In this case, even if the inductance value is small, the inductance value of the magnetically coupled LC series resonator inductor can be increased by the other LC parallel resonator split inductor.
 入力端子とLC並列共振器とを繋ぐ信号ライン、および、LC並列共振器と出力端子とを繋ぐ信号ラインの少なくとも一方に、さらに、少なくとも1つのキャパシタを接続しても良い。この場合には、当該キャパシタによって入出力間のインピーダンスを調整することができる。 At least one capacitor may be further connected to at least one of the signal line connecting the input terminal and the LC parallel resonator and the signal line connecting the LC parallel resonator and the output terminal. In this case, the impedance between the input and output can be adjusted by the capacitor.
 入力端子とLC並列共振器とを繋ぐ信号ライン、および、LC並列共振器と出力端子とを繋ぐ信号ラインの少なくとも一方に、さらに、インピーダンス整合用LC回路を接続しても良い。この場合には、インピーダンス整合用LC回路により、さらに入出力間のインピーダンスを調整することができる。インピーダンス整合用LC回路として、たとえばLC並列共振器を接続することができる。 An impedance matching LC circuit may be further connected to at least one of a signal line connecting the input terminal and the LC parallel resonator and a signal line connecting the LC parallel resonator and the output terminal. In this case, the impedance between the input and output can be further adjusted by the impedance matching LC circuit. As the impedance matching LC circuit, for example, an LC parallel resonator can be connected.
 入力端子とLC並列共振器とを繋ぐ信号ライン、および、LC並列共振器と出力端子とを繋ぐ信号ラインの少なくとも一方と、グランドとの間に、さらに、別のLC直列共振器を接続しても良い。この場合には、当該LC直列共振器によって、通過帯域の近傍に減衰極を形成することができる。 Another LC series resonator is connected between at least one of the signal line connecting the input terminal and the LC parallel resonator, and the signal line connecting the LC parallel resonator and the output terminal, and the ground. Also good. In this case, an attenuation pole can be formed in the vicinity of the pass band by the LC series resonator.
 本発明の積層型LCフィルタは、信号ラインのほぼ中央に位置する2つのLC並列共振器用分割インダクタの接続点と、グランドとの間に、LC直列共振器が接続されているため、入出力間の対称性に優れており、さらに、積層体の1つの層間においてLC直列共振器用インダクタと分岐された一方のLC並列共振器用分割インダクタが、LC直列共振器用インダクタと磁気結合している。そのため、本発明の積層型LCフィルタは、磁気結合を強めたり、逆に弱めたりすることで、インピーダンスの調整が可能となるため、インピーダンス整合をとるのに整合用のインダクタやキャパシタを追加しなくてもよく、もしくは少量の整合用のインダクタやキャパシタを追加するだけでインピーダンス整合を取ることができる。また、インダクタのインダクタンス値を上げたい場合に、インダクタサイズを大きくせずとも、磁気結合を強めることで十分インピーダンス整合をとることができる。以上より、本発明の構成であれば素子形状を大型化せずともよい。 In the multilayer LC filter of the present invention, the LC series resonator is connected between the connection point of the two split inductors for the LC parallel resonator located substantially in the center of the signal line and the ground. Furthermore, one LC parallel resonator split inductor branched from the LC series resonator inductor in one layer of the multilayer body is magnetically coupled to the LC series resonator inductor. Therefore, the multilayer LC filter of the present invention can adjust the impedance by increasing or decreasing the magnetic coupling, so that no matching inductor or capacitor is added to achieve impedance matching. Alternatively, impedance matching can be achieved by adding a small amount of matching inductors and capacitors. Further, when it is desired to increase the inductance value of the inductor, sufficient impedance matching can be achieved by increasing the magnetic coupling without increasing the inductor size. From the above, it is not necessary to increase the size of the element as long as it is a configuration of the present invention.
第1実施形態にかかる積層型LCフィルタ100の斜視図である。1 is a perspective view of a multilayer LC filter 100 according to a first embodiment. 積層型LCフィルタ100の分解斜視図である。2 is an exploded perspective view of a multilayer LC filter 100. FIG. 積層型LCフィルタ100の等価回路図である。3 is an equivalent circuit diagram of the multilayer LC filter 100. FIG. 図4(A)は、シミュレーション実験に使った好ましいLCフィルタXを示す等価回路図である。図4(B)は、LCフィルタXの特性図である。FIG. 4A is an equivalent circuit diagram showing a preferred LC filter X used in the simulation experiment. FIG. 4B is a characteristic diagram of the LC filter X. 図5(A)は、シミュレーション実験に使った比較のためのLCフィルタYを示す等価回路図である。図5(B)は、LCフィルタYの特性図である。FIG. 5A is an equivalent circuit diagram showing an LC filter Y for comparison used in the simulation experiment. FIG. 5B is a characteristic diagram of the LC filter Y. 積層型LCフィルタ100の要部分解斜視図である。3 is an exploded perspective view of a main part of the multilayer LC filter 100. FIG. 積層型LCフィルタ1100の周波数特性を示すグラフである。5 is a graph showing frequency characteristics of the multilayer LC filter 1100. 第2実施形態にかかる積層型LCフィルタ200の斜視図である。It is a perspective view of the multilayer LC filter 200 concerning 2nd Embodiment. 積層型LCフィルタ200の周波数特性を示すグラフである。5 is a graph showing frequency characteristics of the multilayer LC filter 200. 第3実施形態にかかる積層型LCフィルタ300の等価回路図である。It is an equivalent circuit diagram of the multilayer LC filter 300 according to the third embodiment. 特許文献1に開示されたLCフィルタ1000の等価回路図である。6 is an equivalent circuit diagram of an LC filter 1000 disclosed in Patent Document 1. FIG. LCフィルタ1000の平面図である。2 is a plan view of an LC filter 1000. FIG.
 以下、図面とともに、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。 Each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
 [第1実施形態]
 図1、図2、図3に、第1実施形態にかかる積層型LCフィルタ100を示す。ただし、図1は斜視図、図2は分解斜視図、図3は等価回路図である。
[First Embodiment]
1, 2, and 3 show a multilayer LC filter 100 according to the first embodiment. 1 is a perspective view, FIG. 2 is an exploded perspective view, and FIG. 3 is an equivalent circuit diagram.
 積層型LCフィルタ100は、図1に示すように、たとえばセラミックからなる直方体の積層体1を備える。すなわち、積層体1は、上側主面と、下側主面と、こられの両主面を繋ぐ1対の端面と1対の側面とを備える。なお、端面とは、平面方向に見た場合に短辺側に位置する面である。また、側面とは、平面方向に見た場合に長辺側に位置する面である。 The laminated LC filter 100 includes a rectangular parallelepiped laminated body 1 made of ceramic, for example, as shown in FIG. That is, the laminate 1 includes an upper main surface, a lower main surface, a pair of end surfaces and a pair of side surfaces that connect the two main surfaces. The end face is a face located on the short side when viewed in the plane direction. The side surface is a surface located on the long side when viewed in the planar direction.
 積層体1の一方の端面には入力端子2が形成され、他方の端面には出力端子3が形成されている。また、積層体1の両側面には、1対のグランド端子4a、4bが形成されている。入力端子2、出力端子3、グランド端子4a、4bは、それぞれ、積層体1の下側主面および上側主面に延出して形成されている。 An input terminal 2 is formed on one end face of the laminate 1, and an output terminal 3 is formed on the other end face. A pair of ground terminals 4a and 4b are formed on both side surfaces of the laminate 1. The input terminal 2, the output terminal 3, and the ground terminals 4a and 4b are formed to extend to the lower main surface and the upper main surface of the multilayer body 1, respectively.
 入力端子2、出力端子3、グランド端子4a、4bは、それぞれ、たとえば、Ag、Cuや、これらの合金などを主成分とする金属により形成することができる。これらの端子の表面には、必要に応じて、Ni、Sn、Auなどを主成分にするめっき層が、1層または複数層にわたって形成されていても良い。 The input terminal 2, the output terminal 3, and the ground terminals 4a and 4b can be formed of, for example, a metal whose main component is Ag, Cu, or an alloy thereof. On the surface of these terminals, a plating layer mainly composed of Ni, Sn, Au or the like may be formed over one layer or a plurality of layers as necessary.
 積層体1は、図2に示すように、誘電体層1a~1rが下から順に積層された構造からなる。 As shown in FIG. 2, the multilayer body 1 has a structure in which dielectric layers 1a to 1r are sequentially laminated from the bottom.
 誘電体層1a~1rの層間には、キャパシタ電極5a~5h、中継電極6a~6n、インダクタ電極7a~7k、引出電極8aが形成されている。また、誘電体層1b~1qを貫通して、ビア電極9a~9pが形成されている。なお、中継電極6a~6nとは、上側の誘電体層に設けられたビア導体と、下側の誘電体層に設けられたビア電極との接続を確実にするための電極である。また、引出電極8aとは、端子と接続するための電極である。 Between the dielectric layers 1a to 1r, capacitor electrodes 5a to 5h, relay electrodes 6a to 6n, inductor electrodes 7a to 7k, and extraction electrodes 8a are formed. Also, via electrodes 9a to 9p are formed through the dielectric layers 1b to 1q. The relay electrodes 6a to 6n are electrodes for ensuring the connection between the via conductor provided in the upper dielectric layer and the via electrode provided in the lower dielectric layer. The extraction electrode 8a is an electrode for connecting to a terminal.
 以下に、誘電体層1a~1rごとに、その誘電体層に形成されたキャパシタ電極5a~5h、中継電極6a~6n、インダクタ電極7a~7k、引出電極8aについて説明する。また、特に必要がある場合には、その誘電体層に形成された入力端子2、出力端子3、グランド端子4a、4bについて説明する。 Hereinafter, the capacitor electrodes 5a to 5h, the relay electrodes 6a to 6n, the inductor electrodes 7a to 7k, and the extraction electrode 8a formed on the dielectric layers will be described for each of the dielectric layers 1a to 1r. In addition, when particularly necessary, the input terminal 2, the output terminal 3, and the ground terminals 4a and 4b formed in the dielectric layer will be described.
 誘電体層1aの一方の端面には入力端子2が形成され、他方の端面には出力端子3が形成されている。また、誘電体層1aの両側面には、1対のグランド端子4a、4bが形成されている。入力端子2、出力端子3、グランド端子4a、4bは、それぞれ、誘電体層1aの下側主面に延出して形成されている。 An input terminal 2 is formed on one end face of the dielectric layer 1a, and an output terminal 3 is formed on the other end face. A pair of ground terminals 4a and 4b are formed on both side surfaces of the dielectric layer 1a. The input terminal 2, the output terminal 3, and the ground terminals 4a and 4b are each formed to extend to the lower main surface of the dielectric layer 1a.
 誘電体層1aの上側主面には、キャパシタ電極5aが形成されている。キャパシタ電極5aは、グランド電極としての機能も有している。キャパシタ電極5aは、グランド端子4a、4bに接続されている。 A capacitor electrode 5a is formed on the upper main surface of the dielectric layer 1a. The capacitor electrode 5a also has a function as a ground electrode. The capacitor electrode 5a is connected to the ground terminals 4a and 4b.
 誘電体層1bの上側主面には、キャパシタ電極5bが形成されている。 A capacitor electrode 5b is formed on the upper main surface of the dielectric layer 1b.
 誘電体層1cの上側主面には、キャパシタ電極5c、中継電極6aが形成されている。 A capacitor electrode 5c and a relay electrode 6a are formed on the upper main surface of the dielectric layer 1c.
 誘電体層1dの上側主面には、中継電極6b、インダクタ電極7aが形成されている。 A relay electrode 6b and an inductor electrode 7a are formed on the upper main surface of the dielectric layer 1d.
 誘電体層1eの上側主面には、中継電極6c、6d、引出電極8aが形成されている。引出電極8aは、出力端子3に接続されている。 Relay electrodes 6c and 6d and an extraction electrode 8a are formed on the upper main surface of the dielectric layer 1e. The extraction electrode 8 a is connected to the output terminal 3.
 誘電体層1fの上側主面には、中継電極6e、6f、インダクタ電極7bが形成されている。 Relay electrodes 6e and 6f and an inductor electrode 7b are formed on the upper main surface of the dielectric layer 1f.
 誘電体層1gの上側主面には、中継電極6g、インダクタ電極7cが形成されている。 A relay electrode 6g and an inductor electrode 7c are formed on the upper main surface of the dielectric layer 1g.
 誘電体層1hの上側主面には、インダクタ電極7d、7eが形成されている。 Inductor electrodes 7d and 7e are formed on the upper main surface of the dielectric layer 1h.
 誘電体層1iの上側主面には、インダクタ電極7f、7gが形成されている。 Inductor electrodes 7f and 7g are formed on the upper main surface of the dielectric layer 1i.
 誘電体層1jの上側主面には、インダクタ電極7h、7i形成されている。 Inductor electrodes 7h and 7i are formed on the upper main surface of the dielectric layer 1j.
 誘電体層1kの上側主面には、インダクタ電極7j、中継電極6hが形成されている。 An inductor electrode 7j and a relay electrode 6h are formed on the upper main surface of the dielectric layer 1k.
 誘電体層1lの上側主面には、インダクタ電極7k、中継電極6iが形成されている。 An inductor electrode 7k and a relay electrode 6i are formed on the upper main surface of the dielectric layer 1l.
 誘電体層1mの上側主面には、中継電極6j、6k、キャパシタ電極5dが形成されている。キャパシタ電極5dは、出力端子3に接続されている。 Relay electrodes 6j and 6k and a capacitor electrode 5d are formed on the upper main surface of the dielectric layer 1m. The capacitor electrode 5 d is connected to the output terminal 3.
 誘電体層1nの上側主面には、中継電極6l、キャパシタ電極5eが形成されている。 A relay electrode 61 and a capacitor electrode 5e are formed on the upper main surface of the dielectric layer 1n.
 誘電体層1oの上側主面には、中継電極6m、キャパシタ電極5fが形成されている。 A relay electrode 6m and a capacitor electrode 5f are formed on the upper main surface of the dielectric layer 1o.
 誘電体層1pの上側主面には、中継電極6n、キャパシタ電極5gが形成されている。キャパシタ電極5gは、入力端子2に接続されている。 A relay electrode 6n and a capacitor electrode 5g are formed on the upper main surface of the dielectric layer 1p. The capacitor electrode 5 g is connected to the input terminal 2.
 誘電体層1qの上側主面には、キャパシタ電極5hが形成されている。 A capacitor electrode 5h is formed on the upper main surface of the dielectric layer 1q.
 誘電体層1rの一方の端面には入力端子2が形成され、他方の端面には出力端子3が形成されている。また、誘電体層1aの両側面には、1対のグランド端子4a、4bが形成されている。入力端子2、出力端子3、グランド端子4a、4bは、それぞれ、誘電体層1aの上側主面に延出して形成されている。 An input terminal 2 is formed on one end face of the dielectric layer 1r, and an output terminal 3 is formed on the other end face. A pair of ground terminals 4a and 4b are formed on both side surfaces of the dielectric layer 1a. The input terminal 2, the output terminal 3, and the ground terminals 4a and 4b are each formed to extend to the upper main surface of the dielectric layer 1a.
 次に、誘電体層1b~1qを貫通して形成されたビア電極9a~9pについて説明する。 Next, the via electrodes 9a to 9p formed through the dielectric layers 1b to 1q will be described.
 ビア電極9aは、キャパシタ電極5bと中継電極6aとを接続している。 The via electrode 9a connects the capacitor electrode 5b and the relay electrode 6a.
 ビア電極9bは、キャパシタ電極5cとインダクタ電極7aの一端とを接続している。 The via electrode 9b connects the capacitor electrode 5c and one end of the inductor electrode 7a.
 ビア電極9cは、引出電極8aとインダクタ電極7bの一端とを接続している。 The via electrode 9c connects the extraction electrode 8a and one end of the inductor electrode 7b.
 ビア電極9dは、インダクタ電極7bの他端とインダクタ電極7cの一端とを接続している。 The via electrode 9d connects the other end of the inductor electrode 7b and one end of the inductor electrode 7c.
 ビア電極9eは、中継電極6d、6fを経由して、インダクタ電極7aの他端とインダクタ電極7cの他端とを接続している。 The via electrode 9e connects the other end of the inductor electrode 7a and the other end of the inductor electrode 7c via the relay electrodes 6d and 6f.
 ビア電極9fは、中継電極6b、6c、6e、6gを経由して、中継電極6aとインダクタ電極7dの一端とを接続している。 The via electrode 9f connects the relay electrode 6a and one end of the inductor electrode 7d via the relay electrodes 6b, 6c, 6e, and 6g.
 ビア電極9gは、インダクタ電極7cの途中に設けられた分岐点Xとインダクタ電極7eの一端とを接続している。 The via electrode 9g connects the branch point X provided in the middle of the inductor electrode 7c and one end of the inductor electrode 7e.
 ビア電極9hは、インダクタ電極7dの他端とインダクタ電極7fの一端とを接続している。 The via electrode 9h connects the other end of the inductor electrode 7d and one end of the inductor electrode 7f.
 ビア電極9iは、インダクタ電極7eの他端とインダクタ電極7gの一端とを接続している。 The via electrode 9i connects the other end of the inductor electrode 7e and one end of the inductor electrode 7g.
 ビア電極9jは、インダクタ電極7fの他端とインダクタ電極7hの一端とを接続している。 The via electrode 9j connects the other end of the inductor electrode 7f and one end of the inductor electrode 7h.
 ビア電極9kは、インダクタ電極7gの他端とインダクタ電極7iの一端とを接続している。 The via electrode 9k connects the other end of the inductor electrode 7g and one end of the inductor electrode 7i.
 ビア電極9lは、インダクタ電極7hの他端とインダクタ電極7jの一端とを接続している。 The via electrode 9l connects the other end of the inductor electrode 7h and one end of the inductor electrode 7j.
 ビア電極9mは、インダクタ電極7jの他端とインダクタ電極7kの一端とを接続している。 The via electrode 9m connects the other end of the inductor electrode 7j and one end of the inductor electrode 7k.
 ビア電極9nは、中継電極6h、6i、6kを経由して、インダクタ電極7iの他端とキャパシタ電極5eとを接続している。 The via electrode 9n connects the other end of the inductor electrode 7i and the capacitor electrode 5e via the relay electrodes 6h, 6i, 6k.
 ビア電極9oは、キャパシタ電極5eとキャパシタ電極5fとを接続している。 The via electrode 9o connects the capacitor electrode 5e and the capacitor electrode 5f.
 ビア電極9pは、中継電極6j、6l、6m、6nを経由して、インダクタ電極7kの他端とキャパシタ電極5hとを接続している。 The via electrode 9p connects the other end of the inductor electrode 7k and the capacitor electrode 5h via the relay electrodes 6j, 6l, 6m, and 6n.
 キャパシタ電極5a~5h、中継電極6a~6n、インダクタ電極7a~7k、引出電極8aは、たとえば、Ag、Cuや、これらの合金を主成分とする金属により形成することができる。 The capacitor electrodes 5a to 5h, the relay electrodes 6a to 6n, the inductor electrodes 7a to 7k, and the extraction electrode 8a can be formed of, for example, Ag, Cu, or a metal mainly composed of these alloys.
 以上の構造からなる第1実施形態にかかる積層型LCフィルタ100は、従来から、積層型LCフィルタを製造するのに使用されている一般的な製造方法によって製造することができる。 The multilayer LC filter 100 according to the first embodiment having the above structure can be manufactured by a general manufacturing method conventionally used for manufacturing a multilayer LC filter.
 以上の構造からなる第1実施形態にかかる積層型LCフィルタ100は、図3に示す等価回路を有する。 The multilayer LC filter 100 according to the first embodiment having the above structure has an equivalent circuit shown in FIG.
 積層型LCフィルタ100は、入力端子2と出力端子3とを繋ぐ信号ラインに、キャパシタC1、キャパシタC2、LC並列共振器LC1が、順に接続されている。 In the laminated LC filter 100, a capacitor C1, a capacitor C2, and an LC parallel resonator LC1 are sequentially connected to a signal line connecting the input terminal 2 and the output terminal 3.
 LC並列共振器LC1は、直列に接続された2つのLC並列共振器用分割インダクタL2、L3と、LC並列共振器用キャパシタC4とが並列に接続されて構成されている。なお、分割インダクタという用語は、本来、1つのインダクタでも機能するが、あえて複数のインダクタ(L2、L3)に分けて構成しているので、分割という形容を付したものである。 The LC parallel resonator LC1 is configured by connecting in parallel two LC parallel resonator split inductors L2 and L3 and an LC parallel resonator capacitor C4. The term “divided inductor” originally functions even with a single inductor, but is intentionally divided into a plurality of inductors (L 2, L 3).
 LC並列共振器LC1は、主に、高域側の減衰極を形成する役割を果たしている。また、キャパシタC1、C2は、それぞれ、主に、積層型LCフィルタ100の入出力間のインピーダンスの整合を取る役割を果たしている。 The LC parallel resonator LC1 mainly plays a role of forming a high-frequency attenuation pole. The capacitors C1 and C2 mainly play a role of matching impedance between the input and output of the multilayer LC filter 100, respectively.
 積層型LCフィルタ100は、キャパシタC1とキャパシタC2との接続点と、グランドとの間に、LC直列共振器用インダクタL1とLC直列共振器用キャパシタC3とが直列に接続されたLC直列共振器LC2が接続されている。LC直列共振器LC2は、ハイパスフィルタとして低域側の減衰極を形成する役割を果たしている。 The multilayer LC filter 100 includes an LC series resonator LC2 in which an LC series resonator inductor L1 and an LC series resonator capacitor C3 are connected in series between a connection point between the capacitor C1 and the capacitor C2 and the ground. It is connected. The LC series resonator LC2 plays a role of forming a low-frequency attenuation pole as a high-pass filter.
 また、積層型LCフィルタ100は、LC並列共振器用分割インダクタL2とLC並列共振器用分割インダクタL3の接続点と、LC直列共振器用インダクタL1とLC直列共振器用キャパシタC3との接続点との間に、LC直列共振器用インダクタL4とLC直列共振器用キャパシタC5とが直列に接続されたLC直列共振器LC3が接続されている。LC直列共振器LC3は、LC直列共振器用キャパシタC3を経由してグランドに接続されているということができる。LC直列共振器LC3は、LC並列共振器LC1により形成される減衰極よりも高域側に減衰極を形成する役割を果たしている。 The multilayer LC filter 100 includes a connection point between the LC parallel resonator split inductor L2 and the LC parallel resonator split inductor L3, and a connection point between the LC series resonator inductor L1 and the LC series resonator capacitor C3. An LC series resonator LC3 in which an inductor L4 for LC series resonator and a capacitor C5 for LC series resonator are connected in series is connected. It can be said that the LC series resonator LC3 is connected to the ground via the LC series resonator capacitor C3. The LC series resonator LC3 plays a role of forming an attenuation pole on a higher frequency side than the attenuation pole formed by the LC parallel resonator LC1.
 また、積層型LCフィルタ100は、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とが磁気結合している。 In the multilayer LC filter 100, the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled.
 積層型LCフィルタ100は、LC並列共振器用分割インダクタL2とLC並列共振器用分割インダクタL3の接続点に、LC直列共振器LC3(LC直列共振器用インダクタL4、LC直列共振器用キャパシタC5)が接続されているため、入出力間の対称性に優れており、入出力間のインピーダンスの整合を取りやすい。また、積層型LCフィルタ100は、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とが磁気結合しており、LC並列共振器用分割インダクタL3がLC直列共振器用インダクタL4のインダクタンス値を強めている。そのため、LC直列共振器用インダクタL4のインダクタ電極を大きくしなくても、LC直列共振器用インダクタL4のインダクタンス値を大きくすることができる。 In the multilayer LC filter 100, an LC series resonator LC3 (an LC series resonator inductor L4 and an LC series resonator capacitor C5) is connected to a connection point between the LC parallel resonator split inductor L2 and the LC parallel resonator split inductor L3. Therefore, it is excellent in symmetry between input and output, and it is easy to match impedance between input and output. In the multilayer LC filter 100, the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled, and the LC parallel resonator split inductor L3 strengthens the inductance value of the LC series resonator inductor L4. ing. Therefore, the inductance value of the LC series resonator inductor L4 can be increased without increasing the inductor electrode of the LC series resonator inductor L4.
 本件発明者は、第1実施形態にかかる積層型LCフィルタ100の回路を設計するに先立ち、上述した積層型LCフィルタ100の効果を確認するために、次のシミュレーション実験をおこなった。実験においては、図4(A)に等価回路を示す好ましいLCフィルタXと、図5(A)に等価回路を示す比較のためのLCフィルタYとを構成した。 Prior to designing the circuit of the multilayer LC filter 100 according to the first embodiment, the present inventor conducted the following simulation experiment in order to confirm the effect of the multilayer LC filter 100 described above. In the experiment, a preferred LC filter X whose equivalent circuit is shown in FIG. 4A and an LC filter Y for comparison whose equivalent circuit is shown in FIG.
 好ましいLCフィルタXは、図4(A)に示すように、第1実施形態にかかる積層型LCフィルタ100に近い等価回路を有している。すなわち、LCフィルタXは、入力端子2と出力端子3とを繋ぐ信号ラインに、LC並列共振器LC1を接続している。そして、LC並列共振器LC1のLC並列共振器用分割インダクタL2とLC並列共振器用分割インダクタL3との接続点と、グランドとの間に、LC直列共振器用インダクタL4、LC直列共振器用キャパシタC5とが直列に接続されたLC直列共振器LC3を接続している。また、LCフィルタXは、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とが、磁気結合している。 The preferred LC filter X has an equivalent circuit close to the multilayer LC filter 100 according to the first embodiment, as shown in FIG. That is, in the LC filter X, the LC parallel resonator LC1 is connected to a signal line connecting the input terminal 2 and the output terminal 3. The LC series resonator inductor L4 and the LC series resonator capacitor C5 are connected between the connection point of the LC parallel resonator split inductor L2 and the LC parallel resonator split inductor L3 of the LC parallel resonator LC1 and the ground. An LC series resonator LC3 connected in series is connected. In the LC filter X, the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled.
 これに対し、比較のためのLCフィルタYは、図5(A)に示すように、LC並列共振器用分割インダクタL3と出力端子3との接続点と、グランドとの間に、LC直列共振器用インダクタL14とLC直列共振器用キャパシタC15とが直列に接続されたLC直列共振器LC13を接続している。また、LCフィルタYは、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL14とが、磁気結合していない。 On the other hand, as shown in FIG. 5A, the LC filter Y for comparison is for the LC series resonator between the connection point between the LC parallel resonator split inductor L3 and the output terminal 3, and the ground. An LC series resonator LC13 in which an inductor L14 and an LC series resonator capacitor C15 are connected in series is connected. In the LC filter Y, the LC parallel resonator split inductor L3 and the LC series resonator inductor L14 are not magnetically coupled.
 LCフィルタXの主なインダクタのインダクタンス値と、LCフィルタYの主なインダクタのインダクタンス値とを、表1に比較して示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 compares the inductance value of the main inductor of the LC filter X and the inductance value of the main inductor of the LC filter Y.
Figure JPOXMLDOC01-appb-T000001
 LCフィルタXのLC直列共振器用インダクタL4と、LCフィルタYのLC直列共振器用インダクタL14とは、インダクタンス値が大きく異なっている。具体的には、LC直列共振器用インダクタL4のインダクタンス値が0.4nHであるのに対し、LC直列共振器用インダクタL14のインダクタンス値は1.0nHである。LCフィルタYにおいては、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL14とがほとんど磁気結合していないため、通過帯域の近傍に所望の減衰量を有する減衰極を形成するために、LC直列共振器用インダクタL14のインダクタンス値を1.0nHと大きくしなければならなかった。これに対し、LCフィルタXは、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とが磁気結合しており、LC並列共振器用分割インダクタL3がLC直列共振器用インダクタL4のインダクタンス値を強めているため、LC直列共振器用インダクタL4のインダクタンス値を小さくすることができる。 The inductor L4 for the LC series resonator of the LC filter X and the inductor L14 for the LC series resonator of the LC filter Y have greatly different inductance values. Specifically, the inductance value of the LC series resonator inductor L4 is 0.4 nH, whereas the inductance value of the LC series resonator inductor L14 is 1.0 nH. In the LC filter Y, the LC parallel resonator split inductor L3 and the LC series resonator inductor L14 are hardly magnetically coupled. Therefore, in order to form an attenuation pole having a desired attenuation in the vicinity of the passband, The inductance value of the series resonator inductor L14 had to be increased to 1.0 nH. On the other hand, in the LC filter X, the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled, and the LC parallel resonator split inductor L3 strengthens the inductance value of the LC series resonator inductor L4. Therefore, the inductance value of the LC series resonator inductor L4 can be reduced.
 図4(B)に、LCフィルタXの周波数特性を示す。また、図5(B)に、LCフィルタYの周波数特性を示す。 Fig. 4 (B) shows the frequency characteristics of the LC filter X. FIG. 5B shows frequency characteristics of the LC filter Y.
 好ましいLCフィルタXは、図4(B)に示すように、通過帯域の近傍に所定の減衰量を有する減衰極が形成され、かつ、入出力間のインピーダンスの整合が取れている。これに対し、比較のためのLCフィルタYは、図5(B)に示すように、通過帯域の近傍に所定の減衰量を有する減衰極が形成されているが、入出力間のインピーダンスの整合が取れていない。これは、LC直列共振器LC13を、LC並列共振器用分割インダクタL3と出力端子3との接続点と、グランドとの間に接続したためであると考えられる。また、LCフィルタYは、上述したとおり、LC直列共振器用インダクタL14のインダクタンス値を大きくしなければならず、たとえば積層型LCフィルタに構成した場合には、形状が大型化してしまうという問題を有している。 As shown in FIG. 4B, the preferred LC filter X has an attenuation pole having a predetermined attenuation in the vicinity of the pass band, and impedance matching between the input and output is achieved. On the other hand, as shown in FIG. 5B, the LC filter Y for comparison has an attenuation pole having a predetermined attenuation amount in the vicinity of the pass band. Is not removed. This is considered to be because the LC series resonator LC13 is connected between the connection point between the LC parallel resonator split inductor L3 and the output terminal 3 and the ground. In addition, as described above, the LC filter Y has to increase the inductance value of the inductor L14 for the LC series resonator. For example, when the LC filter Y is configured as a multilayer LC filter, the shape of the LC filter Y increases. is doing.
 以上のシミュレーション実験の結果に基づき、第1実施形態にかかる積層型LCフィルタ100の等価回路を図3に示すように設計した。 Based on the results of the above simulation experiment, an equivalent circuit of the multilayer LC filter 100 according to the first embodiment was designed as shown in FIG.
 次に、図3に示した積層型LCフィルタ100の等価回路と、図2に示した積層型LCフィルタ100の内部構造との関係について説明する。 Next, the relationship between the equivalent circuit of the multilayer LC filter 100 shown in FIG. 3 and the internal structure of the multilayer LC filter 100 shown in FIG. 2 will be described.
 キャパシタC1は、主に、キャパシタ電極5gとキャパシタ電極5hとの間に形成される容量により構成されている。なお、キャパシタ電極5gは入力端子2に接続されている。 The capacitor C1 is mainly composed of a capacitance formed between the capacitor electrode 5g and the capacitor electrode 5h. The capacitor electrode 5g is connected to the input terminal 2.
 キャパシタC2は、主に、キャパシタ電極5hとキャパシタ電極5fとの間に形成される容量により構成されている。 The capacitor C2 is mainly composed of a capacitance formed between the capacitor electrode 5h and the capacitor electrode 5f.
 LC並列共振器用キャパシタC4は、主に、キャパシタ電極5eとキャパシタ電極5dとの間に形成される容量により構成されている。なお、キャパシタ電極5eは、ビア電極9oを経由して、キャパシタC2のキャパシタ電極5fに接続されている。また、キャパシタ電極5dは出力端子3に接続されている。 The LC parallel resonator capacitor C4 is mainly composed of a capacitor formed between the capacitor electrode 5e and the capacitor electrode 5d. The capacitor electrode 5e is connected to the capacitor electrode 5f of the capacitor C2 via the via electrode 9o. Further, the capacitor electrode 5d is connected to the output terminal 3.
 LC並列共振器用分割インダクタL2は、ビア電極9n、インダクタ電極7i、ビア電極9k、インダクタ電極7g、ビア電極9i、インダクタ電極7e、ビア電極9gを繋ぐ線路によって構成されている。なお、ビア電極9nは、LC並列共振器用キャパシタC4のキャパシタ電極5eに接続されている。また、ビア電極9nは、途中に中継電極6k、6i、6hを経由している。また、ビア電極9gはインダクタ電極7cの分岐点Xに接続されている。 The split inductor L2 for the LC parallel resonator is composed of a line connecting the via electrode 9n, the inductor electrode 7i, the via electrode 9k, the inductor electrode 7g, the via electrode 9i, the inductor electrode 7e, and the via electrode 9g. The via electrode 9n is connected to the capacitor electrode 5e of the LC parallel resonator capacitor C4. The via electrode 9n passes through the relay electrodes 6k, 6i, and 6h on the way. The via electrode 9g is connected to the branch point X of the inductor electrode 7c.
 LC並列共振器用分割インダクタL3は、インダクタ電極7cの分岐点Xから一端までの間、ビア電極9d、インダクタ電極7b、ビア電極9c、引出電極8aを繋ぐ線路によって構成されている。なお、引出電極8aは出力端子3に接続されている。 The LC parallel resonator split inductor L3 is constituted by a line connecting the via electrode 9d, the inductor electrode 7b, the via electrode 9c, and the lead electrode 8a from the branch point X to one end of the inductor electrode 7c. The extraction electrode 8a is connected to the output terminal 3.
 LC直列共振器用インダクタL1は、ビア電極9p、インダクタ電極7k、ビア電極9m、インダクタ電極7j、ビア電極9l、インダクタ電極7h、ビア電極9j、インダクタ電極7f、ビア電極9h、インダクタ電極7d、ビア電極9f、中継電極6a、ビア電極9aを繋ぐ線路によって構成されている。なお、ビア電極9pは、キャパシタC1のキャパシタ電極5hに接続されている。また、ビア電極9aは、後述するLC直列共振器用キャパシタC3のキャパシタ電極5bに接続されている。また、ビア電極9pは、途中に中継電極6n、6m、6l、6jを経由している。また、ビア電極9fは、途中に6g、6e、6c、6bを経由している。 The inductor L1 for the LC series resonator includes a via electrode 9p, an inductor electrode 7k, a via electrode 9m, an inductor electrode 7j, a via electrode 9l, an inductor electrode 7h, a via electrode 9j, an inductor electrode 7f, a via electrode 9h, an inductor electrode 7d, and a via electrode. 9f, a relay electrode 6a, and a line connecting the via electrode 9a. The via electrode 9p is connected to the capacitor electrode 5h of the capacitor C1. The via electrode 9a is connected to a capacitor electrode 5b of an LC series resonator capacitor C3 described later. The via electrode 9p passes through the relay electrodes 6n, 6m, 6l, and 6j on the way. The via electrode 9f passes through 6g, 6e, 6c, and 6b in the middle.
 LC直列共振器用キャパシタC3は、主に、キャパシタ電極5bとキャパシタ電極5aとの間に形成される容量により構成されている。なお、キャパシタ電極5aは、グランド電極の機能も有しており、グランド端子4a、4bに接続されている。 The LC series resonator capacitor C3 is mainly composed of a capacitor formed between the capacitor electrode 5b and the capacitor electrode 5a. The capacitor electrode 5a also functions as a ground electrode and is connected to the ground terminals 4a and 4b.
 LC直列共振器用インダクタL4は、インダクタ電極7cの分岐点Xから他端までの間、ビア電極9e、インダクタ電極7a、ビア電極9bを繋ぐ線路によって構成されている。なお、ビア電極9bは、後述するLC直列共振器用キャパシタC5のキャパシタ電極5cに接続されている。また、ビア電極9eは、途中に中継電極6f、6dを経由している。 The LC series resonator inductor L4 is constituted by a line connecting the via electrode 9e, the inductor electrode 7a, and the via electrode 9b from the branch point X to the other end of the inductor electrode 7c. The via electrode 9b is connected to a capacitor electrode 5c of an LC series resonator capacitor C5 described later. The via electrode 9e passes through the relay electrodes 6f and 6d on the way.
 LC直列共振器用キャパシタC5は、主に、キャパシタ電極5cとキャパシタ電極5bとの間に形成される容量により構成されている。なお、キャパシタ電極5bは、LC直列共振器用キャパシタC3の電極でもある。 The LC series resonator capacitor C5 is mainly composed of a capacitor formed between the capacitor electrode 5c and the capacitor electrode 5b. The capacitor electrode 5b is also an electrode of the LC series resonator capacitor C3.
 以上の等価回路および構造からなる第1実施形態にかかる積層型LCフィルタ100は、次のような特徴を有する。 The multilayer LC filter 100 according to the first embodiment having the above equivalent circuit and structure has the following characteristics.
 まず、積層型LCフィルタ100は、信号ラインのほぼ中央に位置する2つのLC並列共振器用分割インダクタL2とL3の接続点と、グランド(より正確にはLC直列共振器用インダクタL1とLC直列共振器用キャパシタC3との接続点)との間に、LC直列共振器LC3が接続されているため、入出力間の対称性に優れており、入出力間のインピーダンスの整合を取りやすくなっている。 First, the multilayer LC filter 100 includes a connection point between two LC parallel resonator split inductors L2 and L3, which is located substantially at the center of a signal line, and a ground (more precisely, an LC series resonator inductor L1 and an LC series resonator use). Since the LC series resonator LC3 is connected between the capacitor C3 and the capacitor C3), the symmetry between the input and output is excellent, and impedance matching between the input and output is easy to achieve.
 また、積層型LCフィルタ100は、図6に示すように、LC並列共振器用分割インダクタL3と、LC直列共振器用インダクタL4とが、インダクタ電極7cの分岐点Xにおいて分岐され、かつ、積層体1を積層方向に透視して、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とを見た場合に、LC並列共振器用分割インダクタL3のインダクタ電極7c、ビア電極9d、インダクタ電極7b、ビア電極9c、引出電極8aによって構成される螺旋パターンの内側に、LC直列共振器用インダクタL4の巻回軸が配置されている。この結果、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とが磁気結合し、LC直列共振器用インダクタL4のインダクタンス値が強められている。 Further, as shown in FIG. 6, the multilayer LC filter 100 includes an LC parallel resonator split inductor L3 and an LC series resonator inductor L4 that are branched at a branch point X of the inductor electrode 7c. Is seen in the lamination direction, and the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are viewed, the inductor electrode 7c, via electrode 9d, inductor electrode 7b, and via of the LC parallel resonator split inductor L3 The winding axis of the LC series resonator inductor L4 is arranged inside the spiral pattern constituted by the electrode 9c and the extraction electrode 8a. As a result, the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are magnetically coupled, and the inductance value of the LC series resonator inductor L4 is strengthened.
 また、積層型LCフィルタ100は、LC直列共振器用インダクタL4のインダクタ電極7c、ビア電極9e、インダクタ電極7a、ビア電極9bによって構成される螺旋パターンの内側に、LC並列共振器用分割インダクタL3の巻回軸が配置されている。この結果、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とは、磁気結合がより強くなっている。 Further, the multilayer LC filter 100 includes the LC parallel resonator split inductor L3 wound inside the spiral pattern formed by the inductor electrode 7c, via electrode 9e, inductor electrode 7a, and via electrode 9b of the LC series resonator inductor L4. The rotation axis is arranged. As a result, the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 have stronger magnetic coupling.
 さらに、積層型LCフィルタ100は、LC並列共振器用分割インダクタL3のインダクタ電極7c、ビア電極9d、インダクタ電極7b、ビア電極9c、引出電極8aによって構成される螺旋パターンの巻回方向と、LC直列共振器用インダクタL4のインダクタ電極7c、ビア電極9e、インダクタ電極7a、ビア電極9bによって構成される螺旋パターンの巻回方向とが逆方向になっている。この結果、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とは、磁気結合がより強くなっている。このため、LC直列共振器用インダクタL4は、インダクタ電極7c、7aを大きくしなくても(螺旋パターンを大きくしなくても)、十分に大きなインダクタンス値を得ることができる。 Furthermore, the multilayer LC filter 100 includes a winding direction of a spiral pattern constituted by the inductor electrode 7c, the via electrode 9d, the inductor electrode 7b, the via electrode 9c, and the extraction electrode 8a of the split inductor L3 for the LC parallel resonator, and an LC series. The winding direction of the spiral pattern constituted by the inductor electrode 7c, the via electrode 9e, the inductor electrode 7a, and the via electrode 9b of the resonator inductor L4 is opposite to the winding direction. As a result, the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 have stronger magnetic coupling. For this reason, the inductor L4 for LC series resonators can obtain a sufficiently large inductance value without increasing the inductor electrodes 7c and 7a (without increasing the spiral pattern).
 以上のように、積層型LCフィルタ100は、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4とが強め合うように磁気結合している。そのため、LC直列共振器用インダクタL4は、インダクタ電極7c、7aを大きくしなくても(螺旋パターンを大きくしなくても)十分に大きなインダクタンス値を得ることができる。この結果、積層型LCフィルタ100は、形状を大型化することなく、LC直列共振器LC3によって形成される通過帯域の近傍の減衰極の減衰量が大きくされている。 As described above, the multilayer LC filter 100 is magnetically coupled so that the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 are strengthened. Therefore, the inductor L4 for LC series resonator can obtain a sufficiently large inductance value without increasing the inductor electrodes 7c and 7a (without increasing the spiral pattern). As a result, the multilayer LC filter 100 has a large attenuation amount in the vicinity of the passband formed by the LC series resonator LC3 without increasing the size.
 図7に、第1実施形態にかかる積層型LCフィルタ100の周波数特性を示す。 FIG. 7 shows the frequency characteristics of the multilayer LC filter 100 according to the first embodiment.
 積層型LCフィルタ100は、図7に示すように、通過帯域の近傍に所定の減衰量を有する減衰極が形成され、かつ、入出力間のインピーダンスの整合が取られている。 As shown in FIG. 7, the multilayer LC filter 100 has an attenuation pole having a predetermined attenuation near the passband, and impedance matching between the input and output.
 以上のように、本発明によれば、形状を大型化させることなく、通過帯域近傍に所望の減衰量の減衰極が形成され、かつ入出力間のインピーダンス整合が取られた積層型LCフィルタを提供することができる。 As described above, according to the present invention, there is provided a multilayer LC filter in which an attenuation pole having a desired attenuation amount is formed in the vicinity of the passband and impedance matching between input and output is taken without increasing the size. Can be provided.
 [第2実施形態]
 図8に、第2実施形態にかかる積層型LCフィルタ200を示す。ただし、図8は、積層型LCフィルタ200の分解斜視図である。
[Second Embodiment]
FIG. 8 shows a multilayer LC filter 200 according to the second embodiment. However, FIG. 8 is an exploded perspective view of the multilayer LC filter 200.
 積層型LCフィルタ200は、第1実施形態にかかる積層型LCフィルタ100の積層体1内の電極の形状や接続方法に変更を加えた。積層型LCフィルタ200の基本的な等価回路は、積層型LCフィルタ100と同じにした。 The multilayer LC filter 200 is modified in the shape and connection method of the electrodes in the multilayer body 1 of the multilayer LC filter 100 according to the first embodiment. The basic equivalent circuit of the multilayer LC filter 200 is the same as that of the multilayer LC filter 100.
 なお、積層型LCフィルタ200と積層型LCフィルタ100とでは、上述したように、積層体1内の電極の形状や接続方法が異なっているが、比較しやすくするために、各構成要素に付した符号番号は同じにしている。 Note that the multilayer LC filter 200 and the multilayer LC filter 100 have different electrode shapes and connection methods in the multilayer body 1 as described above. The same code numbers are used.
 以下、積層型LCフィルタ200が積層型LCフィルタ100と異なっている部分について説明する。 Hereinafter, portions where the multilayer LC filter 200 is different from the multilayer LC filter 100 will be described.
 積層型LCフィルタ100では、図2に示すように、インダクタ電極7c、ビア電極9d、インダクタ電極7b、ビア電極9c、引出電極8aによって構成されるLC並列共振器用分割インダクタL3の螺旋パターンの巻回方向と、インダクタ電極7c、ビア電極9e、インダクタ電極7a、ビア電極9bによって構成されるLC直列共振器用インダクタL4の螺旋パターンの巻回方向とを逆方向にしていた。 In the multilayer LC filter 100, as shown in FIG. 2, winding of a spiral pattern of a split inductor L3 for an LC parallel resonator composed of an inductor electrode 7c, a via electrode 9d, an inductor electrode 7b, a via electrode 9c, and an extraction electrode 8a is performed. The direction and the winding direction of the spiral pattern of the inductor L4 for an LC series resonator constituted by the inductor electrode 7c, the via electrode 9e, the inductor electrode 7a, and the via electrode 9b were reversed.
 これに対し、積層型LCフィルタ200では、図8に示すように、インダクタ電極7c、ビア電極9d、インダクタ電極7b、ビア電極9c、引出電極8aによって構成されるLC並列共振器用分割インダクタL3の螺旋パターンの巻回方向と、インダクタ電極7c、ビア電極9e、インダクタ電極7a、ビア電極9bによって構成されるLC直列共振器用インダクタL4の螺旋パターンの巻回方向とを同方向にした。 On the other hand, in the multilayer LC filter 200, as shown in FIG. 8, the spiral of the split inductor L3 for LC parallel resonators constituted by the inductor electrode 7c, the via electrode 9d, the inductor electrode 7b, the via electrode 9c, and the extraction electrode 8a. The winding direction of the pattern and the winding direction of the spiral pattern of the inductor L4 for LC series resonator constituted by the inductor electrode 7c, the via electrode 9e, the inductor electrode 7a, and the via electrode 9b were set to be the same direction.
 この結果、積層型LCフィルタ200は、積層型LCフィルタ100よりも、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4との磁気結合が弱くなっている。 As a result, in the multilayer LC filter 200, the magnetic coupling between the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 is weaker than in the multilayer LC filter 100.
 図9に、第2実施形態にかかる積層型LCフィルタ200の周波数特性を示す。 FIG. 9 shows the frequency characteristics of the multilayer LC filter 200 according to the second embodiment.
 積層型LCフィルタ200は、図9に示すように、通過帯域の近傍に所定の減衰量を有する減衰極が形成され、かつ、入出力間のインピーダンスの整合が取られている。 As shown in FIG. 9, the laminated LC filter 200 has an attenuation pole having a predetermined attenuation near the pass band, and impedance matching between the input and output.
 このように、本発明においては、所望する周波数特性に応じて、LC並列共振器用分割インダクタL3の螺旋パターンの巻回方向と、LC直列共振器用インダクタL4の螺旋パターンの巻回方向とを、逆方向にしたり、同方向にしたりすることにより、LC並列共振器用分割インダクタL3とLC直列共振器用インダクタL4との磁気結合の強さを調整し、周波数特性や入出力間のインピーダンスを調整することができる。 Thus, in the present invention, the winding direction of the spiral pattern of the LC parallel resonator split inductor L3 and the winding direction of the spiral pattern of the LC series resonator inductor L4 are reversed according to the desired frequency characteristics. By adjusting the direction or the same direction, the strength of magnetic coupling between the LC parallel resonator split inductor L3 and the LC series resonator inductor L4 can be adjusted, and the frequency characteristics and the impedance between the input and output can be adjusted. it can.
 [第3実施形態]
 図10に、第3実施形態にかかる積層型LCフィルタ300を示す。ただし、図10は、積層型LCフィルタ300の等価回路図である。
[Third Embodiment]
FIG. 10 shows a multilayer LC filter 300 according to the third embodiment. However, FIG. 10 is an equivalent circuit diagram of the multilayer LC filter 300.
 積層型LCフィルタ300は、第1実施形態にかかる積層型LCフィルタ100の回路構成に変更を加えた。 The multilayer LC filter 300 is a modification of the circuit configuration of the multilayer LC filter 100 according to the first embodiment.
 積層型LCフィルタ100では、図3に示すように、入力端子2とLC直列共振器LC2との間にキャパシタC1を接続していた。積層型LCフィルタ300では、キャパシタC1に代えて、図10に示すように、キャパシタC11とインダクタL11とが並列に接続されたLC並列共振器LC11を接続した。 In the multilayer LC filter 100, as shown in FIG. 3, a capacitor C1 is connected between the input terminal 2 and the LC series resonator LC2. In the multilayer LC filter 300, instead of the capacitor C1, as shown in FIG. 10, an LC parallel resonator LC11 in which a capacitor C11 and an inductor L11 are connected in parallel is connected.
 積層型LCフィルタ300は、積層型LCフィルタ100よりも、入出力間のインピーダンスの調整がより容易になっている。 The multilayer LC filter 300 is easier to adjust the impedance between the input and output than the multilayer LC filter 100.
 以上、第1実施形態~第3実施形態にかかる積層型LCフィルタ100~300について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って、種々の変更をなすことができる。 The multilayer LC filters 100 to 300 according to the first to third embodiments have been described above. However, the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
 たとえば、LCフィルタの種類は任意であり、バンドパスフィルタ、ハイパスフィルタ、ローパスフィルタ等、種々のLCフィルタを構成することができる。また、回路構成も、特に規定した部分以外は任意であり、種々の回路構成を採用することができる。 For example, the type of the LC filter is arbitrary, and various LC filters such as a band-pass filter, a high-pass filter, and a low-pass filter can be configured. Also, the circuit configuration is arbitrary except for the specified part, and various circuit configurations can be adopted.
1・・・積層体
1a~1r・・・誘電体層
2・・・入力端子
3・・・出力端子
4a、4b・・・グランド端子
5a~5h・・・キャパシタ電極
6a~6n・・・中継電極
7a~7k・・・インダクタ電極
8a・・・引出電極
9a~9p・・・ビア電極
LC1・・・LC並列共振器
L2、L3・・・LC並列共振器用分割インダクタ
C4・・・LC並列共振器用キャパシタ
LC3・・・LC直列共振器
L4・・・LC直列共振器用インダクタ
C5・・・LC直列共振器用インダクタ
DESCRIPTION OF SYMBOLS 1 ... Laminated body 1a-1r ... Dielectric layer 2 ... Input terminal 3 ... Output terminal 4a, 4b ... Ground terminal 5a-5h ... Capacitor electrode 6a-6n ... Relay Electrodes 7a to 7k ... Inductor electrodes 8a ... Lead electrodes 9a to 9p ... Via electrodes LC1 ... LC parallel resonators L2, L3 ... Split inductor C4 for LC parallel resonators ... LC parallel resonance Capacitor LC3... LC series resonator L4... LC series resonator inductor C5... LC series resonator inductor

Claims (9)

  1.  複数の誘電体層が積層された積層体と、
     前記積層体の層間に形成された複数のインダクタ電極と、
     前記積層体の層間に形成された複数のキャパシタ電極と、
     前記誘電体層を貫通して形成された複数のビア電極と、
     前記積層体の表面に形成された入力端子と、
     前記積層体の表面に形成された出力端子と、を備え、
     複数の前記インダクタ電極によってインダクタが構成され、
     複数の前記キャパシタ電極によってキャパシタが構成された積層型LCフィルタであって、
     前記入力端子と前記出力端子とを繋ぐ信号ラインに、LC並列共振器が接続され、当該LC並列共振器は、LC並列共振器用インダクタとLC並列共振器用キャパシタとが並列に接続されて構成され、
     前記LC並列共振器用インダクタは、少なくとも2つのLC並列共振器用分割インダクタに分割されて構成され、
     2つの前記LC並列共振器用分割インダクタの接続点とグランドとの間に、LC直列共振器が接続され、当該LC直列共振器は、LC直列共振器用インダクタとLC直列共振器用キャパシタとが直列に接続されて構成され、
     2つの前記LC並列共振器用分割インダクタのうちの一方と、前記LC直列共振器用インダクタとが、前記積層体の1つの前記層間において分岐され、かつ、前記積層体を積層方向に透視して、一方の前記LC並列共振器用分割インダクタと前記LC直列共振器用インダクタとを見た場合に、一方のインダクタの前記インダクタ電極によって構成される螺旋パターンの内側に、他方のインダクタの巻回軸が配置されている積層型LCフィルタ。
    A laminate in which a plurality of dielectric layers are laminated;
    A plurality of inductor electrodes formed between the layers of the laminate;
    A plurality of capacitor electrodes formed between the layers of the laminate;
    A plurality of via electrodes formed through the dielectric layer;
    An input terminal formed on the surface of the laminate;
    An output terminal formed on the surface of the laminate,
    An inductor is constituted by a plurality of the inductor electrodes,
    A multilayer LC filter in which a capacitor is constituted by a plurality of the capacitor electrodes,
    An LC parallel resonator is connected to a signal line connecting the input terminal and the output terminal, and the LC parallel resonator is configured by connecting an inductor for LC parallel resonator and a capacitor for LC parallel resonator in parallel.
    The LC parallel resonator inductor is divided into at least two LC parallel resonator split inductors,
    An LC series resonator is connected between the connection point of the two split inductors for the LC parallel resonator and the ground, and the LC series resonator is connected in series with the inductor for the LC series resonator and the capacitor for the LC series resonator. Is configured,
    One of the two split inductors for the LC parallel resonator and the inductor for the LC series resonator are branched between one of the layers of the multilayer body, and one side of the multilayer body is seen through in the stacking direction. When the split inductor for the LC parallel resonator and the inductor for the LC series resonator are viewed, the winding axis of the other inductor is disposed inside the spiral pattern constituted by the inductor electrode of the one inductor. Laminated LC filter.
  2.  さらに、他方の前記インダクタの前記インダクタ電極によって構成される螺旋パターンの内側に、一方の前記インダクタの巻回軸が配置されている、請求項1に記載された積層型LCフィルタ。 Furthermore, the multilayer LC filter according to claim 1, wherein a winding axis of one of the inductors is disposed inside a spiral pattern constituted by the inductor electrode of the other inductor.
  3.  一方の前記インダクタの前記インダクタ電極によって構成される螺旋パターンの巻回方向と、他方の前記インダクタの前記インダクタ電極によって構成される螺旋パターンの巻回方向とが逆方向である、請求項1または2に記載された積層型LCフィルタ。 The winding direction of the spiral pattern constituted by the inductor electrode of one of the inductors and the winding direction of the spiral pattern constituted by the inductor electrode of the other inductor are opposite directions. The laminated LC filter described in 1.
