WO2017199375A1 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
WO2017199375A1
WO2017199375A1 PCT/JP2016/064751 JP2016064751W WO2017199375A1 WO 2017199375 A1 WO2017199375 A1 WO 2017199375A1 JP 2016064751 W JP2016064751 W JP 2016064751W WO 2017199375 A1 WO2017199375 A1 WO 2017199375A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power supply
unit
air
power
Prior art date
Application number
PCT/JP2016/064751
Other languages
French (fr)
Japanese (ja)
Inventor
美智央 尾▲崎▼
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2016/064751 priority Critical patent/WO2017199375A1/en
Publication of WO2017199375A1 publication Critical patent/WO2017199375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway

Definitions

  • the present invention relates to a contactless power transmission device that transmits power in a contactless manner.
  • a non-contact power transmission device that transmits electric power to an electric vehicle in a non-contact manner includes a power transmission unit that includes a power transmission coil, and the power transmission unit is installed at a suitable location in a parking space. Since such a power transmission unit is a closed space, if the power transmission coil is excited during power transmission, the temperature in the power transmission unit may increase due to heat generation. Therefore, Patent Document 1 discloses that an intake port is provided in the power transmission unit to ventilate the inside of the power transmission unit to suppress a temperature rise.
  • Patent Document 1 since the conventional example disclosed in Patent Document 1 is provided with an intake port in the power transmission unit, there is a possibility that foreign matters such as muddy water and dust may enter from the intake port. As a result, foreign matter is clogged inside the power transmission unit, and it has been difficult to efficiently cool the power transmission unit.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a non-contact power transmission device capable of preventing foreign matter from entering the power transmission unit. is there.
  • a contactless power transmission device includes a power transmission unit in which a power transmission coil is housed, a power source unit in which a power supply device is housed, and a power source unit that communicates with the power transmission unit.
  • a ventilation duct is provided to send air to the power transmission unit.
  • FIG. 1 is an explanatory diagram illustrating a configuration of the contactless power transmission device according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating the internal configuration of the connection portion of the non-contact power transmission apparatus according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating a configuration of the contactless power transmission device according to the second embodiment.
  • FIG. 4 is a cross-sectional view illustrating the internal configuration of the connection portion of the non-contact power transmission apparatus according to the second embodiment.
  • FIG. 5 is a cross-sectional view illustrating another example of the internal configuration of the connection portion of the contactless power transmission device according to the second embodiment.
  • FIG. 6 is an explanatory diagram illustrating a configuration of the contactless power transmission device according to the third embodiment.
  • FIG. 1 is an explanatory diagram showing the configuration of the non-contact power transmission apparatus according to the first embodiment of the present invention.
  • the non-contact power transmission apparatus 101 according to the first embodiment supplies power to the power transmission unit 11 that is installed in the vicinity of the parking space and the power transmission unit 11 provided on the ground of the parking space on the ground.
  • the power transmission unit 11 has a structure in which the upper surface is closed in order to prevent foreign matters such as muddy water and dust from entering the inside.
  • a power transmission coil 21 is housed inside the power transmission unit 11, and power can be transmitted using the power transmission coil 21. That is, when an electric vehicle (not shown) stops at an appropriate position in the parking space and the power receiving coil of the electric vehicle is disposed at a position facing the power transmitting coil 21, the power transmitting coil 21 is excited to contact the electric vehicle. The power can be transmitted to the power receiving coil side. Further, the power transmission unit 11 is provided with an exhaust hole 25 for exhausting air staying inside.
  • the power supply unit 12 has a closed casing shape, and a power supply device 23 for supplying power to the power transmission coil 21 is provided inside.
  • An air inlet 24 for introducing outside air into the power supply unit 12 is provided.
  • the power supply device 23 includes a rectifier circuit that converts AC power supplied from an external commercial power supply (not shown) into DC, an inverter circuit that converts the rectified power into AC having a desired frequency, and the like.
  • the power supply device 23 is disposed at a position higher than the intake port 24.
  • connection part 13 the electric wire 26 for connecting the power supply device 23 and the power transmission coil 21 is installed. Therefore, the alternating current output from the power supply device 23 is supplied to the power transmission coil 21 via the electric wire 26. Further, a blower duct 22 that communicates between the power supply unit 12 and the power transmission unit 11 is provided in the connection unit 13. One end of the air duct 22 is connected to the suction unit 27 of the power supply unit 12, and the other end is connected to the power transmission unit 11. The suction unit 27 is disposed at a position lower than the intake port 24. Further, as described above, since the power supply device 23 is disposed at a position higher than the intake port 24, the power supply device 23 is located at a position higher than the suction portion 27. For this reason, it can suppress as much as possible that the air heated with the power supply device 23 introduce
  • FIG. 2 is a cross-sectional view of the connecting portion 13, and as shown in FIG. 2, a wiring cover 31 having a semicircular cross section that covers the ground 33 is provided.
  • the air duct 22 and the electric wires 26 are arranged.
  • the air duct 22 is in contact with the ground 33.
  • the connection part 13 can also be set as the structure which forms a groove
  • the operation of the non-contact power transmission apparatus 101 When performing non-contact power transmission, the output power of the power supply device 23 is supplied to the power transmission coil 21 via the electric wire 26. Then, the power transmission coil 21 is excited. At this time, since the power transmission coil 21 generates heat, the internal air of the power transmission unit 11 is heated and the temperature rises.
  • external air air having a low temperature
  • this air is introduced from the air inlet 24 provided in the power supply unit 12, and this air is introduced from the suction unit 27 to the air duct 22, and further, via the air duct 22, It is supplied into the power transmission unit 11. That is, since the low-temperature air flows downward, an airflow from the suction unit 27 toward the power transmission unit 11 is naturally generated. Therefore, external air is introduced into the power transmission unit 11, and the inside of the power transmission unit 11 can be cooled. And the air in the power transmission part 11 is discharged
  • the air inlet 24 is provided in the power supply unit 12, and further, air is blown into the connection unit 13 between the power supply unit 12 and the power transmission unit 11.
  • a duct 22 is provided. Therefore, external air introduced into the power supply unit 12 from the air inlet 24 can be supplied into the power transmission unit 11, and the power transmission unit 11 can be cooled.
  • the power transmission part 11 since the power transmission part 11 is not provided with an inlet port, it can avoid that foreign materials, such as muddy water and garbage, penetrate
  • the suction part 27 of the air duct 22 is provided at a position lower than the intake port 24 in the power supply unit 12, the low-temperature air introduced from the intake port 24 in the power supply unit 12 is sucked in the suction unit 27. More introduced. That is, since air having a relatively low temperature can be supplied into the power transmission unit 11, the cooling efficiency in the power transmission unit 11 can be increased.
  • the power supply device 23 is disposed at a position higher than the intake port 24, so that it is possible to avoid introducing air heated by the power supply device 23 into the air duct 22. it can.
  • the air duct 22 disposed in the connection portion 13 is disposed so as to contact the ground 33 having a relatively low temperature, the air flowing through the air duct 22 can be cooled. Therefore, the cooling efficiency in the power transmission unit 11 can be further improved.
  • a cooling device (not shown) for cooling the air supplied to the blower duct 22 is provided in the vicinity of the suction part 27 of the blower duct 22 of the power supply unit 12. Is also possible. With such a configuration, the cooling efficiency of the power transmission unit 11 can be further improved.
  • an exhaust port (not shown) for discharging the air of the power supply unit 12 to the outside can be provided at an appropriate position above the power supply unit 12.
  • the air heated by the power supply device 23 can be efficiently discharged to the outside, the temperature rise of the air in the power supply unit 12 can be suppressed, and as a result, the cooling efficiency in the power transmission unit 11 can be suppressed. Can be improved.
  • the wiring cover 31 may be divided into a plurality of parts along the longitudinal direction. With such a configuration, it is possible to easily remove the wiring cover 31 and perform maintenance or the like.
  • FIG. 3 is an explanatory diagram showing the configuration of the non-contact power transmission apparatus according to the second embodiment of the present invention.
  • the non-contact power transmission apparatus 102 according to the second embodiment is installed in the vicinity of the power transmission unit 11 a provided on the ground of the parking space and the parking space, as in the first embodiment described above.
  • a power supply unit 12a that supplies power to the power transmission unit 11a
  • a connection unit 13a that connects the power transmission unit 11a and the power supply unit 12a.
  • the power transmission unit 11a is different from the power transmission unit 11 shown in FIG. 1 of the first embodiment in that the exhaust hole 25 is not provided. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted.
  • connection part 13a is provided with an electric wire 26 for connecting the power supply device 23 and the power transmission coil 21 as in the first embodiment.
  • a blower duct 32 that communicates between the power supply unit 12a and the power transmission unit 11a is provided in the connection unit 13a, and an exhaust duct 42 that communicates between the power transmission unit 11a and the power supply unit 12a.
  • the ventilation duct 32 and the exhaust duct 42 are comprised by one duct is shown. That is, the air sent from the suction part 27 to the power transmission part 11a via the air duct 32 is returned to the power supply part 12a via the exhaust duct 42 and introduced into the power supply part 12a from the exhaust part 29.
  • the air duct 32 is in contact with the ground 33, and the exhaust duct 42 is disposed so as not to contact the ground 33. For this reason, the air flowing through the air duct 32 can be cooled, and heat generated from the exhaust duct 42 can be prevented from being transmitted to the air duct 32 through the ground 33.
  • the power supply unit 12a includes the exhaust unit 29 of the exhaust duct 42 and the exhaust port 30 at an appropriate upper position. Is different. Since other configurations are the same as those in FIG. 1, the same reference numerals are given and detailed description thereof is omitted.
  • the exhaust port 30 is an opening for discharging the air in the power supply unit 12 a to the outside, and is disposed at a position higher than the intake port 24.
  • the operation of the non-contact power transmission apparatus 101 according to the second embodiment will be described.
  • the voltage output from the power supply device 23 is supplied to the power transmission coil 21 via the electric wire 26. Then, the power transmission coil 21 is excited. At this time, since the power transmission coil 21 generates heat, the air inside the power transmission unit 11a is heated and the temperature rises.
  • the exhaust part 29 is provided at a position higher than the suction part 27, the high-temperature air introduced into the power supply part 12a from the exhaust part 29 rises in the power supply part 12a, and the exhaust port 30 is discharged to the outside.
  • the air inlet 24 is provided in the power supply unit 12a, and the air duct 32 and the power transmission unit 11a are further provided between the power supply unit 12a and the power transmission unit 11a.
  • An exhaust duct 42 is provided. Therefore, it is possible to cool the inside of the power transmission unit 11a using external air introduced into the inside through the air inlet 24.
  • the power transmission part 11a since the power transmission part 11a is not provided with an inlet port, it can avoid that foreign materials, such as rainwater and mud, penetrate
  • the suction portion 27 of the air duct 32 is provided at a position lower than the intake port 24 in the power supply unit 12a, the low-temperature air introduced from the intake port 24 in the power supply unit 12a is the suction unit 27. As a result, the cooling efficiency in the power transmission unit 11a can be increased.
  • the power supply device 23 is disposed at a position higher than the intake port 24 in the power supply unit 12a, contact between the air heated by the power supply device 23 and the air introduced from the intake port 24 is minimized. Can be suppressed. Therefore, it is possible to avoid introduction of air heated by the power supply device 23 into the air duct 22.
  • the exhaust part 29 is arranged at a position higher than the intake port 24, the high-temperature air in the power supply part 12a can be efficiently exhausted to the outside.
  • the air duct 32 is in contact with the ground 33, and the air flowing through the air duct 32 is cooled. Therefore, the cooling efficiency in the power transmission unit 11a can be further improved. Further, since the exhaust duct 42 is not in contact with the ground 33, heat generated from the exhaust duct 42 can be prevented from being transmitted to the blower duct 32 through the ground 33, and cooling efficiency can be further increased. It becomes possible. Furthermore, the cooling efficiency can be improved by disposing the exhaust duct 42 at a position as far away as possible from the blower duct 22.
  • the second embodiment may have a configuration in which a cooling device (not shown) is provided in the vicinity of the suction unit 27 in the power supply unit 12a, as in the first embodiment described above. Furthermore, it is good also as a structure which can divide
  • FIG. 5 is a cross-sectional view of a connecting portion 13a according to a modification.
  • the heat insulating material 61 is filled in the connection portion 13a. Therefore, even when the temperature of the wiring cover 31 rises due to sunlight shining on the wiring cover 31 or the like, it is possible to prevent heat from being transmitted to the air duct 32, and to further improve the cooling efficiency of the power transmission unit 11a. It becomes possible to improve.
  • FIG. 6 is an explanatory diagram showing the configuration of the non-contact power transmission apparatus according to the third embodiment of the present invention.
  • the non-contact power transmission apparatus 103 according to the third embodiment includes a power transmission unit 11b, a power supply unit 12b, and a connection unit 13b.
  • the ventilation duct 32 and the exhaust duct 42 are isolate
  • the end of the exhaust duct 42 on the power transmission unit 11b side is connected to an exhaust hole 40 provided in the power transmission unit 11b.
  • the air introduced into the power transmission unit 11b from the blower duct 32 passes through the power transmission unit 11b. Thereafter, the air is returned to the power supply unit 12b via the exhaust hole 40 and the exhaust duct 42.
  • the contactless power transmission device of the present invention has been described based on the illustrated embodiment.
  • the present invention is not limited to this, and the configuration of each part is replaced with an arbitrary configuration having the same function. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)

Abstract

The present invention is provided with: a power transmission unit (11), which is provided on the ground, and which houses therein a power transmission coil (21) that transmits power in a non-contact manner; a power supply unit (12) that houses therein a power supply device (23) that supplies power to the power transmission unit (11); and an air duct (22), which is in communication with the power supply unit (12) to the power transmission unit (11), and which sends air in the power supply unit (12) to the power transmission unit(11). The power supply unit (12) has an inlet (24) for introducing outside air, and the inlet (24) is provided at a position higher than that of a suction section (27) of the air duct (22).

Description

非接触送電装置Contactless power transmission equipment
 本発明は、非接触で電力を送電する非接触送電装置に関する。 The present invention relates to a contactless power transmission device that transmits power in a contactless manner.
 電気自動車に非接触で電力を送電する非接触送電装置は、送電コイルを備える送電部を備えており、該送電部は駐車スペースの適所に設置されている。このような送電部は閉塞された空間であるので、送電時に送電コイルを励磁させると、発熱により送電部内の温度が上昇する虞がある。そこで、特許文献1には、送電部に吸気口を設けて送電部内を換気して、温度上昇を抑制することが開示されている。 A non-contact power transmission device that transmits electric power to an electric vehicle in a non-contact manner includes a power transmission unit that includes a power transmission coil, and the power transmission unit is installed at a suitable location in a parking space. Since such a power transmission unit is a closed space, if the power transmission coil is excited during power transmission, the temperature in the power transmission unit may increase due to heat generation. Therefore, Patent Document 1 discloses that an intake port is provided in the power transmission unit to ventilate the inside of the power transmission unit to suppress a temperature rise.
特開2013-198357号公報JP 2013-198357 A
 しかしながら、特許文献1に開示された従来例は、送電部に吸気口を設けているので、該吸気口から泥水やごみ等の異物が侵入する可能性がある。そのため、送電部の内部に異物が詰まり、送電部内を効率良く冷却することが難しいという問題が発生していた。 However, since the conventional example disclosed in Patent Document 1 is provided with an intake port in the power transmission unit, there is a possibility that foreign matters such as muddy water and dust may enter from the intake port. As a result, foreign matter is clogged inside the power transmission unit, and it has been difficult to efficiently cool the power transmission unit.
 本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、送電部内への異物の侵入を防止することが可能な非接触送電装置を提供することにある。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a non-contact power transmission device capable of preventing foreign matter from entering the power transmission unit. is there.
 本発明の一態様に係る非接触送電装置は、内部に送電コイルが収容された送電部と、内部に電源装置が収容された電源部と、電源部から送電部に連通して前記電源部の空気を送電部に送る送風ダクトを備える。 A contactless power transmission device according to one aspect of the present invention includes a power transmission unit in which a power transmission coil is housed, a power source unit in which a power supply device is housed, and a power source unit that communicates with the power transmission unit. A ventilation duct is provided to send air to the power transmission unit.
 本発明の一態様によれば、送電部内に異物が侵入することを防止し、且つ送電部内を効率良く冷却することが可能となる。 According to one aspect of the present invention, it is possible to prevent foreign matter from entering the power transmission unit and to efficiently cool the power transmission unit.
図1は、第1実施形態に係る非接触送電装置の構成を示す説明図である。FIG. 1 is an explanatory diagram illustrating a configuration of the contactless power transmission device according to the first embodiment. 図2は、第1実施形態に係る非接触送電装置の、接続部の内部構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating the internal configuration of the connection portion of the non-contact power transmission apparatus according to the first embodiment. 図3は、第2実施形態に係る非接触送電装置の構成を示す説明図である。FIG. 3 is an explanatory diagram illustrating a configuration of the contactless power transmission device according to the second embodiment. 図4は、第2実施形態に係る非接触送電装置の、接続部の内部構成を示す断面図である。FIG. 4 is a cross-sectional view illustrating the internal configuration of the connection portion of the non-contact power transmission apparatus according to the second embodiment. 図5は、第2実施形態に係る非接触送電装置の、接続部の内部構成の他の例を示す断面図である。FIG. 5 is a cross-sectional view illustrating another example of the internal configuration of the connection portion of the contactless power transmission device according to the second embodiment. 図6は、第3実施形態に係る非接触送電装置の構成を示す説明図である。FIG. 6 is an explanatory diagram illustrating a configuration of the contactless power transmission device according to the third embodiment.
 以下、本発明の実施形態について図面を参照して説明する。
[第1実施形態の説明]
 図1は、本発明の第1実施形態に係る非接触送電装置の構成を示す説明図である。図1に示すように、第1実施形態に係る非接触送電装置101は、地上の駐車スペースの地面に設けられた送電部11と、駐車スペースの近傍に設置されて送電部11に電力を供給する電源部12と、送電部11と電源部12との間を接続する接続部13を備えている。
Embodiments of the present invention will be described below with reference to the drawings.
[Description of First Embodiment]
FIG. 1 is an explanatory diagram showing the configuration of the non-contact power transmission apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the non-contact power transmission apparatus 101 according to the first embodiment supplies power to the power transmission unit 11 that is installed in the vicinity of the parking space and the power transmission unit 11 provided on the ground of the parking space on the ground. And a connection unit 13 for connecting the power transmission unit 11 and the power supply unit 12 to each other.
 送電部11は、泥水やごみ等の異物が内部に侵入することを防止するために、上面が塞がれた構造を成している。送電部11の内部には、送電コイル21が収容され、該送電コイル21を用いて電力を送電できる。即ち、駐車スペースの適所に電気自動車(図示省略)が停車し、該電気自動車の受電コイルが送電コイル21と対向する位置に配置された際に、この送電コイル21を励磁することにより、非接触で受電コイル側に電力を送電することができる。また、送電部11には内部に滞留する空気を排気するための排気孔25が設けられている。 The power transmission unit 11 has a structure in which the upper surface is closed in order to prevent foreign matters such as muddy water and dust from entering the inside. A power transmission coil 21 is housed inside the power transmission unit 11, and power can be transmitted using the power transmission coil 21. That is, when an electric vehicle (not shown) stops at an appropriate position in the parking space and the power receiving coil of the electric vehicle is disposed at a position facing the power transmitting coil 21, the power transmitting coil 21 is excited to contact the electric vehicle. The power can be transmitted to the power receiving coil side. Further, the power transmission unit 11 is provided with an exhaust hole 25 for exhausting air staying inside.
 電源部12は、全体が閉塞された筐体形状を成しており、内部には送電コイル21に電力を供給するための電源装置23が設けられている。また、電源部12内に外気を導入するための吸気口24が設けられている。電源装置23は、外部の商用電源(図示省略)より供給される交流電力を直流に変換する整流回路、整流した電力を所望の周波数の交流に変換するインバータ回路等を含んでいる。電源装置23は、吸気口24よりも高い位置に配置されている。 The power supply unit 12 has a closed casing shape, and a power supply device 23 for supplying power to the power transmission coil 21 is provided inside. An air inlet 24 for introducing outside air into the power supply unit 12 is provided. The power supply device 23 includes a rectifier circuit that converts AC power supplied from an external commercial power supply (not shown) into DC, an inverter circuit that converts the rectified power into AC having a desired frequency, and the like. The power supply device 23 is disposed at a position higher than the intake port 24.
 接続部13内には、電源装置23と送電コイル21を接続するための電線26が設置されている。従って、電源装置23より出力される交流は、電線26を経由して送電コイル21に供給される。更に、接続部13内には、電源部12と送電部11との間を連通する送風ダクト22が設けられている。送風ダクト22の一端は、電源部12の吸引部27に接続され、他端は送電部11に接続されている。吸引部27は、吸気口24よりも低い位置に配置されている。また、前述したように、電源装置23は、吸気口24よりも高い位置に配置されているので、電源装置23は吸引部27よりも高い位置となる。このため、電源装置23で熱せられた空気が吸引部27から送風ダクト22内に導入することを極力抑えることができる。 In the connection part 13, the electric wire 26 for connecting the power supply device 23 and the power transmission coil 21 is installed. Therefore, the alternating current output from the power supply device 23 is supplied to the power transmission coil 21 via the electric wire 26. Further, a blower duct 22 that communicates between the power supply unit 12 and the power transmission unit 11 is provided in the connection unit 13. One end of the air duct 22 is connected to the suction unit 27 of the power supply unit 12, and the other end is connected to the power transmission unit 11. The suction unit 27 is disposed at a position lower than the intake port 24. Further, as described above, since the power supply device 23 is disposed at a position higher than the intake port 24, the power supply device 23 is located at a position higher than the suction portion 27. For this reason, it can suppress as much as possible that the air heated with the power supply device 23 introduce | transduces in the ventilation duct 22 from the suction part 27. FIG.
 図2は、接続部13の断面図であり、図2に示すように、地面33を覆う断面半円形状の配線カバー31を有している。配線カバー31で覆われた空間には、送風ダクト22、及び電線26が配置されている。この際、送風ダクト22は地面33と接している。このため、送風ダクト22に導入される空気は、比較的温度の低い地面33と接することにより、冷却されて送電部11に供給されることになる。
 なお、接続部13は、地面に溝を形成して送風ダクト22及び電線26を配置し、更にその上をカバーで覆う構造とすることも可能である。
FIG. 2 is a cross-sectional view of the connecting portion 13, and as shown in FIG. 2, a wiring cover 31 having a semicircular cross section that covers the ground 33 is provided. In the space covered with the wiring cover 31, the air duct 22 and the electric wires 26 are arranged. At this time, the air duct 22 is in contact with the ground 33. For this reason, the air introduced into the blower duct 22 is cooled and supplied to the power transmission unit 11 by contacting the ground 33 having a relatively low temperature.
In addition, the connection part 13 can also be set as the structure which forms a groove | channel on the ground, arrange | positions the ventilation duct 22 and the electric wire 26, and also covers it with a cover.
 次に、上述のように構成された第1実施形態に係る非接触送電装置101の作用について説明する。非接触送電を行う場合には、電源装置23の出力電力を電線26を介して送電コイル21に供給する。そして、送電コイル21を励磁する。この際、送電コイル21は発熱するので、送電部11の内部空気は熱せられて温度が上昇する。 Next, the operation of the non-contact power transmission apparatus 101 according to the first embodiment configured as described above will be described. When performing non-contact power transmission, the output power of the power supply device 23 is supplied to the power transmission coil 21 via the electric wire 26. Then, the power transmission coil 21 is excited. At this time, since the power transmission coil 21 generates heat, the internal air of the power transmission unit 11 is heated and the temperature rises.
 一方、電源部12に設けられた吸気口24より外部の空気(温度の低い空気)が導入され、この空気は吸引部27から送風ダクト22に導入され、更に、送風ダクト22を経由して、送電部11内に供給される。即ち、温度の低い空気は下方に向けて流れるので、吸引部27から送電部11に向く気流が自然に発生する。従って、送電部11内に外部の空気が導入されることになり、送電部11内を冷却することができる。そして、送電部11内の空気は、排気孔25より外部に排出される。 On the other hand, external air (air having a low temperature) is introduced from the air inlet 24 provided in the power supply unit 12, and this air is introduced from the suction unit 27 to the air duct 22, and further, via the air duct 22, It is supplied into the power transmission unit 11. That is, since the low-temperature air flows downward, an airflow from the suction unit 27 toward the power transmission unit 11 is naturally generated. Therefore, external air is introduced into the power transmission unit 11, and the inside of the power transmission unit 11 can be cooled. And the air in the power transmission part 11 is discharged | emitted from the exhaust hole 25 outside.
 このようにして、本発明の第1実施形態に係る非接触送電装置101では、電源部12に吸気口24を設け、更に、電源部12と送電部11との間の接続部13内に送風ダクト22を設けている。従って、吸気口24から電源部12内に導入された外部の空気を送電部11内に供給することができ、送電部11を冷却することが可能となる。 Thus, in the non-contact power transmission apparatus 101 according to the first embodiment of the present invention, the air inlet 24 is provided in the power supply unit 12, and further, air is blown into the connection unit 13 between the power supply unit 12 and the power transmission unit 11. A duct 22 is provided. Therefore, external air introduced into the power supply unit 12 from the air inlet 24 can be supplied into the power transmission unit 11, and the power transmission unit 11 can be cooled.
 また、送電部11は吸気口を備えていないので、従来のように、吸気口より泥水やごみ等の異物が侵入することを回避することができ、内部を清浄な状態に維持することができる。 Moreover, since the power transmission part 11 is not provided with an inlet port, it can avoid that foreign materials, such as muddy water and garbage, penetrate | invade from an inlet port conventionally, and can maintain the inside in a clean state. .
 更に、電源部12内において、送風ダクト22の吸引部27は、吸気口24よりも低い位置に設けているので、電源部12内にて吸気口24より導入された低温の空気が吸引部27より導入される。即ち、比較的に温度に低い空気を送電部11内に供給することができるので、該送電部11内の冷却効率を高めることができる。 Furthermore, since the suction part 27 of the air duct 22 is provided at a position lower than the intake port 24 in the power supply unit 12, the low-temperature air introduced from the intake port 24 in the power supply unit 12 is sucked in the suction unit 27. More introduced. That is, since air having a relatively low temperature can be supplied into the power transmission unit 11, the cooling efficiency in the power transmission unit 11 can be increased.
 また、電源部12内において、電源装置23は、吸気口24よりも高い位置に配置されているので、送風ダクト22内に電源装置23で熱せられた空気が導入されることを回避することができる。 Further, in the power supply unit 12, the power supply device 23 is disposed at a position higher than the intake port 24, so that it is possible to avoid introducing air heated by the power supply device 23 into the air duct 22. it can.
 また、接続部13内に配置する送風ダクト22は、比較的温度の低い地面33に接するように配置されているので、送風ダクト22を流れる空気を冷却することができる。従って、送電部11内の冷却効率をより一層向上させることが可能となる。 Further, since the air duct 22 disposed in the connection portion 13 is disposed so as to contact the ground 33 having a relatively low temperature, the air flowing through the air duct 22 can be cooled. Therefore, the cooling efficiency in the power transmission unit 11 can be further improved.
 なお、上述した第1実施形態において、電源部12の送風ダクト22の吸引部27の近傍に、該送風ダクト22に供給する空気を冷却するための冷却装置(図示省略)を設ける構成とすることも可能である。このような構成により、送電部11の冷却効率をより一層向上させることが可能となる。 In the first embodiment described above, a cooling device (not shown) for cooling the air supplied to the blower duct 22 is provided in the vicinity of the suction part 27 of the blower duct 22 of the power supply unit 12. Is also possible. With such a configuration, the cooling efficiency of the power transmission unit 11 can be further improved.
 また、電源部12の上部適所に、該電源部12の空気を外部に排出するための排気口(図示省略)を設ける構成とすることもできる。該排気口を設けることにより、電源装置23で熱せられた空気を効率良く外部に排出することができ、電源部12内の空気の温度上昇を抑えることができ、ひいては送電部11内の冷却効率を向上させることが可能となる。 Also, an exhaust port (not shown) for discharging the air of the power supply unit 12 to the outside can be provided at an appropriate position above the power supply unit 12. By providing the exhaust port, the air heated by the power supply device 23 can be efficiently discharged to the outside, the temperature rise of the air in the power supply unit 12 can be suppressed, and as a result, the cooling efficiency in the power transmission unit 11 can be suppressed. Can be improved.
 更に、配線カバー31を、長手方向に沿って複数個に分割できる構成としてもよい。このような構成とすることにより、容易に配線カバー31を取り外してメンテナンス等を行うことが可能となる。 Furthermore, the wiring cover 31 may be divided into a plurality of parts along the longitudinal direction. With such a configuration, it is possible to easily remove the wiring cover 31 and perform maintenance or the like.
[第2実施形態の説明]
 次に、本発明の第2実施形態について説明する。図3は、本発明の第2実施形態に係る非接触送電装置の構成を示す説明図である。図3に示すように、第2実施形態に係る非接触送電装置102は、前述した第1実施形態と同様に、駐車スペースの地面に設けられた送電部11aと、駐車スペースの近傍に設置されて送電部11aに電力を供給する電源部12aと、送電部11aと電源部12aとの間を接続する接続部13aを備えている。
[Description of Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 3 is an explanatory diagram showing the configuration of the non-contact power transmission apparatus according to the second embodiment of the present invention. As shown in FIG. 3, the non-contact power transmission apparatus 102 according to the second embodiment is installed in the vicinity of the power transmission unit 11 a provided on the ground of the parking space and the parking space, as in the first embodiment described above. A power supply unit 12a that supplies power to the power transmission unit 11a, and a connection unit 13a that connects the power transmission unit 11a and the power supply unit 12a.
 送電部11aは、第1実施形態の図1に示した送電部11と対比して、排気孔25を備えていない点で相違する。それ以外の構成は、図1と同様であるので詳細な説明を省略する。 The power transmission unit 11a is different from the power transmission unit 11 shown in FIG. 1 of the first embodiment in that the exhaust hole 25 is not provided. Since other configurations are the same as those in FIG. 1, detailed description thereof is omitted.
 接続部13aは、前述した第1実施形態と同様に、電源装置23と送電コイル21を接続するための電線26が設けられている。更に、接続部13a内には、電源部12aと送電部11aとの間を連通する送風ダクト32が設けられており、更に、送電部11aと電源部12aとの間を連通する排気ダクト42が設けられている。本実施形態では、送風ダクト32と排気ダクト42が一つのダクトで構成されている例を示している。即ち、吸引部27から送風ダクト32を経由して送電部11aに送られた空気は、排気ダクト42を経由して電源部12aに戻され、排気部29から電源部12a内に導入される。 The connection part 13a is provided with an electric wire 26 for connecting the power supply device 23 and the power transmission coil 21 as in the first embodiment. Further, a blower duct 32 that communicates between the power supply unit 12a and the power transmission unit 11a is provided in the connection unit 13a, and an exhaust duct 42 that communicates between the power transmission unit 11a and the power supply unit 12a. Is provided. In this embodiment, the example in which the ventilation duct 32 and the exhaust duct 42 are comprised by one duct is shown. That is, the air sent from the suction part 27 to the power transmission part 11a via the air duct 32 is returned to the power supply part 12a via the exhaust duct 42 and introduced into the power supply part 12a from the exhaust part 29.
 また、図4に示すように、送風ダクト32は地面33と接しており、排気ダクト42は地面33に接しないように配置されている。このため、送風ダクト32を流れる空気を冷却でき、且つ、排気ダクト42より発せられる熱が地面33を伝わって送風ダクト32に伝達されることを回避できる。 Further, as shown in FIG. 4, the air duct 32 is in contact with the ground 33, and the exhaust duct 42 is disposed so as not to contact the ground 33. For this reason, the air flowing through the air duct 32 can be cooled, and heat generated from the exhaust duct 42 can be prevented from being transmitted to the air duct 32 through the ground 33.
 電源部12aは、第1実施形態の図1で示した電源部12と対比して、排気ダクト42の排気部29を備えている点、及び上部の適所に排気口30を備えている点で相違する。それ以外の構成は、図1と同様であるので、同一符号を付して詳細な説明を省略する。 Compared with the power supply unit 12 shown in FIG. 1 of the first embodiment, the power supply unit 12a includes the exhaust unit 29 of the exhaust duct 42 and the exhaust port 30 at an appropriate upper position. Is different. Since other configurations are the same as those in FIG. 1, the same reference numerals are given and detailed description thereof is omitted.
 排気口30は、電源部12a内の空気を外部に排出するための開口部であり、吸気口24よりも高い位置に配置されている。 The exhaust port 30 is an opening for discharging the air in the power supply unit 12 a to the outside, and is disposed at a position higher than the intake port 24.
 次に、第2実施形態に係る非接触送電装置101の作用について説明する。非接触送電を行う場合には、電源装置23より出力される電圧を電線26を経由して送電コイル21に供給する。そして、送電コイル21を励磁する。この際、送電コイル21は発熱するので、送電部11aの内部の空気は熱せられて温度が上昇する。 Next, the operation of the non-contact power transmission apparatus 101 according to the second embodiment will be described. When performing non-contact power transmission, the voltage output from the power supply device 23 is supplied to the power transmission coil 21 via the electric wire 26. Then, the power transmission coil 21 is excited. At this time, since the power transmission coil 21 generates heat, the air inside the power transmission unit 11a is heated and the temperature rises.
 一方、電源部12aに設けられた吸気口24より外部の空気(温度の低い空気)が導入され、この空気は吸引部27から送風ダクト32に導入される。上述したように、送風ダクト32は、排気ダクト42に接続されている。従って、送風ダクト32の一端側である吸引部27から流入した低温の空気は、送風ダクト32を流れ、送電部11aを通過して該送電部11a内の空気を冷却し、更に、排気ダクト42を流れて排気部29にて電源部12a内に戻される。 On the other hand, external air (air having a low temperature) is introduced from the intake port 24 provided in the power supply unit 12 a, and this air is introduced from the suction unit 27 to the blower duct 32. As described above, the air duct 32 is connected to the exhaust duct 42. Therefore, the low-temperature air that has flowed from the suction portion 27 that is one end side of the air duct 32 flows through the air duct 32, passes through the power transmission section 11 a, cools the air in the power transmission section 11 a, and further, the exhaust duct 42. And is returned to the power supply unit 12a by the exhaust unit 29.
 この際、排気部29は、吸引部27よりも高い位置に設けられているので、排気部29より電源部12a内に導入される温度の高い空気は、電源部12a内を上昇し、排気口30より外部へ放出されることになる。 At this time, since the exhaust part 29 is provided at a position higher than the suction part 27, the high-temperature air introduced into the power supply part 12a from the exhaust part 29 rises in the power supply part 12a, and the exhaust port 30 is discharged to the outside.
 このようにして、本発明の第2実施形態に係る非接触送電装置102では、電源部12aに吸気口24を設け、更に、電源部12aと送電部11aとの間には、送風ダクト32及び排気ダクト42を設けている。従って、吸気口24より内部に導入された外部の空気を用いて送電部11a内を冷却することが可能となる。 Thus, in the non-contact power transmission apparatus 102 according to the second embodiment of the present invention, the air inlet 24 is provided in the power supply unit 12a, and the air duct 32 and the power transmission unit 11a are further provided between the power supply unit 12a and the power transmission unit 11a. An exhaust duct 42 is provided. Therefore, it is possible to cool the inside of the power transmission unit 11a using external air introduced into the inside through the air inlet 24.
 また、送電部11aは、吸気口を備えていないので、従来のように、吸気口より雨水や泥等の異物が侵入することを回避することができ、内部を清浄な状態に維持することができる。また、送電部11aは、排気口を備えておらず、全体が閉塞した構成とされるので、送電部11a及び接続部13aの内部への異物の侵入を確実に防止することが可能となる。 Moreover, since the power transmission part 11a is not provided with an inlet port, it can avoid that foreign materials, such as rainwater and mud, penetrate | invade from an inlet port conventionally, and can maintain an inside in a clean state. it can. Moreover, since the power transmission part 11a is not provided with an exhaust port and is configured to be entirely closed, it is possible to reliably prevent foreign matter from entering the power transmission part 11a and the connection part 13a.
 更に、電源部12a内において、送風ダクト32の吸引部27は、吸気口24よりも低い位置に設けているので、電源部12a内にて吸気口24より導入された低温の空気が吸引部27より導入されることになり、送電部11a内の冷却効率を高めることができる。 Furthermore, since the suction portion 27 of the air duct 32 is provided at a position lower than the intake port 24 in the power supply unit 12a, the low-temperature air introduced from the intake port 24 in the power supply unit 12a is the suction unit 27. As a result, the cooling efficiency in the power transmission unit 11a can be increased.
 また、電源部12a内において、電源装置23は、吸気口24よりも高い位置に配置されているので、電源装置23にて熱せられた空気と吸気口24より導入された空気との接触を極力抑えることができる。従って、送風ダクト22内に電源装置23で熱せられた空気が導入されることを回避することができる。 Further, since the power supply device 23 is disposed at a position higher than the intake port 24 in the power supply unit 12a, contact between the air heated by the power supply device 23 and the air introduced from the intake port 24 is minimized. Can be suppressed. Therefore, it is possible to avoid introduction of air heated by the power supply device 23 into the air duct 22.
 更に、排気部29を吸気口24よりも高い位置に配置しているので、電源部12a内の高温の空気を効率良く外部へ排気することができる。 Furthermore, since the exhaust part 29 is arranged at a position higher than the intake port 24, the high-temperature air in the power supply part 12a can be efficiently exhausted to the outside.
 また、図4に示すように、送風ダクト32は地面33と接しており、送風ダクト32を流れる空気は冷却される。従って、送電部11a内の冷却効率をより一層向上させることができる。また、排気ダクト42は、地面33に接していないので、排気ダクト42より発せられる熱が地面33を伝わって送風ダクト32に伝達されることを抑制することができ、冷却効率をより高めることが可能となる。更に、排気ダクト42を、送風ダクト22に対して極力離間した位置に配置することにより、冷却効率を高めることができる。 As shown in FIG. 4, the air duct 32 is in contact with the ground 33, and the air flowing through the air duct 32 is cooled. Therefore, the cooling efficiency in the power transmission unit 11a can be further improved. Further, since the exhaust duct 42 is not in contact with the ground 33, heat generated from the exhaust duct 42 can be prevented from being transmitted to the blower duct 32 through the ground 33, and cooling efficiency can be further increased. It becomes possible. Furthermore, the cooling efficiency can be improved by disposing the exhaust duct 42 at a position as far away as possible from the blower duct 22.
 なお、第2実施形態についても前述した第1実施形態と同様に、電源部12a内の吸引部27の近傍に冷却装置(図示省略)を設ける構成としてもよい。更に、図4に示す配線カバー31を長手方向に沿って分割できる構成としてもよい。 Note that the second embodiment may have a configuration in which a cooling device (not shown) is provided in the vicinity of the suction unit 27 in the power supply unit 12a, as in the first embodiment described above. Furthermore, it is good also as a structure which can divide | segment the wiring cover 31 shown in FIG. 4 along a longitudinal direction.
[第2実施形態の変形例の説明]
 次に、第2実施形態の変形例について説明する。図5は、変形例に係る接続部13aの断面図である。図5に示すように、接続部13aの内部に断熱材61を充填している。従って、配線カバー31に日光が照射される等により、配線カバー31の温度が上昇した場合でも、送風ダクト32に熱が伝達することを抑制することができ、送電部11aの冷却効率をより一層向上させることが可能となる。
[Description of Modification of Second Embodiment]
Next, a modification of the second embodiment will be described. FIG. 5 is a cross-sectional view of a connecting portion 13a according to a modification. As shown in FIG. 5, the heat insulating material 61 is filled in the connection portion 13a. Therefore, even when the temperature of the wiring cover 31 rises due to sunlight shining on the wiring cover 31 or the like, it is possible to prevent heat from being transmitted to the air duct 32, and to further improve the cooling efficiency of the power transmission unit 11a. It becomes possible to improve.
[第3実施形態の説明]
 次に、本発明の第3実施形態について説明する。図6は、本発明の第3実施形態に係る非接触送電装置の構成を示す説明図である。図6に示すように、第3実施形態に係る非接触送電装置103は、送電部11b、電源部12b、及び接続部13bを備えている。そして、前述した第2実施形態と対比して、送電部11b内で、送風ダクト32と、排気ダクト42が分離されている点で相違する。即ち、送風ダクト32の、送電部11b側の端部は、該送電部11bに接続されている。また、排気ダクト42の送電部11b側の端部は、該送電部11bに設けられた排気孔40に接続されている。
[Description of Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 6 is an explanatory diagram showing the configuration of the non-contact power transmission apparatus according to the third embodiment of the present invention. As illustrated in FIG. 6, the non-contact power transmission apparatus 103 according to the third embodiment includes a power transmission unit 11b, a power supply unit 12b, and a connection unit 13b. And compared with 2nd Embodiment mentioned above, it differs in the point by which the ventilation duct 32 and the exhaust duct 42 are isolate | separated within the power transmission part 11b. That is, the end of the air duct 32 on the power transmission unit 11b side is connected to the power transmission unit 11b. The end of the exhaust duct 42 on the power transmission unit 11b side is connected to an exhaust hole 40 provided in the power transmission unit 11b.
 従って、送風ダクト32より送電部11b内に導入された空気は、該送電部11b内を通過する。その後、排気孔40及び排気ダクト42を経由して、電源部12bに戻されることになる。 Therefore, the air introduced into the power transmission unit 11b from the blower duct 32 passes through the power transmission unit 11b. Thereafter, the air is returned to the power supply unit 12b via the exhaust hole 40 and the exhaust duct 42.
 このような構成においても、前述した第2実施形態と同様の効果を達成することができる。更に、送風ダクト32より導入された空気が送電部11b内の送電コイル21に直接接するので、より一層冷却効率を向上させることが可能となる。 Even in such a configuration, the same effects as those of the second embodiment described above can be achieved. Furthermore, since the air introduced from the blower duct 32 is in direct contact with the power transmission coil 21 in the power transmission unit 11b, the cooling efficiency can be further improved.
 以上、本発明の非接触送電装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。 The contactless power transmission device of the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part is replaced with an arbitrary configuration having the same function. be able to.
 11、11a、11b 送電部
 12、12a、12b 電源部
 13、13a、13b 接続部
 21 送電コイル
 22、32 送風ダクト
 23 電源装置
 24 吸気口
 25 排気孔
 26 電線
 27 吸引部
 29 排気部
 30 排気口
 31 配線カバー
 33 地面
 40 排気孔
 101、102、103 非接触送電装置
DESCRIPTION OF SYMBOLS 11, 11a, 11b Power transmission part 12, 12a, 12b Power supply part 13, 13a, 13b Connection part 21 Power transmission coil 22, 32 Blower duct 23 Power supply device 24 Intake port 25 Exhaust hole 26 Electric wire 27 Suction part 29 Exhaust part 30 Exhaust port 31 Wiring cover 33 Ground 40 Exhaust hole 101, 102, 103 Non-contact power transmission device

Claims (6)

  1.  地上に設けられ、非接触で電力を送電する送電コイルを内部に収容する送電部と、
     前記送電部に電力を供給する電源装置を内部に収容する電源部と、
     前記電源部から前記送電部に連通して前記電源部の空気を前記送電部に送る送風ダクトと、
     を備えたことを特徴とする非接触送電装置。
    A power transmission unit that is provided on the ground and accommodates a power transmission coil that transmits power in a contactless manner;
    A power supply unit that houses therein a power supply device that supplies power to the power transmission unit;
    A blower duct that communicates from the power supply unit to the power transmission unit and sends air of the power supply unit to the power transmission unit;
    A non-contact power transmission device comprising:
  2.  前記電源部は、外部の空気を導入する吸気口を有し、前記吸気口を前記送風ダクトの吸引部よりも高い位置に設けたこと
     を特徴とする請求項1に記載の非接触送電装置。
    The contactless power transmission device according to claim 1, wherein the power supply unit has an intake port for introducing external air, and the intake port is provided at a position higher than a suction unit of the air duct.
  3.  前記電源装置を、前記吸気口よりも高い位置に配置したこと
     を特徴とする請求項2に記載の非接触送電装置。
    The contactless power transmission device according to claim 2, wherein the power supply device is arranged at a position higher than the intake port.
  4.  前記送電部から前記電源部に連通して前記送電部の空気を前記電源部に送る排気ダクトを更に備え、前記電源部は、前記排気ダクトを接続する排気部を備えたこと
     を特徴とする請求項1~3のいずれか1項に記載の非接触送電装置。
    An exhaust duct that communicates from the power transmission unit to the power supply unit and sends air from the power transmission unit to the power supply unit, and further includes an exhaust unit that connects the exhaust duct. Item 4. The non-contact power transmission device according to any one of Items 1 to 3.
  5.  前記電源部は、外部の空気を導入する吸気口を有し、前記排気部を、前記吸気口よりも高い位置に配置したこと
     を特徴とする請求項4に記載の非接触送電装置。
    The contactless power transmission device according to claim 4, wherein the power supply unit has an intake port for introducing external air, and the exhaust unit is disposed at a position higher than the intake port.
  6.  前記送風ダクトを、地面に接するように設けること
     を特徴とする請求項1~5のいずれか1項に記載の非接触送電装置。
    6. The non-contact power transmission device according to claim 1, wherein the air duct is provided so as to be in contact with the ground.
PCT/JP2016/064751 2016-05-18 2016-05-18 Non-contact power transmission device WO2017199375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064751 WO2017199375A1 (en) 2016-05-18 2016-05-18 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064751 WO2017199375A1 (en) 2016-05-18 2016-05-18 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
WO2017199375A1 true WO2017199375A1 (en) 2017-11-23

Family

ID=60325083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064751 WO2017199375A1 (en) 2016-05-18 2016-05-18 Non-contact power transmission device

Country Status (1)

Country Link
WO (1) WO2017199375A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109969022A (en) * 2019-03-27 2019-07-05 成都宇坤健元新能源科技有限公司 A kind of high-power charging pile of energy conservation and environmental protection and its cooling means
WO2022213157A1 (en) * 2021-04-08 2022-10-13 Lumen Intellectual Property Pty Ltd A wireless charging assembly for an electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169628A (en) * 1993-08-09 1995-07-04 Hughes Aircraft Co Car battery charging transformer with cooled primary part
JP2012216569A (en) * 2011-03-31 2012-11-08 Equos Research Co Ltd Power transmission system
JP2013147142A (en) * 2012-01-19 2013-08-01 Yazaki Corp Coil unit installation structure
WO2014200024A1 (en) * 2013-06-13 2014-12-18 矢崎総業株式会社 Power feeding device and power feeding system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169628A (en) * 1993-08-09 1995-07-04 Hughes Aircraft Co Car battery charging transformer with cooled primary part
JP2012216569A (en) * 2011-03-31 2012-11-08 Equos Research Co Ltd Power transmission system
JP2013147142A (en) * 2012-01-19 2013-08-01 Yazaki Corp Coil unit installation structure
WO2014200024A1 (en) * 2013-06-13 2014-12-18 矢崎総業株式会社 Power feeding device and power feeding system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109969022A (en) * 2019-03-27 2019-07-05 成都宇坤健元新能源科技有限公司 A kind of high-power charging pile of energy conservation and environmental protection and its cooling means
WO2022213157A1 (en) * 2021-04-08 2022-10-13 Lumen Intellectual Property Pty Ltd A wireless charging assembly for an electric vehicle

Similar Documents

Publication Publication Date Title
US7817419B2 (en) Solar inverter assembly
WO2017208384A1 (en) Power conversion device
US11584246B2 (en) Charging plug for a charging station for transferring electric energy and a charging system therefor
US20150131233A1 (en) Inverter device
JP2006188954A (en) Cooling system of air compressor
JP7361107B2 (en) Heat dissipation method from cooling stationary part and electronic section of inductive power transfer pad
CN103925492A (en) Led Lighting Device
CN102213371B (en) Lamp structure
JP6433631B2 (en) Power converter
WO2017199375A1 (en) Non-contact power transmission device
CN107848545B (en) Electric car control device
US20180104811A1 (en) Hand-held power tool
US20120182689A1 (en) Inverter with enclosure
CN105377739B (en) Control panel for passenger conveyor
JP2011007200A (en) Cooling device for air compressor
GB2534013A (en) Power converter and rolling stock including the same
WO2016185613A1 (en) Electronic device
CN104868751A (en) Electronic assembly for rotary electric machine for motor vehicle
EP3684142B1 (en) Induction heating device having improved cooling structure
JP2011240747A (en) Railway vehicle
JP6596671B2 (en) Welding equipment
CN211959097U (en) Control device of electric tool and electric tool system
JP2018079810A (en) Vehicular power conversion device unit
KR101194568B1 (en) Inverter
JP5641645B2 (en) Welding power source

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902394

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP