WO2017199594A1 - Wiring structure and electronic device - Google Patents

Wiring structure and electronic device Download PDF

Info

Publication number
WO2017199594A1
WO2017199594A1 PCT/JP2017/013298 JP2017013298W WO2017199594A1 WO 2017199594 A1 WO2017199594 A1 WO 2017199594A1 JP 2017013298 W JP2017013298 W JP 2017013298W WO 2017199594 A1 WO2017199594 A1 WO 2017199594A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous substrate
wiring structure
wiring
fibrous porous
layer
Prior art date
Application number
PCT/JP2017/013298
Other languages
French (fr)
Japanese (ja)
Inventor
真央 勝原
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017199594A1 publication Critical patent/WO2017199594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/038Textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/0283Stretchable printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0278Polymeric fibers

Definitions

  • the present disclosure relates to, for example, a wiring structure provided on a fibrous porous base material having elasticity and an electronic apparatus including the wiring structure.
  • Patent Document 1 discloses a stretchable circuit board in which a conductive pattern is formed of a conductive paste containing an uncrosslinked elastomer and conductive fine particles.
  • the general wiring forming method as described above has a problem that it is difficult to produce a fine wiring pattern on a porous substrate such as a cloth.
  • a wiring structure according to an embodiment of the present disclosure is provided on a fibrous porous substrate, a first foundation layer formed on one surface of the fibrous porous substrate, and the first foundation layer. And a first conductive layer having a through connection portion that penetrates the fibrous porous substrate.
  • An electronic apparatus includes a functional element and the wiring structure according to the embodiment of the present disclosure.
  • the first conductive layer is provided on one surface of the fibrous porous base material via the first base layer, thereby providing a gap between the fibers. The spread of the transmitted conductive layer can be suppressed.
  • the first conductive layer is provided on one surface of the fibrous porous base material via the first underlayer, the fiber The spread of the conductive layer that has passed through the gap is suppressed, and a fine conductive pattern can be formed.
  • FIG. 8A It is a cross-sectional schematic diagram showing an example of the wiring structure which concerns on one embodiment of this indication. It is a plane schematic diagram explaining an example of the wiring structure shown in FIG. It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. It is a cross-sectional schematic diagram showing the other example of the wiring structure which concerns on one embodiment of this indication. It is a cross-sectional schematic diagram explaining the manufacturing process of the wiring structure shown in FIG. It is a cross-sectional schematic diagram following FIG. 8A.
  • FIG. 8B It is a cross-sectional schematic diagram following an example of the wiring structure which concerns on the modification of this indication. It is a cross-sectional schematic diagram explaining the manufacturing process of the wiring structure shown in FIG. It is a cross-sectional schematic diagram following FIG. 10A. It is a cross-sectional schematic diagram following FIG. 10B. It is a cross-sectional schematic diagram following FIG. 10C. It is a cross-sectional schematic diagram following FIG. 11A. It is a cross-sectional schematic diagram showing the other example of the wiring structure which concerns on the modification of this indication.
  • 12 is a perspective view illustrating an example of an appearance of application example 1.
  • FIG. 12 is a perspective view illustrating an example of an appearance of application example 2.
  • FIG. 22 is a perspective view illustrating another example of the appearance of application example 2.
  • FIG. 12 is a perspective view illustrating an example of an appearance of application example 1.
  • FIG. 12 is a perspective view illustrating an example of an appearance of application example 2.
  • FIG. 22 is a
  • FIG. 1 illustrates a cross-sectional configuration of a wiring structure (wiring structure 1) according to an embodiment of the present disclosure.
  • FIG. 2 shows a planar configuration of the wiring structure 1, and the cross section of the wiring structure 1 shown in FIG. 1 corresponds to the line II in FIG.
  • This wiring structure 1 is useful, for example, when wiring is formed on a stretchable substrate such as cloth.
  • a wiring layer 13 is formed on the surface (surface S1) of the porous substrate 11 with a base layer 12 interposed.
  • the wiring layer 13 has a through connection portion 13 ⁇ / b> X that penetrates to the back surface (surface S ⁇ b> 2) side of the porous substrate 11 through the opening 12 ⁇ / b> A provided in the base layer 12.
  • 1 and 2 schematically illustrate an example of the configuration of the wiring structure 1, and may differ from actual dimensions and shapes.
  • the porous substrate 11 is a porous substrate having elasticity, and fibrous materials (for example, fibers 11A and 11B) having a sufficient length with respect to the fiber diameter (diameter) are gathered and randomly overlapped.
  • fibrous materials for example, fibers 11A and 11B
  • it is a cloth-like three-dimensional structure formed.
  • the cloth is an aggregate formed through a work of combining a plurality of fibers such as weaving and combing, and a cloth formed through a work of knitting by combining one or a plurality of fibers, or one It is an intertwined fiber.
  • Specific examples include woven fabrics, knitted fabrics (knitted fabrics), laces, felts, and nonwoven fabrics.
  • Examples of the constituent material of the porous substrate 11 include synthetic plastics such as polyester (PEs), polyethylene (PE), nylon, acrylic, polyurethane, and polytetrafluoroethylene (PTFE).
  • Other examples include recycled fibers such as acetate rayon and cupra, natural fiber materials such as cotton, silk, hemp, and wool, and mixed materials thereof.
  • a plurality of fibers 11A extending in the X-axis direction and a plurality of fibers 11B extending in the Z-axis direction are alternately intersected to form a porous material.
  • the substrate 11 will be described as an example.
  • the film thickness W (hereinafter simply referred to as thickness) of the porous substrate 11 in the Y-axis direction is, for example, 10 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness W of the porous substrate 11 in the present embodiment includes, for example, a fiber 11A and two fibers 11B that sandwich the fiber 11A alternately from above and below. If that is the case.
  • the underlayer 12 flattens the surface of the porous substrate 11 and prevents the conductive material from spreading when forming the wiring layer 13, and provides fine wiring (for example, wiring 13 ⁇ / b> A, 13 ⁇ / b> B, 13 ⁇ / b> C, 13 ⁇ / b> D). It is for forming.
  • a material for the underlayer 12 for example, a material having stretchability is preferably used. Examples of such materials include polyurethane resin, acrylic, polyacetal (POM), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyester (PEs), and polyamide (PA).
  • the base layer 12 can be formed by thermally transferring a sheet-like base resin, and the manufacturing process can be simplified.
  • the thickness of the foundation layer 12 is, for example, 10 ⁇ m or more and 500 ⁇ m or less.
  • the underlayer 12 may be patterned together with the patterns of the wirings 13 ⁇ / b> A, 13 ⁇ / b> B, 13 ⁇ / b> C, and 13 ⁇ / b> D, or as shown in FIG. 3, It may be provided on the entire surface. Alternatively, as shown in FIGS. 4, 5, and 6, it may be roughly patterned as long as it is formed at least between the porous substrate 11 and the wirings 13 ⁇ / b> A, 13 ⁇ / b> B, 13 ⁇ / b> C, 13 ⁇ / b> D. Good.
  • the underlayer 12 can be formed by thermally transferring a sheet-like underlayer resin as described above, but in the sheet, the wiring layer 13 is located at a position where it penetrates to the back surface (surface S2) side of the porous substrate 11. It is preferable that an opening (for example, the opening 12A) is provided in advance.
  • the wiring layer 13 includes a plurality of wirings, for example, wirings 13A, 13B, 13C, and 13D, and one end of each of the wirings 13A, 13B, 13C, and 13D,
  • electrodes constituting the various sensors (sensor 120) are formed, and the other end is connected to, for example, a control unit (control unit 130) that controls the various sensors (see FIG. 13 for both).
  • the wiring layer 13 is formed with a through connection portion 13 ⁇ / b> X that penetrates the porous substrate 11.
  • the through connection portion 13X penetrates the porous base material 11, and for example, a portion penetrating to the back surface (surface S2) side of the porous base material 11 can be used as the electrode 13Y constituting the various sensors.
  • the through connection portion 13X includes, for example, a wiring layer 13 formed on the front surface (surface S1) side of the porous substrate 11, and a wiring layer (for example, formed on the back surface (S2) side of the porous substrate 11) , And can be used as a through electrode for electrically connecting the wiring layer 23).
  • the through connection portion 13 ⁇ / b> X is formed, for example, by soaking the wiring material constituting the wiring layer 13 into the porous substrate 11.
  • the porous substrate 11 has a gap (pore 11a) continuous from the front surface S1 to the back surface S2 due to its structure.
  • the through-connecting portion 13X is formed by allowing the wiring material to permeate through the pores 11a by capillary action.
  • the through-connection portion 13X is configured to include the porous base material 11 therein, and the porous base material 11 in the through-connection portion 13X and the porous base material 11 in other regions are, for example, It has substantially the same density. Thereby, the mechanical strength of the penetration connection part 13X improves, and durability improves. Further, as shown in FIG.
  • a base layer 15 is formed in advance at a corresponding position (for example, around the through-connection portion 13X) on the back surface S2 side of the porous substrate 11 where the through-connection portion 13X is formed. You may make it do. Thereby, it is possible to reduce the spread of the through-connection portion 13X on the back surface S2 side of the porous base material 11.
  • the underlayer 15 may be provided on the entire back surface (surface S2) of the porous substrate 11.
  • the wiring layer 13 is formed of a conductive wiring material.
  • Specific wiring materials include, for example, poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PPS) (PEDOT-PSS), PEDOT doped with p-toluenesulfonic acid (TsO) (PEDOT) -TsO) and other conductive polymers, silver nanoparticles, metal nanoparticles such as copper nanoparticles, metal nanowires such as silver nanowires and copper nanowires, metal pastes, carbon electrode materials such as carbon nanotubes, graphene and graphite, or These mixed materials are mentioned.
  • the wiring layer 13 As a method for forming the wiring layer 13, for example, it is desirable to use a printing process such as screen printing, inkjet, gravure offset printing, reverse offset printing, flexographic printing, nanoimprinting, and dispenser. In addition, elastic metal wiring such as meandering metal wiring may be transferred. In that case, the through-connecting portion 13X is formed by patterning conductive ink separately by a process such as dispenser or inkjet.
  • the protective layer 14 is for preventing corrosion and oxidation of the wiring layer 13 formed on the porous substrate 11.
  • the protective layer 14 is formed of, for example, an epoxy resin, an acrylic resin, an imide resin, or a parylene resin.
  • the thickness of the protective layer 14 should just be able to coat
  • a polyethylene cloth is prepared as the porous substrate 11.
  • a polyurethane sheet thickness 20 ⁇ m having an opening 12A formed at a position where the through-connecting portion 13X is formed by punching, for example, as the base layer 12, is formed by, for example, thermal lamination. Then, it is transferred onto the porous substrate 11 to form the underlayer 12.
  • an ink solution containing, for example, a silver nanoparticle-containing polymer (PE873 manufactured by DuPont), as shown in FIG. 8B, using this ink solution, for example, the underlayer 12 and the opening are formed by screen printing.
  • a wiring pattern is printed on the hole 12A. The wiring pattern exhibits conductivity by heating and drying, and the wiring layer 13 and the through connection portion 13X are formed.
  • the ink solution is preferably adjusted for viscosity and surface energy.
  • the solvent of the ink solution it is preferable to use an appropriate organic solvent in order to adjust the permeability to the porous substrate 11 (here, polyethylene cloth). What does not melt
  • a petroleum solvent such as toluene and xylene.
  • a protective layer 14 (PE773 manufactured by DuPont) that covers the wiring layer 13 is formed on the surface S1 side of the porous substrate 11 by, for example, spray coating. Thereby, the wiring structure 1 of the present embodiment is completed.
  • the penetration connection part 13X penetrated to the back surface S2 side of the porous substrate 11 can be used as an electrode (electrode 13Y) of an electrochemical sensor, for example, by modifying the surface as necessary. .
  • the wiring layer 13 is formed on the surface (surface S1) of the porous substrate 11 via the base layer 12. Thereby, the spread of the conductive material in the process of forming the wiring layer 13 is suppressed, and a fine wiring pattern can be formed.
  • a technique for forming a multilayer wiring structure using a porous substrate for example, after forming a wiring pattern on the cloth, a through hole is formed in the cloth, and a conductive material is embedded in the through hole to form a back surface extraction electrode.
  • Several methods have been reported. However, this method is difficult to industrialize.
  • the back surface extraction electrode formed by this method has a conductive material unevenly distributed in the through holes, the mechanical characteristics of the back surface extraction electrode are greatly different from those of the surrounding fabric. As a result, cracks are likely to occur in the electrode (through electrode) portion in the through hole, and the reliability is expected to decrease.
  • the through-connection portion 13X that includes the porous substrate 11 and penetrates from the front surface (surface S1) to the back surface (surface S2) of the porous substrate 11 is formed.
  • the opening 12A is formed in advance at the position where the through connection portion 13X is formed when the base layer 12 is formed, the manufacturing process can be simplified.
  • FIG. 9 illustrates a cross-sectional configuration of a wiring structure (wiring structure 2) according to a modified example of the present disclosure.
  • a base layer 22 is provided on the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11, and the wiring layer 13 (surface S1 side) is provided on the base layer 22.
  • the wiring layer 23 (surface S2 side) is formed respectively.
  • the wiring layer 13 and the wiring layer 23 are electrically connected through the through connection portion 13X.
  • a protective layer 14 and a protective layer 24 for protecting the wiring layer 13 and the wiring layer 23 are provided on the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11, respectively.
  • FIG. 9 schematically shows an example of the configuration of the wiring structure 2 and may differ from actual dimensions and shapes.
  • the wiring layer 23 on the back surface (S2) side is provided via the base layer 22 as shown in FIG. Similar to the base layer 12 of the above-described embodiment, the base layer 22 flattens the surface of the porous substrate 11 and prevents the conductive material from spreading when forming the wiring layer 23. It is for forming.
  • the material of the underlayer 22 include polyurethane resin, acrylic, polyacetal (POM), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyester (PEs), polyamide (PA ), Polycarbonate (PC), phenol resin, epoxy resin, melamine resin, urea resin and silicone resin, or copolymers thereof.
  • the underlayer 22 may be formed, for example, by thermally transferring a polyurethane sheet to the surface (surface S1) and the back surface (surface S2) of the porous substrate 11, respectively, like the underlayer 12 in the above embodiment.
  • both the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11 are collectively formed by spraying and infiltrating the porous substrate 11 with a solution containing the above materials. can do.
  • the thickness of the foundation layer 22 is sufficient if the surface of the porous substrate 11 can be planarized.
  • the thickness of the front surface (surface S1) and the back surface (surface S2) is preferably 10 ⁇ m or more and 1000 ⁇ m or less, respectively.
  • the wiring layer 23 is formed of a wiring material having the same conductivity as that of the wiring layer 13. As described above, the wiring layer 23 is electrically connected to the wiring layer 13 via the through-connection portion 13X provided in the opening 22A formed in the base layer 22.
  • the protective layer 24 is for preventing corrosion and oxidation of the wiring layer 23 and is formed of the same material as that of the protective layer 14.
  • the thickness of the protective layer 24 is, for example, 1 ⁇ m or more and 100 ⁇ m or less, similarly to the protective layer 14.
  • a polyethylene cloth is prepared as the porous substrate 11, and as shown in FIG. 10A, the PVA aqueous solution is infiltrated into the formation position of the through connection portion 13X using, for example, a dispenser or an inkjet, and the mask 31 is attached. Form.
  • the polyurethane resin solution is sprayed onto the porous base material 11 by, for example, spray coating, and permeated into the porous base material 11, and then the polyurethane resin is dried and solidified.
  • the base layer 22 is collectively formed on the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11.
  • the mask 31 is removed to form the opening 22A.
  • the underlayer 22 and A wiring pattern is printed on the opening 22A.
  • the wiring pattern exhibits conductivity by heating and drying, and the wiring layer 13 and the through connection portion 13X are formed.
  • the protective layer 14 DuPont PE773 covering the wiring layer 13 is formed by, for example, spray coating.
  • the porous substrate 11 is turned over, and the wiring layer 23 is formed on the base layer 22 on the back surface (S2) side by using the same method as the wiring layer 13 described above.
  • a protective layer 24 (PE773 manufactured by DuPont) covering the wiring layer 23 is formed by, for example, spray coating, whereby the wiring structure 2 shown in FIG. 9 is completed.
  • the base layer 22 in a part of back surface (surface S2) of the porous base material 11, as shown, for example in FIG.
  • the base layer 12 shown in FIG. 2 may be patterned along a wiring pattern constituting the wiring layer 23.
  • a polyurethane sheet in which the opening 12A (and the opening 22A) is formed on each of the display surface (surface S1) side and the back surface (surface S2) is formed by, for example, thermal lamination.
  • the underlayer 12 and the underlayer 22 may be formed separately.
  • the porous base material 22 is connected to the wiring layer 13 formed on the front surface (surface S1) side through the through connection portion 13X via the base layer 22. 11 on the back surface (surface S2). This makes it possible to form a multilayer wiring structure using a porous substrate having elasticity.
  • FIG. 13 shows the appearance of the garment 110.
  • the garment 110 includes, for example, various sensors 120 that detect or measure sweating, body temperature, sweat components, epidermal gas, blood sugar, and the like, a control unit 130 that controls the sensor 120, and a wiring 140 that connects the sensor 120 and the control unit. I have. Note that a circuit 150 may be provided in the middle of the wiring 140 between the sensor 120 and the control unit 130.
  • the electrode and the wiring 140 constituting the sensor 120 are configured by the wiring structure 1 (or the wiring structure 2).
  • FIG. 14A and FIG. 14B represent the appearance of a bag.
  • the bag includes a cloth storage unit 210 and a handle 220, for example.
  • a display body 230 including a display body such as an electrophoretic element is attached to the storage unit 210, for example.
  • Various characters and designs are displayed on the storage unit 210 by the display body 230.
  • the display body 230 may be attached not only to the storage unit 210 but also to the handle 220. For example, by applying a voltage, the display body 230 can change the design of the storage unit 210 from the example of FIG. 14A to the example of FIG. 14B.
  • the wiring structure 1 (or the wiring structure 2) can be applied to a wiring that connects a control unit that controls display. Electronic devices that are useful in fashion applications can be realized.
  • the present disclosure has been described with the embodiment and the modification.
  • the present disclosure is not limited to the aspect described in the embodiment and the like, and various modifications are possible.
  • the material and thickness of the component mentioned above are examples, and are not limited to what was described.
  • the cloth 11A was shown as an example for the porous base material 11 by the two fibers 11B being alternately clamped from the upper direction and the downward direction, it is not restricted to this.
  • the porous substrate 11 may be used by stacking two or more of the above-mentioned cloths, or may be a non-woven fabric in which a plurality of fibers are folded as described above.
  • this indication can also take the following structures.
  • Wiring structure with (2) A second conductive layer electrically connected to the first conductive layer via the through-connecting portion is provided on the other surface opposite to the one surface of the fibrous porous substrate.
  • the density of the fibrous porous base material contained in the inside of the through-connecting portion and the density of the fibrous porous base material in other regions are substantially the same as described in (4).
  • Wiring structure. The wiring structure according to any one of (2) to (5), wherein the fibrous porous substrate has pores continuous from the one surface to the other surface. (7) The wiring structure according to any one of (2) to (6), wherein the fibrous porous substrate has a second underlayer on the other surface. (8) The wiring structure according to (7), wherein the second base layer is provided around the through connection portion. (9) The wiring structure according to (7) or (8), wherein the second conductive layer is provided on the other surface of the fibrous porous substrate via the second base layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