  4.  一方の前記インダクタの前記インダクタ電極によって構成される螺旋パターンの巻回方向と、他方の前記インダクタの前記インダクタ電極によって構成される螺旋パターンの巻回方向とが同方向である、請求項1または2に記載された積層型LCフィルタ。 The winding direction of the spiral pattern constituted by the inductor electrode of one of the inductors and the winding direction of the spiral pattern constituted by the inductor electrode of the other inductor are the same direction. The laminated LC filter described in 1.
  5.  2つの前記LC並列共振器用分割インダクタのうち、前記積層体の1つの前記層間において前記LC直列共振器用インダクタと分岐された一方の前記LC並列共振器用分割インダクタのインダクタンス値が、他方の前記並列共振器用分割インダクタのインダクタンス値よりも小さい、請求項1ないし4のいずれか1項に記載された積層型LCフィルタ。 Of the two split inductors for the LC parallel resonator, the inductance value of one of the split inductors for the LC parallel resonator branched from the LC series resonator inductor between the one layer of the multilayer body is the other of the parallel resonances of the LC parallel resonator The multilayer LC filter according to any one of claims 1 to 4, wherein the multilayer LC filter is smaller than an inductance value of the split inductor for a machine.
  6.  前記入力端子と前記LC並列共振器とを繋ぐ前記信号ライン、および、前記LC並列共振器と前記出力端子とを繋ぐ前記信号ラインの少なくとも一方に、さらに、少なくとも1つのキャパシタが接続された、請求項1ないし5のいずれか1項に記載された積層型LCフィルタ。 At least one capacitor is further connected to at least one of the signal line connecting the input terminal and the LC parallel resonator and the signal line connecting the LC parallel resonator and the output terminal. Item 6. The multilayer LC filter according to any one of Items 1 to 5.
  7.  前記入力端子と前記LC並列共振器とを繋ぐ前記信号ライン、および、前記LC並列共振器と前記出力端子とを繋ぐ前記信号ラインの少なくとも一方に、さらに、インピーダンス整合用LC回路が接続された、請求項1ないし6のいずれか1項に記載された積層型LCフィルタ。 An impedance matching LC circuit is further connected to at least one of the signal line connecting the input terminal and the LC parallel resonator, and the signal line connecting the LC parallel resonator and the output terminal, The multilayer LC filter according to any one of claims 1 to 6.
  8.  前記インピーダンス整合用LC回路がLC並列共振器である、請求項7に記載された積層型LCフィルタ。 The multilayer LC filter according to claim 7, wherein the impedance matching LC circuit is an LC parallel resonator.
  9.  前記入力端子と前記LC並列共振器とを繋ぐ前記信号ライン、および、前記LC並列共振器と前記出力端子とを繋ぐ前記信号ラインの少なくとも一方と、前記グランドとの間に、さらに、別のLC直列共振器が接続された、請求項1ないし8のいずれか1項に記載された積層型LCフィルタ。 Between the signal line connecting the input terminal and the LC parallel resonator, at least one of the signal line connecting the LC parallel resonator and the output terminal, and the ground, another LC The multilayer LC filter according to any one of claims 1 to 8, wherein a series resonator is connected.
PCT/JP2017/017130 2016-05-17 2017-05-01 Laminated lc filter WO2017199749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-099159 2016-05-17
JP2016099159 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199749A1 true WO2017199749A1 (en) 2017-11-23

Family

ID=60325090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017130 WO2017199749A1 (en) 2016-05-17 2017-05-01 Laminated lc filter

Country Status (2)

Country Link
TW (1) TW201807951A (en)
WO (1) WO2017199749A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070888A1 (en) * 2020-10-01 2022-04-07 株式会社村田製作所 Coil component, filter circuit containing same, and electronic device
WO2022113674A1 (en) * 2020-11-25 2022-06-02 株式会社村田製作所 Low-pass filter, laminated low-pass filter, and filter characteristic adjustment method
CN114584156A (en) * 2020-12-02 2022-06-03 杭州海康威视数字技术股份有限公司 Monitoring device and communication control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202110A (en) * 1981-06-05 1982-12-10 Fujitsu Ltd Bridged t type delay equalizer
JPH10200357A (en) * 1996-12-31 1998-07-31 Taiyo Yuden Co Ltd Laminated lc composite part and method for adjusting characteristic for the same
JP2006203862A (en) * 2004-12-20 2006-08-03 Tdk Corp Noise suppression circuit
JP2008529360A (en) * 2005-01-20 2008-07-31 Tdk株式会社 Filter with improved stopband performance
JP2012090171A (en) * 2010-10-21 2012-05-10 Nec Access Technica Ltd Antenna device
WO2012121038A1 (en) * 2011-03-07 2012-09-13 株式会社村田製作所 Filter
JP2013070288A (en) * 2011-09-23 2013-04-18 Murata Mfg Co Ltd Bandpass filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202110A (en) * 1981-06-05 1982-12-10 Fujitsu Ltd Bridged t type delay equalizer
JPH10200357A (en) * 1996-12-31 1998-07-31 Taiyo Yuden Co Ltd Laminated lc composite part and method for adjusting characteristic for the same
JP2006203862A (en) * 2004-12-20 2006-08-03 Tdk Corp Noise suppression circuit
JP2008529360A (en) * 2005-01-20 2008-07-31 Tdk株式会社 Filter with improved stopband performance
JP2012090171A (en) * 2010-10-21 2012-05-10 Nec Access Technica Ltd Antenna device
WO2012121038A1 (en) * 2011-03-07 2012-09-13 株式会社村田製作所 Filter
JP2013070288A (en) * 2011-09-23 2013-04-18 Murata Mfg Co Ltd Bandpass filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070888A1 (en) * 2020-10-01 2022-04-07 株式会社村田製作所 Coil component, filter circuit containing same, and electronic device
JP7107463B1 (en) * 2020-10-01 2022-07-27 株式会社村田製作所 Electronics
JP2022130663A (en) * 2020-10-01 2022-09-06 株式会社村田製作所 Coil component and filter circuit including the same
WO2022113674A1 (en) * 2020-11-25 2022-06-02 株式会社村田製作所 Low-pass filter, laminated low-pass filter, and filter characteristic adjustment method
JP7530581B2 (en) 2020-11-25 2024-08-08 株式会社村田製作所 Low-pass filter, laminated low-pass filter and filter characteristic adjustment method
CN114584156A (en) * 2020-12-02 2022-06-03 杭州海康威视数字技术股份有限公司 Monitoring device and communication control method thereof
CN114584156B (en) * 2020-12-02 2024-05-10 杭州海康威视数字技术股份有限公司 Monitoring device and communication control method thereof

Also Published As

Publication number Publication date
TW201807951A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5787760B2 (en) filter
JP5440813B2 (en) Electronic components
JP5874718B2 (en) Frequency variable resonance circuit and frequency variable filter
JP5382002B2 (en) Electronic component and manufacturing method thereof
US10340873B2 (en) Band pass filter and laminate band pass filter
US10530322B2 (en) Resonant circuit, band elimination filter, and band pass filter
JP5799918B2 (en) filter
JP5516160B2 (en) Filter circuit and electronic component
JPWO2006022098A1 (en) LC composite parts
WO2017199749A1 (en) Laminated lc filter
JP5790789B2 (en) Electronic components
TW201834391A (en) Laminated LC filter
JP2009218756A (en) Laminated type band-pass filter
JP5672266B2 (en) Electronic components
JP6852356B2 (en) Laminated filter
JP5888475B2 (en) Electronic components
TWI577131B (en) Filter
WO2014045648A1 (en) Filter
JP5614495B2 (en) Electronic components
WO2017199745A1 (en) Lc filter
WO2017086195A1 (en) Laminated lc filter
JPWO2012127952A1 (en) Electronic components
JP5285951B2 (en) Bandpass filter and multilayer bandpass filter.
JP4256317B2 (en) Multilayer bandstop filter
WO2019159774A1 (en) Balance filter

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799179

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP