WO2017199327A1 - Self-aligning bearing support device - Google Patents

Self-aligning bearing support device Download PDF

Info

Publication number
WO2017199327A1
WO2017199327A1 PCT/JP2016/064572 JP2016064572W WO2017199327A1 WO 2017199327 A1 WO2017199327 A1 WO 2017199327A1 JP 2016064572 W JP2016064572 W JP 2016064572W WO 2017199327 A1 WO2017199327 A1 WO 2017199327A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing plate
bearing
self
displacement
support device
Prior art date
Application number
PCT/JP2016/064572
Other languages
French (fr)
Japanese (ja)
Inventor
才貴 西山
政宏 清水
真吾 三澤
正史 中家
Original Assignee
ジャパン マリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパン マリンユナイテッド株式会社 filed Critical ジャパン マリンユナイテッド株式会社
Priority to CN201680082003.1A priority Critical patent/CN108603527B/en
Priority to PCT/JP2016/064572 priority patent/WO2017199327A1/en
Priority to JP2018517961A priority patent/JP6573296B2/en
Priority to KR1020187015426A priority patent/KR102035953B1/en
Publication of WO2017199327A1 publication Critical patent/WO2017199327A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means

Definitions

  • the present invention relates to a self-alignment type bearing support device that adjusts the height position of a bearing to an appropriate position.
  • Patent Documents 1 and 2 have been proposed as alignment adjustment devices that adjust the height position of a bearing to an appropriate position.
  • a setting value signal generator that generates a setting value signal of a bearing center position, a state quantity measuring device that measures a change in state quantity, and an arithmetic device that calculates a deviation value, And a bearing position adjusting device for adjusting the bearing center position based on the deviation value.
  • the “alignment adjusting device” of Patent Document 2 adjusts the alignment of the shaft by the parameter monitor for detecting the state of the shaft, the calculator for calculating the control amount from the monitored amount by the parameter monitor, and the calculated control amount. And an actuator.
  • the displacement monitor for the shaft system is used as a parameter monitor, the shaft vibration is obtained from the detected amount from the displacement meter, and the alignment of the shaft system is adjusted so that the shaft vibration obtained by the calculator is suppressed.
  • each bearing is installed in consideration of the balance of each bearing load under a certain condition (for example, a cold condition).
  • a certain condition for example, a cold condition
  • the height of each bearing may be displaced due to a change in temperature or the action of an external force (for example, a change in draft), and may greatly deviate from the planned load balance.
  • the bearing load becomes too large, the surface pressure of the metal may increase and seizure damage may occur, and if the bearing load becomes too small, the shaft restraining force will decrease, causing fretting of the bearing metal part due to behavior, The bearing metal may peel off.
  • a control device (arithmetic unit, arithmetic unit, etc.) is indispensable, and there is a possibility that the function is lost due to a power failure or noise.
  • the present invention has been created to solve the above-described problems. That is, the object of the present invention is to automatically adjust the bearing load within an appropriate range without being affected by a power failure or noise even when the bearing height is displaced due to temperature change or external force after installation of the bearing. It is an object of the present invention to provide a self-alignment type bearing support device that can be used.
  • a self-alignment type bearing support device that supports an intermediate bearing that extends in a horizontal direction and rotatably supports an intermediate portion of an intermediate shaft that is rotatably supported at its front end and rear end, An overall spring constant for displacement from the installation height of the intermediate bearing;
  • a self-alignment type bearing support device is provided in which the total spring constant is set such that a support force of the intermediate bearing is within a set load range in a set height range.
  • a displacement speed limiting device for limiting the displacement speed of the intermediate bearing from the installation height is provided.
  • the displacement speed limiting device has a displacement fixing device that fixes the displacement.
  • the biasing device has a spring sandwiched between the upper fixing plate and the lower fixing plate,
  • the spring constant of the spring is set so that the support force of the intermediate bearing as a whole is within the set load range in the set height range.
  • the displacement speed limiting device is a hydraulic cylinder having a piston rod that is sandwiched between the upper fixed plate and the lower fixed plate and follows the movement of the upper fixed plate with respect to the lower fixed plate;
  • a moving speed adjusting device for adjusting a moving speed of the piston rod.
  • the moving speed adjusting device is a first flow rate adjusting valve provided in a first connecting pipe communicating the head side of the hydraulic cylinder and the hydraulic fluid tank.
  • the moving speed adjusting device is a second flow rate adjusting valve provided in a second connecting pipe communicating the head side and the rod side of the hydraulic cylinder.
  • the moving speed adjusting device is provided in a first connection pipe that communicates the head side of the hydraulic cylinder and the hydraulic fluid tank, or a second connection pipe that communicates the head side and the rod side of the hydraulic cylinder, A remote control valve capable of fully closing the first connection pipe or the second connection pipe by remote control;
  • the guide device is sandwiched between the upper fixing plate and the lower fixing plate, and at the lower limit of the set height range, a lower limit limiting stopper for preventing the upper fixing plate from moving downward, An upper limit bolt that prevents the upper fixing plate from moving upward at the upper limit of the set height range; A telescopic guide for guiding the vertical expansion and contraction of the urging device.
  • a position sensor for bearing height position alarm capable of detecting the lower limit or the upper limit of the set height range;
  • a bearing height monitoring gap sensor capable of detecting a gap gap between the upper fixing plate and the lower fixing plate.
  • a jack bolt that is screwed to the upper fixing plate or the lower fixing plate and presses the upper fixing plate upward with respect to the lower fixing plate.
  • the total spring constant is set so that the support force of the intermediate bearing is within the set load range in the set height range. Therefore, even if the bearing height is displaced from the installation height due to temperature change or external force after the bearing is installed, the bearing load (supporting force of the intermediate bearing) can be automatically adjusted within the set load range. .
  • the bearing load (supporting force of the intermediate bearing) can be automatically adjusted within the set load range without being affected by power failure or noise.
  • FIG. 1 is an explanatory view of a rotary shaft provided with a self-alignment type bearing support device 10 of the present invention (hereinafter simply referred to as “bearing support device 10”).
  • 1 is a ship
  • 1a is stern
  • 1b is bottom
  • 1c is double floor
  • 2 is propeller
  • 3 is stern tube
  • 4 is stern tube bearing
  • 5 is propeller shaft
  • 6 is intermediate shaft
  • 7 is intermediate
  • 8 is a main machine output shaft
  • 9 is a main machine bearing.
  • the propeller shaft 5, the intermediate shaft 6, and the main engine output shaft 8 rotate around an axis ZZ extending in the horizontal direction.
  • the axis ZZ is not limited to the horizontal axis, and may be an inclined axis inclined with respect to the horizontal.
  • an arrow E in the figure indicates the axial center position of the main engine bearing 9.
  • the front end and the rear end of the intermediate shaft 6 are rotatably supported by a main engine bearing 9 and a stern tube bearing 4, respectively.
  • the stern tube bearing 4 is fixed to the hull of the stern 1a.
  • the intermediate bearing 7 rotatably supports an intermediate portion of the intermediate shaft 6. The position of the intermediate portion is preferably the center of the intermediate shaft 6 in the length direction, but may be other positions.
  • the bearing support device 10 of the present invention is a device that is attached to the bearing stand 11 and supports the intermediate bearing 7.
  • the bearing stand 11 is firmly connected to the double floor 1c and has high rigidity.
  • the hull of the ship 1, that is, the stern 1 a, the ship bottom 1 b, and the double floor 1 c are reinforced by a stiffener and have high rigidity.
  • the spring constant k1 of the bearing base 11 (hereinafter referred to as “the receiving spring constant k1”) is 85 kN / mm as an example, and the spring constant of the hull of the ship 1 is one digit larger than that of the bearing base 11. Assumes that.
  • the conventional structure does not use the bearing support device 10 of the present invention, and directly fixes the intermediate bearing 7 in FIG. 1 to the hull structure (that is, the bearing stand 11).
  • the influence coefficient (load change with respect to a height displacement of 1 mm) with respect to the relative displacement x with the hull at the intermediate bearing 7 is, for example, A large value of about 85 (kN / mm) is obtained. Therefore, when the displacement x from the installation height of the intermediate bearing 7 is large, the bearing load of the intermediate bearing 7 or the main engine bearing 9 may exceed the allowable bearing load, and damage may occur.
  • the load range of the support force F of the intermediate bearing 7 (hereinafter referred to as “set load range RF”) is 12 to 151 kN
  • the planned support force F of the intermediate bearing 7 during installation (hereinafter “planned installation load”) Is 63 kN.
  • the intermediate bearing 7 is lifted from the bearing base 11 and the intermediate shaft 6 is not supported, and the metal portion of the intermediate bearing 7 is damaged by fretting.
  • the set load range RF is 12 to 151 kN
  • the planned installation load is 63 kN
  • the set height range RH assumes that the relative displacement is doubled with a margin with respect to the above-mentioned displacement x of 1 mm.
  • FIG. 2A is a spring characteristic diagram required for the support portion that supports the intermediate bearing 7.
  • the vertical axis F [kN] is the supporting force of the intermediate bearing 7.
  • FIG. 2B is a schematic view of a support portion that supports the intermediate bearing 7.
  • the bearing support device 10 of the present invention is sandwiched between an intermediate bearing 7 and a bearing base 11.
  • the spring constant k2 of the bearing support device 10 is hereinafter referred to as “support spring constant k2”.
  • the bearing load (supporting force F of the intermediate bearing 7) is kept within the set load range RF even when the bearing height is displaced due to a temperature change or an external force after the intermediate bearing 7 is installed. It can be adjusted automatically.
  • FIG. 3A is an enlarged view of a part A in FIG. 1, and FIG. 3B is a side view of FIG. 3A.
  • the intermediate bearing 7 includes a bearing 7a that supports the intermediate shaft 6, a bearing case 7b that surrounds the outer peripheral surface of the bearing 7a, and a leg portion 7c that supports the lower surface of the bearing case 7b.
  • the leg portion 7c has a pair of horizontal support surfaces 7d on the lower surfaces at both ends in the width direction.
  • the bearing 7a is a journal bearing (sliding bearing), but the present invention is not limited to this, and may be another bearing (for example, a rolling bearing).
  • the bearing stand 11 has a pair of left and right support tables 11a and an adjustment liner 11b.
  • the pair of support bases 11a are located at intervals on both sides in the width direction of the axis ZZ.
  • the lower surface of the support base 11a is fixed to the double floor 1c via the adjustment liner 11b.
  • the adjustment liner 11b is composed of a plurality of flat plates or tapered plates, and can finely adjust the height of the upper surface of the support base 11a. In order to finely adjust the height of the upper surface of the bearing base 11, it is preferable to have jack bolts (not shown) on the lower surface of the support base 11a.
  • the upper surface of the support base 11 a is a horizontal plane, and the bearing support device 10 is sandwiched between the horizontal support surface 7 d of the intermediate bearing 7.
  • a pair of bearing support devices 10 are sandwiched between the upper surfaces of a pair of left and right support bases 11 a and a horizontal support surface 7 d of the intermediate bearing 7.
  • the bearing support device 10 is not limited to one pair, and may be single or three or more.
  • FIG. 4 is an enlarged view of a portion B in FIG. 3A and is a first embodiment diagram of the bearing support device 10.
  • the bearing support device 10 includes an upper fixing plate 12, a lower fixing plate 14, a guide device 16, and an urging device 18.
  • the upper fixing plate 12 is a horizontal thick plate in this example, and the intermediate bearing 7 is fixed to the upper surface of the upper fixing plate 12 by, for example, bolts or nuts.
  • the lower fixing plate 14 is a horizontal thick flat plate in this example, and the lower end is fixed to a fixing portion (bearing base 11 in this example) by, for example, a bolt or a nut.
  • the fixed portion is not limited to the bearing stand 11 and may be a part of the hull of the ship 1 as long as it has high rigidity.
  • side guides 10a are attached to the outer surfaces in the width direction of the pair of left and right bearing support devices 10, respectively.
  • the side guide 10 a has an upper end fixed to the upper fixing plate 12 and extending downward, and a lower end extending along the outer surface in the width direction of the lower fixing plate 14.
  • the side guide 10 a may be fixed to the lower fixing plate 14. With this configuration, it is possible to guide the vertical movement of the intermediate bearing 7 by the pair of side guides 10a and to prevent the intermediate bearing 7 from moving in the left and right lateral direction (width direction).
  • the set height range RH includes the allowable bearing load of the bearing that supports the intermediate shaft 6 (in this example, the main engine bearing 9, the stern tube bearing 4, and the intermediate bearing 7) and the usage status after installation (for example, temperature change or external force). It is possible to set in advance from the relative displacement of each bearing height assumed by the above action.
  • the guide device 16 includes a lower limit stopper 20, a stopper fixing bolt 21, an upper limit bolt 22, and an extendable guide 24 in this example.
  • the lower limit limiting stopper 20 is a hollow cylindrical member in this example.
  • the lower end of the stopper fixing bolt 21 is fixed to the lower fixing plate 14 through the center hole of the lower limit limiting stopper 20, and the head of the bolt is fixed with a gap from the upper surface of the upper fixing plate 12.
  • the stopper fixing bolt 21 holds the position of the lower limit limiting stopper 20.
  • the upper limit limiting bolt 22 is a bolt that passes through the center hole of the urging device 18, the lower end is fixed to the lower fixing plate 14, and the head of the bolt is fixed with a gap from the upper surface of the upper fixing plate 12. ing.
  • the expansion / contraction guide 24 guides the vertical expansion / contraction of the urging device 18.
  • the telescopic guide 24 is a concentric double tube surrounding the biasing device 18, and one is fixed to the upper fixing plate 12 and the other is fixed to the lower fixing plate 14.
  • the above-described guide device 16 can guide the upper fixing plate 12 to the lower fixing plate 14 such that the upper fixing plate 12 can move up and down within a set height range RH.
  • the biasing device 18 is sandwiched between the upper fixing plate 12 and the lower fixing plate 14 and biases the upper fixing plate 12 upward with respect to the lower fixing plate 14.
  • the set load range RF can be set in advance within a range in which the allowable bearing load of the intermediate bearing 7 is a maximum value and the supporting force F of the intermediate bearing 7 is not negative.
  • the range in which the supporting force F is not negative is set such that an excessive tensile force acts on the above-described upper limit bolt 22 (and the stopper fixing bolt 21), the intermediate bearing 7 is lifted, and the function of the intermediate bearing 7 is lost. This is to prevent it.
  • the urging device 18 includes a spring 26 that is sandwiched between the upper fixing plate 12 and the lower fixing plate 14.
  • the spring 26 is a disc spring laminated body in which a plurality of disc springs and a plurality of flat washers are laminated.
  • the spring 26 is not limited to this configuration, and may be a coil spring or another spring (for example, a leaf spring).
  • the spring constant (that is, the support spring constant k2) of the spring 26 (disc spring laminated body) is set so that the support force F of the intermediate bearing 7 as a whole is within the set load range RF in the set height range RH. Yes.
  • the present invention is not limited to this configuration, and as a whole, it is sufficient that the support force F is set so as to be within the set load range RF in the set height range RH.
  • each bearing support device 10 includes three sets of springs 26, the springs 26 are connected to both sides. It will be equipped with 6 places.
  • the total spring constant k is set so that the supporting force F of the intermediate bearing 7 is within the set load range RF in the set height range RH. Therefore, even if the bearing height is displaced from the installation height due to temperature change or external force after installation of the intermediate bearing 7, the bearing load (supporting force F of the intermediate bearing 7) is automatically adjusted within the set load range RF. can do.
  • the bearing load (supporting force F of the intermediate bearing 7) can be automatically adjusted within the set load range RF without being affected by power failure or noise.
  • the bearing support device 10 further includes bearing height position alarm position sensors 27A and 27B, a bearing height monitoring clearance sensor 28, and a jack bolt 29.
  • the position sensor 27A detects the lower limit of the set height range RH
  • the position sensor 27B detects the upper limit of the set height range RH.
  • the position sensors 27A and 27B are, for example, limit switches, proximity switches, laser sensors, ultrasonic sensors, and the like. With this configuration, an alarm can be output at the lower limit or the upper limit of the set height range RH.
  • the gap sensor 28 detects a gap interval between the upper fixing plate 12 and the lower fixing plate 14.
  • the gap sensor 28 is, for example, a laser sensor, an ultrasonic sensor, or the like. By providing the gap sensors 28 at a plurality of locations (for example, 4 locations), it is possible to always grasp the support state of the intermediate shaft 6.
  • the jack bolt 29 is screwed into the upper fixing plate 12 or the lower fixing plate 14 and presses the upper fixing plate 12 upward against the lower fixing plate 14.
  • the jack bolt 29 is a bolt that is screwed into a female screw hole penetrating the upper fixing plate 12.
  • 5A and 5B are principle diagrams of the second embodiment of the present invention.
  • the set load range RF, the planned installation load, and the set height range RH are the same as in the first embodiment.
  • FIG. 5A is a spring characteristic diagram required for the support portion that supports the intermediate bearing 7.
  • the horizontal axis x [mm] and the vertical axis F [kN] are the same as in the first embodiment.
  • FIG. 5B is a schematic diagram of a support portion that supports the intermediate bearing 7.
  • an urging device 18 having a support spring constant k2 and a displacement speed limiting device 30 for moving resistance f are arranged in parallel on the bearing base 11. Since the bearing stand 11 and the bearing support device 10 are positioned in series vertically, the following relational expressions (4) and (5) are established.
  • x1 is the displacement of the bearing stand 11
  • x2 is the displacement of the bearing support device 10.
  • the total spring constant k can be variably adjusted according to the magnitude of f / F (ie, f).
  • the displacement speed limiting device 30 is a damper device. (Or a shock absorber). As a result, vertical vibrations with a short period can be prevented, the life of the spring can be extended, and replacement is unnecessary (maintenance-free).
  • the displacement speed limiting device 30 preferably has a displacement fixing device (not shown, which will be described later) for fixing the displacement of the intermediate bearing 7.
  • a displacement fixing device (not shown, which will be described later) for fixing the displacement of the intermediate bearing 7.
  • FIG. 6 is an enlarged view of part B of FIG.
  • the bearing support device 10 has the displacement speed limiting device 30 described above.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 7A is a diagram showing a first embodiment of the displacement speed limiting device 30, and FIG. 7B is a diagram showing a second embodiment of the displacement speed limiting device 30.
  • the displacement speed limiting device 30 includes a hydraulic cylinder 32 and a moving speed adjusting device 34.
  • the hydraulic cylinder 32 is preferably a hydraulic cylinder, and has a piston rod 33 that is sandwiched between the upper fixing plate 12 and the lower fixing plate 14 and follows the movement of the upper fixing plate 12 relative to the lower fixing plate 14.
  • the piston rod 33 is fixed to the upper fixing plate 12 with, for example, a bolt 31a
  • the main body of the hydraulic cylinder 32 is fixed to the lower fixing plate 14 with, for example, a bolt 31b.
  • the piston rod 33 may be fixed to the lower fixing plate 14 and the main body of the hydraulic cylinder 32 may be fixed to the upper fixing plate 12.
  • the hydraulic cylinder 32 is a ram cylinder, and hydraulic fluid (for example, hydraulic fluid) is supplied to only one (head side) of the piston rod 33 (that is, the ram).
  • the hydraulic cylinder 32 is a normal hydraulic cylinder that can move up and down, and hydraulic fluid is supplied to both the head side and the rod side.
  • the moving speed adjusting device 34 adjusts the moving speed of the piston rod 33.
  • the moving speed adjustment device 34 is a first flow rate adjustment valve 37 ⁇ / b> A provided in a first connection pipe 36 ⁇ / b> A that communicates the head side of the hydraulic cylinder 32 and the hydraulic fluid tank 35.
  • the hydraulic fluid in the hydraulic fluid tank 35 is held at a constant pressure (for example, atmospheric pressure).
  • the first flow rate adjustment valve 37A is, for example, a needle valve or an orifice for flow rate adjustment, and controls the flow rate (that is, the flow rate) flowing through the first connection pipe 36A to adjust the moving speed of the piston rod 33.
  • the moving speed adjusting device 34 functions as a damper device (or shock absorber), and vertical vibrations with a short period can be effectively prevented.
  • the moving speed adjusting device 34 is a second flow rate adjusting valve 37B provided in a second connecting pipe 36B that communicates the head side and the rod side of the hydraulic cylinder 32.
  • the second flow rate adjusting valve 37B is, for example, a needle valve or an orifice for adjusting the flow rate, and controls the flow rate (that is, the flow rate) flowing through the second connection pipe 36B to adjust the moving speed of the piston rod 33.
  • the moving speed adjusting device 34 has a fixed throttle 38 provided in the third connection pipe 36 ⁇ / b> C that communicates the second connection pipe 36 ⁇ / b> B and the hydraulic fluid tank 35.
  • the fixed throttle 38 controls the flow rate (that is, the flow velocity) flowing through the third connection pipe 36C to be smaller than that of the second connection pipe 36B, and compensates for excess and deficiency of hydraulic fluid on the head side and the rod side of the hydraulic cylinder 32.
  • a needle valve for adjusting the flow rate or an orifice may be used.
  • the piston rod 33 can follow the displacement with a small movement resistance f when the bearing height is displaced vertically with a long period (for example, a period of 1 hour or more). it can. Further, when the intermediate bearing 7 is displaced by a vertical movement of a short cycle (for example, a cycle of 10 seconds or less), the moving speed adjustment device 34 functions as a damper device (or a shock absorber) to prevent a short cycle of vertical vibration. can do.
  • a damper device or a shock absorber
  • the moving speed adjustment device 34 has a remote control valve 39 provided in a first connection pipe 36 ⁇ / b> A that communicates the head side of the hydraulic cylinder 32 and the hydraulic fluid tank 35.
  • the moving speed adjusting device 34 has a remote control valve 39 provided in a second connection pipe 36 ⁇ / b> B that communicates the head side and the rod side of the hydraulic cylinder 32.
  • the remote control valve 39 is, for example, an electromagnetic valve, and is configured so that the first connection pipe 36A can be fully closed by remote control.
  • the remote control valve 39 corresponds to the displacement fixing device described above.
  • the remote control valve 39 is fully closed by a command from the remote control room after the bearing height is displaced from the installation height due to a change in temperature or the action of external force and becomes a steady state. can do.
  • the displacement of the piston rod 33 that is, the displacement of the intermediate bearing 7 can be fixed, and the intermediate bearing 7 can be substantially fixed to the bearing base 11 at a position (that is, height) suitable for the steady state.
  • the bearing load (supporting force F of the intermediate bearing 7) is kept within the set load range RF even when the bearing height is displaced due to a temperature change or an external force after the intermediate bearing 7 is installed. It can be adjusted automatically.
  • the piston rod 33 when the bearing height is displaced with a long cycle (for example, a cycle of 1 hour or more) after the intermediate bearing 7 is installed, the piston rod 33 has a small movement resistance f. It can follow the displacement. Further, when the intermediate bearing 7 is displaced by a vertical movement of a short cycle (for example, a cycle of 10 seconds or less), the moving speed adjustment device 34 functions as a damper device (or a shock absorber) to prevent a short cycle of vertical vibration. can do.
  • the load balance of each bearing can be automatically adjusted to improve reliability.
  • a bearing support device 10 having a spring characteristic corresponding to the relative height displacement between the bearing (intermediate bearing 7) and the bearing base 11, an automatic load balance is ensured.
  • System reliability can be improved.
  • Stable bearing support can be achieved by suppressing dynamic fluctuating force due to external force applied to the shaft system.
  • the spring 26 disc spring laminated body
  • the displacement speed limiter 30 are provided, so that the entire bearing can be prevented from shaking and vibrating. Stable operation is possible.
  • the connection pipes 36A and 36B of the hydraulic cylinder 32 are equipped with flow rate adjusting valves 37A and 37B (for example, needle valves) that can adjust the flow rate in consideration of the cycle of the fluctuating external force.
  • flow rate adjusting valves 37A and 37B for example, needle valves
  • a remote control valve 39 (as shown in FIGS. 7A and 7B is provided so that the flow of hydraulic oil can be controlled remotely from the control room. Equipped with a solenoid valve), it can be controlled according to the system movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

A self-aligning bearing support device 10 supports an intermediate bearing 7 which rotatably supports the intermediate portion of an intermediate shaft 6. The intermediate bearing 7 extends horizontally with the front and rear ends thereof being rotatably supported. The self-aligning bearing support device 10 has a total spring constant k with respect to the displacement x of the intermediate bearing 7 from the installation height. The total spring constant k is set so that the supporting force F of the intermediate bearing 7 falls within a preset load range RF in a preset height range RH. The self-aligning bearing support device 10 also has a displacement speed restriction device 30 which restricts the speed of displacement of the intermediate bearing 7 from the installation height. The displacement speed restriction device 30 has a displacement fixing device (remote control valve 39) which fixes the displacement x of the intermediate bearing 7.

Description

セルフアライメント式軸受支持装置Self-alignment type bearing support device
 本発明は、軸受の高さ位置を適正な位置に調整するセルフアライメント式軸受支持装置に関する。 The present invention relates to a self-alignment type bearing support device that adjusts the height position of a bearing to an appropriate position.
 軸受の高さ位置を適正な位置に調整するアライメント調整装置として、例えば特許文献1,2が提案されている。 For example, Patent Documents 1 and 2 have been proposed as alignment adjustment devices that adjust the height position of a bearing to an appropriate position.
 特許文献1の「軸受アライメント自動調整装置」では、軸受中心位置の設定値信号を発生する設定値信号発生器と、状態量変化を計測する状態量計測装置と、偏差値を算出する演算装置と、偏差値により軸受中心位置を調整する軸受位置調整装置と、を備える。 In the “bearing alignment automatic adjustment device” of Patent Document 1, a setting value signal generator that generates a setting value signal of a bearing center position, a state quantity measuring device that measures a change in state quantity, and an arithmetic device that calculates a deviation value, And a bearing position adjusting device for adjusting the bearing center position based on the deviation value.
 特許文献2の「アライメント調整装置」は、軸の状態を検知するためのパラメータモニタと、パラメータモニタによるモニタ量から制御量を演算する演算器と、演算された制御量により軸のアライメントを調整するアクチュエータと、から構成される。パラメータモニタとして軸系に対する変位計を用い、変位計からの検出量から軸振動を求め、演算器により求められた軸振動が抑制されるよう軸系のアライメントを調整する。 The “alignment adjusting device” of Patent Document 2 adjusts the alignment of the shaft by the parameter monitor for detecting the state of the shaft, the calculator for calculating the control amount from the monitored amount by the parameter monitor, and the calculated control amount. And an actuator. The displacement monitor for the shaft system is used as a parameter monitor, the shaft vibration is obtained from the detected amount from the displacement meter, and the alignment of the shaft system is adjusted so that the shaft vibration obtained by the calculator is suppressed.
特開平7-317757号公報JP 7-317757 A 特開2002-213522号公報JP 2002-213522 A
 トルク伝達用の回転軸を支持するために3以上の軸受が設けられる場合がある。この場合、各軸受はある条件(例えばコールド条件)でそれぞれの軸受荷重のバランスを考慮して据え付けられる。しかし実際の使用状況(例えばホット条件)では、温度変化又は外力の作用(例えば喫水の変化)により各軸受高さが変位し、計画した荷重バランスから大きく外れることがある。 ∙ There are cases where three or more bearings are provided to support the rotating shaft for torque transmission. In this case, each bearing is installed in consideration of the balance of each bearing load under a certain condition (for example, a cold condition). However, under actual usage conditions (for example, hot conditions), the height of each bearing may be displaced due to a change in temperature or the action of an external force (for example, a change in draft), and may greatly deviate from the planned load balance.
 軸受荷重が大きくなり過ぎると、メタルの面圧が増大し焼付損傷が発生する場合があり、また軸受荷重が小さくなり過ぎると軸抑制力が低下し、挙動による軸受メタル部のフレッティングが起き、軸受メタルの剥離が発生する場合がある。 If the bearing load becomes too large, the surface pressure of the metal may increase and seizure damage may occur, and if the bearing load becomes too small, the shaft restraining force will decrease, causing fretting of the bearing metal part due to behavior, The bearing metal may peel off.
 各軸受高さの変位が大きい場合、上述したリスクがあり、軸系のトラブルの要因となっている。 ¡When the displacement of each bearing height is large, there is the risk mentioned above, which causes a trouble of the shaft system.
 また上述した特許文献1,2の手段では、制御装置(演算装置、演算器等)が不可欠であり、停電やノイズにより機能を喪失する可能性がある。 In the means of Patent Documents 1 and 2 described above, a control device (arithmetic unit, arithmetic unit, etc.) is indispensable, and there is a possibility that the function is lost due to a power failure or noise.
 本発明は、上述した問題点を解決するために、創案されたものである。すなわち、本発明の目的は、軸受の据付後に、温度変化又は外力の作用により軸受高さが変位した場合でも、停電やノイズの影響を受けずに軸受荷重を適正範囲内に自動的に調整することができるセルフアライメント式軸受支持装置を提供することにある。 The present invention has been created to solve the above-described problems. That is, the object of the present invention is to automatically adjust the bearing load within an appropriate range without being affected by a power failure or noise even when the bearing height is displaced due to temperature change or external force after installation of the bearing. It is an object of the present invention to provide a self-alignment type bearing support device that can be used.
 本発明によれば、水平方向に延びその前端と後端が回転可能に支持された中間軸の中間部を回転可能に支持する中間軸受を支持するセルフアライメント式軸受支持装置であって、
 前記中間軸受の据付高さからの変位に対する総合ばね定数を有し、
 前記総合ばね定数は、前記中間軸受の支持力が、設定高さ範囲において設定荷重範囲内になるように設定されている、セルフアライメント式軸受支持装置が提供される。
According to the present invention, there is provided a self-alignment type bearing support device that supports an intermediate bearing that extends in a horizontal direction and rotatably supports an intermediate portion of an intermediate shaft that is rotatably supported at its front end and rear end,
An overall spring constant for displacement from the installation height of the intermediate bearing;
A self-alignment type bearing support device is provided in which the total spring constant is set such that a support force of the intermediate bearing is within a set load range in a set height range.
 前記中間軸受の前記据付高さからの変位速度を制限する変位速度制限装置を有する。 · A displacement speed limiting device for limiting the displacement speed of the intermediate bearing from the installation height is provided.
 前記変位速度制限装置は、前記変位を固定する変位固定装置を有する。 The displacement speed limiting device has a displacement fixing device that fixes the displacement.
 前記中間軸受が固定される上部固定板と、
 固定部分に固定される下部固定板と、
 前記上部固定板を前記下部固定板に対し、前記設定高さ範囲で上下動可能に案内するガイド装置と、
 前記上部固定板と前記下部固定板の間に挟持され、前記下部固定板に対し前記上部固定板を上方に付勢する付勢装置と、を備え、
 前記付勢装置の総付勢力は、前記中間軸受の前記支持力が、前記設定高さ範囲において前記設定荷重範囲内になるように設定されている。
An upper fixing plate to which the intermediate bearing is fixed;
A lower fixing plate fixed to the fixing part;
A guide device that guides the upper fixing plate relative to the lower fixing plate so as to move up and down within the set height range;
An urging device sandwiched between the upper fixing plate and the lower fixing plate and urging the upper fixing plate upward with respect to the lower fixing plate;
The total urging force of the urging device is set so that the support force of the intermediate bearing is within the set load range in the set height range.
 前記付勢装置は、前記上部固定板と前記下部固定板の間に挟持されたばねを有し、
 前記ばねのばね定数は、全体として前記中間軸受の前記支持力が、前記設定高さ範囲において前記設定荷重範囲内になるように設定されている。
The biasing device has a spring sandwiched between the upper fixing plate and the lower fixing plate,
The spring constant of the spring is set so that the support force of the intermediate bearing as a whole is within the set load range in the set height range.
 前記中間軸受が固定される上部固定板と、
 固定部分に固定される下部固定板と、を備え、
 前記変位速度制限装置は、前記上部固定板と前記下部固定板の間に挟持され、前記下部固定板に対する前記上部固定板の移動に追従するピストンロッドを有する液圧シリンダと、
 前記ピストンロッドの移動速度を調整する移動速度調整装置と、を有する。
An upper fixing plate to which the intermediate bearing is fixed;
A lower fixing plate fixed to the fixing portion,
The displacement speed limiting device is a hydraulic cylinder having a piston rod that is sandwiched between the upper fixed plate and the lower fixed plate and follows the movement of the upper fixed plate with respect to the lower fixed plate;
A moving speed adjusting device for adjusting a moving speed of the piston rod.
 前記移動速度調整装置は、前記液圧シリンダのヘッド側と作動液タンクとを連通する第1接続管に設けられた第1流量調整弁である。 The moving speed adjusting device is a first flow rate adjusting valve provided in a first connecting pipe communicating the head side of the hydraulic cylinder and the hydraulic fluid tank.
 前記移動速度調整装置は、前記液圧シリンダのヘッド側とロッド側を連通する第2接続管に設けられた第2流量調整弁である。 The moving speed adjusting device is a second flow rate adjusting valve provided in a second connecting pipe communicating the head side and the rod side of the hydraulic cylinder.
 前記移動速度調整装置は、前記液圧シリンダのヘッド側と作動液タンクとを連通する第1接続管、又は、前記液圧シリンダのヘッド側とロッド側を連通する第2接続管に設けられ、前記第1接続管又は前記第2接続管を遠隔制御で全閉可能な遠隔制御弁を有する。 The moving speed adjusting device is provided in a first connection pipe that communicates the head side of the hydraulic cylinder and the hydraulic fluid tank, or a second connection pipe that communicates the head side and the rod side of the hydraulic cylinder, A remote control valve capable of fully closing the first connection pipe or the second connection pipe by remote control;
 前記ガイド装置は、前記上部固定板と前記下部固定板の間に挟持され、前記設定高さ範囲の下限において、前記上部固定板が下方に移動するのを防止する下限制限ストッパと、
 前記設定高さ範囲の上限において、前記上部固定板が上方に移動するのを防止する上限制限ボルトと、
 前記付勢装置の上下方向の伸縮を案内する伸縮ガイドと、を有する。
The guide device is sandwiched between the upper fixing plate and the lower fixing plate, and at the lower limit of the set height range, a lower limit limiting stopper for preventing the upper fixing plate from moving downward,
An upper limit bolt that prevents the upper fixing plate from moving upward at the upper limit of the set height range;
A telescopic guide for guiding the vertical expansion and contraction of the urging device.
 前記設定高さ範囲の前記下限又は前記上限を検出可能な軸受高さ位置警報用の位置センサと、
 前記上部固定板と前記下部固定板の隙間間隔を検出可能な軸受高さモニタリング用の隙間センサと、を有する。
A position sensor for bearing height position alarm capable of detecting the lower limit or the upper limit of the set height range;
A bearing height monitoring gap sensor capable of detecting a gap gap between the upper fixing plate and the lower fixing plate.
 前記上部固定板又は前記下部固定板と螺合し、前記下部固定板に対し前記上部固定板を上方に押圧するジャッキボルトを有する。 A jack bolt that is screwed to the upper fixing plate or the lower fixing plate and presses the upper fixing plate upward with respect to the lower fixing plate.
 上記本発明によれば、中間軸受の支持力が、設定高さ範囲において設定荷重範囲内になるように、総合ばね定数が設定されている。従って、軸受の据付後に、温度変化又は外力の作用により軸受高さが据付高さから変位した場合でも、軸受荷重(中間軸受の支持力)を設定荷重範囲内に自動的に調整することができる。 According to the present invention, the total spring constant is set so that the support force of the intermediate bearing is within the set load range in the set height range. Therefore, even if the bearing height is displaced from the installation height due to temperature change or external force after the bearing is installed, the bearing load (supporting force of the intermediate bearing) can be automatically adjusted within the set load range. .
 また、制御装置を用いないので、停電やノイズの影響を受けずに、軸受荷重(中間軸受の支持力)を設定荷重範囲内に自動的に調整することができる。 Also, since no control device is used, the bearing load (supporting force of the intermediate bearing) can be automatically adjusted within the set load range without being affected by power failure or noise.
本発明のセルフアライメント式軸受支持装置を備えた回転軸の説明図である。It is explanatory drawing of the rotating shaft provided with the self-alignment type bearing support apparatus of this invention. 中間軸受を支持する支持部に要求されるばね特性図である。It is a spring characteristic figure requested | required of the support part which supports an intermediate bearing. 中間軸受を支持する支持部の模式図である。It is a schematic diagram of the support part which supports an intermediate bearing. 図1のA部拡大図である。It is the A section enlarged view of FIG. 図3Aの側面図である。FIG. 3B is a side view of FIG. 3A. 図3AのB部拡大図であり、軸受支持装置の第1実施形態図である。It is a B section enlarged view of Drawing 3A, and is a 1st embodiment figure of a bearing support device. 中間軸受を支持する支持部に要求されるばね特性図である。It is a spring characteristic figure requested | required of the support part which supports an intermediate bearing. 中間軸受を支持する支持部の模式図である。It is a schematic diagram of the support part which supports an intermediate bearing. 図3AのB部拡大図であり、軸受支持装置の第2実施形態図である。It is a B section enlarged view of Drawing 3A, and is a 2nd embodiment figure of a bearing support device. 変位速度制限装置の第1実施形態図である。It is a 1st embodiment figure of a displacement speed limiting device. 変位速度制限装置の第2実施形態図である。It is a 2nd embodiment figure of a displacement speed limiting device.
 本発明の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
 図1は、本発明のセルフアライメント式軸受支持装置10(以下単に、「軸受支持装置10」と呼ぶ)を備えた回転軸の説明図である。 FIG. 1 is an explanatory view of a rotary shaft provided with a self-alignment type bearing support device 10 of the present invention (hereinafter simply referred to as “bearing support device 10”).
 この図において、1は船舶、1aは船尾、1bは船底、1cは二重床、2はプロペラ、3は船尾管、4は船尾管軸受、5はプロペラ軸、6は中間軸、7は中間軸受、8は主機出力軸、9は主機用軸受である。
 プロペラ軸5、中間軸6、及び主機出力軸8は、水平方向に延びる軸心Z-Zを中心に回転する。軸心Z-Zは水平軸に限定されず、水平に対し傾斜した傾斜軸であってもよい。
 なお図中の矢印Eは、主機用軸受9の軸方向の中心位置を示している。
In this figure, 1 is a ship, 1a is stern, 1b is bottom, 1c is double floor, 2 is propeller, 3 is stern tube, 4 is stern tube bearing, 5 is propeller shaft, 6 is intermediate shaft, and 7 is intermediate A bearing, 8 is a main machine output shaft, and 9 is a main machine bearing.
The propeller shaft 5, the intermediate shaft 6, and the main engine output shaft 8 rotate around an axis ZZ extending in the horizontal direction. The axis ZZ is not limited to the horizontal axis, and may be an inclined axis inclined with respect to the horizontal.
Note that an arrow E in the figure indicates the axial center position of the main engine bearing 9.
 図1において、中間軸6の前端と後端は、主機用軸受9と船尾管軸受4によりそれぞれ回転可能に支持されている。また船尾管軸受4は、船尾1aの船体に固定されている。
 中間軸受7は、中間軸6の中間部を回転可能に支持する。中間部の位置は、中間軸6の長さ方向の中央であるのが好ましいが、その他の位置でもよい。
In FIG. 1, the front end and the rear end of the intermediate shaft 6 are rotatably supported by a main engine bearing 9 and a stern tube bearing 4, respectively. The stern tube bearing 4 is fixed to the hull of the stern 1a.
The intermediate bearing 7 rotatably supports an intermediate portion of the intermediate shaft 6. The position of the intermediate portion is preferably the center of the intermediate shaft 6 in the length direction, but may be other positions.
 本発明の軸受支持装置10は、軸受台11に取り付けられ、中間軸受7を支持する装置である。軸受台11は、二重床1cに強固に連結され、高い剛性を有する。
 また、船舶1の船殻、すなわち船尾1a、船底1b、及び二重床1cは、スティフナにより補強され、高い剛性を有する。
 以下の説明では、軸受台11のばね定数k1(以下、「受台ばね定数k1」)を一例として85kN/mmとし、船舶1の船殻のばね定数は、軸受台11よりも1桁以上大きいことを想定している。
The bearing support device 10 of the present invention is a device that is attached to the bearing stand 11 and supports the intermediate bearing 7. The bearing stand 11 is firmly connected to the double floor 1c and has high rigidity.
Further, the hull of the ship 1, that is, the stern 1 a, the ship bottom 1 b, and the double floor 1 c are reinforced by a stiffener and have high rigidity.
In the following description, the spring constant k1 of the bearing base 11 (hereinafter referred to as “the receiving spring constant k1”) is 85 kN / mm as an example, and the spring constant of the hull of the ship 1 is one digit larger than that of the bearing base 11. Assumes that.
 従来の構造は、本発明の軸受支持装置10を用いず、図1における中間軸受7を船体構造(すなわち軸受台11)に直接固定している。従来のように、中間軸受7を軸受台11の上に直接固定して据え付けた場合、中間軸受7での船体との相対変位xに対する影響係数(1mmの高さ変位に対する荷重変化)は、例えば約85(kN/mm)の大きな値となる。
 そのため、中間軸受7の据付高さからの変位xが大きい場合に、中間軸受7又は主機用軸受9の軸受荷重が許容軸受荷重を超え、損傷が発生する可能性があった。
The conventional structure does not use the bearing support device 10 of the present invention, and directly fixes the intermediate bearing 7 in FIG. 1 to the hull structure (that is, the bearing stand 11). When the intermediate bearing 7 is fixed and installed directly on the bearing base 11 as in the prior art, the influence coefficient (load change with respect to a height displacement of 1 mm) with respect to the relative displacement x with the hull at the intermediate bearing 7 is, for example, A large value of about 85 (kN / mm) is obtained.
Therefore, when the displacement x from the installation height of the intermediate bearing 7 is large, the bearing load of the intermediate bearing 7 or the main engine bearing 9 may exceed the allowable bearing load, and damage may occur.
 例えば、中間軸受7の支持力Fの荷重範囲(以下「設定荷重範囲RF」と呼ぶ)が12~151kNと仮定し、据付時の中間軸受7の計画支持力F(以下「計画据付荷重」)を63kNとする。
 中間軸受7の変位x(中間軸受7が下がる方向)が1mmの場合、中間軸受7の支持力Fは、63kN-85(kN/mm)×1mm=-22kNとなる。すなわちこの場合、軸受台11から中間軸受7が浮き上がってしまい、中間軸6が支持されない状態となり、中間軸受7のメタル部にフレッティングによる損傷が発生する。
For example, assuming that the load range of the support force F of the intermediate bearing 7 (hereinafter referred to as “set load range RF”) is 12 to 151 kN, the planned support force F of the intermediate bearing 7 during installation (hereinafter “planned installation load”) Is 63 kN.
When the displacement x of the intermediate bearing 7 (the direction in which the intermediate bearing 7 is lowered) is 1 mm, the support force F of the intermediate bearing 7 is 63 kN−85 (kN / mm) × 1 mm = −22 kN. In other words, in this case, the intermediate bearing 7 is lifted from the bearing base 11 and the intermediate shaft 6 is not supported, and the metal portion of the intermediate bearing 7 is damaged by fretting.
 図2Aと図2Bは、本発明の第1実施形態の原理図である。
 具体例として、設定荷重範囲RFを12~151kN、計画据付荷重を63kN、設定高さ範囲RH(中間軸受7の据付高さからの変位範囲)を上限(x=-2mm)から下限(x=2mm)の範囲とする。
 設定高さ範囲RHは、上述の1mmの変位xに対し、余裕を見て相対変位を2倍に想定している。
2A and 2B are principle diagrams of the first embodiment of the present invention.
As a specific example, the set load range RF is 12 to 151 kN, the planned installation load is 63 kN, and the set height range RH (displacement range from the installation height of the intermediate bearing 7) is changed from the upper limit (x = -2 mm) to the lower limit (x = 2 mm).
The set height range RH assumes that the relative displacement is doubled with a margin with respect to the above-mentioned displacement x of 1 mm.
 図2Aは、中間軸受7を支持する支持部に要求されるばね特性図である。この図において、横軸x[mm]は、中間軸受7の据付高さ(x=0)からの変位(下向き距離)であり、縦軸F[kN]は中間軸受7の支持力である。
 この例のばね特性を満たす総合ばね定数kはk=25.5kN/mmとなる。
FIG. 2A is a spring characteristic diagram required for the support portion that supports the intermediate bearing 7. In this figure, the horizontal axis x [mm] is the displacement (downward distance) from the installation height (x = 0) of the intermediate bearing 7, and the vertical axis F [kN] is the supporting force of the intermediate bearing 7.
The total spring constant k that satisfies the spring characteristics of this example is k = 25.5 kN / mm.
 図2Bは、中間軸受7を支持する支持部の模式図である。この図において、本発明の軸受支持装置10は、中間軸受7と軸受台11の間に挟持されている。軸受支持装置10のばね定数k2を、以下、「支持ばね定数k2」と呼ぶ。 FIG. 2B is a schematic view of a support portion that supports the intermediate bearing 7. In this figure, the bearing support device 10 of the present invention is sandwiched between an intermediate bearing 7 and a bearing base 11. The spring constant k2 of the bearing support device 10 is hereinafter referred to as “support spring constant k2”.
 軸受台11と軸受支持装置10は上下に直列に位置することから、以下の関係式(1)(2)が成り立つ。ここでx1は軸受台11の変位、x2は軸受支持装置10の変位である。 Since the bearing stand 11 and the bearing support device 10 are positioned in series in the vertical direction, the following relational expressions (1) and (2) are established. Here, x1 is the displacement of the bearing stand 11, and x2 is the displacement of the bearing support device 10.
 F×x=F×x1=F×x2・・・(1)
 x=x1+x2・・・(2)
 式(1)(2)から式(3)が導かれる。
 1/k=1/k1+1/k2・・・(3)
F × x = F × x1 = F × x2 (1)
x = x1 + x2 (2)
Equation (3) is derived from equations (1) and (2).
1 / k = 1 / k1 + 1 / k2 (3)
 式(3)から、k=25.5kN/mm、k1=85kN/mmの場合、支持ばね定数k2=37kN/mmが得られる。 From equation (3), when k = 25.5 kN / mm and k1 = 85 kN / mm, a support spring constant k2 = 37 kN / mm is obtained.
 上述したように本発明の軸受支持装置10は、中間軸受7の据付高さ(x=0)からの変位xに対する総合ばね定数kを有する。この総合ばね定数kは、中間軸受7の支持力Fが、高さ設定範囲(例えば、x=-2~2mm)において予め設定された設定荷重範囲RF(例えば、F=12~151kN)内になるように設定されている。 As described above, the bearing support device 10 of the present invention has the total spring constant k with respect to the displacement x from the installation height (x = 0) of the intermediate bearing 7. The total spring constant k is such that the supporting force F of the intermediate bearing 7 is within a preset load range RF (eg, F = 12 to 151 kN) in a height setting range (eg, x = −2 to 2 mm). It is set to be.
 すなわち、上述した例において、支持ばね定数k2がk2=37kN/mmとなるように、軸受支持装置10のばね特性を設定する。これにより、図2Aに示すように、中間軸受7の据付後に温度変化又は外力の作用により軸受高さが変位した場合でも、軸受荷重(中間軸受7の支持力F)を設定荷重範囲RF内に自動的に調整することができる。 That is, in the above-described example, the spring characteristics of the bearing support device 10 are set so that the support spring constant k2 is k2 = 37 kN / mm. As a result, as shown in FIG. 2A, the bearing load (supporting force F of the intermediate bearing 7) is kept within the set load range RF even when the bearing height is displaced due to a temperature change or an external force after the intermediate bearing 7 is installed. It can be adjusted automatically.
 図3Aは、図1のA部拡大図であり、図3Bは、図3Aの側面図である。 3A is an enlarged view of a part A in FIG. 1, and FIG. 3B is a side view of FIG. 3A.
 この例において、中間軸受7は、中間軸6を支持する軸受7aと、軸受7aの外周面を囲む軸受ケース7bと、軸受ケース7bの下面を支持する脚部7cと、を有する。
 また脚部7cは、幅方向両端の下面に1対の水平支持面7dを有する。
 なお、この例で、軸受7aはジャーナル軸受(滑り軸受)であるが、本発明はこれに限定されず、その他の軸受(例えば、転がり軸受)であってもよい。
In this example, the intermediate bearing 7 includes a bearing 7a that supports the intermediate shaft 6, a bearing case 7b that surrounds the outer peripheral surface of the bearing 7a, and a leg portion 7c that supports the lower surface of the bearing case 7b.
The leg portion 7c has a pair of horizontal support surfaces 7d on the lower surfaces at both ends in the width direction.
In this example, the bearing 7a is a journal bearing (sliding bearing), but the present invention is not limited to this, and may be another bearing (for example, a rolling bearing).
 またこの例において、軸受台11は、左右1対の支持台11aと調整ライナ11bを有する。
 1対の支持台11aは、軸心Z-Zの幅方向両側に間隔を隔てて位置する。支持台11aの下面は、調整ライナ11bを介して二重床1cに固定される。調整ライナ11bは、複数の平板又はテーパ板からなり、支持台11aの上面高さを微調整できるようになっている。
 なお、軸受台11の上面高さの微調整のため、支持台11aの下面にジャッキボルト(図示せず)を有することが好ましい。
In this example, the bearing stand 11 has a pair of left and right support tables 11a and an adjustment liner 11b.
The pair of support bases 11a are located at intervals on both sides in the width direction of the axis ZZ. The lower surface of the support base 11a is fixed to the double floor 1c via the adjustment liner 11b. The adjustment liner 11b is composed of a plurality of flat plates or tapered plates, and can finely adjust the height of the upper surface of the support base 11a.
In order to finely adjust the height of the upper surface of the bearing base 11, it is preferable to have jack bolts (not shown) on the lower surface of the support base 11a.
 支持台11aの上面は水平面であり、中間軸受7の水平支持面7dとの間に、軸受支持装置10を挟持する。
 この例において、1対の軸受支持装置10が、左右1対の支持台11aの上面と中間軸受7の水平支持面7dの間に挟持されている。
 なお、軸受支持装置10は1対に限定されず、単一でも3以上であってもよい。
The upper surface of the support base 11 a is a horizontal plane, and the bearing support device 10 is sandwiched between the horizontal support surface 7 d of the intermediate bearing 7.
In this example, a pair of bearing support devices 10 are sandwiched between the upper surfaces of a pair of left and right support bases 11 a and a horizontal support surface 7 d of the intermediate bearing 7.
The bearing support device 10 is not limited to one pair, and may be single or three or more.
 図4は、図3AのB部拡大図であり、軸受支持装置10の第1実施形態図である。
 この図において、軸受支持装置10は、上部固定板12、下部固定板14、ガイド装置16、及び付勢装置18を備える。
FIG. 4 is an enlarged view of a portion B in FIG. 3A and is a first embodiment diagram of the bearing support device 10.
In this figure, the bearing support device 10 includes an upper fixing plate 12, a lower fixing plate 14, a guide device 16, and an urging device 18.
 上部固定板12は、この例で水平な厚肉平板であり、中間軸受7が上部固定板12の上面に、例えばボルト又はナットにより固定される。
 下部固定板14は、この例で水平な厚肉平板であり、下端が固定部分(この例で軸受台11)に、例えばボルト又はナットにより固定される。なお、固定部分は、軸受台11に限定されず、高い剛性を有する限りで、船舶1の船殻の一部であってもよい。
The upper fixing plate 12 is a horizontal thick plate in this example, and the intermediate bearing 7 is fixed to the upper surface of the upper fixing plate 12 by, for example, bolts or nuts.
The lower fixing plate 14 is a horizontal thick flat plate in this example, and the lower end is fixed to a fixing portion (bearing base 11 in this example) by, for example, a bolt or a nut. The fixed portion is not limited to the bearing stand 11 and may be a part of the hull of the ship 1 as long as it has high rigidity.
 また、図3Bにおいて、左右1対の軸受支持装置10の幅方向外面には、それぞれサイドガイド10aが取り付けられている。
 この例で、サイドガイド10aは、上端部が上部固定板12に固定され、下方に延び、その下端部が下部固定板14の幅方向外面に沿って延びる。なお逆に、サイドガイド10aを下部固定板14に固定してもよい。
 この構成により、1対のサイドガイド10aにより、中間軸受7の上下動を案内し、かつ中間軸受7の左右舷方向(幅方向)の移動を防止することができる。
In FIG. 3B, side guides 10a are attached to the outer surfaces in the width direction of the pair of left and right bearing support devices 10, respectively.
In this example, the side guide 10 a has an upper end fixed to the upper fixing plate 12 and extending downward, and a lower end extending along the outer surface in the width direction of the lower fixing plate 14. Conversely, the side guide 10 a may be fixed to the lower fixing plate 14.
With this configuration, it is possible to guide the vertical movement of the intermediate bearing 7 by the pair of side guides 10a and to prevent the intermediate bearing 7 from moving in the left and right lateral direction (width direction).
 図4において、ガイド装置16は、上部固定板12を下部固定板14に対し、設定高さ範囲RH(図2Aでx=-2~+2mm)で上下動可能に案内する。
 設定高さ範囲RHは、中間軸6を支持する軸受(この例では、主機用軸受9、船尾管軸受4及び中間軸受7)の許容軸受荷重と、据付後の使用状況(例えば温度変化又は外力の作用)により想定される各軸受高さの相対変位から予め設定することができる。
In FIG. 4, the guide device 16 guides the upper fixing plate 12 relative to the lower fixing plate 14 so as to move up and down within a set height range RH (x = −2 to +2 mm in FIG. 2A).
The set height range RH includes the allowable bearing load of the bearing that supports the intermediate shaft 6 (in this example, the main engine bearing 9, the stern tube bearing 4, and the intermediate bearing 7) and the usage status after installation (for example, temperature change or external force). It is possible to set in advance from the relative displacement of each bearing height assumed by the above action.
 ガイド装置16は、上述した1対のサイドガイド10aの他に、この例では、下限制限ストッパ20、ストッパ固定ボルト21、上限制限ボルト22、及び伸縮ガイド24を有する。 In addition to the pair of side guides 10a described above, the guide device 16 includes a lower limit stopper 20, a stopper fixing bolt 21, an upper limit bolt 22, and an extendable guide 24 in this example.
 下限制限ストッパ20は、上部固定板12と下部固定板14の間に挟持され、設定高さ範囲RHの下限(x=2mm)において、上部固定板12が下方に移動するのを防止する。下限制限ストッパ20は、この例では、中空円筒形部材である。
 ストッパ固定ボルト21は、下限制限ストッパ20の中心孔を通して、その下端が下部固定板14に固定され、ボルトの頭が上部固定板12の上面より隙間を隔てて固定されている。ストッパ固定ボルト21は、下限制限ストッパ20の位置を保持する。
The lower limit limiting stopper 20 is sandwiched between the upper fixing plate 12 and the lower fixing plate 14 and prevents the upper fixing plate 12 from moving downward at the lower limit (x = 2 mm) of the set height range RH. The lower limit limiting stopper 20 is a hollow cylindrical member in this example.
The lower end of the stopper fixing bolt 21 is fixed to the lower fixing plate 14 through the center hole of the lower limit limiting stopper 20, and the head of the bolt is fixed with a gap from the upper surface of the upper fixing plate 12. The stopper fixing bolt 21 holds the position of the lower limit limiting stopper 20.
 上限制限ボルト22は、設定高さ範囲RHの上限(x=-2mm)において、上部固定板12が上方に移動するのを防止する。上限制限ボルト22は、この例では、付勢装置18の中心孔を通るボルトであり、下端が下部固定板14に固定され、ボルトの頭が上部固定板12の上面より隙間を隔てて固定されている。 The upper limit bolt 22 prevents the upper fixing plate 12 from moving upward at the upper limit (x = -2 mm) of the set height range RH. In this example, the upper limit limiting bolt 22 is a bolt that passes through the center hole of the urging device 18, the lower end is fixed to the lower fixing plate 14, and the head of the bolt is fixed with a gap from the upper surface of the upper fixing plate 12. ing.
 伸縮ガイド24は、付勢装置18の上下方向の伸縮を案内する。伸縮ガイド24は、この例では、付勢装置18を囲む同心の二重管であり、一方が上部固定板12に固定され、他方が下部固定板14に固定されている。 The expansion / contraction guide 24 guides the vertical expansion / contraction of the urging device 18. In this example, the telescopic guide 24 is a concentric double tube surrounding the biasing device 18, and one is fixed to the upper fixing plate 12 and the other is fixed to the lower fixing plate 14.
 上述したガイド装置16により、下部固定板14に対し、上部固定板12を設定高さ範囲RHで上下動可能に案内することができる。 The above-described guide device 16 can guide the upper fixing plate 12 to the lower fixing plate 14 such that the upper fixing plate 12 can move up and down within a set height range RH.
 図4において、付勢装置18は、上部固定板12と下部固定板14の間に挟持され、下部固定板14に対し上部固定板12を上方に付勢する。
 付勢装置18の総付勢力(全体での付勢力)は、中間軸受7の支持力Fが、設定高さ範囲RH(x=-2~+2mm)において予め設定された設定荷重範囲RF内になるように設定されている。
 設定荷重範囲RFは、中間軸受7の許容軸受荷重を最大値とし、中間軸受7の支持力Fが負にならない範囲で、予め設定することができる。支持力Fが負にならない範囲で設定するのは、上述した上限制限ボルト22(及びストッパ固定ボルト21)に過大な引張力が作用して中間軸受7が浮き上がり、中間軸受7の機能が喪失されるのを防止するためである。
In FIG. 4, the biasing device 18 is sandwiched between the upper fixing plate 12 and the lower fixing plate 14 and biases the upper fixing plate 12 upward with respect to the lower fixing plate 14.
The total urging force (total urging force) of the urging device 18 is such that the supporting force F of the intermediate bearing 7 is within a set load range RF set in advance in the set height range RH (x = −2 to +2 mm). It is set to be.
The set load range RF can be set in advance within a range in which the allowable bearing load of the intermediate bearing 7 is a maximum value and the supporting force F of the intermediate bearing 7 is not negative. The range in which the supporting force F is not negative is set such that an excessive tensile force acts on the above-described upper limit bolt 22 (and the stopper fixing bolt 21), the intermediate bearing 7 is lifted, and the function of the intermediate bearing 7 is lost. This is to prevent it.
 図4において、付勢装置18は、上部固定板12と下部固定板14の間に挟持されたばね26を有する。この例でばね26は、複数の皿ばねと複数の平座金を積層した皿ばね積層体である。なお、ばね26はこの構成に限定されず、コイルばねでも、その他のばね(例えば板ばね)でもよい。
 ばね26(皿ばね積層体)のばね定数(すなわち、支持ばね定数k2)は、全体として中間軸受7の支持力Fが、設定高さ範囲RHにおいて設定荷重範囲RF内になるように設定されている。
In FIG. 4, the urging device 18 includes a spring 26 that is sandwiched between the upper fixing plate 12 and the lower fixing plate 14. In this example, the spring 26 is a disc spring laminated body in which a plurality of disc springs and a plurality of flat washers are laminated. The spring 26 is not limited to this configuration, and may be a coil spring or another spring (for example, a leaf spring).
The spring constant (that is, the support spring constant k2) of the spring 26 (disc spring laminated body) is set so that the support force F of the intermediate bearing 7 as a whole is within the set load range RF in the set height range RH. Yes.
 この例において、3組のばね26が上部固定板12と下部固定板14の間に挟持されている。しかし本発明はこの構成に限定されず、全体として、支持力Fが、設定高さ範囲RHにおいて設定荷重範囲RF内になるように設定されていればよい。 In this example, three sets of springs 26 are sandwiched between the upper fixing plate 12 and the lower fixing plate 14. However, the present invention is not limited to this configuration, and as a whole, it is sufficient that the support force F is set so as to be within the set load range RF in the set height range RH.
 例えば、図3Bと図4に示したように、左右1対の軸受支持装置10で中間軸受7を支持し、各軸受支持装置10がそれぞれ3組のばね26を備える場合、ばね26を両舷で6カ所装備することになる。この場合、1カ所当たりのばね26のばね定数(以下、「個別ばね定数」)k3は、下記の通りとなる。
 個別ばね定数k3=支持ばね定数k2/6=37/6≒約6.2kN/mm
For example, as shown in FIGS. 3B and 4, when the intermediate bearing 7 is supported by a pair of left and right bearing support devices 10, and each bearing support device 10 includes three sets of springs 26, the springs 26 are connected to both sides. It will be equipped with 6 places. In this case, the spring constant (hereinafter referred to as “individual spring constant”) k3 of the spring 26 at one place is as follows.
Individual spring constant k3 = support spring constant k2 / 6 = 37 / 6≈about 6.2 kN / mm
 上述した本発明によれば、中間軸受7の支持力Fが、設定高さ範囲RHにおいて設定荷重範囲RF内になるように、総合ばね定数kが設定されている。従って、中間軸受7の据付後に温度変化又は外力の作用により軸受高さが据付高さから変位した場合でも、軸受荷重(中間軸受7の支持力F)を設定荷重範囲RF内に自動的に調整することができる。 According to the present invention described above, the total spring constant k is set so that the supporting force F of the intermediate bearing 7 is within the set load range RF in the set height range RH. Therefore, even if the bearing height is displaced from the installation height due to temperature change or external force after installation of the intermediate bearing 7, the bearing load (supporting force F of the intermediate bearing 7) is automatically adjusted within the set load range RF. can do.
 また、制御装置を用いないので、停電やノイズの影響を受けずに、軸受荷重(中間軸受7の支持力F)を設定荷重範囲RF内に自動的に調整することができる。 Also, since no control device is used, the bearing load (supporting force F of the intermediate bearing 7) can be automatically adjusted within the set load range RF without being affected by power failure or noise.
 図4において、軸受支持装置10はさらに、軸受高さ位置警報用の位置センサ27A,27B、軸受高さモニタリング用の隙間センサ28、及びジャッキボルト29を有する。 4, the bearing support device 10 further includes bearing height position alarm position sensors 27A and 27B, a bearing height monitoring clearance sensor 28, and a jack bolt 29.
 この例で、位置センサ27Aは、設定高さ範囲RHの下限を検出し、位置センサ27Bは、設定高さ範囲RHの上限を検出する。位置センサ27A,27Bは、例えば、リミットスイッチ、近接スイッチ、レーザセンサ、超音波センサ、などである。
 この構成により、設定高さ範囲RHの下限又は上限において、警報を出力することができる。
In this example, the position sensor 27A detects the lower limit of the set height range RH, and the position sensor 27B detects the upper limit of the set height range RH. The position sensors 27A and 27B are, for example, limit switches, proximity switches, laser sensors, ultrasonic sensors, and the like.
With this configuration, an alarm can be output at the lower limit or the upper limit of the set height range RH.
 隙間センサ28は、上部固定板12と下部固定板14の隙間間隔を検出する。隙間センサ28は、例えばレーザセンサ、超音波センサ、などである。
 この隙間センサ28を複数個所(例えば4箇所)に設けることで、常時、中間軸6の支持状態を把握することができる。
The gap sensor 28 detects a gap interval between the upper fixing plate 12 and the lower fixing plate 14. The gap sensor 28 is, for example, a laser sensor, an ultrasonic sensor, or the like.
By providing the gap sensors 28 at a plurality of locations (for example, 4 locations), it is possible to always grasp the support state of the intermediate shaft 6.
 ジャッキボルト29は、上部固定板12又は下部固定板14と螺合し、下部固定板14に対し上部固定板12を上方に押圧する。ジャッキボルト29は、この例では、上部固定板12を貫通する雌ねじ穴と螺合するボルトである。
 この構成により、付勢装置18が損傷した場合に、手動で中間軸6の高さ調整ができる。
The jack bolt 29 is screwed into the upper fixing plate 12 or the lower fixing plate 14 and presses the upper fixing plate 12 upward against the lower fixing plate 14. In this example, the jack bolt 29 is a bolt that is screwed into a female screw hole penetrating the upper fixing plate 12.
With this configuration, the height of the intermediate shaft 6 can be manually adjusted when the urging device 18 is damaged.
 図5Aと図5Bは、本発明の第2実施形態の原理図である。
 具体例として、設定荷重範囲RF、計画据付荷重、及び設定高さ範囲RHは、第1実施形態と同様である。
5A and 5B are principle diagrams of the second embodiment of the present invention.
As a specific example, the set load range RF, the planned installation load, and the set height range RH are the same as in the first embodiment.
 図5Aは、中間軸受7を支持する支持部に要求されるばね特性図である。この図において、横軸x[mm]と縦軸F[kN]は、第1実施形態と同様である。
 この図において、実線は総合ばね定数k=25.5kN/mm、破線は総合ばね定数k=85kN/mmを示している。第2実施形態では、総合ばね定数をk=25.5~85kN/mmの範囲で調整することができる。
FIG. 5A is a spring characteristic diagram required for the support portion that supports the intermediate bearing 7. In this figure, the horizontal axis x [mm] and the vertical axis F [kN] are the same as in the first embodiment.
In this figure, the solid line indicates the total spring constant k = 25.5 kN / mm, and the broken line indicates the total spring constant k = 85 kN / mm. In the second embodiment, the total spring constant can be adjusted in the range of k = 25.5 to 85 kN / mm.
 図5Bは、中間軸受7を支持する支持部の模式図である。この図において、本発明の軸受支持装置10は、支持ばね定数k2の付勢装置18と移動抵抗fの変位速度制限装置30が、軸受台11の上に並列に配置されている。
 軸受台11と軸受支持装置10は上下に直列に位置することから、以下の関係式(4)(5)が成り立つ。ここでx1は軸受台11の変位、x2は軸受支持装置10の変位である。
FIG. 5B is a schematic diagram of a support portion that supports the intermediate bearing 7. In this figure, in the bearing support device 10 of the present invention, an urging device 18 having a support spring constant k2 and a displacement speed limiting device 30 for moving resistance f are arranged in parallel on the bearing base 11.
Since the bearing stand 11 and the bearing support device 10 are positioned in series vertically, the following relational expressions (4) and (5) are established. Here, x1 is the displacement of the bearing stand 11, and x2 is the displacement of the bearing support device 10.
 F×x=F×x1=(F-f)×x2・・・(4)
 x=x1+x2・・・(5)
 式(4)(5)から式(6)が導かれる。
 1/k=1/k1+(1-f/F)/k2・・・(6)
F × x = F × x1 = (F−f) × x2 (4)
x = x1 + x2 (5)
Equation (6) is derived from Equations (4) and (5).
1 / k = 1 / k1 + (1-f / F) / k2 (6)
 式(6)から、k=25.5kN/mm、k1=85kN/mm、f=0の場合、k2=37kN/mmが得られる。
 また、k=25.5kN/mm、k1=85kN/mm、f=Fの場合、k2=85kN/mmが得られる。
From equation (6), k2 = 37 kN / mm is obtained when k = 25.5 kN / mm, k1 = 85 kN / mm, and f = 0.
Further, when k = 25.5 kN / mm, k1 = 85 kN / mm, and f = F, k2 = 85 kN / mm is obtained.
 すなわち、図5Aにおいて、f/Fが十分小さいときには、総合ばね定数k≒25.5kN/mmとなり、f/Fが1に近いときには、総合ばね定数k≒85kN/mmとなる。従って、f/F(すなわちf)の大きさにより、総合ばね定数kを可変調整することができる。 That is, in FIG. 5A, when f / F is sufficiently small, the total spring constant k≈25.5 kN / mm, and when f / F is close to 1, the total spring constant k≈85 kN / mm. Therefore, the total spring constant k can be variably adjusted according to the magnitude of f / F (ie, f).
 変位速度制限装置30は、中間軸受7の据付高さ(x=0)からの変位速度を制限する機能を有する。
 この構成により、中間軸受7の据付後、温度変化又は外力の作用により軸受高さが据付高さから長い周期(例えば喫水の変化など、1時間以上の周期)で変位する際は、変位速度制限装置30は、小さい移動抵抗fで変位に追従することができる。
The displacement speed limiting device 30 has a function of limiting the displacement speed from the installation height (x = 0) of the intermediate bearing 7.
With this configuration, after the intermediate bearing 7 is installed, when the bearing height is displaced from the installation height in a long cycle (for example, a cycle of 1 hour or more, such as a change in draft) due to a temperature change or an external force, a displacement speed limit is set. The device 30 can follow the displacement with a small movement resistance f.
 また、主機(例えば、クランク軸の振れ回り)による上下振動のように、短い周期(例えば10秒以下の周期)の上下動により中間軸受7が変位する場合は、変位速度制限装置30がダンパー装置(又はショックアブゾーバ)として機能する。これにより、短い周期の上下振動を防止し、ばねの寿命を延ばし、交換を不要(メンテナンスフリー)にできる。 Further, when the intermediate bearing 7 is displaced by a vertical movement of a short cycle (for example, a cycle of 10 seconds or less), such as a vertical vibration by a main machine (for example, a swing of a crankshaft), the displacement speed limiting device 30 is a damper device. (Or a shock absorber). As a result, vertical vibrations with a short period can be prevented, the life of the spring can be extended, and replacement is unnecessary (maintenance-free).
 さらに、変位速度制限装置30は、中間軸受7の変位を固定する変位固定装置(図示せず、後述する)を有することが好ましい。
 この構成により、中間軸受7の据付後、温度変化又は外力の作用により軸受高さが据付高さから変位して定常状態になった後に、中間軸受7の変位xを固定することで、中間軸受7を定常状態に適した位置(すなわち高さ)に実質的に固定することができる。
Furthermore, the displacement speed limiting device 30 preferably has a displacement fixing device (not shown, which will be described later) for fixing the displacement of the intermediate bearing 7.
With this configuration, after the intermediate bearing 7 is installed, the displacement x of the intermediate bearing 7 is fixed after the bearing height is displaced from the installation height due to a change in temperature or the action of an external force to reach a steady state. 7 can be substantially fixed at a position (ie height) suitable for steady state.
 図6は、図3AのB部拡大図であり、軸受支持装置10の第2実施形態図である。
 この図において、軸受支持装置10は、上述した変位速度制限装置30を有する。
 その他の構成は、第1実施形態と同様である。
FIG. 6 is an enlarged view of part B of FIG.
In this figure, the bearing support device 10 has the displacement speed limiting device 30 described above.
Other configurations are the same as those of the first embodiment.
 図7Aは変位速度制限装置30の第1実施形態図であり、図7Bは変位速度制限装置30の第2実施形態図である。
 図7Aと図7Bにおいて、変位速度制限装置30は、液圧シリンダ32と移動速度調整装置34を有する。
FIG. 7A is a diagram showing a first embodiment of the displacement speed limiting device 30, and FIG. 7B is a diagram showing a second embodiment of the displacement speed limiting device 30.
7A and 7B, the displacement speed limiting device 30 includes a hydraulic cylinder 32 and a moving speed adjusting device 34.
 液圧シリンダ32は、好ましくは油圧シリンダであり、上部固定板12と下部固定板14の間に挟持され、下部固定板14に対する上部固定板12の移動に追従するピストンロッド33を有する。この例において、ピストンロッド33は、上部固定板12に例えばボルト31aで固定され、液圧シリンダ32の本体は、下部固定板14に例えばボルト31bで固定されている。
 なお、逆に、ピストンロッド33を下部固定板14に固定し、液圧シリンダ32の本体を上部固定板12に固定してもよい。
The hydraulic cylinder 32 is preferably a hydraulic cylinder, and has a piston rod 33 that is sandwiched between the upper fixing plate 12 and the lower fixing plate 14 and follows the movement of the upper fixing plate 12 relative to the lower fixing plate 14. In this example, the piston rod 33 is fixed to the upper fixing plate 12 with, for example, a bolt 31a, and the main body of the hydraulic cylinder 32 is fixed to the lower fixing plate 14 with, for example, a bolt 31b.
Conversely, the piston rod 33 may be fixed to the lower fixing plate 14 and the main body of the hydraulic cylinder 32 may be fixed to the upper fixing plate 12.
 図7Aにおいて、液圧シリンダ32は、ラムシリンダであり、ピストンロッド33(すなわちラム)の一方(ヘッド側)のみに、作動液(例えば作動油)が供給されるようになっている。
 また、図7Bにおいて、液圧シリンダ32は、上下動可能な通常の油圧シリンダであり、ヘッド側とロッド側の両方に作動液が供給されるようになっている。
In FIG. 7A, the hydraulic cylinder 32 is a ram cylinder, and hydraulic fluid (for example, hydraulic fluid) is supplied to only one (head side) of the piston rod 33 (that is, the ram).
In FIG. 7B, the hydraulic cylinder 32 is a normal hydraulic cylinder that can move up and down, and hydraulic fluid is supplied to both the head side and the rod side.
 移動速度調整装置34は、ピストンロッド33の移動速度を調整する。 The moving speed adjusting device 34 adjusts the moving speed of the piston rod 33.
 図7Aにおいて、移動速度調整装置34は、液圧シリンダ32のヘッド側と作動液タンク35とを連通する第1接続管36Aに設けられた第1流量調整弁37Aである。
 作動液タンク35の作動液は、一定の圧力(例えば大気圧)に保持されている。
 第1流量調整弁37Aは、例えば流量調整用のニードル弁、又はオリフィスであり、第1接続管36Aを流れる流量(すなわち流速)を制御し、ピストンロッド33の移動速度を調整する。
In FIG. 7A, the moving speed adjustment device 34 is a first flow rate adjustment valve 37 </ b> A provided in a first connection pipe 36 </ b> A that communicates the head side of the hydraulic cylinder 32 and the hydraulic fluid tank 35.
The hydraulic fluid in the hydraulic fluid tank 35 is held at a constant pressure (for example, atmospheric pressure).
The first flow rate adjustment valve 37A is, for example, a needle valve or an orifice for flow rate adjustment, and controls the flow rate (that is, the flow rate) flowing through the first connection pipe 36A to adjust the moving speed of the piston rod 33.
 この構成により、中間軸受7の据付後、軸受高さが長い周期(例えば1時間以上の周期)で下方に変位する際は、液圧シリンダ32に発生する圧力(正圧)が低いので、ピストンロッド33は、小さい移動抵抗fでこの変位に追従する。また長い周期で上方に変位する際は、ばね26の付勢力により、ピストンロッド33は、上部固定板12の移動に追従して上昇し、この際に液圧シリンダ32に発生する圧力(負圧)も低いので、ピストンロッド33は、小さい移動抵抗fでこの変位に追従する。 With this configuration, when the bearing height is displaced downward with a long cycle (for example, a cycle of 1 hour or more) after the intermediate bearing 7 is installed, the pressure (positive pressure) generated in the hydraulic cylinder 32 is low. The rod 33 follows this displacement with a small movement resistance f. Further, when displacing upward in a long cycle, the piston rod 33 rises following the movement of the upper fixing plate 12 by the urging force of the spring 26, and the pressure (negative pressure) generated in the hydraulic cylinder 32 at this time ) Is also low, the piston rod 33 follows this displacement with a small movement resistance f.
 また、短い周期(例えば10秒以下の周期)の上下動により中間軸受7が変位する場合は、下方に変位する際の液圧シリンダ32に発生する圧力(正圧)が高くなる。従って、移動速度調整装置34がダンパー装置(又はショックアブゾーバ)として機能し、短い周期の上下振動を効果的に防止することができる。 Further, when the intermediate bearing 7 is displaced by the vertical movement of a short cycle (for example, a cycle of 10 seconds or less), the pressure (positive pressure) generated in the hydraulic cylinder 32 when displaced downward is increased. Therefore, the moving speed adjusting device 34 functions as a damper device (or shock absorber), and vertical vibrations with a short period can be effectively prevented.
 図7Bにおいて、移動速度調整装置34は、液圧シリンダ32のヘッド側とロッド側を連通する第2接続管36Bに設けられた第2流量調整弁37Bである。
 第2流量調整弁37Bは、例えば流量調整用のニードル弁、又はオリフィスであり、第2接続管36Bを流れる流量(すなわち流速)を制御し、ピストンロッド33の移動速度を調整する。
 また、この例では、移動速度調整装置34は、第2接続管36Bと作動液タンク35とを連通する第3接続管36Cに設けられた固定絞り38を有する。固定絞り38は、第3接続管36Cを流れる流量(すなわち流速)を第2接続管36Bより小さく制御し、液圧シリンダ32のヘッド側とロッド側の作動液の過不足を補償する。なお、固定絞り38の代わりに流量調整用のニードル弁、又はオリフィスを用いてもよい。
In FIG. 7B, the moving speed adjusting device 34 is a second flow rate adjusting valve 37B provided in a second connecting pipe 36B that communicates the head side and the rod side of the hydraulic cylinder 32.
The second flow rate adjusting valve 37B is, for example, a needle valve or an orifice for adjusting the flow rate, and controls the flow rate (that is, the flow rate) flowing through the second connection pipe 36B to adjust the moving speed of the piston rod 33.
Further, in this example, the moving speed adjusting device 34 has a fixed throttle 38 provided in the third connection pipe 36 </ b> C that communicates the second connection pipe 36 </ b> B and the hydraulic fluid tank 35. The fixed throttle 38 controls the flow rate (that is, the flow velocity) flowing through the third connection pipe 36C to be smaller than that of the second connection pipe 36B, and compensates for excess and deficiency of hydraulic fluid on the head side and the rod side of the hydraulic cylinder 32. Instead of the fixed throttle 38, a needle valve for adjusting the flow rate or an orifice may be used.
 この構成により、中間軸受7の据付後、軸受高さが長い周期(例えば1時間以上の周期)で上下に変位する際に、ピストンロッド33は、小さい移動抵抗fでこの変位に追従することができる。
 また、短い周期(例えば10秒以下の周期)の上下動により中間軸受7が変位する場合は、移動速度調整装置34がダンパー装置(又はショックアブゾーバ)として機能し、短い周期の上下振動を防止することができる。
With this configuration, after the intermediate bearing 7 is installed, the piston rod 33 can follow the displacement with a small movement resistance f when the bearing height is displaced vertically with a long period (for example, a period of 1 hour or more). it can.
Further, when the intermediate bearing 7 is displaced by a vertical movement of a short cycle (for example, a cycle of 10 seconds or less), the moving speed adjustment device 34 functions as a damper device (or a shock absorber) to prevent a short cycle of vertical vibration. can do.
 図7Aにおいて、移動速度調整装置34は、液圧シリンダ32のヘッド側と作動液タンク35とを連通する第1接続管36Aに設けられた遠隔制御弁39を有する。
 図7Bにおいて、移動速度調整装置34は、液圧シリンダ32のヘッド側とロッド側を連通する第2接続管36Bに設けられた遠隔制御弁39を有する。
 遠隔制御弁39は、例えば電磁弁であり、第1接続管36Aを遠隔制御で全閉可能に構成されている。遠隔制御弁39は、上述した変位固定装置に相当する。
In FIG. 7A, the moving speed adjustment device 34 has a remote control valve 39 provided in a first connection pipe 36 </ b> A that communicates the head side of the hydraulic cylinder 32 and the hydraulic fluid tank 35.
In FIG. 7B, the moving speed adjusting device 34 has a remote control valve 39 provided in a second connection pipe 36 </ b> B that communicates the head side and the rod side of the hydraulic cylinder 32.
The remote control valve 39 is, for example, an electromagnetic valve, and is configured so that the first connection pipe 36A can be fully closed by remote control. The remote control valve 39 corresponds to the displacement fixing device described above.
 この構成により、中間軸受7の据付後、温度変化又は外力の作用により軸受高さが据付高さから変位して定常状態になった後に、遠隔制御弁39を遠隔制御室からの指令で全閉することができる。これにより、ピストンロッド33の変位、すなわち、中間軸受7の変位を固定し、中間軸受7を定常状態に適した位置(すなわち高さ)に軸受台11に実質的に固定することができる。 With this configuration, after the intermediate bearing 7 is installed, the remote control valve 39 is fully closed by a command from the remote control room after the bearing height is displaced from the installation height due to a change in temperature or the action of external force and becomes a steady state. can do. Thereby, the displacement of the piston rod 33, that is, the displacement of the intermediate bearing 7 can be fixed, and the intermediate bearing 7 can be substantially fixed to the bearing base 11 at a position (that is, height) suitable for the steady state.
 上述したように本発明の軸受支持装置10は、中間軸受7の据付高さ(x=0)からの変位xに対する総合ばね定数kを有する。この総合ばね定数kは、中間軸受7の支持力Fが、高さ設定範囲(例えば、x=-2~2mm)において予め設定された設定荷重範囲RF(例えば、F=12~151kN)内になるように設定されている。 As described above, the bearing support device 10 of the present invention has the total spring constant k with respect to the displacement x from the installation height (x = 0) of the intermediate bearing 7. The total spring constant k is such that the supporting force F of the intermediate bearing 7 is within a preset load range RF (eg, F = 12 to 151 kN) in a height setting range (eg, x = −2 to 2 mm). It is set to be.
 すなわち、上述した例において、支持ばね定数k2がk2=37kN/mmとなるように、軸受支持装置10のばね特性を設定する。これにより、図2Aに示すように、中間軸受7の据付後に温度変化又は外力の作用により軸受高さが変位した場合でも、軸受荷重(中間軸受7の支持力F)を設定荷重範囲RF内に自動的に調整することができる。 That is, in the above-described example, the spring characteristics of the bearing support device 10 are set so that the support spring constant k2 is k2 = 37 kN / mm. As a result, as shown in FIG. 2A, the bearing load (supporting force F of the intermediate bearing 7) is kept within the set load range RF even when the bearing height is displaced due to a temperature change or an external force after the intermediate bearing 7 is installed. It can be adjusted automatically.
 また、変位速度制限装置30を備える構成により、中間軸受7の据付後、軸受高さが長い周期(例えば1時間以上の周期)で変位する際は、ピストンロッド33は、小さい移動抵抗fでこの変位に追従することができる。
 また、短い周期(例えば10秒以下の周期)の上下動により中間軸受7が変位する場合は、移動速度調整装置34がダンパー装置(又はショックアブゾーバ)として機能し、短い周期の上下振動を防止することができる。
Further, with the configuration including the displacement speed limiting device 30, when the bearing height is displaced with a long cycle (for example, a cycle of 1 hour or more) after the intermediate bearing 7 is installed, the piston rod 33 has a small movement resistance f. It can follow the displacement.
Further, when the intermediate bearing 7 is displaced by a vertical movement of a short cycle (for example, a cycle of 10 seconds or less), the moving speed adjustment device 34 functions as a damper device (or a shock absorber) to prevent a short cycle of vertical vibration. can do.
 さらに本発明の構成により、以下の付随する効果が得られる。
 (1)各軸受の荷重バランスを自動調整でき信頼性が向上する。
 すなわち、軸受(中間軸受7)と軸受台11との間に、それぞれの相対高さ変位にあったばね特性を有した軸受支持装置10を設けることにより、常に適正な荷重バランスとなるように、自動的に調整することができ、システムの信頼性が向上する。
Further, according to the configuration of the present invention, the following accompanying effects can be obtained.
(1) The load balance of each bearing can be automatically adjusted to improve reliability.
In other words, by providing a bearing support device 10 having a spring characteristic corresponding to the relative height displacement between the bearing (intermediate bearing 7) and the bearing base 11, an automatic load balance is ensured. System reliability can be improved.
 (2)軸受メタルの焼付損傷を防止できる。
 軸受(中間軸受7)と軸受台11の相対高さ変位が大きくなった場合、一部の軸受荷重が許容荷重を超えると、メタルの焼付損傷が発生する場合がある。しかし、軸受支持装置10を設けることにより、自動的に各軸受荷重のバランスを調整することにより、軸受メタルの焼付損傷を防止できる。
(2) The seizure damage of the bearing metal can be prevented.
When the relative height displacement between the bearing (intermediate bearing 7) and the bearing base 11 becomes large, if a part of the bearing load exceeds the allowable load, metal seizure damage may occur. However, by providing the bearing support device 10, it is possible to prevent seizure damage of the bearing metal by automatically adjusting the balance of each bearing load.
 (3)軸受メタルのフレッティングによるメタル剥離を防止できる。
 一部の相対軸受高さが高くなり、軸受荷重が小さくなり過ぎると、軸受の支持力が減少するため、軸受メタル部のフレッティングが生じ、軸受メタルの剥離が発生し、システムの重大トラブルの原因となる。しかし、軸受支持装置10を設けることにより、自動的に各軸受荷重のバランスを調整することにより、フレッティングによるメタル剥離を防止できる。
(3) Metal peeling due to fretting of bearing metal can be prevented.
If the relative bearing height becomes too high and the bearing load becomes too small, the bearing support force will decrease, causing fretting of the bearing metal part, peeling of the bearing metal, and serious system trouble. Cause. However, by providing the bearing support device 10, it is possible to prevent metal peeling due to fretting by automatically adjusting the balance of each bearing load.
 (4)軸系への外力による動的変動力を抑制し、安定した軸受支持ができる。
 中間軸受7と軸受台11との間に、図6のように、ばね26(皿ばね積層体)と、変位速度制限装置30を装備することにより、軸受全体の揺れや振動発生を防止でき、安定した運転ができる。
 また、図7A,図7Bのように、液圧シリンダ32の接続管36A,36Bに、変動外力の周期等を考慮して流量調整ができる流量調整弁37A,37B(例えばニードル弁)を装備することにより、より安定した運転ができる。
(4) Stable bearing support can be achieved by suppressing dynamic fluctuating force due to external force applied to the shaft system.
As shown in FIG. 6, between the intermediate bearing 7 and the bearing base 11, the spring 26 (disc spring laminated body) and the displacement speed limiter 30 are provided, so that the entire bearing can be prevented from shaking and vibrating. Stable operation is possible.
Further, as shown in FIGS. 7A and 7B, the connection pipes 36A and 36B of the hydraulic cylinder 32 are equipped with flow rate adjusting valves 37A and 37B (for example, needle valves) that can adjust the flow rate in consideration of the cycle of the fluctuating external force. Thus, more stable operation can be performed.
 (5)流量調整用の流量調整弁37A,37B(ニードル弁)と合わせて、制御室から遠隔で作動油の流れを制御できるように、図7A,図7Bのように、遠隔制御弁39(電磁弁)を装備することにより、システムの動きに合わせた制御ができる。 (5) Along with the flow rate adjusting valves 37A and 37B (needle valves) for adjusting the flow rate, a remote control valve 39 (as shown in FIGS. 7A and 7B is provided so that the flow of hydraulic oil can be controlled remotely from the control room. Equipped with a solenoid valve), it can be controlled according to the system movement.
 (6)軸系を各軸受にて据付した後、各軸受据付台側の高さが外乱要因で変位するような装置において、軸受荷重のバランスが悪くなり、軸受損傷が発生するような箇所に使用することにより、軸受の損傷防止ができ、装置の信頼性を高めることができる。 (6) In a device in which the shaft system is installed at each bearing and then the height of each bearing mounting base is displaced due to a disturbance factor, the bearing load is unbalanced and the bearing is damaged. By using it, the bearing can be prevented from being damaged, and the reliability of the apparatus can be improved.
 (7)軸受と軸受据付台の相対変位が大きい場合でも、据付調整が簡単にでき、かつ据付後の再調整も不要となり、メンテナンスフリーとすることが可能となる。 (7) Even when the relative displacement between the bearing and the bearing mounting base is large, the installation and adjustment can be easily performed, and the readjustment after the installation is not required, so that the maintenance can be made free.
 本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。 The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
E 主機用軸受の軸方向の中心位置
F 中間軸受の支持力
f 移動抵抗
RF 設定荷重範囲
RH 設定高さ範囲
k 総合ばね定数
k1 受台ばね定数
k2 支持ばね定数
k3 個別ばね定数
x 据付高さからの変位
x1 軸受台の変位
x2 軸受支持装置の変位
Z-Z 軸心
1 船舶
1a 船尾
1b 船底
1c 二重床
2 プロペラ
3 船尾管
4 船尾管軸受
5 プロペラ軸
6 中間軸
7 中間軸受
7a 軸受
7b 軸受ケース
7c 脚部
7d 水平支持面
8 主機出力軸
9 主機用軸受
10 セルフアライメント式軸受支持装置(軸受支持装置)
10a サイドガイド
11 軸受台
11a 支持台
11b 調整ライナ
12 上部固定板
14 下部固定板
16 ガイド装置
18 付勢装置
20 下限制限ストッパ
21 ストッパ固定ボルト
22 上限制限ボルト
24 伸縮ガイド
26 ばね(皿ばね積層体)
27A,27B 位置センサ
28 隙間センサ
29 ジャッキボルト
30 変位速度制限装置
31a,31b ボルト
32 液圧シリンダ
33 ピストンロッド
34 移動速度調整装置
35 作動液タンク
36A 第1接続管
36B 第2接続管
36C 第3接続管
37A 第1流量調整弁
37B 第2流量調整弁
38 固定絞り
39 遠隔制御弁
 
 
E Center position in the axial direction of the bearing for the main engine F Bearing force of the intermediate bearing f Movement resistance RF Set load range RH Set height range k Total spring constant k1 Receiving spring constant k2 Support spring constant k3 Individual spring constant x From installation height Displacement x1 Bearing stand displacement x2 Bearing support device displacement ZZ Axle 1 Ship 1a Stern 1b Ship bottom 1c Double floor 2 Propeller 3 Stern tube 4 Stern tube bearing 5 Propeller shaft 6 Intermediate shaft 7 Intermediate bearing 7a Bearing 7b Bearing Case 7c Leg 7d Horizontal support surface 8 Main machine output shaft 9 Main machine bearing 10 Self-alignment type bearing support device (bearing support device)
10a Side guide 11 Bearing base 11a Support base 11b Adjustment liner 12 Upper fixing plate 14 Lower fixing plate 16 Guide device 18 Biasing device 20 Lower limit stopper 21 Stopper fixing bolt 22 Upper limit bolt 24 Extension guide 26 Spring (disc spring laminated body)
27A, 27B Position sensor 28 Gap sensor 29 Jack bolt 30 Displacement speed limiting device 31a, 31b Bolt 32 Hydraulic cylinder 33 Piston rod 34 Moving speed adjustment device 35 Hydraulic fluid tank 36A First connection pipe 36B Second connection pipe 36C Third connection Pipe 37A First flow rate adjustment valve 37B Second flow rate adjustment valve 38 Fixed throttle 39 Remote control valve

Claims (12)

  1.  水平方向に延びその前端と後端が回転可能に支持された中間軸の中間部を回転可能に支持する中間軸受を支持するセルフアライメント式軸受支持装置であって、
     前記中間軸受の据付高さからの変位に対する総合ばね定数を有し、
     前記総合ばね定数は、前記中間軸受の支持力が、設定高さ範囲において設定荷重範囲内になるように設定されている、セルフアライメント式軸受支持装置。
    A self-alignment type bearing support device that supports an intermediate bearing that rotatably supports an intermediate portion of an intermediate shaft that extends in a horizontal direction and whose front and rear ends are rotatably supported,
    An overall spring constant for displacement from the installation height of the intermediate bearing;
    The self-alignment type bearing support device, wherein the total spring constant is set so that a support force of the intermediate bearing is within a set load range in a set height range.
  2.  前記中間軸受の前記据付高さからの変位速度を制限する変位速度制限装置を有する、請求項1に記載のセルフアライメント式軸受支持装置。 2. The self-alignment type bearing support device according to claim 1, further comprising a displacement speed limiting device that limits a displacement speed of the intermediate bearing from the installation height.
  3.  前記変位速度制限装置は、前記変位を固定する変位固定装置を有する、請求項2に記載のセルフアライメント式軸受支持装置。 The self-alignment type bearing support device according to claim 2, wherein the displacement speed limiting device includes a displacement fixing device that fixes the displacement.
  4.  前記中間軸受が固定される上部固定板と、
     固定部分に固定される下部固定板と、
     前記上部固定板を前記下部固定板に対し、前記設定高さ範囲で上下動可能に案内するガイド装置と、
     前記上部固定板と前記下部固定板の間に挟持され、前記下部固定板に対し前記上部固定板を上方に付勢する付勢装置と、を備え、
     前記付勢装置の総付勢力は、前記中間軸受の前記支持力が、前記設定高さ範囲において前記設定荷重範囲内になるように設定されている、請求項1に記載のセルフアライメント式軸受支持装置。
    An upper fixing plate to which the intermediate bearing is fixed;
    A lower fixing plate fixed to the fixing part;
    A guide device that guides the upper fixing plate relative to the lower fixing plate so as to move up and down within the set height range;
    An urging device sandwiched between the upper fixing plate and the lower fixing plate and urging the upper fixing plate upward with respect to the lower fixing plate;
    2. The self-alignment type bearing support according to claim 1, wherein the total biasing force of the biasing device is set so that the support force of the intermediate bearing is within the set load range in the set height range. apparatus.
  5.  前記付勢装置は、前記上部固定板と前記下部固定板の間に挟持されたばねを有し、
     前記ばねのばね定数は、全体として前記中間軸受の前記支持力が、前記設定高さ範囲において前記設定荷重範囲内になるように設定されている、請求項4に記載のセルフアライメント式軸受支持装置。
    The biasing device has a spring sandwiched between the upper fixing plate and the lower fixing plate,
    The self-alignment type bearing support device according to claim 4, wherein the spring constant of the spring is set so that the support force of the intermediate bearing as a whole is within the set load range in the set height range. .
  6.  前記中間軸受が固定される上部固定板と、
     固定部分に固定される下部固定板と、を備え、
     前記変位速度制限装置は、前記上部固定板と前記下部固定板の間に挟持され、前記下部固定板に対する前記上部固定板の移動に追従するピストンロッドを有する液圧シリンダと、
     前記ピストンロッドの移動速度を調整する移動速度調整装置と、を有する、請求項2に記載のセルフアライメント式軸受支持装置。
    An upper fixing plate to which the intermediate bearing is fixed;
    A lower fixing plate fixed to the fixing portion,
    The displacement speed limiting device is a hydraulic cylinder having a piston rod that is sandwiched between the upper fixed plate and the lower fixed plate and follows the movement of the upper fixed plate with respect to the lower fixed plate;
    The self-alignment type bearing support device according to claim 2, further comprising a moving speed adjusting device that adjusts a moving speed of the piston rod.
  7.  前記移動速度調整装置は、前記液圧シリンダのヘッド側と作動液タンクとを連通する第1接続管に設けられた第1流量調整弁である、請求項6に記載のセルフアライメント式軸受支持装置。 The self-alignment type bearing support device according to claim 6, wherein the moving speed adjusting device is a first flow rate adjusting valve provided in a first connecting pipe that communicates a head side of the hydraulic cylinder and a hydraulic fluid tank. .
  8.  前記移動速度調整装置は、前記液圧シリンダのヘッド側とロッド側を連通する第2接続管に設けられた第2流量調整弁である、請求項6に記載のセルフアライメント式軸受支持装置。 The self-alignment type bearing support device according to claim 6, wherein the moving speed adjusting device is a second flow rate adjusting valve provided in a second connecting pipe communicating the head side and the rod side of the hydraulic cylinder.
  9.  前記移動速度調整装置は、前記液圧シリンダのヘッド側と作動液タンクとを連通する第1接続管、又は、前記液圧シリンダのヘッド側とロッド側を連通する第2接続管に設けられ、前記第1接続管又は前記第2接続管を遠隔制御で全閉可能な遠隔制御弁を有する、請求項6に記載のセルフアライメント式軸受支持装置。 The moving speed adjusting device is provided in a first connection pipe that communicates the head side of the hydraulic cylinder and the hydraulic fluid tank, or a second connection pipe that communicates the head side and the rod side of the hydraulic cylinder, The self-alignment type bearing support device according to claim 6, further comprising a remote control valve capable of fully closing the first connection pipe or the second connection pipe by remote control.
  10.  前記ガイド装置は、前記上部固定板と前記下部固定板の間に挟持され、前記設定高さ範囲の下限において、前記上部固定板が下方に移動するのを防止する下限制限ストッパと、
     前記設定高さ範囲の上限において、前記上部固定板が上方に移動するのを防止する上限制限ボルトと、
     前記付勢装置の上下方向の伸縮を案内する伸縮ガイドと、を有する、請求項4に記載のセルフアライメント式軸受支持装置。
    The guide device is sandwiched between the upper fixing plate and the lower fixing plate, and at the lower limit of the set height range, a lower limit limiting stopper for preventing the upper fixing plate from moving downward,
    An upper limit bolt that prevents the upper fixing plate from moving upward at the upper limit of the set height range;
    The self-alignment type bearing support device according to claim 4, further comprising: an extension / contraction guide that guides the extension / contraction of the urging device in the vertical direction.
  11.  前記設定高さ範囲の前記下限又は前記上限を検出可能な軸受高さ位置警報用の位置センサと、
     前記上部固定板と前記下部固定板の隙間間隔を検出可能な軸受高さモニタリング用の隙間センサと、を有する、請求項10に記載のセルフアライメント式軸受支持装置。
    A position sensor for bearing height position alarm capable of detecting the lower limit or the upper limit of the set height range;
    The self-alignment type bearing support device according to claim 10, further comprising a bearing height monitoring gap sensor capable of detecting a gap gap between the upper fixing plate and the lower fixing plate.
  12.  前記上部固定板又は前記下部固定板と螺合し、前記下部固定板に対し前記上部固定板を上方に押圧するジャッキボルトを有する、請求項4に記載のセルフアライメント式軸受支持装置。
     
    The self-alignment type bearing support device according to claim 4, further comprising a jack bolt that is screwed into the upper fixing plate or the lower fixing plate and presses the upper fixing plate upward with respect to the lower fixing plate.
PCT/JP2016/064572 2016-05-17 2016-05-17 Self-aligning bearing support device WO2017199327A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680082003.1A CN108603527B (en) 2016-05-17 2016-05-17 Self-alignment type bearing supporting device
PCT/JP2016/064572 WO2017199327A1 (en) 2016-05-17 2016-05-17 Self-aligning bearing support device
JP2018517961A JP6573296B2 (en) 2016-05-17 2016-05-17 Self-alignment type bearing support device
KR1020187015426A KR102035953B1 (en) 2016-05-17 2016-05-17 Self Aligning Bearing Supports

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064572 WO2017199327A1 (en) 2016-05-17 2016-05-17 Self-aligning bearing support device

Publications (1)

Publication Number Publication Date
WO2017199327A1 true WO2017199327A1 (en) 2017-11-23

Family

ID=60325007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064572 WO2017199327A1 (en) 2016-05-17 2016-05-17 Self-aligning bearing support device

Country Status (4)

Country Link
JP (1) JP6573296B2 (en)
KR (1) KR102035953B1 (en)
CN (1) CN108603527B (en)
WO (1) WO2017199327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105352A (en) * 2017-12-14 2019-06-27 株式会社Subaru Shaft support structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138461B1 (en) * 2019-03-11 2020-07-28 주식회사 금화피에스시 Jig for adjusting step for journal bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150563A (en) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd Supporting structure of spindle and machine tool
JP2013047515A (en) * 2011-08-29 2013-03-07 Honeywell Internatl Inc Annular bearing support dampers, gas turbine engines including the same, and methods for the manufacture thereof
JP2015137629A (en) * 2014-01-24 2015-07-30 三菱重工業株式会社 Alignment adjusting method in rotary shaft system and alignment measuring device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3499001B2 (en) 1994-05-24 2004-02-23 株式会社東芝 Automatic bearing alignment adjustment device
JP2002213522A (en) 2001-01-15 2002-07-31 Mitsubishi Heavy Ind Ltd Alignment adjusting device
CN201196219Y (en) * 2008-05-27 2009-02-18 丁郁华 Large-specific pressure intermediate bearing for vessel
CN202752818U (en) * 2012-08-07 2013-02-27 浙江增洲造船有限公司 Centering and auxiliary installation device of ship propeller shaft
CN102815370B (en) * 2012-09-04 2016-08-10 中船桂江造船有限公司 Disposable centering marine shafting installation method
CN104677631B (en) * 2013-12-03 2017-07-28 上海船厂船舶有限公司 Hydraulic pressure device for measuring force, system and its measuring method of intermediate bearing
CN104816126B (en) * 2015-03-16 2017-05-03 南京东泽船舶制造有限公司 Shaft system above-water centering and mounting process
CN105235850A (en) * 2015-10-23 2016-01-13 上海海事大学 Bearing supporting device with height capable of being adjusted automatically

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150563A (en) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd Supporting structure of spindle and machine tool
JP2013047515A (en) * 2011-08-29 2013-03-07 Honeywell Internatl Inc Annular bearing support dampers, gas turbine engines including the same, and methods for the manufacture thereof
JP2015137629A (en) * 2014-01-24 2015-07-30 三菱重工業株式会社 Alignment adjusting method in rotary shaft system and alignment measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105352A (en) * 2017-12-14 2019-06-27 株式会社Subaru Shaft support structure

Also Published As

Publication number Publication date
CN108603527A (en) 2018-09-28
JP6573296B2 (en) 2019-09-11
JPWO2017199327A1 (en) 2018-08-30
KR20180075661A (en) 2018-07-04
KR102035953B1 (en) 2019-10-23
CN108603527B (en) 2019-09-20

Similar Documents

Publication Publication Date Title
EP2304232B1 (en) Method for dimensioning a wind power plant
US5518220A (en) Lifting device for a vehicle
DK2381100T3 (en) Tilt adjustment System
CN104100769B (en) Pipeline sliding auxiliary device
JP6573296B2 (en) Self-alignment type bearing support device
CN100572670C (en) Built-in air energy-eliminating shock-absorbing damper
CN104154172B (en) A kind of self-adapting frequency modulation formula dynamic vibration absorber
US20080229684A1 (en) Hydraulic jack systems to be installed to the outrigger to perimeter column joints to automatically adjust differential column shortening and provide additional structural damping
CN109477462B (en) Windmill drive system and windmill
US5934423A (en) Pipe restraint and method for using the same
WO2019215466A1 (en) A separate yaw-system for wind turbines
CN111188833B (en) Gap-adjustable intelligent supporting sliding bearing device and gap adjusting method
JPS63172039A (en) Elastic supporter for machine
CN204099608U (en) A kind of throttle valve
KR102115284B1 (en) Vehicle position adjustment device
CN111102307A (en) Linear brake device for photovoltaic tracking support
CN104964098A (en) Two-way buffer pipeline support-hanger
KR101592325B1 (en) Hydraulic system of ventilation fan angle control
KR102371638B1 (en) Rotational Uplift System of Bridges
KR102068641B1 (en) Shaft alignment monitoring and controling device and method for wind generator
KR20120081818A (en) Hydraulic shock absorbing tilting disc check valve
DK2976485T3 (en) Power turning head for a drill pipe
CN205331447U (en) Velocity of flow detection mechanism and booster quick action emergency valve thereof
CN203731448U (en) Slag cooler roller displacement adjusting device
JP2015017455A (en) Vibration control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517961

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187015426

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902347

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902347

Country of ref document: EP

Kind code of ref document: A1