A wiring structure of an embodiment of the present disclosure is provided with: a fibrous porous base material; a first ground layer formed on one surface of the fibrous porous base material; and a first electrically conductive layer that is provided on the first ground layer and has a penetrating connecting part that penetrates the fibrous porous base material.

Description

配線構造および電子機器Wiring structure and electronic equipment
 本開示は、例えば、伸縮性を有する繊維状多孔質基材上に設けられる配線構造およびこれを備えた電子機器に関する。 The present disclosure relates to, for example, a wiring structure provided on a fibrous porous base material having elasticity and an electronic apparatus including the wiring structure.
 近年、腕に装着したり、衣類に設置するウェアラブル機器の開発が進められている。ウェアラブル機器では、布地等の伸縮性を有するポーラス基板に配線が形成されることが多い。布上に配線を形成する方法としては、導電繊維を用いる方法および導電ペーストを用いた印刷方法がある。例えば、特許文献1では、導電パターンが、未架橋のエラストマーおよび導電性微粒子を含む導電ペーストによって形成された伸縮性回路基板が開示されている。 In recent years, wearable devices that can be worn on the arm or installed in clothing are being developed. In a wearable device, wiring is often formed on a porous substrate having elasticity such as cloth. As a method for forming a wiring on a cloth, there are a method using a conductive fiber and a printing method using a conductive paste. For example, Patent Document 1 discloses a stretchable circuit board in which a conductive pattern is formed of a conductive paste containing an uncrosslinked elastomer and conductive fine particles.
特開2014-236103号公報JP 2014-236103 A
 しかしながら、上記のような一般的な配線の形成方法では、布地等のポーラス基板上に精細な配線パターンを作製することが難しいという問題があった。 However, the general wiring forming method as described above has a problem that it is difficult to produce a fine wiring pattern on a porous substrate such as a cloth.
 精細な配線パターンを形成可能な配線構造および電子機器を提供することが望ましい。 It is desirable to provide a wiring structure and an electronic device that can form a fine wiring pattern.
 本開示の一実施形態の配線構造は、繊維状多孔質基材と、繊維状多孔質基材の一の面に形成された第1の下地層と、第1の下地層の上に設けられると共に、繊維状多孔質基材を貫通する貫通接続部を有する第1の導電層とを備えたものである。 A wiring structure according to an embodiment of the present disclosure is provided on a fibrous porous substrate, a first foundation layer formed on one surface of the fibrous porous substrate, and the first foundation layer. And a first conductive layer having a through connection portion that penetrates the fibrous porous substrate.
 本開示の一実施形態の電子機器は、機能素子と、上記本開示の一実施形態の配線構造とを備えたものである。 An electronic apparatus according to an embodiment of the present disclosure includes a functional element and the wiring structure according to the embodiment of the present disclosure.
 本開示の一実施形態の配線構造および一実施形態の電子機器では、繊維状多孔質基材の一面に第1の下地層を介して第1の導電層を設けることにより、繊維間の隙間を伝った導電層の広がりを抑制することが可能となる。 In the wiring structure according to one embodiment of the present disclosure and the electronic device according to one embodiment, the first conductive layer is provided on one surface of the fibrous porous base material via the first base layer, thereby providing a gap between the fibers. The spread of the transmitted conductive layer can be suppressed.
 本開示の一実施形態の配線構造および一実施形態の電子機器によれば、繊維状多孔質基材の一面に第1の下地層を介して第1の導電層を設けるようにしたので、繊維間の隙間を伝った導電層の広がりが抑制され、精細な導電パターンを形成することが可能となる。 According to the wiring structure of one embodiment of the present disclosure and the electronic device of one embodiment, since the first conductive layer is provided on one surface of the fibrous porous base material via the first underlayer, the fiber The spread of the conductive layer that has passed through the gap is suppressed, and a fine conductive pattern can be formed.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本開示の一実施の形態に係る配線構造の一例を表す断面模式図である。It is a cross-sectional schematic diagram showing an example of the wiring structure which concerns on one embodiment of this indication. 図1に示した配線構造の一例を説明する平面模式図である。It is a plane schematic diagram explaining an example of the wiring structure shown in FIG. 図1に示した配線構造の他の例を説明する平面模式図である。It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. 図1に示した配線構造の他の例を説明する平面模式図である。It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. 図1に示した配線構造の他の例を説明する平面模式図である。It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. 図1に示した配線構造の他の例を説明する平面模式図である。It is a plane schematic diagram explaining the other example of the wiring structure shown in FIG. 本開示の一実施の形態に係る配線構造の他の例を表す断面模式図である。It is a cross-sectional schematic diagram showing the other example of the wiring structure which concerns on one embodiment of this indication. 図1に示した配線構造の製造工程を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the manufacturing process of the wiring structure shown in FIG. 図8Aに続く断面模式図である。It is a cross-sectional schematic diagram following FIG. 8A. 図8Bに続く断面模式図である。It is a cross-sectional schematic diagram following FIG. 8B. 本開示の変形例に係る配線構造の一例を表す断面模式図である。It is a cross-sectional schematic diagram showing an example of the wiring structure which concerns on the modification of this indication. 図9に示した配線構造の製造工程を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the manufacturing process of the wiring structure shown in FIG. 図10Aに続く断面模式図である。It is a cross-sectional schematic diagram following FIG. 10A. 図10Bに続く断面模式図である。It is a cross-sectional schematic diagram following FIG. 10B. 図10Cに続く断面模式図である。It is a cross-sectional schematic diagram following FIG. 10C. 図11Aに続く断面模式図である。It is a cross-sectional schematic diagram following FIG. 11A. 本開示の変形例に係る配線構造の他の例を表す断面模式図である。It is a cross-sectional schematic diagram showing the other example of the wiring structure which concerns on the modification of this indication. 適用例1の外観の一例を表す斜視図である。12 is a perspective view illustrating an example of an appearance of application example 1. FIG. 適用例2の外観の一例を表す斜視図である。12 is a perspective view illustrating an example of an appearance of application example 2. FIG. 適用例2の外観の他の例を表す斜視図である。22 is a perspective view illustrating another example of the appearance of application example 2. FIG.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態(多孔質基材上に下地層を介して配線を形成した例)
  1-1.配線構造の構成
  1-2.配線構造の製造方法
  1-3.作用・効果
 2.変形例(多孔質基材の両面に配線を形成した例)
  2-1.配線構造の構成
  2-2.配線構造の製造方法
 3.適用例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (Example in which wiring is formed on a porous substrate through an underlayer)
1-1. Configuration of wiring structure 1-2. Manufacturing method of wiring structure 1-3. Action / Effect Modified example (example in which wiring is formed on both sides of porous substrate)
2-1. Configuration of wiring structure 2-2. 2. Manufacturing method of wiring structure Application examples
<1.実施の形態>
 図1は、本開示の一実施の形態に係る配線構造(配線構造1)の断面構成を表したものである。図2は、配線構造1の平面構成を表したものであり、図1に示した配線構造1の断面は、図2におけるI-I線に対応するものである。この配線構造1は、例えば、布等の伸縮性基板上に配線を形成する際に有用なものである。本実施の形態の配線構造1は、多孔質基材11の表面(面S1)上に下地層12を介して配線層13が形成されたものである。配線層13は、下地層12に設けられている開孔12Aを介して、多孔質基材11の裏面(面S2)側に貫通する貫通接続部13Xを有する。なお、図1および図2は、配線構造1の構成の一例を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
<1. Embodiment>
FIG. 1 illustrates a cross-sectional configuration of a wiring structure (wiring structure 1) according to an embodiment of the present disclosure. FIG. 2 shows a planar configuration of the wiring structure 1, and the cross section of the wiring structure 1 shown in FIG. 1 corresponds to the line II in FIG. This wiring structure 1 is useful, for example, when wiring is formed on a stretchable substrate such as cloth. In the wiring structure 1 of the present embodiment, a wiring layer 13 is formed on the surface (surface S1) of the porous substrate 11 with a base layer 12 interposed. The wiring layer 13 has a through connection portion 13 </ b> X that penetrates to the back surface (surface S <b> 2) side of the porous substrate 11 through the opening 12 </ b> A provided in the base layer 12. 1 and 2 schematically illustrate an example of the configuration of the wiring structure 1, and may differ from actual dimensions and shapes.
 (1-1.配線構造の構成)
 多孔質基材11は、伸縮性を有するポーラス基板であり、繊維径(直径)に対して十分な長さを有する繊維状物質(例えば、繊維11A,11B)が集合し、ランダムに重なることによって形成された、例えば、布状の3次元立体構造物である。ここで、布とは、織る、漉く等の複数の繊維を組み合わせる作業を経て集合体化したもの、および1本もしくは複数の繊維を組み合わせて編む作業を経て形成されたもの、あるいは、1本の繊維を絡み合わせたものである。具体的には、例えば、織物、編み物(メリヤス生地)、レース、フェルトおよび不織布等が挙げられる。多孔質基材11の構成材料としては、ポリエステル(PEs)、ポリエチレン(PE)、ナイロン、アクリル、ポリウレタン、ポリテトラフルオロエチレン(PTFE)等の合成プラスチックが挙げられる。この他、アセテートレーヨン、キュプラ等の再生繊維、木綿、絹、麻、ウール等の天然繊維材料およびこれらの混合材料が挙げられる。本実施の形態では、図2に示したように、例えば、X軸方向に延伸する複数の繊維11Aと、Z軸方向に延伸する複数の繊維11Bとが交互に交差して形成された多孔質基材11を例に説明する。多孔質基材11のY軸方向の膜厚W(以下、単に厚みという)は、例えば、10μm以上1000μm以下である。なお、本実施の形態における多孔質基材11の厚みWとは、図1に示したように、例えば繊維11Aと、その繊維11Aを上方および下方から交互に挟持する2本の繊維11Bから構成されている場合のものとする。
(1-1. Configuration of wiring structure)
The porous substrate 11 is a porous substrate having elasticity, and fibrous materials (for example, fibers 11A and 11B) having a sufficient length with respect to the fiber diameter (diameter) are gathered and randomly overlapped. For example, it is a cloth-like three-dimensional structure formed. Here, the cloth is an aggregate formed through a work of combining a plurality of fibers such as weaving and combing, and a cloth formed through a work of knitting by combining one or a plurality of fibers, or one It is an intertwined fiber. Specific examples include woven fabrics, knitted fabrics (knitted fabrics), laces, felts, and nonwoven fabrics. Examples of the constituent material of the porous substrate 11 include synthetic plastics such as polyester (PEs), polyethylene (PE), nylon, acrylic, polyurethane, and polytetrafluoroethylene (PTFE). Other examples include recycled fibers such as acetate rayon and cupra, natural fiber materials such as cotton, silk, hemp, and wool, and mixed materials thereof. In the present embodiment, as shown in FIG. 2, for example, a plurality of fibers 11A extending in the X-axis direction and a plurality of fibers 11B extending in the Z-axis direction are alternately intersected to form a porous material. The substrate 11 will be described as an example. The film thickness W (hereinafter simply referred to as thickness) of the porous substrate 11 in the Y-axis direction is, for example, 10 μm or more and 1000 μm or less. In addition, as shown in FIG. 1, the thickness W of the porous substrate 11 in the present embodiment includes, for example, a fiber 11A and two fibers 11B that sandwich the fiber 11A alternately from above and below. If that is the case.
 下地層12は、多孔質基材11の表面を平坦化すると共に、配線層13を形成する際に、導電材料の広がりを防ぎ、精細な配線(例えば、配線13A,13B,13C,13D)を形成するためのものである。下地層12の材料としては、例えば、伸縮性を有する材料を用いることが好ましい。この様な材料としては、例えば、ポリウレタン樹脂、アクリル,ポリアセタール(POM)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリエステル(PEs)、ポリアミド(PA)、ポリカーボネート(PC)、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂およびシリコン樹脂あるいはこれらのコポリマーが挙げられる。中でも、熱可塑性ポリウレタン等の熱可塑性樹脂を用いることで、シート状の下地樹脂を熱転写することで下地層12を形成することが可能となり、製造工程を簡略化することが可能となる。下地層12の厚みは、例えば、10μm以上500μm以下である。 The underlayer 12 flattens the surface of the porous substrate 11 and prevents the conductive material from spreading when forming the wiring layer 13, and provides fine wiring (for example, wiring 13 </ b> A, 13 </ b> B, 13 </ b> C, 13 </ b> D). It is for forming. As a material for the underlayer 12, for example, a material having stretchability is preferably used. Examples of such materials include polyurethane resin, acrylic, polyacetal (POM), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyester (PEs), and polyamide (PA). , Polycarbonate (PC), phenol resin, epoxy resin, melamine resin, urea resin and silicone resin, or copolymers thereof. Among these, by using a thermoplastic resin such as thermoplastic polyurethane, the base layer 12 can be formed by thermally transferring a sheet-like base resin, and the manufacturing process can be simplified. The thickness of the foundation layer 12 is, for example, 10 μm or more and 500 μm or less.
 下地層12は、例えば、図2に示したように、配線13A,13B,13C,13Dのパターンに併せてパターニングされていてもよいし、図3に示したように、多孔質基材11の全面に設けるようにしてもよい。あるいは、図4、図5および図6に示したように、大まかにパターニングされていてもよく、少なくとも、多孔質基材11と配線13A,13B,13C,13Dとの間に形成されていればよい。下地層12は、上記のようにシート状の下地樹脂を熱転写することで形成できるが、そのシートには、配線層13が多孔質基材11の裏面(面S2)側に貫通する位置に、予め開孔(例えば開孔12A)が設けられていることが好ましい。 For example, as shown in FIG. 2, the underlayer 12 may be patterned together with the patterns of the wirings 13 </ b> A, 13 </ b> B, 13 </ b> C, and 13 </ b> D, or as shown in FIG. 3, It may be provided on the entire surface. Alternatively, as shown in FIGS. 4, 5, and 6, it may be roughly patterned as long as it is formed at least between the porous substrate 11 and the wirings 13 </ b> A, 13 </ b> B, 13 </ b> C, 13 </ b> D. Good. The underlayer 12 can be formed by thermally transferring a sheet-like underlayer resin as described above, but in the sheet, the wiring layer 13 is located at a position where it penetrates to the back surface (surface S2) side of the porous substrate 11. It is preferable that an opening (for example, the opening 12A) is provided in advance.
 配線層13は、例えば、図2等に示したように、複数の配線、例えば、配線13A,13B,13C,13Dから構成されており、各配線13A,13B,13C,13Dの一端には、例えば各種センサ(センサ120)を構成する電極等が形成され、他端は、例えば各種センサを制御する制御部(制御部130)に接続されている(いずれも、図13参照)。また、配線層13は、多孔質基材11を貫通する貫通接続部13Xが形成されている。 For example, as shown in FIG. 2 and the like, the wiring layer 13 includes a plurality of wirings, for example, wirings 13A, 13B, 13C, and 13D, and one end of each of the wirings 13A, 13B, 13C, and 13D, For example, electrodes constituting the various sensors (sensor 120) are formed, and the other end is connected to, for example, a control unit (control unit 130) that controls the various sensors (see FIG. 13 for both). In addition, the wiring layer 13 is formed with a through connection portion 13 </ b> X that penetrates the porous substrate 11.
 貫通接続部13Xは、多孔質基材11を貫通するものであり、例えば、多孔質基材11の裏面(面S2)側に貫通した部分が上記各種センサを構成する電極13Yとして用いることができる。また、貫通接続部13Xは、例えば、多孔質基材11の表面(面S1)側に形成された配線層13と、多孔質基材11の裏面(S2)側に形成された配線層(例えば、配線層23)とを電気的に接続するための貫通電極として用いることができる。貫通接続部13Xは、例えば、配線層13を構成する配線材料を多孔質基材11に染み込まることで形成される。具体的には、多孔質基材11は、その構造上、表面S1から裏面S2まで連続する隙間(細孔11a)を有する。貫通接続部13Xは、配線材料が毛細管現象により、この細孔11aを伝って浸透することで形成される。このため、貫通接続部13Xは、内部に多孔質基材11を含んで構成されており、貫通接続部13X内の多孔質基材11と、その他の領域の多孔質基材11は、例えば、略同一の密度を有している。これにより、貫通接続部13Xの機械的強度が向上し、耐久性が向上する。また、貫通接続部13Xが形成される多孔質基材11の裏面S2側には、図7に示したように、対応する位置(例えば、貫通接続部13Xの周囲)に予め下地層15を形成するようにしてもよい。これにより、多孔質基材11の裏面S2側における貫通接続部13Xの広がりを低減することが可能となる。なお下地層15は、多孔質基材11の裏面(面S2)の全面に設けるようにしてもよい。 The through connection portion 13X penetrates the porous base material 11, and for example, a portion penetrating to the back surface (surface S2) side of the porous base material 11 can be used as the electrode 13Y constituting the various sensors. . Further, the through connection portion 13X includes, for example, a wiring layer 13 formed on the front surface (surface S1) side of the porous substrate 11, and a wiring layer (for example, formed on the back surface (S2) side of the porous substrate 11) , And can be used as a through electrode for electrically connecting the wiring layer 23). The through connection portion 13 </ b> X is formed, for example, by soaking the wiring material constituting the wiring layer 13 into the porous substrate 11. Specifically, the porous substrate 11 has a gap (pore 11a) continuous from the front surface S1 to the back surface S2 due to its structure. The through-connecting portion 13X is formed by allowing the wiring material to permeate through the pores 11a by capillary action. For this reason, the through-connection portion 13X is configured to include the porous base material 11 therein, and the porous base material 11 in the through-connection portion 13X and the porous base material 11 in other regions are, for example, It has substantially the same density. Thereby, the mechanical strength of the penetration connection part 13X improves, and durability improves. Further, as shown in FIG. 7, a base layer 15 is formed in advance at a corresponding position (for example, around the through-connection portion 13X) on the back surface S2 side of the porous substrate 11 where the through-connection portion 13X is formed. You may make it do. Thereby, it is possible to reduce the spread of the through-connection portion 13X on the back surface S2 side of the porous base material 11. The underlayer 15 may be provided on the entire back surface (surface S2) of the porous substrate 11.
 配線層13は、導電性を有する配線材料によって形成されている。具体的な配線材料としては、例えば、ポリスチレンスルホン酸(PPS)をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT-PSS)、p-トルエンスルホン酸(TsO)をドープしたPEDOT(PEDOT-TsO)等の導電性ポリマー、銀ナノ粒子、銅ナノ粒子等の金属ナノ粒子、銀ナノワイヤー、銅ナノワイヤー等の金属ナノワイヤー、金属ペースト、カーボンナノチューブ、グラフェンおよびグラファイト等のカーボン電極材料あるいはこれらの混合材料が挙げられる。 The wiring layer 13 is formed of a conductive wiring material. Specific wiring materials include, for example, poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PPS) (PEDOT-PSS), PEDOT doped with p-toluenesulfonic acid (TsO) (PEDOT) -TsO) and other conductive polymers, silver nanoparticles, metal nanoparticles such as copper nanoparticles, metal nanowires such as silver nanowires and copper nanowires, metal pastes, carbon electrode materials such as carbon nanotubes, graphene and graphite, or These mixed materials are mentioned.
 配線層13の形成方法としては、例えば、スクリーン印刷、インクジェット、グラビアオフセット印刷、反転オフセット印刷、フレキソ印刷、ナノインプリント、ディスペンサー等の印刷プロセスを用いることが望ましい。この他、蛇行金属配線等の伸縮性のある金属配線を転写するようにしてもよい。その際には、貫通接続部13Xは、別途ディスペンサーやインクジェット等のプロセスにより導電性のインクをパターニングして形成される。 As a method for forming the wiring layer 13, for example, it is desirable to use a printing process such as screen printing, inkjet, gravure offset printing, reverse offset printing, flexographic printing, nanoimprinting, and dispenser. In addition, elastic metal wiring such as meandering metal wiring may be transferred. In that case, the through-connecting portion 13X is formed by patterning conductive ink separately by a process such as dispenser or inkjet.
 保護層14は、多孔質基材11上に形成された配線層13の腐食や酸化を防ぐためのものである。保護層14は、例えば、エポキシ樹脂やアクリル樹脂,イミド樹脂,パリレン樹脂によって形成されている。保護層14の厚みは、配線層13を被覆できればよく、例えば、1μm以上100μm以下である。 The protective layer 14 is for preventing corrosion and oxidation of the wiring layer 13 formed on the porous substrate 11. The protective layer 14 is formed of, for example, an epoxy resin, an acrylic resin, an imide resin, or a parylene resin. The thickness of the protective layer 14 should just be able to coat | cover the wiring layer 13, for example, is 1 micrometer or more and 100 micrometers or less.
(1-2.配線構造の製造方法)
 本実施の形態の配線構造1の製造工程を、図8A~図8Cを用いて説明する。なお、ここで説明する製造方法は一例であり、その他の方法を用いて製造するようにしてもよい。
(1-2. Manufacturing method of wiring structure)
A manufacturing process of the wiring structure 1 of the present embodiment will be described with reference to FIGS. 8A to 8C. In addition, the manufacturing method demonstrated here is an example, and you may make it manufacture using another method.
 まず、多孔質基材11として、例えばポリエチレン布を用意する。続いて、例えば、図8Aに示したように、下地層12として、例えばパンチングにより貫通接続部13Xを形成する位置に開孔12Aが形成されたポリウレタンシート(膜厚20μm)を、例えば熱ラミネートにより、多孔質基材11上に転写し、下地層12を形成する。次に、例えば、銀ナノ粒子含有ポリマー(デュポン社製PE873)を含むインク溶液を調製したのち、図8Bに示したように、このインク溶液を用いて、例えば、スクリーン印刷により下地層12および開孔12A上に配線パターンを印刷する。この配線パターンは、加熱および乾燥することで導電性が発現し、配線層13および貫通接続部13Xが形成される。 First, for example, a polyethylene cloth is prepared as the porous substrate 11. Subsequently, for example, as shown in FIG. 8A, a polyurethane sheet (thickness 20 μm) having an opening 12A formed at a position where the through-connecting portion 13X is formed by punching, for example, as the base layer 12, is formed by, for example, thermal lamination. Then, it is transferred onto the porous substrate 11 to form the underlayer 12. Next, after preparing an ink solution containing, for example, a silver nanoparticle-containing polymer (PE873 manufactured by DuPont), as shown in FIG. 8B, using this ink solution, for example, the underlayer 12 and the opening are formed by screen printing. A wiring pattern is printed on the hole 12A. The wiring pattern exhibits conductivity by heating and drying, and the wiring layer 13 and the through connection portion 13X are formed.
 なお、インク溶液は、粘度と表面エネルギーを調整することが好ましい。インク溶液の溶剤には、多孔質基材11(ここでは、ポリエチレン布)に対する浸透性を調整するために、適当な有機溶剤を用いることが好ましく、例えば、多孔質基材11および下地層12を溶解せず、且つ、多孔質基材11に対する接触角が90°以下となるものが望ましい。具体的には、例えば、ポリエステル繊維上にポリウレタンの下地層を形成した場合には、トルエンおよびキシレン等の石油系溶剤を用いることが好ましい。 The ink solution is preferably adjusted for viscosity and surface energy. For the solvent of the ink solution, it is preferable to use an appropriate organic solvent in order to adjust the permeability to the porous substrate 11 (here, polyethylene cloth). What does not melt | dissolve and the contact angle with respect to the porous base material 11 will be 90 degrees or less is desirable. Specifically, for example, when a polyurethane base layer is formed on a polyester fiber, it is preferable to use a petroleum solvent such as toluene and xylene.
 最後に、図8Cに示したように、多孔質基材11の表面S1側に、例えばスプレイコートによって、配線層13を被覆する保護層14(デュポン社製PE773)を形成する。これにより、本実施の形態の配線構造1が完成する。 Finally, as shown in FIG. 8C, a protective layer 14 (PE773 manufactured by DuPont) that covers the wiring layer 13 is formed on the surface S1 side of the porous substrate 11 by, for example, spray coating. Thereby, the wiring structure 1 of the present embodiment is completed.
 なお、多孔質基材11の裏面S2側に貫通した貫通接続部13Xは、例えば、必要に応じて表面を修飾することにより、例えば電気化学センサの電極(電極13Y)として用いることが可能となる。 In addition, the penetration connection part 13X penetrated to the back surface S2 side of the porous substrate 11 can be used as an electrode (electrode 13Y) of an electrochemical sensor, for example, by modifying the surface as necessary. .
 (1-3.作用・効果)
 前述したように、近年、腕に装着したり、衣類に設置するウェアラブル機器の開発が進められており、布地等の伸縮性を有するポーラス基板上に精細な配線パターンを作製する方法の開発が望まれている。
(1-3. Action and effect)
As described above, wearable devices that can be worn on the arm or installed on clothing have been developed in recent years, and the development of a method for producing a fine wiring pattern on a stretchable porous substrate such as a fabric is desired. It is rare.
 これに対して本実施の形態の配線構造1では、多孔質基材11の表面(面S1)上に下地層12を介して配線層13が形成するようにした。これにより、配線層13の形成工程における導電材料の広がりが抑制され、精細な配線パターンを形成することが可能となる。 On the other hand, in the wiring structure 1 of the present embodiment, the wiring layer 13 is formed on the surface (surface S1) of the porous substrate 11 via the base layer 12. Thereby, the spread of the conductive material in the process of forming the wiring layer 13 is suppressed, and a fine wiring pattern can be formed.
 また、ポーラス基板を用いた多層配線構造を形成する技術の開発も望まれている。ポーラス基板を用いた多層配線構造を形成する技術としては、例えば、布地上に配線パターンを形成したのち、布地に貫通孔をあけ、この貫通孔に導電材料を埋設することで裏面取り出し電極を形成する方法がいくつか報告されている。しかしながら、この方法では、工業化がすることは難しい。また、この方法で形成された裏面取り出し電極は、貫通孔に導電材料が偏在しているため、周囲の布地との機械的特性が大きく異なる。その結果、貫通孔内の電極(貫通電極)部分にクラックが生じやすく、信頼性が低下することが予測される。 In addition, development of a technique for forming a multilayer wiring structure using a porous substrate is also desired. As a technology for forming a multilayer wiring structure using a porous substrate, for example, after forming a wiring pattern on the cloth, a through hole is formed in the cloth, and a conductive material is embedded in the through hole to form a back surface extraction electrode. Several methods have been reported. However, this method is difficult to industrialize. Moreover, since the back surface extraction electrode formed by this method has a conductive material unevenly distributed in the through holes, the mechanical characteristics of the back surface extraction electrode are greatly different from those of the surrounding fabric. As a result, cracks are likely to occur in the electrode (through electrode) portion in the through hole, and the reliability is expected to decrease.
 これに対して、本実施の形態では、多孔質基材11を含んで多孔質基材11の表面(面S1)から裏面(面S2)まで貫通する貫通接続部13Xを形成するようにした。これにより、貫通接続部13Xの柔軟性および機械的強度が担保され、信頼性を向上させることが可能となる。 In contrast, in the present embodiment, the through-connection portion 13X that includes the porous substrate 11 and penetrates from the front surface (surface S1) to the back surface (surface S2) of the porous substrate 11 is formed. Thereby, the flexibility and mechanical strength of the through-connecting portion 13X are ensured, and the reliability can be improved.
 更に、下地層12を形成する際に、予め貫通接続部13Xを形成する位置に開孔12Aを形成するようにしたので、製造工程を簡略化することが可能となる。 Furthermore, since the opening 12A is formed in advance at the position where the through connection portion 13X is formed when the base layer 12 is formed, the manufacturing process can be simplified.
 次に、本開示の変形例について説明する。なお、上記実施の形態の配線構造1に対応する構成要素には同一の符号を付して説明を省略する。 Next, a modified example of the present disclosure will be described. In addition, the same code | symbol is attached | subjected to the component corresponding to the wiring structure 1 of the said embodiment, and description is abbreviate | omitted.
<2.変形例>
(2-1.配線構造の構成)
 図9は、本開示の変形例に係る配線構造(配線構造2)の断面構成を表したものである。本変形例の配線構造2は、多孔質基材11の表面(面S1)および裏面(面S2)に下地層22が設けられており、この下地層22上に配線層13(面S1側)および配線層23(面S2側)が、それぞれ形成されたものである。配線層13および配線層23は、貫通接続部13Xを介して電気的に接続されている。多孔質基材11の表面(面S1)および裏面(面S2)には、配線層13および配線層23を保護する保護層14および保護層24がそれぞれ設けられている。なお、図9は、配線構造2の構成の一例を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
<2. Modification>
(2-1. Configuration of wiring structure)
FIG. 9 illustrates a cross-sectional configuration of a wiring structure (wiring structure 2) according to a modified example of the present disclosure. In the wiring structure 2 of this modification, a base layer 22 is provided on the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11, and the wiring layer 13 (surface S1 side) is provided on the base layer 22. And the wiring layer 23 (surface S2 side) is formed respectively. The wiring layer 13 and the wiring layer 23 are electrically connected through the through connection portion 13X. A protective layer 14 and a protective layer 24 for protecting the wiring layer 13 and the wiring layer 23 are provided on the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11, respectively. FIG. 9 schematically shows an example of the configuration of the wiring structure 2 and may differ from actual dimensions and shapes.
 裏面(S2)側の配線層23は、図9に示したように下地層22を介して設けられている。下地層22は、上記実施の形態の下地層12と同様に、多孔質基材11の表面を平坦化すると共に、配線層23を形成する際に、導電材料の広がりを防ぎ、精細な配線パターンを形成するためのものである。下地層22の材料としては、例えば、ポリウレタン樹脂、アクリル,ポリアセタール(POM)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリエステル(PEs)、ポリアミド(PA)、ポリカーボネート(PC)、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂およびシリコン樹脂あるいはこれらのコポリマーが挙げられる。下地層22は、上記実施の形態における下地層12のように、例えば、ポリウレタンシートを多孔質基材11の表面(面S1)および裏面(面S2)にそれぞれ熱転写した形成してもよいが、詳細は後述するが、例えば上記材料を含む溶液を多孔質基材11に噴霧し、浸透させることで、多孔質基材11の表面(面S1)および裏面(面S2)の両面を一括で形成することができる。下地層22の厚みは、多孔質基材11の表面を平坦化できればよく、例えば、表面(面S1)および裏面(面S2)の厚みは、それぞれ10μm以上1000μm以下であることが好ましい。 The wiring layer 23 on the back surface (S2) side is provided via the base layer 22 as shown in FIG. Similar to the base layer 12 of the above-described embodiment, the base layer 22 flattens the surface of the porous substrate 11 and prevents the conductive material from spreading when forming the wiring layer 23. It is for forming. Examples of the material of the underlayer 22 include polyurethane resin, acrylic, polyacetal (POM), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyester (PEs), polyamide (PA ), Polycarbonate (PC), phenol resin, epoxy resin, melamine resin, urea resin and silicone resin, or copolymers thereof. The underlayer 22 may be formed, for example, by thermally transferring a polyurethane sheet to the surface (surface S1) and the back surface (surface S2) of the porous substrate 11, respectively, like the underlayer 12 in the above embodiment. Although details will be described later, for example, both the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11 are collectively formed by spraying and infiltrating the porous substrate 11 with a solution containing the above materials. can do. The thickness of the foundation layer 22 is sufficient if the surface of the porous substrate 11 can be planarized. For example, the thickness of the front surface (surface S1) and the back surface (surface S2) is preferably 10 μm or more and 1000 μm or less, respectively.
 配線層23は、上記配線層13と同様の導電性を有する配線材料によって形成されている。配線層23は、上記のように、下地層22に形成された開孔22Aに設けられた貫通接続部13Xを介して、配線層13と電気的に接続されている。 The wiring layer 23 is formed of a wiring material having the same conductivity as that of the wiring layer 13. As described above, the wiring layer 23 is electrically connected to the wiring layer 13 via the through-connection portion 13X provided in the opening 22A formed in the base layer 22.
 保護層24は、配線層23の腐食や酸化を防ぐためのものであり、保護層14と同様の材料によって形成されている。保護層24の厚みは、例えば保護層14と同様に、例えば、1μm以上100μm以下である。 The protective layer 24 is for preventing corrosion and oxidation of the wiring layer 23 and is formed of the same material as that of the protective layer 14. The thickness of the protective layer 24 is, for example, 1 μm or more and 100 μm or less, similarly to the protective layer 14.
(2-2.配線構造の製造方法)
 本変形例の配線構造2の製造工程を、図10A~図11Bを用いて説明する。なお、ここで説明する製造方法は一例であり、その他の方法を用いて製造するようにしてもよい。
(2-2. Manufacturing method of wiring structure)
A manufacturing process of the wiring structure 2 of this modification will be described with reference to FIGS. 10A to 11B. In addition, the manufacturing method demonstrated here is an example, and you may make it manufacture using another method.
 まず、多孔質基材11として、例えばポリエチレン布を用意し、図10Aに示したように、貫通接続部13Xの形成位置に、例えば、ディスペンサーやインクジェット等を用いPVA水溶液を浸透させ、マスク31を形成する。続いて、図10Bに示したように、多孔質基材11に、例えば、スプレーコーティングによってポリウレタン樹脂溶液を噴霧し、多孔質基材11に浸透させたのちポリウレタン樹脂を乾燥固化させる。これによって、多孔質基材11の表面(面S1)上および裏面(面S2)上に一括で下地層22が形成される。次に、図10Cに示したようにマスク31を除去することによって、開孔22Aが形成される。 First, for example, a polyethylene cloth is prepared as the porous substrate 11, and as shown in FIG. 10A, the PVA aqueous solution is infiltrated into the formation position of the through connection portion 13X using, for example, a dispenser or an inkjet, and the mask 31 is attached. Form. Subsequently, as shown in FIG. 10B, the polyurethane resin solution is sprayed onto the porous base material 11 by, for example, spray coating, and permeated into the porous base material 11, and then the polyurethane resin is dried and solidified. As a result, the base layer 22 is collectively formed on the front surface (surface S1) and the back surface (surface S2) of the porous substrate 11. Next, as shown in FIG. 10C, the mask 31 is removed to form the opening 22A.
 続いて、例えば、銀ナノ粒子含有ポリマー(デュポン社製PE873)を含むインク溶液を調製したのち、図11Aに示したように、このインク溶液を用いて、例えば、スクリーン印刷により、下地層22および開孔22A上に配線パターンを印刷する。この配線パターンは、加熱および乾燥することによって導電性が発現し、配線層13および貫通接続部13Xが形成される。次に、配線層13を覆う保護層14(デュポン社製PE773)を、例えばスプレイコートによって形成する。 Subsequently, for example, after preparing an ink solution containing a silver nanoparticle-containing polymer (PE873 manufactured by DuPont), as shown in FIG. 11A, using this ink solution, for example, by screen printing, the underlayer 22 and A wiring pattern is printed on the opening 22A. The wiring pattern exhibits conductivity by heating and drying, and the wiring layer 13 and the through connection portion 13X are formed. Next, the protective layer 14 (DuPont PE773) covering the wiring layer 13 is formed by, for example, spray coating.
 続いて、図11Bに示したように、多孔質基材11を裏返し、裏面(S2)側の下地層22上に配線層23を、上記配線層13と同様の方法を用いて形成する。最後に、配線層23を覆う保護層24(デュポン社製PE773)を、例えばスプレイコートによって形成することで、図9に示した配線構造2が完成する。 Subsequently, as shown in FIG. 11B, the porous substrate 11 is turned over, and the wiring layer 23 is formed on the base layer 22 on the back surface (S2) side by using the same method as the wiring layer 13 described above. Finally, a protective layer 24 (PE773 manufactured by DuPont) covering the wiring layer 23 is formed by, for example, spray coating, whereby the wiring structure 2 shown in FIG. 9 is completed.
 なお、下地層22は、例えば図12に示したように、多孔質基材11の裏面(面S2)の一部に設けるようにしてよい。具体的には、例えば図2に示した下地層12のように、配線層23を構成する配線パターンに沿ってパターニングされていてもよい。その場合には、上記実施の形態と同様に、表示面(面S1)側および裏面(面S2)のそれぞれに、開孔12A(および開孔22A)が形成されたポリウレタンシートを、例えば熱ラミネートにより転写して、それぞれ下地層12および下地層22を別々に形成するようにしてもよい。 In addition, you may make it provide the base layer 22 in a part of back surface (surface S2) of the porous base material 11, as shown, for example in FIG. Specifically, for example, the base layer 12 shown in FIG. 2 may be patterned along a wiring pattern constituting the wiring layer 23. In that case, similarly to the above-described embodiment, a polyurethane sheet in which the opening 12A (and the opening 22A) is formed on each of the display surface (surface S1) side and the back surface (surface S2) is formed by, for example, thermal lamination. And the underlayer 12 and the underlayer 22 may be formed separately.
 以上のように、本変形例では、表面(面S1)側に形成された配線層13と貫通接続部13Xを介して電気的に接続される23を、下地層22を介して多孔質基材11の裏面(面S2)上に形成するようにした。これにより、伸縮性を有するポーラス基板を用いた多層配線構造を形成することが可能となる。 As described above, in this modification, the porous base material 22 is connected to the wiring layer 13 formed on the front surface (surface S1) side through the through connection portion 13X via the base layer 22. 11 on the back surface (surface S2). This makes it possible to form a multilayer wiring structure using a porous substrate having elasticity.
<3.適用例>
 次に、上記実施の形態および変形例において説明した配線構造1,2を備えた電子機器の適用例について説明する。ただし、以下で説明する電子機器の構成はあくまで一例であり、その構成は適宜変更可能である。上記配線構造1,2は、各種の電子機器あるいは服飾品の一部、例えば、いわゆるウェアラブル機器として、例えば時計(腕時計)、鞄、衣服、帽子、眼鏡および靴等の服飾品の一部に適用可能であり、その電子機器等の種類は特に限定されない。
<3. Application example>
Next, an application example of an electronic apparatus provided with the wiring structures 1 and 2 described in the above embodiment and modifications will be described. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate. The wiring structures 1 and 2 are applied to a part of various electronic devices or clothing items, for example, a so-called wearable device such as a watch (watch), a bag, clothes, a hat, glasses and shoes. It is possible, and the type of the electronic device is not particularly limited.
(適用例1)
 図13は、衣服110の外観を表したものである。この衣服110は、例えば、発汗、体温、汗成分、表皮ガスおよび血糖等を検出あるいは測定する各種センサ120、このセンサ120を制御する制御部130およびセンサ120と制御部とを接続する配線140を備えている。なお、センサ120と制御部130との間の配線140には、途中に回路150が設けられていてもよい。センサ120を構成する電極および配線140が、配線構造1(または配線構造2)によって構成されている。
(Application example 1)
FIG. 13 shows the appearance of the garment 110. The garment 110 includes, for example, various sensors 120 that detect or measure sweating, body temperature, sweat components, epidermal gas, blood sugar, and the like, a control unit 130 that controls the sensor 120, and a wiring 140 that connects the sensor 120 and the control unit. I have. Note that a circuit 150 may be provided in the middle of the wiring 140 between the sensor 120 and the control unit 130. The electrode and the wiring 140 constituting the sensor 120 are configured by the wiring structure 1 (or the wiring structure 2).
(適用例2)
 図14Aおよび図14Bは、鞄の外観を表したものである。この鞄は、例えば布製の収納部210と持ち手220とを有しており、例えば、収納部210に、例えば電気泳動素子等の表示体を備えた表示体230が取り付けられている。収納部210には、この表示体230により、様々な文字や図柄が表示される。また、表示体230は、収納部210だけでなく、持ち手220部分に取り付けてもよい。この表示体230は、例えば、電圧を印加することによって、図14Aの例から図14Bの例のように、収納部210の意匠を変更することができ、この表示体230と、表示体230の表示を制御する制御部とを接続する配線に、配線構造1(または配線構造2)を適用することができる。ファッション用途においても有用な電子機器を実現可能となる。
(Application example 2)
FIG. 14A and FIG. 14B represent the appearance of a bag. The bag includes a cloth storage unit 210 and a handle 220, for example. A display body 230 including a display body such as an electrophoretic element is attached to the storage unit 210, for example. Various characters and designs are displayed on the storage unit 210 by the display body 230. The display body 230 may be attached not only to the storage unit 210 but also to the handle 220. For example, by applying a voltage, the display body 230 can change the design of the storage unit 210 from the example of FIG. 14A to the example of FIG. 14B. The wiring structure 1 (or the wiring structure 2) can be applied to a wiring that connects a control unit that controls display. Electronic devices that are useful in fashion applications can be realized.
 以上、実施の形態および変形例を挙げて本開示を説明したが、本開示は上記実施の形態等で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態等において説明した全ての構成要素を備える必要はなく、更に他の構成要素を含んでいてもよい。また、上述した構成要素の材料や厚みは一例であり、記載したものに限定されるものではない。また、上記実施の形態等では、多孔質基材11として、繊維11Aを上方および下方から2本の繊維11Bが交互に挟持する1枚の布を例に示したが、これに限らない。多孔質基材11は、上記布を2枚以上重ねて用いてもよいし、上述したように、複数の繊維が折り重なった不織布でも構わない。 As described above, the present disclosure has been described with the embodiment and the modification. However, the present disclosure is not limited to the aspect described in the embodiment and the like, and various modifications are possible. For example, it is not necessary to include all the constituent elements described in the above embodiments and the like, and other constituent elements may be included. Moreover, the material and thickness of the component mentioned above are examples, and are not limited to what was described. Moreover, in the said embodiment etc., although the cloth 11A was shown as an example for the porous base material 11 by the two fibers 11B being alternately clamped from the upper direction and the downward direction, it is not restricted to this. The porous substrate 11 may be used by stacking two or more of the above-mentioned cloths, or may be a non-woven fabric in which a plurality of fibers are folded as described above.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本開示は以下のような構成も取ることができる。
(1)
 繊維状多孔質基材と、
 前記繊維状多孔質基材の一の面に形成された第1の下地層と、
 前記第1の下地層の上に設けられると共に、前記繊維状多孔質基材を貫通する貫通接続部を有する第1の導電層と、
 を備えた配線構造。
(2)
 前記繊維状多孔質基材の前記一の面とは反対側の他の面に、前記貫通接続部を介して前記第1の導電層と電気的に接続されている第2の導電層を有する、前記(1)に記載の配線構造。
(3)
 前記第1の下地層はパターニングされており、前記貫通接続部に開孔を有する、前記(1)または(2)に記載の配線構造。
(4)
 前記貫通接続部は、内部に前記繊維状多孔質基材を含んでいる、前記(1)乃至(3)のうちのいずれかに記載の配線構造。
(5)
 前記貫通接続部の内部に含まれている前記繊維状多孔質基材の密度と、その他の領域の前記繊維状多孔質基材の密度とは、略同一である、前記(4)に記載の配線構造。
(6)
 前記繊維状多孔質基材は、前記一の面から前記他の面まで連続する細孔を有する、前記(2)乃至(5)のうちのいずれかに記載の配線構造。
(7)
 前記繊維状多孔質基材は、前記他の面の上に第2の下地層を有する、前記(2)乃至(6)のうちのいずれかに記載の配線構造。
(8)
 前記第2の下地層は、前記貫通接続部の周囲に設けられている、前記(7)に記載の配線構造。
(9)
 前記第2の導電層は、前記第2の下地層を介して前記繊維状多孔質基材の前記他の面に設けられている、前記(7)または(8)に記載の配線構造。
(10)
 前記繊維状多孔質基材は伸縮性を有する、前記(1)乃至(9)のうちのいずれかに記載の配線構造。
(11)
 前記第1の下地層および前記第2の下地層は伸縮性を有する、前記(7)乃至(10)のうちのいずれかに記載の配線構造。
(12)
 機能素子と、前記機能素子に電気的に接続されている配線構造とを有し、
 前記配線構造は、
 繊維状多孔質基材と、
 前記繊維状多孔質基材の一の面に形成された第1の下地層と、
 前記第1の下地層の上に設けられると共に、前記繊維状多孔質基材を貫通する貫通接続部を有する第1の導電層と、
 を備えた電子機器。
In addition, this indication can also take the following structures.
(1)
A fibrous porous substrate;
A first underlayer formed on one surface of the fibrous porous substrate;
A first conductive layer provided on the first base layer and having a through-connection portion penetrating the fibrous porous substrate;
Wiring structure with
(2)
A second conductive layer electrically connected to the first conductive layer via the through-connecting portion is provided on the other surface opposite to the one surface of the fibrous porous substrate. The wiring structure according to (1).
(3)
The wiring structure according to (1) or (2), wherein the first base layer is patterned and has an opening in the through-connection portion.
(4)
The wiring structure according to any one of (1) to (3), wherein the through connection portion includes the fibrous porous substrate therein.
(5)
The density of the fibrous porous base material contained in the inside of the through-connecting portion and the density of the fibrous porous base material in other regions are substantially the same as described in (4). Wiring structure.
(6)
The wiring structure according to any one of (2) to (5), wherein the fibrous porous substrate has pores continuous from the one surface to the other surface.
(7)
The wiring structure according to any one of (2) to (6), wherein the fibrous porous substrate has a second underlayer on the other surface.
(8)
The wiring structure according to (7), wherein the second base layer is provided around the through connection portion.
(9)
The wiring structure according to (7) or (8), wherein the second conductive layer is provided on the other surface of the fibrous porous substrate via the second base layer.
(10)
The wiring structure according to any one of (1) to (9), wherein the fibrous porous substrate has elasticity.
(11)
The wiring structure according to any one of (7) to (10), wherein the first base layer and the second base layer have elasticity.
(12)
A functional element, and a wiring structure electrically connected to the functional element,
The wiring structure is
A fibrous porous substrate;
A first underlayer formed on one surface of the fibrous porous substrate;
A first conductive layer provided on the first base layer and having a through-connection portion penetrating the fibrous porous substrate;
With electronic equipment.
 本出願は、日本国特許庁において2016年5月20日に出願された日本特許出願番号2016-101036号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2016-101036 filed on May 20, 2016 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (12)

  1.  繊維状多孔質基材と、
     前記繊維状多孔質基材の一の面に形成された第1の下地層と、
     前記第1の下地層の上に設けられると共に、前記繊維状多孔質基材を貫通する貫通接続部を有する第1の導電層と、
     を備えた配線構造。
    A fibrous porous substrate;
    A first underlayer formed on one surface of the fibrous porous substrate;
    A first conductive layer provided on the first base layer and having a through-connection portion penetrating the fibrous porous substrate;
    Wiring structure with
  2.  前記繊維状多孔質基材の前記一の面とは反対側の他の面に、前記貫通接続部を介して前記第1の導電層と電気的に接続されている第2の導電層を有する、請求項1に記載の配線構造。 A second conductive layer electrically connected to the first conductive layer via the through-connecting portion is provided on the other surface opposite to the one surface of the fibrous porous substrate. The wiring structure according to claim 1.
  3.  前記第1の下地層はパターニングされており、前記貫通接続部に開孔を有する、請求項1に記載の配線構造。 The wiring structure according to claim 1, wherein the first underlayer is patterned and has an opening in the through-connection portion.
  4.  前記貫通接続部は、内部に前記繊維状多孔質基材を含んでいる、請求項1に記載の配線構造。 The wiring structure according to claim 1, wherein the through-connection portion includes the fibrous porous substrate therein.
  5.  前記貫通接続部の内部に含まれている前記繊維状多孔質基材の密度と、その他の領域の前記繊維状多孔質基材の密度とは、略同一である、請求項4に記載の配線構造。 5. The wiring according to claim 4, wherein the density of the fibrous porous substrate included in the through connection portion and the density of the fibrous porous substrate in other regions are substantially the same. Construction.
  6.  前記繊維状多孔質基材は、前記一の面から前記他の面まで連続する細孔を有する、請求項2に記載の配線構造。 The wiring structure according to claim 2, wherein the fibrous porous substrate has pores continuous from the one surface to the other surface.
  7.  前記繊維状多孔質基材は、前記他の面の上に第2の下地層を有する、請求項2に記載の配線構造。 The wiring structure according to claim 2, wherein the fibrous porous substrate has a second underlayer on the other surface.
  8.  前記第2の下地層は、前記貫通接続部の周囲に設けられている、請求項7に記載の配線構造。 The wiring structure according to claim 7, wherein the second base layer is provided around the through connection portion.
  9.  前記第2の導電層は、前記第2の下地層を介して前記繊維状多孔質基材の前記他の面に設けられている、請求項7に記載の配線構造。 The wiring structure according to claim 7, wherein the second conductive layer is provided on the other surface of the fibrous porous substrate via the second underlayer.
  10.  前記繊維状多孔質基材は伸縮性を有する、請求項1に記載の配線構造。 The wiring structure according to claim 1, wherein the fibrous porous substrate has stretchability.
  11.  前記第1の下地層および前記第2の下地層は伸縮性を有する、請求項7に記載の配線構造。 The wiring structure according to claim 7, wherein the first underlayer and the second underlayer have elasticity.
  12.  機能素子と、前記機能素子に電気的に接続されている配線構造とを有し、
     前記配線構造は、
     繊維状多孔質基材と、
     前記繊維状多孔質基材の一の面に形成された第1の下地層と、
     前記第1の下地層の上に設けられると共に、前記繊維状多孔質基材を貫通する貫通接続部を有する第1の導電層と、
     を備えた電子機器。
    A functional element, and a wiring structure electrically connected to the functional element,
    The wiring structure is
    A fibrous porous substrate;
    A first underlayer formed on one surface of the fibrous porous substrate;
    A first conductive layer provided on the first base layer and having a through-connection portion penetrating the fibrous porous substrate;
    With electronic equipment.
PCT/JP2017/013298 2016-05-20 2017-03-30 Wiring structure and electronic device WO2017199594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-101036 2016-05-20
JP2016101036A JP2017208492A (en) 2016-05-20 2016-05-20 Wiring structure and electronic device

Publications (1)

Publication Number Publication Date
WO2017199594A1 true WO2017199594A1 (en) 2017-11-23

Family

ID=60325924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013298 WO2017199594A1 (en) 2016-05-20 2017-03-30 Wiring structure and electronic device

Country Status (2)

Country Link
JP (1) JP2017208492A (en)
WO (1) WO2017199594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343910B2 (en) 2018-06-07 2022-05-24 The Governors Of The University Of Alberta Elastic printed conductors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6960161B2 (en) * 2018-03-15 2021-11-05 国立研究開発法人科学技術振興機構 Electronic functional members and electronic components
KR20210101207A (en) 2018-12-26 2021-08-18 주식회사 쿠라레 patterned fiber base

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453264A (en) * 1977-10-04 1979-04-26 Suwa Seikosha Kk Bilateral printed board
JP2001024081A (en) * 1999-07-08 2001-01-26 Toshiba Corp Conductive base and its manufacture
WO2006093016A1 (en) * 2005-02-28 2006-09-08 So-Ken Co., Ltd. Printed board and method for manufacturing same
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453264A (en) * 1977-10-04 1979-04-26 Suwa Seikosha Kk Bilateral printed board
JP2001024081A (en) * 1999-07-08 2001-01-26 Toshiba Corp Conductive base and its manufacture
WO2006093016A1 (en) * 2005-02-28 2006-09-08 So-Ken Co., Ltd. Printed board and method for manufacturing same
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343910B2 (en) 2018-06-07 2022-05-24 The Governors Of The University Of Alberta Elastic printed conductors
EP3785497A4 (en) * 2018-06-07 2022-06-08 The Governors Of The University Of Alberta Elastic printed conductors
US20220256693A1 (en) * 2018-06-07 2022-08-11 The Governors Of The University Of Alberta Elastic printed conductors
US11849540B2 (en) 2018-06-07 2023-12-19 The Governors Of The University Of Alberta Elastic printed conductors

Also Published As

Publication number Publication date
JP2017208492A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
Castano et al. Smart fabric sensors and e-textile technologies: a review
US20090286055A1 (en) Methods and Devices for Providing Flexible Electronics
CN107926117B (en) Wearable flexible printed circuit board, manufacturing method thereof and wearable intelligent device using same
Zheng et al. MXene functionalized, highly breathable and sensitive pressure sensors with multi‐layered porous structure
US20190297960A1 (en) Methods and compositions for wearable textile electronic devices
Hansora et al. Performance of hybrid nanostructured conductive cotton materials as wearable devices: an overview of materials, fabrication, properties and applications
JP6454649B2 (en) Electrode member and apparatus
WO2017199594A1 (en) Wiring structure and electronic device
TWI581758B (en) Film physiology sensor
JP2011501789A (en) Electronic fabric and manufacturing method thereof
JP2009518209A5 (en)
Shahariar et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters
CN110089208A (en) Flexible electromagnetic shielding material, including its electromagnetic wave shielding type circuit module and have its electronic equipment
KR101691381B1 (en) Heating fabric and method for fabricating the same
Liman et al. Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives
JP6168507B1 (en) Conductive fabric
Guo et al. Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics
KR20140044429A (en) Flexible printed electrically conductive fabric and method for fabricating the same
Sharaf Smart conductive textile
KR101102840B1 (en) Planar heating element with Waterproof, moisture-permeable, and antistatic property and manufacturing method thereof
Alam et al. Carbon-based polymer nanocomposites for electronic textiles (e-textiles)
JP6168506B1 (en) Conductive fabric and method for producing the same
KR20110109716A (en) Conductive fabrics and method of manufacturing the same
JP2021190500A (en) Wiring-equipped fiber member and manufacturing method thereof
JPWO2018180629A1 (en) Antenna, wireless communication device, biological signal measuring device, and clothing

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799028

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799028

Country of ref document: EP

Kind code of ref document: A1