WO2017199528A1 - Mobile body system - Google Patents

Mobile body system Download PDF

Info

Publication number
WO2017199528A1
WO2017199528A1 PCT/JP2017/007803 JP2017007803W WO2017199528A1 WO 2017199528 A1 WO2017199528 A1 WO 2017199528A1 JP 2017007803 W JP2017007803 W JP 2017007803W WO 2017199528 A1 WO2017199528 A1 WO 2017199528A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
power
moving body
resonator
light emitting
Prior art date
Application number
PCT/JP2017/007803
Other languages
French (fr)
Japanese (ja)
Inventor
周孝 高橋
亮 斉
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2018518105A priority Critical patent/JPWO2017199528A1/en
Priority to CN201790000839.2U priority patent/CN209290188U/en
Publication of WO2017199528A1 publication Critical patent/WO2017199528A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a mobile system.
  • Patent Document 1 discloses an example of a system that performs non-contact power feeding to an automatic guided vehicle.
  • communication for example, infrared communication
  • infrared communication may be performed between the ground-side power feeding device and the moving body at the power feeding position.
  • infrared communication is performed between the power feeding apparatus and the moving body, an error in the stop position of the moving body may be limited by a communicable range. For example, even if the moving body stops at a position where power can be received from the ground-side power supply device, power cannot be received if infrared communication is not possible.
  • an object of the present invention is to provide a mobile system that can suppress an increase in power positioning accuracy while suppressing an increase in power consumption in order to solve the above-described problem.
  • One aspect of the mobile body system of the present invention includes a contactless power supply device and a mobile body that is driven by power wirelessly transmitted from the contactless power supply device, and the contactless power supply device includes a contactless power supply device.
  • a power transmission control circuit that receives the power supplied from the power transmission resonator, a power storage unit that stores the power received by the power reception resonator, and a power storage unit that stores power in the power storage unit.
  • a motor that moves the moving body with the generated electric power, and an infrared light emitting unit that includes a light source that emits infrared light indicating the state of the moving body, and includes the power transmission resonator and the power reception resonator.
  • Non-contact power supply is possible.
  • emission range of the infrared light emitted by the infrared light emitting portion includes a light receiving range of the infrared light receiving unit.
  • One aspect of the mobile body system of the present invention is that, when the mobile body is located within the power feedable range, the position of the infrared light emitting unit is determined by the infrared light receiving unit of the non-contact power feeding device.
  • the movable body is arranged so as to deviate from the position where it is arranged in the traveling direction of the moving body.
  • the position of the infrared light emitting portion is shifted from the center of the moving body and back and forth in the traveling direction of the moving body.
  • the direction of the optical axis of the infrared light includes a component of the traveling direction of the moving body.
  • the position of the infrared light emitting section is shifted from the position where the power receiving resonator is disposed before and after the moving direction of the moving body.
  • One aspect of the mobile body system of the present invention is such that, when the mobile body is located within the power feedable range, the infrared light emitting section starts from the position of the infrared light receiving section. It is arranged in a position where you can see through.
  • the infrared light emitting unit includes an optical element that expands an emission range of infrared light emitted from the light source.
  • FIG. 1 is a diagram illustrating an example of a configuration of a mobile system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of an external configuration of a moving body according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the mobile system according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of an arrangement relationship between the power transmission resonator and the power reception resonator according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of the arrangement of the moving body and the non-contact power feeding device according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of the arrangement of an infrared light emitting unit and an infrared light receiving unit according to an embodiment.
  • FIG. 7 is a diagram illustrating an example of the direction of the optical axis of infrared light by the infrared light emitting unit according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of an infrared light emission range by an infrared light emission unit including the optical element of one embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a mobile system 1 according to the present embodiment.
  • the mobile body system 1 includes a non-contact power feeding device 100 and a mobile body 200.
  • the moving body 200 is, for example, an AGV (Automatic Guided Vehicle) that moves in a factory or a hospital.
  • the moving body 200 moves along the transport path RD.
  • the non-contact power supply apparatus 100 supplies power to the moving body 200 by a non-contact power supply method.
  • the non-contact power feeding device 100 is installed in the vicinity of the transport path RD.
  • the moving body 200 moves along the transport path RD and consumes electric power as it moves.
  • the mobile body 200 When the moving body 200 moves to a position where the non-contact power supply apparatus 100 is installed, the mobile body 200 receives power from the non-contact power supply apparatus 100. That is, the moving body 200 is driven by the power transmitted wirelessly from the non-contact power feeding apparatus 100.
  • the non-contact power supply apparatus 100 Between the non-contact power supply apparatus 100 and the moving body 200, power supply control by optical communication is performed.
  • the mobile body 200 requests the non-contact power supply apparatus 100 to start power supply.
  • the non-contact power supply apparatus 100 supplies power to the non-contact power supply apparatus 100 when the moving body 200 requests the start of power supply.
  • the power supply end condition is satisfied, for example, when the power supplied to the mobile body 200 reaches a sufficient amount, the mobile body 200 requests the non-contact power supply apparatus 100 to end the power supply.
  • the contactless power supply device 100 ends the power supply to the contactless power supply device 100 when the moving body 200 requests the end of power supply.
  • FIG. 2 is a diagram illustrating an example of an external configuration of the moving body 200 according to the present embodiment.
  • the moving body 200 includes a carrier table 201, a moving wheel 202, and a power receiving resonator 210.
  • Articles to be transported by the moving body 200 are placed on the transport table 201.
  • the article to be transported is, for example, a product produced in a factory, a part constituting the product, a jig or a tool.
  • the driving wheel 202 is driven by a motor 240.
  • the moving body 200 moves when the driving wheel 202 is driven.
  • the description will be made using the xyz orthogonal coordinate system.
  • the xy plane is parallel to a surface (for example, a floor surface) on which the moving body 200 moves.
  • the z axis indicates the vertical direction.
  • the x axis indicates the traveling direction of the moving body 200.
  • the y axis indicates a direction orthogonal to the traveling direction of the moving body 200.
  • the x-axis is parallel to the long side direction of the transport table 201.
  • the y axis is parallel to the short side direction of the transport table 201.
  • the positive direction of the x axis is also referred to as the forward direction of the moving body 200. Further, the negative direction of the x axis is also referred to as the backward direction of the moving body 200. That is, the x-axis indicates the front and rear of the moving body 200 in the traveling direction.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the mobile system 1 according to the present embodiment.
  • the non-contact power supply apparatus 100 includes a power transmission resonator 110, an inverter circuit 120, a power transmission control circuit 140, and an infrared light receiving unit 150.
  • the inverter circuit 120 outputs the power supplied from the DC power supply 50 to the power transmission resonator 110 based on the control of the power transmission control circuit 140.
  • the power source of the contactless power supply device 100 may be an AC power source such as a commercial power source.
  • the power transmission resonator 110 transmits power to the power receiving resonator 210 when the power receiving resonator 210 is within the power supply possible range RPS. Within the power feedable range RPS is a range in which contactless power feeding by the power transmission resonator 110 and the power reception resonator 210 is possible.
  • the power transmission resonator 110 transmits power by a non-contact power feeding method.
  • the infrared light receiving unit 150 includes, for example, an infrared sensor and receives infrared light emitted from the infrared light emitting unit 280 of the moving body 200.
  • the infrared light emitting unit 280 has a light source that emits infrared light indicating the state of the moving body 200.
  • the power transmission control circuit 140 controls power supply by the power transmission resonator 110 based on the infrared light received by the infrared light receiving unit 150.
  • the moving body 200 includes a power receiving resonator 210, a rectifier 220, a capacitor 230, a motor 240, a DC-DC converter 250, a voltage detector 260, a power receiving control circuit 270, and an infrared light emitting unit 280. Prepare.
  • the power receiving resonator 210 receives the power supplied from the power transmission resonator 110.
  • the arrangement positional relationship between the power transmission resonator 110 and the power reception resonator 210 will be described with reference to FIG.
  • FIG. 4 is a diagram illustrating an example of an arrangement relationship between the power transmission resonator 110 and the power reception resonator 210 according to the present embodiment.
  • the power transmission resonator 110 includes a power transmission coil 112.
  • the power receiving resonator 210 includes a power receiving coil 212.
  • the XYZ orthogonal coordinate system In the XYZ orthogonal coordinate system, the XY plane is parallel to a surface (for example, a floor surface) on which the non-contact power supply apparatus 100 is installed.
  • the Z axis indicates the vertical direction.
  • the X axis indicates the long side direction of the power transmission coil 112.
  • the Y axis indicates the power transmission direction of the power transmission coil 112.
  • the power transmission coil 112 has a conductor wire (winding) wound so as to be relatively long in the X direction and relatively short in the Z direction.
  • the power receiving coil 212 in the power receiving resonator 210 has a conductor wire (winding) wound so as to be long in the x direction and short in the z direction.
  • the shapes and sizes of the power transmission coil 112 and the power reception coil 212 in this embodiment are asymmetric.
  • the size of the region defined by the winding of the power receiving coil 212 is smaller than the size of the region defined by the winding of the power transmission coil 112. Power transmission is performed in a state where the power transmission coil 112 and the power reception coil 212 are opposed to each other.
  • charging is performed in a state where the surface defined by the winding of the power transmission coil 112 and the surface defined by the winding of the power receiving coil 212 face each other. It should be noted that charging is possible not only when these surfaces are completely parallel, but also when they are inclined to each other.
  • the power transmission coil 112 has a shape that is long in the X direction, even when the moving body 200 is slightly shifted in the X direction, the facing state between the coils is maintained, and power transmission with high efficiency can be maintained. Note that the moving body 200 can grasp the relative positional relationship between the power receiving coil 212 and the power transmitting coil 112 using various sensors.
  • the rectifier 220 rectifies the AC power received by the power receiving resonator 210 and supplies the rectified power to the capacitor 230.
  • Capacitor 230 (power storage unit) stores the power received by power receiving resonator 210.
  • the capacitor 230 supplies the stored power to the DC-DC converter 250.
  • the electric power received by the power receiving resonator 210 may be stored in the power storage unit.
  • the moving body 200 may include a battery (not shown) instead of the capacitor 230 or in addition to the capacitor 230. This battery has a larger charged amount than the capacitor 230.
  • the mobile body 200 may be provided with a capacitor 230 in order to reduce the size and weight, and may be provided with a battery when a large amount of power storage is required. That is, the mobile body 200 includes a power storage unit.
  • the DC-DC converter 250 supplies the electric power supplied from the capacitor 230 to the motor 240 based on the control of the power reception control circuit 270.
  • the motor 240 drives the driving wheel 202 with the supplied electric power.
  • the supplied power is power stored in the capacitor 230. That is, the motor 240 moves the moving body 200 with the electric power stored in the capacitor 230.
  • the mobile body 200 includes a motor 240 that moves the mobile body 200 with the electric power stored in the power storage unit.
  • the voltage detector 260 detects the voltage of the electric power supplied to the motor 240.
  • the external light emitting unit 280 includes a light source that emits infrared light, and emits infrared light based on the control of the power reception control circuit 270.
  • the power reception control circuit 270 controls power supply by the DC-DC converter 250 based on the voltage detected by the voltage detector 260. In addition, the power reception control circuit 270 controls the infrared light emitting unit 280. Specifically, the power reception control circuit 270 outputs a signal indicating the state of the moving body 200 to the infrared light emitting unit 280.
  • the state of the moving body 200 includes the position, direction, and moving speed of the moving body 200.
  • the state of the moving body 200 includes a charging state of the capacitor 230 or the power storage unit, a request for starting power supply, a request for stopping power supply, and a requested power supply amount.
  • FIG. 5 is a diagram illustrating an example of the arrangement of the moving body 200 and the non-contact power supply apparatus 100 according to the present embodiment. A case where the moving body 200 moves within the power supply possible range RPS of the contactless power supply device 100 and receives power supply from the contactless power supply device 100 will be described as an example.
  • the power reception control circuit 270 When the power reception control circuit 270 approaches the non-contact power supply apparatus 100, the power reception control circuit 270 outputs a signal indicating “a power supply start request” to the infrared light emitting unit 280.
  • the infrared light emitting unit 280 emits infrared light corresponding to a signal indicating “request for power supply start”. Further, the power reception control circuit 270 outputs a signal indicating “power supply end request” to the infrared light emitting unit 280 when the power supply end condition is satisfied.
  • the infrared light emitting unit 280 emits infrared light corresponding to a signal indicating “request for power supply termination”.
  • the infrared light emitting unit 280 and the infrared light receiving unit 150 are configured such that when the moving body 200 is located within the power supplyable range RPS, the light receiving range RLR of the infrared light receiving unit 150 is the infrared light emitting unit.
  • the part 280 is disposed at a position included in the emission range RE.
  • the infrared light emission range RE emitted by the infrared light emission unit 280 includes the receivable range RLR of the infrared light reception unit 150.
  • FIG. 6 is a diagram illustrating an example of the arrangement of the infrared light emitting unit 280 and the infrared light receiving unit 150 according to the present embodiment.
  • the infrared light receiving unit 150 is disposed at an arbitrary position XR in the X-axis direction of the non-contact power supply apparatus 100.
  • the infrared light emitting unit 280 is disposed at an arbitrary position xE in the x-axis direction of the moving body 200.
  • the infrared light receiving unit 150 is positioned at the position x0 of the moving body 200 in the x-axis direction.
  • the position x0 is an example of a position shifted from the position xE in the traveling direction of the moving body 200.
  • the position of the infrared light emitting unit 280 is changed from the position where the infrared light receiving unit 150 of the non-contact power supply apparatus 100 is disposed. They are arranged shifted in the forward and backward direction.
  • the infrared light emission part 280 shows the case where it shift
  • the infrared light emitting unit 280 may be disposed so as to be shifted in the backward direction ( ⁇ X direction) with respect to the infrared light receiving unit 150. In this case, the emitting direction of the infrared light emitting unit 280 is the forward direction (+ X direction).
  • the infrared light emission range RE extends in a fan shape with the infrared light emission part 280 as the center. If the receivable range RLR of the infrared light receiving unit 150 is disposed within the fan-shaped emission range RE, the infrared light receiving unit 150 can receive the infrared light emitted from the infrared light emitting unit 280. is there.
  • the accuracy of the position control of the moving body 200 with respect to the non-contact power feeding apparatus 100 can be reduced as the area of the emission range RE is larger. That is, the position control of the moving body 200 can be simplified as the area of the emission range RE is larger.
  • the light distribution characteristics of the emission range RE that is, the fan-shaped central angle and the fan-shaped radius are determined by the configuration of the infrared light emitting unit 280.
  • the center angle of the fan shape may be increased or the radius of the fan shape may be increased.
  • the infrared light emitting range RE emitted by the infrared light emitting unit 280 is disposed.
  • the light receiving range RLR is included in the emission range RE.
  • the case where the moving body 200 is displaced in the traveling direction refers to a case where the reference position of the moving body 200 and the reference position of the power supplyable range RPS are different in the traveling direction of the moving body 200.
  • the reference position of the moving body 200 is the center CTR and the reference position of the power supplyable range RPS is the center position of the power supplyable range RPS will be described.
  • the case where the moving body 200 is displaced in the traveling direction means a case where the X coordinate of the center CTR of the moving body 200 does not coincide with the X coordinate of the center position of the power feedable range RPS.
  • the infrared light emitting unit 280 and the infrared light receiving unit 150 are arranged so as to be shifted from each other before and after the moving direction of the moving body 200, so that the fan-shaped radial direction of the emitting range RE and the moving direction of the moving body 200 are The angle formed by becomes smaller. That is, the angle formed by the fan-shaped radial direction of the emission range RE and the x-axis direction is small. For this reason, when the infrared light emitting unit 280 and the infrared light receiving unit 150 are arranged so as to be shifted from each other before and after the moving body 200 travels, the range in which the non-contact power feeding device 100 and the moving body 200 can communicate is Spreads around the direction of travel of body 200. That is, in the case of the arrangement described above, it is possible to reduce the accuracy of position control before and after the moving body 200 travels.
  • the infrared light emitting unit 280 is disposed at an arbitrary position xE in the x-axis direction of the moving body 200.
  • the position xE is a position shifted from the center CTR of the moving body 200 in the traveling direction of the moving body 200. That is, the position of the infrared light emitting unit 280 is shifted from the center of the moving body 200 in the traveling direction of the moving body 200. That is, the position of the infrared light emitting unit 280 may be shifted from the position where the infrared light receiving unit 150 is disposed before and after the moving body 200 in the traveling direction as shown in the specific example (1). Further, the position of the infrared light emitting unit 280 may be arranged so as to be shifted from the center of the moving body 200 in the traveling direction of the moving body 200 as shown in the specific example (2).
  • the range in which the non-contact power feeding apparatus 100 and the moving body 200 can communicate is It spreads around the moving direction of the moving body 200. In other words, even when the mobile body 200 is arranged so as to be shifted from the center of the moving body 200 in the forward and backward directions, the accuracy of position control of the mobile body 200 in the forward and backward directions can be reduced.
  • the infrared light emitting unit 280 may be disposed at a position where the infrared light emitting unit 280 can be seen from the position of the infrared light receiving unit 150.
  • the infrared light emitting unit 280 there is no obstacle that blocks infrared rays in the range from the position of the infrared light receiving unit 150 to the position of the infrared light emitting unit 280. Specifically, as shown in FIG.
  • the obstacles that block infrared rays described above may include a part of the non-contact power feeding apparatus 100 and a part of the mobile body 200 in addition to general obstacles other than the mobile body system 1.
  • the infrared light emitting section 280 can be seen from the position of the infrared light receiving section 150. It may be configured.
  • the infrared light receiving unit 150 is disposed at a position where infrared light emitted from the external light emitting unit 280 can be received.
  • the moving body 200 is located within the power supplyable range RPS. Further, it can be said that the infrared light receiving unit 150 is disposed at a position where the infrared light emitting unit 280 can be seen through.
  • the non-contact power supply apparatus 100 and the moving body 200 are arranged by being positioned at a position where the infrared light emitting section 280 can be seen from the position of the infrared light receiving section 150.
  • Infrared communication between is not disturbed by obstacles. That is, the mobile system 1 can perform stable infrared communication by being arranged at a position where the infrared light emitting unit 280 can be seen from the position of the infrared light receiving unit 150.
  • FIG. 7 is a diagram illustrating an example of the direction of the optical axis AX of infrared light by the infrared light emitting unit 280 of the present embodiment.
  • the direction of the optical axis AX of infrared light by the infrared light emitting unit 280 may include a component in the traveling direction of the moving body 200.
  • the infrared light emitting unit 280 emits infrared light in the direction of the optical axis AXE.
  • the traveling direction DT of the moving body 200 is the ⁇ X direction in FIG.
  • the optical axis AXE of the infrared light emitted from the infrared light emitting unit 280 includes a component in the traveling direction DT of the moving body 200.
  • the optical axis AXE includes a component in the backward direction ( ⁇ X direction) of the moving body 200, but is not limited thereto.
  • the optical axis AXE may include a component in the forward direction (+ X direction) of the moving body 200.
  • the direction of the optical axis AXE includes a component in the traveling direction of the moving body 200
  • the fan-shaped radial direction of the emission range RE of the infrared light emission unit 280 and the x-axis direction form.
  • the corner is small.
  • the direction of the optical axis AXE of the infrared light by the infrared light emitting unit 280 includes a component in the traveling direction of the moving body 200, there is a range in which the contactless power supply device 100 and the moving body 200 can communicate.
  • the mobile body 200 spreads forward and backward. That is, in the case of the arrangement described above, it is possible to reduce the accuracy of position control before and after the moving body 200 travels.
  • the infrared light emitting unit 280 is disposed at the position xE of the moving body 200 in the x-axis direction.
  • This position xE is a position shifted from the position where the power receiving resonator 210 is disposed to the front and rear in the traveling direction of the moving body 200. That is, the position of the infrared light emitting unit 280 is shifted from the position where the power receiving resonator 210 is disposed before and after the moving body 200 in the traveling direction. That is, the position of the infrared light emitting unit 280 is shifted from the position where the power receiving resonator 210 is arranged in the traveling direction of the moving body 200 in addition to those shown in the specific examples (1) and (2). May be.
  • the contactless power feeding device 100 and the mobile body 200 can communicate even when the position of the infrared light emitting unit 280 is shifted from the position where the power receiving resonator 210 is disposed to the front and rear in the traveling direction of the mobile body 200.
  • a wide range extends before and after the moving body 200 travels. In other words, even when the power receiving resonator 210 is arranged so as to be shifted before and after the moving direction of the moving body 200, the accuracy of position control before and after the moving direction of the moving body 200 can be reduced.
  • the infrared light emitting unit 280 may include an optical element 281 that widens the emission range RE of infrared light emitted from the light source.
  • FIG. 8 is a diagram illustrating an example of an infrared light emission range RE2 by the infrared light emission unit 280 including the optical element 281 of the present embodiment.
  • the infrared light emitted from the infrared light emitting unit 280 has its emission range expanded from the emission range RE to the emission range RE2 by the optical element 281.
  • the optical element 281 is, for example, a refractive element such as a lens, a reflective element such as a mirror, or a diffractive element such as a grating.
  • the emission range RE of the infrared light emitted from the infrared light emission unit 280 is expanded, the fan-shaped central angle of the emission range RE is widened, and the non-contact power feeding apparatus 100 and the moving body 200 communicate with each other.
  • a possible range extends in the left-right direction ( ⁇ Y direction) of the moving body 200. That is, in the case of the arrangement described above, the accuracy of the position control of the moving body 200 in the left-right direction can be reduced. Therefore, by combining the arrangement from the specific example (1) to the specific example (5) described above and the arrangement of the specific example (6), the accuracy of position control of the moving body 200 in the front-rear direction and the left-right direction is reduced. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A mobile body system equipped with noncontact power supply devices and mobile bodies driven by power transmitted wirelessly from the noncontact power supply devices. The noncontact power supply devices are equipped with: a power transmission resonator that transmits power by a noncontact power supply method; an infrared light reception unit that receives infrared light; and a power transmission control circuit that controls the supplying of power by the power transmission resonator on the basis of the infrared light received by the infrared light reception unit. The mobile bodies are equipped with: a power reception resonator that receives the power supplied by the power transmission resonators; a power storage unit that stores the power received by the power reception resonator; a motor that moves the mobile body by means of the power stored in the power storage unit; and an infrared light emission unit having a light source that emits infrared light indicating the state of the mobile body. When a mobile body is positioned within a suppliable power range in which noncontact power transmission by means of a power transmission resonator and the power reception resonator is possible, the emission range of the infrared light emitted by the infrared light emission unit includes a range in which the infrared light reception unit is able to receive light.

Description

移動体システムMobile system
 本発明は、移動体システムに関する。 The present invention relates to a mobile system.
 例えば、特許文献1には、無人搬送車に非接触給電するシステムの例が開示されている。 For example, Patent Document 1 discloses an example of a system that performs non-contact power feeding to an automatic guided vehicle.
日本国公開公報2008-137451号公報Japanese Publication No. 2008-137451
 ここで、無人搬送車などの移動体に非接触給電する場合、給電位置において、地上側の給電装置と移動体との間で給電に関する通信(例えば、赤外線通信)を行う場合がある。給電装置と移動体との間において赤外線通信を行う場合、移動体の停車位置の誤差が通信可能範囲によって制約される場合がある。例えば、移動体が地上側の給電装置から給電を受けられる位置に停車したとしても、赤外線通信ができない場合には、給電を受けられないことがある。つまり、移動体に非接触給電する場合、給電可能範囲による制約に加えて、通信可能範囲による制約を受けて、移動体の位置決め精度の高精度化が要求されることがある。移動体の位置決め精度の高精度化を抑制するためには、給電装置と移動体との間の赤外線通信が可能な範囲は広いほうが望ましい。しかしながら、赤外線通信が可能な範囲を単に広げると、赤外線発光素子の広角化や素子数の増加などが必要になる場合があり、この場合、消費電力の増加を招くという問題がある。 Here, when non-contact power feeding is performed to a moving body such as an automatic guided vehicle, communication (for example, infrared communication) regarding power feeding may be performed between the ground-side power feeding device and the moving body at the power feeding position. When infrared communication is performed between the power feeding apparatus and the moving body, an error in the stop position of the moving body may be limited by a communicable range. For example, even if the moving body stops at a position where power can be received from the ground-side power supply device, power cannot be received if infrared communication is not possible. That is, when non-contact power feeding is performed on a moving body, there is a case where it is required to increase the positioning accuracy of the moving body due to restrictions on the communicable range in addition to restrictions on the power feeding range. In order to suppress the increase in the positioning accuracy of the moving body, it is desirable that the range in which infrared communication between the power feeding device and the moving body can be performed is wide. However, if the range in which infrared communication is possible is simply expanded, it may be necessary to widen the angle of the infrared light emitting element or increase the number of elements, and in this case, there is a problem in that power consumption is increased.
 そこで、本発明は、上記の問題を解決するために、消費電力の増加を抑制しつつ、移動体の位置決め精度の高精度化を抑制することができる移動体システムを提供することを目的とする。 Accordingly, an object of the present invention is to provide a mobile system that can suppress an increase in power positioning accuracy while suppressing an increase in power consumption in order to solve the above-described problem. .
 本発明の移動体システムの一つの態様は、非接触給電装置と、前記非接触給電装置から無線で伝送された電力によって駆動される移動体と、を備え、前記非接触給電装置は、非接触給電方式により電力を送電する送電共振器と、赤外光を受光する赤外光受光部と、前記赤外光受光部が受光する赤外光に基づいて、前記送電共振器による電力供給を制御する送電制御回路と、を備え、前記移動体は、前記送電共振器が供給する電力を受電する受電共振器と、前記受電共振器が受電した電力を蓄電する蓄電部と、前記蓄電部に蓄電される電力によって前記移動体を移動させるモータと、前記移動体の状態を示す赤外光を出射する光源を有する赤外光出射部と、を備え、前記送電共振器と前記受電共振器とによる非接触給電が可能である給電可能範囲内に前記移動体が位置する場合に、前記赤外光出射部によって出射される赤外光の出射範囲は、前記赤外光受光部の受光可能範囲を含む。 One aspect of the mobile body system of the present invention includes a contactless power supply device and a mobile body that is driven by power wirelessly transmitted from the contactless power supply device, and the contactless power supply device includes a contactless power supply device. Controls power supply by the power transmission resonator based on a power transmission resonator that transmits power by a power feeding method, an infrared light receiving unit that receives infrared light, and infrared light received by the infrared light receiving unit A power transmission control circuit that receives the power supplied from the power transmission resonator, a power storage unit that stores the power received by the power reception resonator, and a power storage unit that stores power in the power storage unit. A motor that moves the moving body with the generated electric power, and an infrared light emitting unit that includes a light source that emits infrared light indicating the state of the moving body, and includes the power transmission resonator and the power reception resonator. Non-contact power supply is possible. When said moving body is located 囲内, emission range of the infrared light emitted by the infrared light emitting portion includes a light receiving range of the infrared light receiving unit.
 本発明の移動体システムの一つの態様は、前記給電可能範囲内に前記移動体が位置する場合に、前記赤外光出射部の位置は、前記非接触給電装置の前記赤外光受光部が配置されている位置から前記移動体の進行方向前後にずれて配置される。 One aspect of the mobile body system of the present invention is that, when the mobile body is located within the power feedable range, the position of the infrared light emitting unit is determined by the infrared light receiving unit of the non-contact power feeding device. The movable body is arranged so as to deviate from the position where it is arranged in the traveling direction of the moving body.
 本発明の移動体システムの一つの態様は、前記赤外光出射部の位置は、前記移動体の中心から前記移動体の進行方向前後にずれて配置される。 In one aspect of the moving body system of the present invention, the position of the infrared light emitting portion is shifted from the center of the moving body and back and forth in the traveling direction of the moving body.
 本発明の移動体システムの一つの態様は、前記赤外光の光軸の方向は、前記移動体の進行方向の成分を含む。 In one aspect of the moving body system of the present invention, the direction of the optical axis of the infrared light includes a component of the traveling direction of the moving body.
 本発明の移動体システムの一つの態様は、前記赤外光出射部の位置は、前記受電共振器が配置される位置から前記移動体の進行方向前後にずれて配置される。 In one aspect of the moving body system of the present invention, the position of the infrared light emitting section is shifted from the position where the power receiving resonator is disposed before and after the moving direction of the moving body.
 本発明の移動体システムの一つの態様は、前記給電可能範囲内に前記移動体が位置する場合に、前記赤外光出射部は、前記赤外光受光部の位置から前記赤外光出射部を見通せる位置に配置される。 One aspect of the mobile body system of the present invention is such that, when the mobile body is located within the power feedable range, the infrared light emitting section starts from the position of the infrared light receiving section. It is arranged in a position where you can see through.
 本発明の移動体システムの一つの態様は、前記赤外光出射部は、前記光源から出射される赤外光の出射範囲を広げる光学素子を備える。 In one aspect of the mobile system of the present invention, the infrared light emitting unit includes an optical element that expands an emission range of infrared light emitted from the light source.
 消費電力の増加を抑制しつつ、移動体の位置決め精度の高精度化を抑制することができる。 ¡High accuracy of the positioning of the moving body can be suppressed while suppressing an increase in power consumption.
図1は、一実施形態の移動体システムの構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a mobile system according to an embodiment. 図2は、一実施形態の移動体の外観構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of an external configuration of a moving body according to an embodiment. 図3は、一実施形態の移動体システムの機能構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a functional configuration of the mobile system according to the embodiment. 図4は、一実施形態の送電共振器と、受電共振器との配置関係の一例を示す図である。FIG. 4 is a diagram illustrating an example of an arrangement relationship between the power transmission resonator and the power reception resonator according to the embodiment. 図5は、一実施形態の移動体と非接触給電装置との配置の一例を示す図である。FIG. 5 is a diagram illustrating an example of the arrangement of the moving body and the non-contact power feeding device according to the embodiment. 図6は、一実施形態の赤外光出射部及び赤外光受光部の配置の一例を示す図である。FIG. 6 is a diagram illustrating an example of the arrangement of an infrared light emitting unit and an infrared light receiving unit according to an embodiment. 図7は、一実施形態の赤外光出射部による赤外光の光軸の方向の一例を示す図である。FIG. 7 is a diagram illustrating an example of the direction of the optical axis of infrared light by the infrared light emitting unit according to the embodiment. 図8は、一実施形態の光学素子を備える赤外光出射部による赤外光の出射範囲の一例を示す図である。FIG. 8 is a diagram illustrating an example of an infrared light emission range by an infrared light emission unit including the optical element of one embodiment.
 以下、本発明の実施形態について図面を参照しながら説明する。まず、図1を参照して、移動体システム1の概要について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the outline of the mobile system 1 will be described with reference to FIG.
 図1は、本実施形態の移動体システム1の構成の一例を示す図である。この移動体システム1は、非接触給電装置100と、移動体200とを備える。移動体200とは、例えば、工場内や病院内を移動するAGV(Automatic Guided Vehicle)である。この一例において、移動体200は、搬送路RDに沿って移動する。非接触給電装置100は、移動体200に対して非接触給電方式により電力を供給する。この一例において、非接触給電装置100は、搬送路RDの近傍に設置される。移動体200は、搬送路RDに沿って移動し、移動に伴って電力を消費する。移動体200は、非接触給電装置100が設置されている位置に移動すると、非接触給電装置100から電力の供給を受ける。つまり、移動体200は、非接触給電装置100から無線で伝送された電力によって駆動される。 FIG. 1 is a diagram illustrating an example of a configuration of a mobile system 1 according to the present embodiment. The mobile body system 1 includes a non-contact power feeding device 100 and a mobile body 200. The moving body 200 is, for example, an AGV (Automatic Guided Vehicle) that moves in a factory or a hospital. In this example, the moving body 200 moves along the transport path RD. The non-contact power supply apparatus 100 supplies power to the moving body 200 by a non-contact power supply method. In this example, the non-contact power feeding device 100 is installed in the vicinity of the transport path RD. The moving body 200 moves along the transport path RD and consumes electric power as it moves. When the moving body 200 moves to a position where the non-contact power supply apparatus 100 is installed, the mobile body 200 receives power from the non-contact power supply apparatus 100. That is, the moving body 200 is driven by the power transmitted wirelessly from the non-contact power feeding apparatus 100.
 非接触給電装置100と移動体200との間においては、光通信による給電制御が行われる。この一例では、移動体200が非接触給電装置100の給電可能範囲RPS内に到着すると、移動体200は、非接触給電装置100に対して給電開始を要求する。非接触給電装置100は、移動体200から給電開始が要求されると、非接触給電装置100に対して給電を行う。移動体200に給電される電力が十分な量に達した場合など、給電終了条件が成立した場合には、移動体200は、非接触給電装置100に対して給電終了を要求する。非接触給電装置100は、移動体200から給電終了が要求されると、非接触給電装置100に対する給電を終了する。 Between the non-contact power supply apparatus 100 and the moving body 200, power supply control by optical communication is performed. In this example, when the mobile body 200 arrives within the power supply possible range RPS of the non-contact power supply apparatus 100, the mobile body 200 requests the non-contact power supply apparatus 100 to start power supply. The non-contact power supply apparatus 100 supplies power to the non-contact power supply apparatus 100 when the moving body 200 requests the start of power supply. When the power supply end condition is satisfied, for example, when the power supplied to the mobile body 200 reaches a sufficient amount, the mobile body 200 requests the non-contact power supply apparatus 100 to end the power supply. The contactless power supply device 100 ends the power supply to the contactless power supply device 100 when the moving body 200 requests the end of power supply.
 これら非接触給電装置100及び移動体200の構成の具体例を、図2から図4に示す。 図2は、本実施形態の移動体200の外観構成の一例を示す図である。移動体200は、搬送台201と、動輪202と、受電共振器210とを備える。搬送台201には、移動体200の搬送対象の物品が載置される。搬送対象の物品とは、例えば、工場で生産された製品、この製品を構成する部品、治具または工具などである。動輪202は、モータ240によって駆動される。移動体200は、動輪202が駆動されることにより移動する。 Specific examples of the configurations of the non-contact power supply apparatus 100 and the moving body 200 are shown in FIGS. FIG. 2 is a diagram illustrating an example of an external configuration of the moving body 200 according to the present embodiment. The moving body 200 includes a carrier table 201, a moving wheel 202, and a power receiving resonator 210. Articles to be transported by the moving body 200 are placed on the transport table 201. The article to be transported is, for example, a product produced in a factory, a part constituting the product, a jig or a tool. The driving wheel 202 is driven by a motor 240. The moving body 200 moves when the driving wheel 202 is driven.
 以下の説明において移動体200の座標を示す必要がある場合には、xyz直交座標系を用いて説明する。xyz直交座標系において、xy平面は、移動体200が移動する面(例えば、床面)に平行である。z軸は、鉛直方向を示す。x軸は、移動体200の進行方向を示す。y軸は、移動体200の進行方向に直交する方向を示す。この一例において、x軸は、搬送台201の長辺方向に平行である。y軸は、搬送台201の短辺方向に平行である。x軸の正の方向を、移動体200の前進方向ともいう。また、x軸の負の方向を移動体200の後進方向ともいう。すなわち、x軸は、移動体200の進行方向前後を示す。 In the following description, when it is necessary to indicate the coordinates of the moving body 200, the description will be made using the xyz orthogonal coordinate system. In the xyz orthogonal coordinate system, the xy plane is parallel to a surface (for example, a floor surface) on which the moving body 200 moves. The z axis indicates the vertical direction. The x axis indicates the traveling direction of the moving body 200. The y axis indicates a direction orthogonal to the traveling direction of the moving body 200. In this example, the x-axis is parallel to the long side direction of the transport table 201. The y axis is parallel to the short side direction of the transport table 201. The positive direction of the x axis is also referred to as the forward direction of the moving body 200. Further, the negative direction of the x axis is also referred to as the backward direction of the moving body 200. That is, the x-axis indicates the front and rear of the moving body 200 in the traveling direction.
 図3は、本実施形態の移動体システム1の機能構成の一例を示す図である。非接触給電装置100は、送電共振器110と、インバータ回路120と、送電制御回路140と、赤外光受光部150とを備える。インバータ回路120は、送電制御回路140の制御に基づいて、DC電源50から供給された電力を送電共振器110に出力する。なお、この一例では、非接触給電装置100の電源がDC電源50である場合について説明するが、これに限られない。例えば、非接触給電装置100の電源は、商用電源などの交流電源であってもよい。 FIG. 3 is a diagram illustrating an example of a functional configuration of the mobile system 1 according to the present embodiment. The non-contact power supply apparatus 100 includes a power transmission resonator 110, an inverter circuit 120, a power transmission control circuit 140, and an infrared light receiving unit 150. The inverter circuit 120 outputs the power supplied from the DC power supply 50 to the power transmission resonator 110 based on the control of the power transmission control circuit 140. In addition, although this example demonstrates the case where the power supply of the non-contact electric power supply apparatus 100 is the DC power supply 50, it is not restricted to this. For example, the power source of the contactless power supply device 100 may be an AC power source such as a commercial power source.
 送電共振器110は、給電可能範囲RPS内に受電共振器210がある場合には、この受電共振器210に対して電力を送電する。給電可能範囲RPS内とは、送電共振器110と受電共振器210とによる非接触給電が可能な範囲内である。送電共振器110は、非接触給電方式により電力を送電する。赤外光受光部150は、例えば、赤外線センサなどを備えており、移動体200の赤外光出射部280が出射する赤外光を受光する。赤外光出射部280は、移動体200の状態を示す赤外光を出射する光源を有する。送電制御回路140は、赤外光受光部150が受光する赤外光に基づいて、送電共振器110による電力供給を制御する。 The power transmission resonator 110 transmits power to the power receiving resonator 210 when the power receiving resonator 210 is within the power supply possible range RPS. Within the power feedable range RPS is a range in which contactless power feeding by the power transmission resonator 110 and the power reception resonator 210 is possible. The power transmission resonator 110 transmits power by a non-contact power feeding method. The infrared light receiving unit 150 includes, for example, an infrared sensor and receives infrared light emitted from the infrared light emitting unit 280 of the moving body 200. The infrared light emitting unit 280 has a light source that emits infrared light indicating the state of the moving body 200. The power transmission control circuit 140 controls power supply by the power transmission resonator 110 based on the infrared light received by the infrared light receiving unit 150.
 移動体200は、受電共振器210と、整流器220と、キャパシタ230と、モータ240と、DC-DCコンバータ250と、電圧検出器260と、受電制御回路270と、赤外光出射部280とを備える。 The moving body 200 includes a power receiving resonator 210, a rectifier 220, a capacitor 230, a motor 240, a DC-DC converter 250, a voltage detector 260, a power receiving control circuit 270, and an infrared light emitting unit 280. Prepare.
 受電共振器210は、送電共振器110が供給する電力を受電する。この送電共振器110と、受電共振器210との配置位置関係について、図4を参照して説明する。 The power receiving resonator 210 receives the power supplied from the power transmission resonator 110. The arrangement positional relationship between the power transmission resonator 110 and the power reception resonator 210 will be described with reference to FIG.
 図4は、本実施形態の送電共振器110と、受電共振器210との配置関係の一例を示す図である。送電共振器110は、送電コイル112を備える。受電共振器210は、受電コイル212を備える。 FIG. 4 is a diagram illustrating an example of an arrangement relationship between the power transmission resonator 110 and the power reception resonator 210 according to the present embodiment. The power transmission resonator 110 includes a power transmission coil 112. The power receiving resonator 210 includes a power receiving coil 212.
 以下の説明において非接触給電装置100の座標を示す必要がある場合には、XYZ直交座標系を用いて説明する。XYZ直交座標系において、XY平面は、非接触給電装置100が設置される面(例えば、床面)に平行である。Z軸は、鉛直方向を示す。X軸は、送電コイル112の長辺方向を示す。Y軸は、送電コイル112の送電方向を示す。 In the following description, when it is necessary to indicate the coordinates of the non-contact power supply apparatus 100, description will be made using an XYZ orthogonal coordinate system. In the XYZ orthogonal coordinate system, the XY plane is parallel to a surface (for example, a floor surface) on which the non-contact power supply apparatus 100 is installed. The Z axis indicates the vertical direction. The X axis indicates the long side direction of the power transmission coil 112. The Y axis indicates the power transmission direction of the power transmission coil 112.
 送電コイル112は、X方向に相対的に長く、Z方向に相対的に短くなるように巻かれた導体線(巻線)を有する。受電共振器210における受電コイル212も同様に、x方向に長くz方向に短くなるように巻かれた導体線(巻線)を有する。図示されるように、本実施形態における送電コイル112および受電コイル212の形状およびサイズは非対称である。本実施形態においては、受電コイル212の巻線によって規定される領域の大きさは、送電コイル112の巻線によって規定される領域の大きさよりも小さい。電力伝送は、送電コイル112と受電コイル212とが対向している状態において行われる。より具体的には、送電コイル112の巻線によって規定される面と、受電コイル212の巻線によって規定される面とが対向している状態で充電が行われる。なお、これらの面が完全に平行である場合に限らず、相互に傾いていても充電は可能である。また、送電コイル112がX方向に長い形状を有しているため、移動体200がX方向に少しずれたとしても、コイル間の対向状態が維持され、高い効率での電力伝送を維持できる。なお、移動体200は、各種のセンサを用いて、受電コイル212と、送電コイル112との相対的な配置関係を把握することができる。 The power transmission coil 112 has a conductor wire (winding) wound so as to be relatively long in the X direction and relatively short in the Z direction. Similarly, the power receiving coil 212 in the power receiving resonator 210 has a conductor wire (winding) wound so as to be long in the x direction and short in the z direction. As illustrated, the shapes and sizes of the power transmission coil 112 and the power reception coil 212 in this embodiment are asymmetric. In the present embodiment, the size of the region defined by the winding of the power receiving coil 212 is smaller than the size of the region defined by the winding of the power transmission coil 112. Power transmission is performed in a state where the power transmission coil 112 and the power reception coil 212 are opposed to each other. More specifically, charging is performed in a state where the surface defined by the winding of the power transmission coil 112 and the surface defined by the winding of the power receiving coil 212 face each other. It should be noted that charging is possible not only when these surfaces are completely parallel, but also when they are inclined to each other. In addition, since the power transmission coil 112 has a shape that is long in the X direction, even when the moving body 200 is slightly shifted in the X direction, the facing state between the coils is maintained, and power transmission with high efficiency can be maintained. Note that the moving body 200 can grasp the relative positional relationship between the power receiving coil 212 and the power transmitting coil 112 using various sensors.
 図3に戻り、整流器220は、受電共振器210が受電した交流電力を整流し、整流した電力をキャパシタ230に供給する。キャパシタ230(蓄電部)は、受電共振器210が受電した電力を蓄電する。また、キャパシタ230は、蓄電した電力をDC-DCコンバータ250に供給する。 Returning to FIG. 3, the rectifier 220 rectifies the AC power received by the power receiving resonator 210 and supplies the rectified power to the capacitor 230. Capacitor 230 (power storage unit) stores the power received by power receiving resonator 210. The capacitor 230 supplies the stored power to the DC-DC converter 250.
 なお、この一例では、蓄電部がキャパシタ230である場合について説明するが、これに限られない。蓄電部には、受電共振器210が受電した電力が蓄電されればよい。移動体200は、キャパシタ230に代えて、又はキャパシタ230に加えて、不図示のバッテリーを備えていてもよい。このバッテリーは、キャパシタ230に比べて蓄電量が大きい。移動体200は、小型化や軽量化を図る場合には、キャパシタ230を備えればよく、大きな蓄電量が求められる場合には、バッテリーを備えればよい。すなわち、移動体200は、蓄電部を備える。 In this example, the case where the power storage unit is the capacitor 230 will be described, but the present invention is not limited thereto. The electric power received by the power receiving resonator 210 may be stored in the power storage unit. The moving body 200 may include a battery (not shown) instead of the capacitor 230 or in addition to the capacitor 230. This battery has a larger charged amount than the capacitor 230. The mobile body 200 may be provided with a capacitor 230 in order to reduce the size and weight, and may be provided with a battery when a large amount of power storage is required. That is, the mobile body 200 includes a power storage unit.
 DC-DCコンバータ250は、受電制御回路270の制御に基づいて、キャパシタ230から供給される電力を、モータ240に供給する。モータ240は、供給される電力によって動輪202を駆動する。供給される電力とは、キャパシタ230に蓄電される電力である。つまり、モータ240は、キャパシタ230に蓄電される電力によって移動体200を移動させる。すなわち、移動体200は、蓄電部に蓄電される電力によって移動体200を移動させるモータ240を備える。電圧検出器260は、モータ240に供給される電力の電圧を検出する。外光出射部280は、赤外光を出射する光源を備えており、受電制御回路270の制御に基づいて、赤外光を出射する。 The DC-DC converter 250 supplies the electric power supplied from the capacitor 230 to the motor 240 based on the control of the power reception control circuit 270. The motor 240 drives the driving wheel 202 with the supplied electric power. The supplied power is power stored in the capacitor 230. That is, the motor 240 moves the moving body 200 with the electric power stored in the capacitor 230. That is, the mobile body 200 includes a motor 240 that moves the mobile body 200 with the electric power stored in the power storage unit. The voltage detector 260 detects the voltage of the electric power supplied to the motor 240. The external light emitting unit 280 includes a light source that emits infrared light, and emits infrared light based on the control of the power reception control circuit 270.
 受電制御回路270は、電圧検出器260が検出する電圧に基づいて、DC-DCコンバータ250による電力の供給を制御する。また、受電制御回路270は、赤外光出射部280を制御する。具体的には、受電制御回路270は、移動体200の状態を示す信号を、赤外光出射部280に出力する。ここで、移動体200の状態には、移動体200の位置、方向、移動速度が含まれる。また、移動体200の状態には、キャパシタ230または蓄電部の充電状態、給電開始の要求、給電停止の要求、要求する給電量が含まれる。 The power reception control circuit 270 controls power supply by the DC-DC converter 250 based on the voltage detected by the voltage detector 260. In addition, the power reception control circuit 270 controls the infrared light emitting unit 280. Specifically, the power reception control circuit 270 outputs a signal indicating the state of the moving body 200 to the infrared light emitting unit 280. Here, the state of the moving body 200 includes the position, direction, and moving speed of the moving body 200. In addition, the state of the moving body 200 includes a charging state of the capacitor 230 or the power storage unit, a request for starting power supply, a request for stopping power supply, and a requested power supply amount.
[移動体200と非接触給電装置100との相対的な配置]
 ここで、図5を参照して、移動体200が非接触給電装置100の給電可能範囲RPS内に移動した場合の、各部の相対的な配置について説明する。図5は、本実施形態の移動体200と非接触給電装置100との配置の一例を示す図である。移動体200が非接触給電装置100の給電可能範囲RPS内に移動して、非接触給電装置100から給電を受ける場合を一例にして説明する。
[Relative arrangement of moving body 200 and non-contact power supply apparatus 100]
Here, with reference to FIG. 5, the relative arrangement of the respective parts when the moving body 200 moves within the power supply possible range RPS of the contactless power supply device 100 will be described. FIG. 5 is a diagram illustrating an example of the arrangement of the moving body 200 and the non-contact power supply apparatus 100 according to the present embodiment. A case where the moving body 200 moves within the power supply possible range RPS of the contactless power supply device 100 and receives power supply from the contactless power supply device 100 will be described as an example.
 受電制御回路270は、非接触給電装置100に接近すると、赤外光出射部280に対して「給電開始の要求」を示す信号を出力する。赤外光出射部280は、「給電開始の要求」を示す信号に応じた赤外光を出射する。また、受電制御回路270は、給電終了の条件が成立すると、赤外光出射部280に対して「給電終了の要求」を示す信号を出力する。赤外光出射部280は、「給電終了の要求」を示す信号に応じた赤外光を出射する。 When the power reception control circuit 270 approaches the non-contact power supply apparatus 100, the power reception control circuit 270 outputs a signal indicating “a power supply start request” to the infrared light emitting unit 280. The infrared light emitting unit 280 emits infrared light corresponding to a signal indicating “request for power supply start”. Further, the power reception control circuit 270 outputs a signal indicating “power supply end request” to the infrared light emitting unit 280 when the power supply end condition is satisfied. The infrared light emitting unit 280 emits infrared light corresponding to a signal indicating “request for power supply termination”.
 ここで、赤外光出射部280及び赤外光受光部150は、移動体200が給電可能範囲RPS内に位置する場合に、赤外光受光部150の受光可能範囲RLRが、赤外光出射部280の出射範囲RE内に含まれる位置に配置される。言い換えると、移動体200が給電可能範囲RPS内に位置する場合に、赤外光出射部280によって出射される赤外光の出射範囲REは、赤外光受光部150の受光可能範囲RLRを含む。この、赤外光出射部280及び赤外光受光部150の配置の具体例について、図6を参照して説明する。図6は、本実施形態の赤外光出射部280及び赤外光受光部150の配置の一例を示す図である。 Here, the infrared light emitting unit 280 and the infrared light receiving unit 150 are configured such that when the moving body 200 is located within the power supplyable range RPS, the light receiving range RLR of the infrared light receiving unit 150 is the infrared light emitting unit. The part 280 is disposed at a position included in the emission range RE. In other words, when the moving body 200 is located within the power supplyable range RPS, the infrared light emission range RE emitted by the infrared light emission unit 280 includes the receivable range RLR of the infrared light reception unit 150. . A specific example of the arrangement of the infrared light emitting unit 280 and the infrared light receiving unit 150 will be described with reference to FIG. FIG. 6 is a diagram illustrating an example of the arrangement of the infrared light emitting unit 280 and the infrared light receiving unit 150 according to the present embodiment.
[配置の具体例(1)]
 赤外光受光部150は、非接触給電装置100のX軸方向の任意の位置XRに配置される。赤外光出射部280は、移動体200のx軸方向の任意の位置xEに配置される。移動体200が、給電可能範囲RPS内に位置する場合、赤外光受光部150は、移動体200のx軸方向の位置x0に位置する。ここで、位置x0とは、位置xEから移動体200の進行方向前後にずれた位置の一例である。つまり、給電可能範囲RPS内に移動体200が位置する場合に、赤外光出射部280の位置は、非接触給電装置100の赤外光受光部150が配置されている位置から移動体200の進行方向前後にずれて配置される。
[Specific Example of Arrangement (1)]
The infrared light receiving unit 150 is disposed at an arbitrary position XR in the X-axis direction of the non-contact power supply apparatus 100. The infrared light emitting unit 280 is disposed at an arbitrary position xE in the x-axis direction of the moving body 200. When the moving body 200 is positioned within the power supplyable range RPS, the infrared light receiving unit 150 is positioned at the position x0 of the moving body 200 in the x-axis direction. Here, the position x0 is an example of a position shifted from the position xE in the traveling direction of the moving body 200. That is, when the moving body 200 is located within the power supplyable range RPS, the position of the infrared light emitting unit 280 is changed from the position where the infrared light receiving unit 150 of the non-contact power supply apparatus 100 is disposed. They are arranged shifted in the forward and backward direction.
 なお、同図には赤外光出射部280が、赤外光受光部150に対して移動体200の前進方向(+X方向)にずれて配置される場合を示すが、これに限られない。赤外光出射部280が、赤外光受光部150に対して後進方向(-X方向)にずれて配置されてもよい。この場合には、赤外光出射部280の出射方向は、前進方向(+X方向)である。 In addition, although the infrared light emission part 280 shows the case where it shift | deviates and arrange | positions in the advancing direction (+ X direction) of the mobile body 200 with respect to the infrared light light-receiving part 150 in the same figure, it is not restricted to this. The infrared light emitting unit 280 may be disposed so as to be shifted in the backward direction (−X direction) with respect to the infrared light receiving unit 150. In this case, the emitting direction of the infrared light emitting unit 280 is the forward direction (+ X direction).
 赤外光の出射範囲REは、赤外光出射部280を中心にして扇型に広がる。この扇型の出射範囲RE内に赤外光受光部150の受光可能範囲RLRが配置されれば、赤外光受光部150は、赤外光出射部280が出射する赤外光を受光可能である。 The infrared light emission range RE extends in a fan shape with the infrared light emission part 280 as the center. If the receivable range RLR of the infrared light receiving unit 150 is disposed within the fan-shaped emission range RE, the infrared light receiving unit 150 can receive the infrared light emitted from the infrared light emitting unit 280. is there.
 ここで、出射範囲REの面積を大きくすることにより、非接触給電装置100と移動体200とが通信可能な範囲を大きくすることができる。出射範囲REの面積が大きいほど、非接触給電装置100に対する移動体200の位置制御の精度を低減することができる。つまり、出射範囲REの面積が大きいほど、移動体200の位置制御を簡単にすることができる。 Here, by increasing the area of the emission range RE, it is possible to increase the range in which the non-contact power feeding apparatus 100 and the moving body 200 can communicate. The accuracy of the position control of the moving body 200 with respect to the non-contact power feeding apparatus 100 can be reduced as the area of the emission range RE is larger. That is, the position control of the moving body 200 can be simplified as the area of the emission range RE is larger.
 出射範囲REの配光特性、すなわち扇型の中心角及び扇型の半径は、赤外光出射部280の構成によって定められる。出射範囲REの面積を大きくする場合には、扇型の中心角を広げるか、扇型の半径を伸ばせばよい。光の直進性を考慮すれば、一般的には、扇型の中心角を広げるよりも、扇型の半径を伸ばすほうが、実現が容易である場合がある。つまりこの場合、出射範囲REの形状は、扇型の中心角が比較的広い場合に比べて、扇型の中心角が比較的狭く、半径が比較的大きい形状のほうが、実現が容易である。 The light distribution characteristics of the emission range RE, that is, the fan-shaped central angle and the fan-shaped radius are determined by the configuration of the infrared light emitting unit 280. In order to increase the area of the emission range RE, the center angle of the fan shape may be increased or the radius of the fan shape may be increased. Considering the straightness of light, in general, it may be easier to extend the fan-shaped radius than to expand the fan-shaped central angle. That is, in this case, the shape of the emission range RE is easier to realize when the fan-shaped central angle is relatively narrow and the radius is relatively large, compared to the case where the fan-shaped central angle is relatively wide.
 ここで、赤外光出射部280及び赤外光受光部150が移動体200の進行方向前後に、互いにずれて配置されると、赤外光出射部280が出射する赤外光の出射範囲REは、移動体200の進行方向に沿って広がる。したがって、赤外光出射部280及び赤外光受光部150が移動体200の進行方向前後に互いにずれた配置の場合、移動体200が進行方向にずれた場合においても、赤外光受光部150の受光可能範囲RLRが、出射範囲REに含まれる。ここで、移動体200が進行方向にずれた場合とは、移動体200の基準位置と、給電可能範囲RPSの基準位置とが、移動体200の進行方向に相違する場合をいう。一例として、移動体200の基準位置が中心CTRであり、給電可能範囲RPSの基準位置が給電可能範囲RPSの中心位置である場合について説明する。この場合、移動体200が進行方向にずれた場合とは、移動体200の中心CTRのX座標が、給電可能範囲RPSの中心位置のX座標と一致しない場合をいう。赤外光出射部280及び赤外光受光部150が、移動体200の進行方向前後に互いにずれて配置されることにより、出射範囲REの扇型の半径方向と、移動体200の進行方向とのなす角が小さくなる。すなわち、出射範囲REの扇型の半径方向と、x軸方向とのなす角が小さい。このため、赤外光出射部280及び赤外光受光部150が移動体200の進行方向前後に互いにずれた配置の場合、非接触給電装置100と移動体200とが通信可能な範囲が、移動体200の進行方向前後に広がる。つまり、上述した配置の場合、移動体200の進行方向前後の位置制御の精度を低減することができる。 Here, when the infrared light emitting unit 280 and the infrared light receiving unit 150 are arranged so as to be shifted from each other before and after the moving body 200 travels, the infrared light emitting range RE emitted by the infrared light emitting unit 280 is disposed. Spreads along the traveling direction of the moving body 200. Therefore, when the infrared light emitting unit 280 and the infrared light receiving unit 150 are arranged so as to be shifted from each other before and after the moving body 200 moves in the traveling direction, the infrared light receiving unit 150 even when the moving body 200 is shifted in the moving direction. The light receiving range RLR is included in the emission range RE. Here, the case where the moving body 200 is displaced in the traveling direction refers to a case where the reference position of the moving body 200 and the reference position of the power supplyable range RPS are different in the traveling direction of the moving body 200. As an example, a case where the reference position of the moving body 200 is the center CTR and the reference position of the power supplyable range RPS is the center position of the power supplyable range RPS will be described. In this case, the case where the moving body 200 is displaced in the traveling direction means a case where the X coordinate of the center CTR of the moving body 200 does not coincide with the X coordinate of the center position of the power feedable range RPS. The infrared light emitting unit 280 and the infrared light receiving unit 150 are arranged so as to be shifted from each other before and after the moving direction of the moving body 200, so that the fan-shaped radial direction of the emitting range RE and the moving direction of the moving body 200 are The angle formed by becomes smaller. That is, the angle formed by the fan-shaped radial direction of the emission range RE and the x-axis direction is small. For this reason, when the infrared light emitting unit 280 and the infrared light receiving unit 150 are arranged so as to be shifted from each other before and after the moving body 200 travels, the range in which the non-contact power feeding device 100 and the moving body 200 can communicate is Spreads around the direction of travel of body 200. That is, in the case of the arrangement described above, it is possible to reduce the accuracy of position control before and after the moving body 200 travels.
 なお、以下の具体例の説明において、具体例(1)と同様の構成については、具体例(1)と同一の符号を付してその説明を省略する。 In the following description of the specific example, the same reference numerals as those of the specific example (1) are used for the same configuration as the specific example (1), and the description thereof is omitted.
[配置の具体例(2)]
 上述したように、赤外光出射部280は、移動体200のx軸方向の任意の位置xEに配置される。この位置xEとは、移動体200の中心CTRから移動体200の進行方向前後にずれた位置である。つまり、赤外光出射部280の位置は、移動体200の中心から移動体200の進行方向前後にずれて配置される。すなわち、赤外光出射部280の位置は、具体例(1)に示すように赤外光受光部150が配置されている位置から移動体200の進行方向前後にずれて配置されてもよい。また、赤外光出射部280の位置は、具体例(2)に示すように、移動体200の中心から移動体200の進行方向前後にずれて配置されてもよい。
[Specific Example of Arrangement (2)]
As described above, the infrared light emitting unit 280 is disposed at an arbitrary position xE in the x-axis direction of the moving body 200. The position xE is a position shifted from the center CTR of the moving body 200 in the traveling direction of the moving body 200. That is, the position of the infrared light emitting unit 280 is shifted from the center of the moving body 200 in the traveling direction of the moving body 200. That is, the position of the infrared light emitting unit 280 may be shifted from the position where the infrared light receiving unit 150 is disposed before and after the moving body 200 in the traveling direction as shown in the specific example (1). Further, the position of the infrared light emitting unit 280 may be arranged so as to be shifted from the center of the moving body 200 in the traveling direction of the moving body 200 as shown in the specific example (2).
 赤外光出射部280の位置が、移動体200の中心から移動体200の進行方向前後にずれて配置された場合においても、非接触給電装置100と移動体200とが通信可能な範囲が、移動体200の進行方向前後に広がる。つまり、移動体200の中心から移動体200の進行方向前後にずれて配置された場合においても、移動体200の進行方向前後の位置制御の精度を低減することができる。 Even when the position of the infrared light emitting unit 280 is shifted from the center of the moving body 200 to the front and rear in the traveling direction of the moving body 200, the range in which the non-contact power feeding apparatus 100 and the moving body 200 can communicate is It spreads around the moving direction of the moving body 200. In other words, even when the mobile body 200 is arranged so as to be shifted from the center of the moving body 200 in the forward and backward directions, the accuracy of position control of the mobile body 200 in the forward and backward directions can be reduced.
[配置の具体例(3)]
 給電可能範囲RPS内に移動体200が位置する場合に、赤外光出射部280は、赤外光受光部150の位置から赤外光出射部280を見通せる位置に配置されてもよい。ここで、赤外光出射部280を見通せることの一例として、赤外光受光部150の位置から赤外光出射部280の位置までの範囲に赤外線を遮る障害物がないこと等である。具体的には、図6に示すように、給電可能範囲RPS内に移動体200が位置する場合に、赤外光受光部150の位置から赤外光出射部280の位置に向かう方向、すなわち見通し方向AXRに赤外線を遮る障害物がない。この場合には、給電可能範囲RPS内に移動体200が位置する場合に、赤外光受光部150は、赤外光出射部280を見通せる位置に配置されている。
[Specific example of arrangement (3)]
When the moving body 200 is located within the power supplyable range RPS, the infrared light emitting unit 280 may be disposed at a position where the infrared light emitting unit 280 can be seen from the position of the infrared light receiving unit 150. Here, as an example of being able to see through the infrared light emitting unit 280, there is no obstacle that blocks infrared rays in the range from the position of the infrared light receiving unit 150 to the position of the infrared light emitting unit 280. Specifically, as shown in FIG. 6, when the moving body 200 is located within the power supplyable range RPS, the direction from the position of the infrared light receiving unit 150 toward the position of the infrared light emitting unit 280, that is, the line of sight. There is no obstacle to block infrared rays in the direction AXR. In this case, when the moving body 200 is located within the power supplyable range RPS, the infrared light receiving unit 150 is disposed at a position where the infrared light emitting unit 280 can be seen.
 なお、上述した赤外線を遮る障害物には、移動体システム1以外の一般的な障害物のほか、非接触給電装置100の一部および、移動体200の一部が含まれていてもよい。つまり、非接触給電装置100の形状または移動体200の形状が、給電可能範囲RPS内に移動体200が位置する場合に、赤外光受光部150の位置から赤外光出射部280を見通せるように構成されていてもよい。 It should be noted that the obstacles that block infrared rays described above may include a part of the non-contact power feeding apparatus 100 and a part of the mobile body 200 in addition to general obstacles other than the mobile body system 1. In other words, when the shape of the non-contact power supply apparatus 100 or the shape of the moving body 200 is such that the moving body 200 is located within the power supplyable range RPS, the infrared light emitting section 280 can be seen from the position of the infrared light receiving section 150. It may be configured.
 また、赤外光受光部150の位置から赤外光出射部280の位置までの範囲に赤外線を遮る障害物があったとしても、給電可能範囲RPS内に移動体200が位置する場合に、赤外光出射部280から出射される赤外光を受光可能な位置に赤外光受光部150が配置されていればよい。この場合には、赤外光受光部150の位置から赤外光出射部280の位置までの範囲に赤外線を遮る障害物があったとしても、給電可能範囲RPS内に移動体200が位置する場合に、赤外光受光部150の位置から赤外光出射部280を見通せる位置に配置されるといえる。 Further, even if there is an obstacle that blocks infrared rays in the range from the position of the infrared light receiving unit 150 to the position of the infrared light emitting unit 280, when the moving body 200 is located within the power supplyable range RPS, It is only necessary that the infrared light receiving unit 150 is disposed at a position where infrared light emitted from the external light emitting unit 280 can be received. In this case, even when there is an obstacle that blocks infrared rays in the range from the position of the infrared light receiving unit 150 to the position of the infrared light emitting unit 280, the moving body 200 is located within the power supplyable range RPS. Further, it can be said that the infrared light receiving unit 150 is disposed at a position where the infrared light emitting unit 280 can be seen through.
 給電可能範囲RPS内に移動体200が位置する場合に、赤外光受光部150の位置から赤外光出射部280を見通せる位置に配置されることにより、非接触給電装置100と移動体200との間の赤外線通信が障害物によって阻害されない。つまり、赤外光受光部150の位置から赤外光出射部280を見通せる位置に配置されることにより、移動体システム1は、安定した赤外線通信を行うことができる。 When the moving body 200 is located within the power supply possible range RPS, the non-contact power supply apparatus 100 and the moving body 200 are arranged by being positioned at a position where the infrared light emitting section 280 can be seen from the position of the infrared light receiving section 150. Infrared communication between is not disturbed by obstacles. That is, the mobile system 1 can perform stable infrared communication by being arranged at a position where the infrared light emitting unit 280 can be seen from the position of the infrared light receiving unit 150.
[配置の具体例(4)]
 図7は、本実施形態の赤外光出射部280による赤外光の光軸AXEの方向の一例を示す図である。赤外光出射部280による赤外光の光軸AXEの方向は、移動体200の進行方向の成分を含んでいてもよい。赤外光出射部280は、光軸AXEの方向に赤外光を出射する。ここで、移動体200の進行方向DTとは、同図の±X方向である。赤外光出射部280が出射する赤外光の光軸AXEは、移動体200の進行方向DTの成分を含む。なお、この一例では、光軸AXEは、移動体200の後進方向(-X方向)の成分を含むが、これに限られない。光軸AXEは、移動体200の前進方向(+X方向)の成分を含んでいてもよい。
[Specific Example of Arrangement (4)]
FIG. 7 is a diagram illustrating an example of the direction of the optical axis AX of infrared light by the infrared light emitting unit 280 of the present embodiment. The direction of the optical axis AX of infrared light by the infrared light emitting unit 280 may include a component in the traveling direction of the moving body 200. The infrared light emitting unit 280 emits infrared light in the direction of the optical axis AXE. Here, the traveling direction DT of the moving body 200 is the ± X direction in FIG. The optical axis AXE of the infrared light emitted from the infrared light emitting unit 280 includes a component in the traveling direction DT of the moving body 200. In this example, the optical axis AXE includes a component in the backward direction (−X direction) of the moving body 200, but is not limited thereto. The optical axis AXE may include a component in the forward direction (+ X direction) of the moving body 200.
 上述したように、光軸AXEの方向が、移動体200の進行方向の成分を含んでいれば、赤外光出射部280の出射範囲REの扇型の半径方向と、x軸方向とのなす角が小さい。このため、赤外光出射部280による赤外光の光軸AXEの方向が移動体200の進行方向の成分を含んでいる場合、非接触給電装置100と移動体200とが通信可能な範囲が、移動体200の進行方向前後に広がる。つまり、上述した配置の場合、移動体200の進行方向前後の位置制御の精度を低減することができる。 As described above, if the direction of the optical axis AXE includes a component in the traveling direction of the moving body 200, the fan-shaped radial direction of the emission range RE of the infrared light emission unit 280 and the x-axis direction form. The corner is small. For this reason, when the direction of the optical axis AXE of the infrared light by the infrared light emitting unit 280 includes a component in the traveling direction of the moving body 200, there is a range in which the contactless power supply device 100 and the moving body 200 can communicate. The mobile body 200 spreads forward and backward. That is, in the case of the arrangement described above, it is possible to reduce the accuracy of position control before and after the moving body 200 travels.
[配置の具体例(5)]
 図6に戻り、赤外光出射部280は、移動体200のx軸方向の位置xEに配置される。この位置xEとは、受電共振器210が配置される位置から移動体200の進行方向前後にずれた位置である。つまり、赤外光出射部280の位置は、受電共振器210が配置される位置から移動体200の進行方向前後にずれて配置される。すなわち、赤外光出射部280の位置は、具体例(1)及び具体例(2)に示すもののほか、受電共振器210が配置される位置から移動体200の進行方向前後にずれて配置されてもよい。
[Specific example of arrangement (5)]
Returning to FIG. 6, the infrared light emitting unit 280 is disposed at the position xE of the moving body 200 in the x-axis direction. This position xE is a position shifted from the position where the power receiving resonator 210 is disposed to the front and rear in the traveling direction of the moving body 200. That is, the position of the infrared light emitting unit 280 is shifted from the position where the power receiving resonator 210 is disposed before and after the moving body 200 in the traveling direction. That is, the position of the infrared light emitting unit 280 is shifted from the position where the power receiving resonator 210 is arranged in the traveling direction of the moving body 200 in addition to those shown in the specific examples (1) and (2). May be.
 赤外光出射部280の位置が、受電共振器210が配置される位置から移動体200の進行方向前後にずれて配置された場合においても、非接触給電装置100と移動体200とが通信可能な範囲が、移動体200の進行方向前後に広がる。つまり、受電共振器210が配置される位置から移動体200の進行方向前後にずれて配置された場合においても、移動体200の進行方向前後の位置制御の精度を低減することができる。 The contactless power feeding device 100 and the mobile body 200 can communicate even when the position of the infrared light emitting unit 280 is shifted from the position where the power receiving resonator 210 is disposed to the front and rear in the traveling direction of the mobile body 200. A wide range extends before and after the moving body 200 travels. In other words, even when the power receiving resonator 210 is arranged so as to be shifted before and after the moving direction of the moving body 200, the accuracy of position control before and after the moving direction of the moving body 200 can be reduced.
[配置の具体例(6)]
 また、赤外光出射部280は、光源から出射される赤外光の出射範囲REを広げる光学素子281を備えていてもよい。図8は、本実施形態の光学素子281を備える赤外光出射部280による赤外光の出射範囲RE2の一例を示す図である。赤外光出射部280から出射される赤外光は、光学素子281によってその出射範囲が出射範囲REから出射範囲RE2に拡大される。ここで、光学素子281とは、例えば、レンズなどの屈折素子や、鏡などの反射素子、格子などの回折素子である。
[Specific Example of Arrangement (6)]
In addition, the infrared light emitting unit 280 may include an optical element 281 that widens the emission range RE of infrared light emitted from the light source. FIG. 8 is a diagram illustrating an example of an infrared light emission range RE2 by the infrared light emission unit 280 including the optical element 281 of the present embodiment. The infrared light emitted from the infrared light emitting unit 280 has its emission range expanded from the emission range RE to the emission range RE2 by the optical element 281. Here, the optical element 281 is, for example, a refractive element such as a lens, a reflective element such as a mirror, or a diffractive element such as a grating.
 ここで、赤外光出射部280から出射される赤外光の出射範囲REが拡大されれば、出射範囲REの扇型の中心角が広がり、非接触給電装置100と移動体200とが通信可能な範囲が、移動体200の左右方向(±Y方向)に広がる。つまり、上述した配置の場合、移動体200の左右方向の位置制御の精度を低減することができる。したがって、上述した具体例(1)から具体例(5)までの配置と、具体例(6)の配置とを組み合わせることにより、移動体200の前後方向及び左右方向の位置制御の精度を低減することができる。 Here, if the emission range RE of the infrared light emitted from the infrared light emission unit 280 is expanded, the fan-shaped central angle of the emission range RE is widened, and the non-contact power feeding apparatus 100 and the moving body 200 communicate with each other. A possible range extends in the left-right direction (± Y direction) of the moving body 200. That is, in the case of the arrangement described above, the accuracy of the position control of the moving body 200 in the left-right direction can be reduced. Therefore, by combining the arrangement from the specific example (1) to the specific example (5) described above and the arrangement of the specific example (6), the accuracy of position control of the moving body 200 in the front-rear direction and the left-right direction is reduced. be able to.
 なお、上記実施形態及び各変形例における構成は、相互に矛盾しない限り適宜組み合わせられてよい。 It should be noted that the configurations in the above-described embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 1…移動体システム、50…DC電源、100…非接触給電装置、110…送電共振器、112…送電コイル、120…インバータ回路、140…送電制御回路、150…赤外光受光部、200…移動体、201…搬送台、202…動輪、210…受電共振器、212…受電コイル、220…整流器、230…キャパシタ、240…モータ、250…DC-DCコンバータ、260…電圧検出器、270…受電制御回路、280…赤外光出射部、281…光学素子、RPS…給電可能範囲、RLR…受光可能範囲、RE…出射範囲、AXR…見通し方向 DESCRIPTION OF SYMBOLS 1 ... Mobile body system, 50 ... DC power supply, 100 ... Non-contact electric power feeder, 110 ... Power transmission resonator, 112 ... Power transmission coil, 120 ... Inverter circuit, 140 ... Power transmission control circuit, 150 ... Infrared light receiving part, 200 ... Moving body, 201 ... conveying platform, 202 ... moving wheel, 210 ... receiving resonator, 212 ... receiving coil, 220 ... rectifier, 230 ... capacitor, 240 ... motor, 250 ... DC-DC converter, 260 ... voltage detector, 270 ... Power reception control circuit, 280... Infrared light emitting unit, 281... Optical element, RPS... Power supply range, RLR... Receivable range, RE.

Claims (7)

  1.  非接触給電装置と、前記非接触給電装置から無線で伝送された電力によって駆動される移動体と、を備え、
     前記非接触給電装置は、
     非接触給電方式により電力を送電する送電共振器と、
     赤外光を受光する赤外光受光部と、
     前記赤外光受光部が受光する赤外光に基づいて、前記送電共振器による電力供給を制御する送電制御回路と、
     を備え、
     前記移動体は、
     前記送電共振器が供給する電力を受電する受電共振器と、
     前記受電共振器が受電した電力を蓄電する蓄電部と、
     前記蓄電部に蓄電される電力によって前記移動体を移動させるモータと、
     前記移動体の状態を示す赤外光を出射する光源を有する赤外光出射部と、
     を備え、
     前記送電共振器と前記受電共振器とによる非接触給電が可能である給電可能範囲内に前記移動体が位置する場合に、前記赤外光出射部によって出射される赤外光の出射範囲は、前記赤外光受光部の受光可能範囲を含む、移動体システム。
    A non-contact power feeding device, and a moving body driven by the power transmitted wirelessly from the non-contact power feeding device,
    The non-contact power feeding device is:
    A power transmission resonator that transmits power by a non-contact power feeding method;
    An infrared light receiving part for receiving infrared light;
    Based on infrared light received by the infrared light receiving unit, a power transmission control circuit for controlling power supply by the power transmission resonator;
    With
    The moving body is
    A power receiving resonator that receives power supplied by the power transmitting resonator;
    A power storage unit that stores the power received by the power receiving resonator; and
    A motor that moves the moving body with electric power stored in the power storage unit;
    An infrared light emitting unit having a light source that emits infrared light indicating the state of the moving body;
    With
    When the moving body is located within a power supply possible range where non-contact power supply by the power transmission resonator and the power reception resonator is possible, an emission range of infrared light emitted by the infrared light emission unit is A movable body system including a receivable range of the infrared light receiving unit.
  2.  前記給電可能範囲内に前記移動体が位置する場合に、前記赤外光出射部の位置は、前記非接触給電装置の前記赤外光受光部が配置されている位置から前記移動体の進行方向前後にずれて配置される、請求項1に記載の移動体システム。 When the moving body is located within the power supply possible range, the position of the infrared light emitting unit is the traveling direction of the moving body from the position where the infrared light receiving unit of the non-contact power feeding device is disposed. The mobile body system according to claim 1, wherein the mobile body system is arranged so as to be displaced forward and backward.
  3.  前記赤外光出射部の位置は、
     前記移動体の中心から前記移動体の進行方向前後にずれて配置される、
     請求項1又は請求項2に記載の移動体システム。
    The position of the infrared light emitting part is
    It is displaced from the center of the moving body before and after the moving direction of the moving body,
    The mobile body system according to claim 1 or claim 2.
  4.  前記赤外光の光軸の方向は、前記移動体の進行方向の成分を含む、
     請求項1から請求項3のいずれか一項に記載の移動体システム。
    The direction of the optical axis of the infrared light includes a component of the moving direction of the moving body,
    The mobile system according to any one of claims 1 to 3.
  5.  前記赤外光出射部の位置は、
     前記受電共振器が配置される位置から前記移動体の進行方向前後にずれて配置される、
     請求項1から請求項4のいずれか一項に記載の移動体システム。
    The position of the infrared light emitting part is
    The power receiving resonator is disposed so as to deviate from the position where the power receiving resonator is disposed in the traveling direction of the moving body.
    The mobile body system as described in any one of Claims 1-4.
  6.  前記給電可能範囲内に前記移動体が位置する場合に、前記赤外光出射部は、前記赤外光受光部の位置から前記赤外光出射部を見通せる位置に配置される、
     請求項1から請求項5のいずれか一項に記載の移動体システム。
    When the movable body is located within the power supply possible range, the infrared light emitting unit is disposed at a position where the infrared light emitting unit can be seen from the position of the infrared light receiving unit,
    The mobile body system as described in any one of Claims 1-5.
  7.  前記赤外光出射部は、
     前記光源から出射される赤外光の出射範囲を広げる光学素子を備える、
     請求項1から請求項6のいずれか一項に記載の移動体システム。
    The infrared light emitting part is
    An optical element that expands an emission range of infrared light emitted from the light source;
    The moving body system according to any one of claims 1 to 6.
PCT/JP2017/007803 2016-05-19 2017-02-28 Mobile body system WO2017199528A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018518105A JPWO2017199528A1 (en) 2016-05-19 2017-02-28 Mobile system
CN201790000839.2U CN209290188U (en) 2016-05-19 2017-02-28 Movable body system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-100242 2016-05-19
JP2016100242 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017199528A1 true WO2017199528A1 (en) 2017-11-23

Family

ID=60325932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007803 WO2017199528A1 (en) 2016-05-19 2017-02-28 Mobile body system

Country Status (3)

Country Link
JP (1) JPWO2017199528A1 (en)
CN (1) CN209290188U (en)
WO (1) WO2017199528A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296304A (en) * 1993-04-06 1994-10-21 Murata Mach Ltd Linear conveying truck
JP2012095471A (en) * 2010-10-28 2012-05-17 Daifuku Co Ltd Inductive power receiving circuit
JP2012239334A (en) * 2011-05-12 2012-12-06 Ihi Corp Vehicle and non contact power supply system
WO2014207970A1 (en) * 2013-06-26 2014-12-31 村田機械株式会社 Road vehicle system and method for saving power in road vehicle system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296304A (en) * 1993-04-06 1994-10-21 Murata Mach Ltd Linear conveying truck
JP2012095471A (en) * 2010-10-28 2012-05-17 Daifuku Co Ltd Inductive power receiving circuit
JP2012239334A (en) * 2011-05-12 2012-12-06 Ihi Corp Vehicle and non contact power supply system
WO2014207970A1 (en) * 2013-06-26 2014-12-31 村田機械株式会社 Road vehicle system and method for saving power in road vehicle system

Also Published As

Publication number Publication date
CN209290188U (en) 2019-08-23
JPWO2017199528A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US20190190301A1 (en) Mobile body and mobile body system
US9908426B2 (en) Vehicle and mobile body system
EP2677385B1 (en) Transport carriage system and method for controlling running of transport carriage
JP2006345588A (en) Noncontact power supply and power supply system for autonomous mobile unit
WO2012153807A1 (en) Vehicle and non-contact power supply system
US20120053827A1 (en) Traveling vehicle and method of controlling the same
JP5287810B2 (en) Traveling vehicle system
US20200269712A1 (en) Wireless battery charging system for automatic guided vehicles
ES2299307B2 (en) TRANSPORTATION DEVICE.
JP2019126234A (en) Vehicle and inter-vehicle charging system using the same
KR101308868B1 (en) Automated moving object and wireless infrared communicating method for the same
US10549651B2 (en) Mobile body and mobile body system
JP2016103938A (en) Vehicle power supply equipment
WO2017199528A1 (en) Mobile body system
JP2016093023A (en) Coil system, non-contact power supply system and auxiliary magnetic member
WO2016147571A1 (en) Automatic power supply system, automatic power supply device, and autonomous moving system
JP7039976B2 (en) Transport vehicle system
JP2015043238A (en) Transport system
JP7327761B2 (en) Coil position adjustment mechanism and contactless power supply system
JP6846314B2 (en) Non-contact power supply device for AGV
KR102246796B1 (en) Method of preventing transferring vehicles from colliding with each other
JP2019146371A (en) Automatic guided vehicle
KR102358383B1 (en) RTV system having contactless type power supply
JP6663054B1 (en) Power supply system and vehicle for unmanned aerial vehicles
JP6255793B2 (en) Transport vehicle system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018518105

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17798965

Country of ref document: EP

Kind code of ref document: A1