WO2017199293A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2017199293A1
WO2017199293A1 PCT/JP2016/064493 JP2016064493W WO2017199293A1 WO 2017199293 A1 WO2017199293 A1 WO 2017199293A1 JP 2016064493 W JP2016064493 W JP 2016064493W WO 2017199293 A1 WO2017199293 A1 WO 2017199293A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
period
control signal
threshold
Prior art date
Application number
PCT/JP2016/064493
Other languages
French (fr)
Japanese (ja)
Inventor
樹 松永
哲 平良
覚 寺島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018517937A priority Critical patent/JP6452894B2/en
Priority to PCT/JP2016/064493 priority patent/WO2017199293A1/en
Priority to TW105120155A priority patent/TW201742363A/en
Publication of WO2017199293A1 publication Critical patent/WO2017199293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device that performs power conversion between a plurality of phases of alternating current and direct current.
  • a technology for performing two-phase PWM control of a power conversion device in PWM (Pulse Width Modulation) control of a power conversion device having a main circuit in which a switching element and a diode connected in reverse parallel to the switching element are bridge-connected is disclosed. ing.
  • the switching of the phase is stopped for a certain period in the vicinity of the voltage peak of each phase, the switching is performed in the remaining two phases, and the switching loss is reduced.
  • each phase PWM signal for controlling the switching of each phase of the inverter
  • the phase voltage and the line current are detected for at least one of the phases, and the phase difference (power factor angle) between them is detected.
  • the obtained power factor angle is used to control the generation operation of each phase PWM signal, and the switching stop period of each phase of the inverter is made to follow the vicinity of the peak of the line current flowing through the load of the inverter (see, for example, Patent Document 1). .
  • a power factor is calculated based on an output current and a voltage command value, and a carrier signal having a frequency corresponding to the power factor is generated to control a switching element.
  • a PWM signal is generated (see, for example, Patent Document 2).
  • the power factor is obtained based on the detected load state, and the follow-up control of the switching stop period is performed based on the power factor, so the control is complicated. Further, the switching stop period of each phase of the inverter is limited to the vicinity of the peak of the line current flowing through the load of the inverter, and there is a limit to reducing the switching loss. Moreover, in the power converter device of the said patent document 2, although the suppression effect of a harmonic is acquired, switching of each phase is stopped only near the peak of each phase voltage command value, and reduction of switching loss is similarly performed. There were limits.
  • the present invention has been made to solve the above-described problems, and is effective in easy control in a power conversion device that converts a plurality of phases of AC power into DC power using PWM control.
  • An object of the present invention is to reduce switching loss while suppressing harmonics.
  • a power converter comprises a plurality of switching elements each connected in reverse parallel with a plurality of switching elements that are bridge-connected, a power converter that converts a plurality of phases of AC power into DC power, and the power converter AC voltage detector and AC current detector provided on the AC side of the power converter for detecting AC voltage and AC current, DC voltage detector for detecting DC voltage at the DC terminal of the power converter, and detection results thereof And a control unit for controlling the output of the power converter by PWM control based on the above.
  • the control unit generates a control signal for generating a control signal for controlling the switching of the switching element by generating a phase AC voltage command for controlling the DC voltage, and limits the control signal for each phase.
  • the limiting unit determines a first period that sandwiches positive and negative peaks of each phase voltage in the AC voltage and a second period that sandwiches a zero cross point as the limiting period of each phase, and limits the control signal in the limiting period.
  • a limit signal is generated.
  • the control signal is limited by setting the first period sandwiching the positive and negative peaks of each phase voltage in the AC voltage and the second period sandwiching the zero-cross point as the limit period of each phase. Therefore, switching loss can be reduced while suppressing harmonics effectively with easy control.
  • FIG. 1 shows schematic structure of the power converter device by Embodiment 1 of this invention. It is a circuit diagram which shows the power converter by Embodiment 1 of this invention. It is a block diagram which shows a part of control part by Embodiment 1 of this invention. It is a block diagram which shows a part of control part by Embodiment 1 of this invention. It is a block diagram which shows a part of limit signal generation part by Embodiment 1 of this invention. It is a flowchart explaining the production
  • Embodiment 3 of this invention It is a block diagram which shows a part of control part by Embodiment 3 of this invention. It is a block diagram which shows a part of control part by Embodiment 3 of this invention. It is a flowchart explaining the production
  • FIG. 1 is a schematic configuration diagram of a power conversion device according to Embodiment 1 of the present invention.
  • a power converter 1 includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter that includes a power module. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 that controls the power converter 5.
  • the power converter 5 performs power conversion from AC power of three-phase AC (in this case, three-phase AC (R phase, S phase, T phase) to DC power, and the AC side is connected to the AC voltage source via the filter 3.
  • the DC side is connected to a load 11 via a smoothing capacitor 6.
  • the load 11 is composed of, for example, a motor and an inverter that converts DC power into AC power necessary for driving the motor.
  • the AC voltage source 10 is handled including the impedance component and reactance component due to the transformer and wiring on the input side of the power conversion device 1.
  • the power converter 5 is configured by bridge-connecting a plurality (six in this case) of switching elements 52a to 52f to which diodes 51a to 51f are connected in antiparallel.
  • the diodes 51a to 51f constitute a three-phase full-wave rectifier circuit. Details of the connection configuration of the power converter 5 are shown below.
  • the anode of the diode 51 a and the cathode of the diode 51 b are connected to the R phase of the AC voltage source 10 via the current detector 4 and the filter 3.
  • the anode of the diode 51 c and the cathode of the diode 51 d are connected to the S phase of the AC voltage source 10 through the current detector 4 and the filter 3.
  • the anode of the diode 51 e and the cathode of the diode 51 f are connected to the T phase of the AC voltage source 10 via the current detector 4 and the filter 3.
  • connection point between the anode of the diode 51a and the cathode of the diode 51b, the connection point between the anode of the diode 51c and the cathode of the diode 51d, and the connection point of the anode of the diode 51e and the cathode of the diode 51f This is terminal 5a.
  • terminals from each connection point are illustrated as AC terminals 5a.
  • the switching elements 52a to 52f are connected in antiparallel with the diodes 51a to 51f, respectively.
  • the cathode of the diode 51a, the cathode of the diode 51c, the cathode of the diode 51e, and the terminals of the switching elements 52a, 52c, and 52e connected to each other are connected to each other as a high potential side terminal of the DC terminal 5b of the power converter 5.
  • the anode of the diode 51b, the anode of the diode 51d, the anode of the diode 51f, and the terminals of the switching elements 52b, 52d, and 52f connected thereto are connected to each other, and the low potential side of the DC terminal 5b of the power converter 5 Form a terminal.
  • the high potential side terminal and the low potential side terminal of the DC terminal 5b are simply referred to as a DC terminal 5b.
  • the switching elements 52a to 52f are controlled to be either on or off by a control signal (gate signal) Ga output from the control unit 8 to each of the switching elements 52a to 52f.
  • a control signal (gate signal) Ga output from the control unit 8 to each of the switching elements 52a to 52f.
  • the state of the control signal Ga that turns on the switching elements 52a to 52f is referred to as “on”, and the state of the control signal Ga that turns off the switching elements 52a to 52f is referred to as “off”.
  • the switching elements 52a to 52f have a drive circuit (not shown) and are switched on / off.
  • the filter 3 includes, for example, six reactors connected to each phase by two, and three capacitors connected by ⁇ connection or Y connection between the two reactors of each phase.
  • the smoothing capacitor 6 is connected between the DC terminals 5b of the power converter 5 and smoothes the DC voltage.
  • the AC voltage detector 2 is disposed on the side of the AC voltage source 10 of the filter 3 and is an AC voltage between two phases, in this case, an R-phase voltage Vrs for the S-phase, an S-phase voltage Vst for the T-phase, and R A T-phase voltage Vtr with respect to the phase is detected.
  • the detected values of the alternating voltages Vrs, Vst, Vtr are sent to the control unit 8.
  • the detection values of the AC voltages Vrs, Vst, and Vtr are simply referred to as AC voltages Vrs, Vst, and Vtr for convenience. In this embodiment, three AC voltages Vrs, Vst, and Vtr are detected, but only two may be detected.
  • the current detector 4 (4R, 4S, 4T) is disposed between the filter 3 and the power converter 5, and is used for the phase currents Ir, Is, It as the alternating current flowing in the AC terminal 5a of the power converter 5. Detect value.
  • the current detector 4R detects the R-phase phase current Ir
  • the current detector 4S detects the S-phase phase current Is
  • the current detector 4T detects the T-phase phase current It.
  • the detected values of the phase currents Ir, Is, It are sent to the control unit 8.
  • the detected values of the phase currents Ir, Is, It are simply referred to as phase currents Ir, Is, It for convenience.
  • the DC voltage detector 7 is connected between both terminals of the smoothing capacitor 6, that is, between the DC terminals 5b of the power converter 5, and detects the DC voltage Vdc of the smoothing capacitor 6.
  • the DC voltage (detected value) Vdc is sent to the control unit 8.
  • the control unit 8 includes a phase voltage processing unit 81, a limiting signal generation unit 82 as a limiting unit, and a control signal generation unit 83. Details of the control unit 8 are shown in FIGS. As illustrated in FIG. 3, the phase voltage processing unit 81 uses the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2 as phase voltage information 810 as phase voltages (phase voltage values) Vr, Vs, Vt and positive and negative peak values (Vrmax, Vrmin), (Vsmax, Vsmin), (Vtmax, Vtmin) of the phase voltage are calculated and output to the limit signal generator 82. Furthermore, the phase voltage processing unit 81 outputs the phase angle ⁇ of the phase voltage to the control signal generation unit 83.
  • phase voltage processing unit 81 uses the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2 as phase voltage information 810 as phase voltages (phase voltage values) Vr, Vs, Vt and positive and negative peak values (Vr
  • the positive and negative peak values of the phase voltage are the maximum voltage value (> 0) and the minimum voltage value ( ⁇ 0) of the phase voltage.
  • the AC voltage detector 2 detects only two of the three AC voltages Vrs, Vst, and Vtr, the three-phase voltages Vr, Vs, and Vt are calculated using the two AC voltages.
  • the limit signal generation unit 82 includes a first storage unit 21 that holds the first coefficient K1, a second storage unit 22 that holds the second coefficient K2, an R-phase voltage threshold generation unit 23r, and an S-phase voltage threshold generation unit. 23s, a T-phase voltage threshold generation unit 23t, an R-phase voltage comparison unit 24r, an S-phase voltage comparison unit 24s, and a T-phase voltage comparison unit 24t.
  • the limit signal generation unit 82 outputs an enable signal En (Enr, Ens, Ent) as a limit signal for limiting the control signal of each phase, and the enable signal En is input to the control signal generation unit 83.
  • arbitrary values satisfying K1> K2 ⁇ 0 can be set from the outside. Details of the R-phase voltage threshold generation unit 23r, the S-phase voltage threshold generation unit 23s, and the T-phase voltage threshold generation unit 23t are illustrated in FIG. The operation of the R-phase voltage threshold generation unit 23r will be described below with reference to FIG. The operations of the S-phase voltage threshold generation unit 23s and the T-phase voltage threshold generation unit 23t are the same operations as the R-phase voltage threshold generation unit 23r for the S-phase and the T-phase, and will not be described.
  • the first coefficient K1, the second coefficient K2, and the positive and negative peak values (Vrmax, Vrmin) of the R phase voltage are input to the R phase voltage threshold generation unit 23r, and the positive first threshold Vra , The positive second threshold Vrb, the negative second threshold Vrc, and the negative first threshold Vrd are output as voltage thresholds for the phase voltage Vr.
  • the positive peak value Vrmax is multiplied by the first coefficient K1 in the multiplier 23a, and is multiplied by the second coefficient K2 in the multiplier 23b. Then, the multipliers 23a and 23b generate a positive first threshold value Vra and a positive second threshold value Vrb.
  • the negative peak value Vrmin is multiplied by the second coefficient K2 in the multiplier 23c, and is multiplied by the first coefficient K1 in the multiplier 23d.
  • the multipliers 23c and 23d generate a negative second threshold value Vrc and a negative first threshold value Vrd.
  • the R-phase voltage threshold generation unit 23r, the S-phase voltage threshold generation unit 23s, and the T-phase voltage threshold generation unit 23t set four voltage thresholds for each phase, and set the voltage threshold for each phase. Is input to the R-phase voltage comparison unit 24r, the S-phase voltage comparison unit 24s, and the T-phase voltage comparison unit 24t.
  • Four voltage thresholds for each phase, a total of 12 voltage thresholds, are set as follows.
  • the R phase voltage comparison unit 24r receives the R phase voltage Vr from the phase voltage processing unit 81 (step S1), and detects the sign of the R phase voltage Vr (step S2). If the R-phase voltage Vr is positive, the R-phase voltage Vr and the positive first threshold value Vra are compared (step S3). If the R-phase voltage Vr exceeds the positive first threshold value Vra, the enable signal Enra is Turn it on.
  • the enable signal Enra maintains the on state during the period in which the state in which the R-phase voltage Vr exceeds the positive first threshold value Vra continues (step S4).
  • the enable signal is a signal for selecting one of the on and off states, and outputting the enable signal that is a limiting signal means turning on the enable signal.
  • step S5 If the R-phase voltage Vr is equal to or lower than the positive first threshold value Vra in step S3, the R-phase voltage Vr is compared with the positive second threshold value Vrb (step S5), and the R-phase voltage Vr is determined to be the positive second threshold value. If it is less than Vrb, the enable signal Enrb is turned on. The enable signal Enrb is maintained in the ON state during the period in which the state where the R-phase voltage Vr is positive and less than the positive second threshold value Vrb continues (step S6).
  • step S7 If the R-phase voltage Vr is negative or 0 in step S2, the R-phase voltage Vr is compared with the negative second threshold value Vrc (step S7), and the R-phase voltage Vr exceeds the negative second threshold value Vrc. Then, the enable signal Enrc is turned on. The enable signal Enrc is kept on during the period in which the state where the R-phase voltage Vr exceeds the negative second threshold value Vrc continues (step S8).
  • step S7 if the R-phase voltage Vr is equal to or less than the negative second threshold value Vrc, the R-phase voltage Vr and the negative first threshold value Vrd are compared (step S9), and the R-phase voltage Vr is the negative first threshold value. If it is less than Vrd, the enable signal Enrd is turned on. The enable signal Enrd is maintained in the on state during the period in which the R-phase voltage Vr is negative and is still below the negative first threshold value Vrd (step S10).
  • step S5 If the R-phase voltage Vr is greater than or equal to the positive second threshold value Vrb in step S5, or if the R-phase voltage Vr is greater than or equal to the negative first threshold value Vrd in step S9, all R-phase enable signals Enr (Enra, (Enrb, Enrc, Enrd) are turned off (step S11).
  • the R-phase voltage comparison unit 24r turns on any one of the R-phase enable signals Enr (Enra, Enrb, Enrc, Enrd) using the value of the R-phase voltage Vr and the voltage thresholds Vra to Vrd. Or turn everything off.
  • the control signal generation unit 83 generates a command value storage unit 31 that holds a command value Vdc * of the DC voltage Vdc, a voltage command generation unit 32, and a control signal Ga using a PWM signal.
  • a PWM signal generator 33 and a carrier wave generator 34 are provided.
  • the voltage command generating unit 32 stores the phase angle ⁇ from the phase voltage processing unit 81, the phase currents Ir, Is, It from the current detector 4, the DC voltage Vdc from the DC voltage detector 7, and the command value storage.
  • the command value Vdc * from the unit 31 is input.
  • the voltage command generator 32 generates each phase AC voltage command Vr *, Vs *, Vt * for controlling the DC voltage Vdc to the command value Vdc *, and each phase AC voltage command Vr *, Vs *, Based on Vt *, each phase modulation wave Mr *, Ms *, and Mt * for the power converter 5 is calculated.
  • the carrier wave generator 34 generates a carrier wave for PWM control and outputs it to the PWM signal generator 33.
  • the carrier wave is generally a high-frequency triangular wave or sawtooth wave.
  • the PWM signal generation unit 33 includes an R phase PWM signal generation unit 33r, an S phase PWM signal generation unit 33s, and a T phase PWM signal generation unit 33t.
  • the R-phase PWM signal generation unit 33r receives the R-phase modulation wave Mr * from the voltage command generation unit 32, and further receives the R-phase enable signal Enr from the limit signal generation unit 82.
  • the S-phase PWM signal generator 33s receives the S-phase modulated wave Ms * and the S-phase enable signal Ens
  • the T-phase PWM signal generator 33t receives the T-phase modulated wave Mt * and the T-phase.
  • the enable signal Ent is input.
  • the PWM signal generation units 33r, 33s, and 33t for each phase compare the modulated waves Mr *, Ms *, and Mt * for each phase with the carrier waves, respectively, and the PWM signal G for each phase that becomes a basic control signal, that is, , Gr (Gpr, Gnr), Gs (Gps, Gns), and Gt (Gpt, Gnt).
  • the PWM signals Gpr, Gps, Gpt are generated for the high potential side switching elements 52a, 52c, 52e in the power converter 5, and the PWM signals Gnr, Gns, Gnt are low potentials in the power converter 5. Are generated for the switching elements 52b, 52d, and 52f on the side.
  • the PWM signal generators 33r, 33s, and 33t for each phase limit the on / off switching of the generated PWM signals Gr, Gs, and Gt by the enable signals Enr, Ens, and Ent for each phase, that is, the control signal Ga, , Gra (Gpra, Gnra), Gsa (Gpsa, Gnsa), and Gta (Gpta, Gnta).
  • the operation of the R-phase PWM signal generation unit 33r that generates the control signal Gra (Gpra, Gnra) based on the PWM signal Gr (Gpr, Gnr) and the enable signal Enr will be described below with reference to FIG. Note that the operations of the S-phase PWM signal generation unit 33s and the T-phase PWM signal generation unit 33t are the same operations as those of the R-phase PWM signal generation unit 33r for the S-phase and the T-phase, and will not be described.
  • the R-phase PWM signal generation unit 33r receives the enable signal Enr (Enra, Enrb, Enrc, Enrd) from the R-phase voltage comparison unit 24r (Step SS1), and when the enable signal Enra is on (Step SS2), the control is performed.
  • the signal Gpra is forcibly set to on, and the control signal Gnra is forcibly set to off (step SS3).
  • the enable signal Enrb is on (step SS4)
  • the control signal Gpra is forcibly set to off
  • the control signal Gnra is forcibly set to off (step SS5).
  • step SS6 When the enable signal Enrc is on (step SS6), the control signal Gpra is forcibly set to off and the control signal Gnra is forcibly set to off (step SS7).
  • step SS8 When the enable signal Enrd is on (step SS8), the control signal Gpra is forcibly set to off and the control signal Gnra is forcibly set to on (step SS9).
  • step SS10 When all the enable signals Enr (Enra, Enrb, Enrc, Enrd) are off, the control signal Gpra is set to the PWM signal Gpr, and the control signal Gnra is set to the PWM signal Gnr (step SS10).
  • the R-phase PWM signal generation unit 33r receives the R-phase PWM signal Gr, which is a comparison result between the modulated wave Mr * and the carrier wave, during a period when the enable signal Enr is not input (the off period of the enable signal Enr). Used as R-phase control signal Gra. In a limited period, which is a period during which the enable signal Enr is input (the ON period of the enable signal Enr), the control signal Gra is fixed to ON or OFF, and switching is stopped. The control signal Gra (Gpra, Gnra) is output to the power converter 5 to switch the R-phase switching elements 52a, 52b. For this reason, during the period (limit period) in which the enable signal Enr is input to the R-phase PWM signal generation unit 33r, the on / off switching of the R-phase switching elements 52a and 52b is stopped.
  • FIG. 8 is a waveform diagram showing the relationship between the R-phase voltage Vr, the four voltage thresholds (Vra, Vrb, Vrc, Vrd) for the R-phase voltage Vr, and the period during which the enable signal Enr is output.
  • the A region which is the positive first period
  • the enable signal Enra is output, the control signal Gpra is turned on, and the control signal Gnra is fixed off.
  • the region B that can be generated in the positive second period
  • the enable signal Enrb is output, and both the control signals Gpra and Gnra are fixed off.
  • the enable signal Enrc is output, and both the control signals Gpra and Gnra are fixed off.
  • the D region which is the negative first period
  • the enable signal Enrd is output, the control signal Gpra is fixed to be off, and the control signal Gnra is fixed to be on.
  • the difference between the magnitude of the phase voltage and the DC voltage Vdc of the power converter 5 is small, and switching is switched. Little change in voltage even when stopped.
  • the second period (B region and C region) on the positive side and the negative side across the zero cross point of each phase voltage the current change is small, and the waveform change is small even when switching is stopped.
  • the second period across the zero cross point is configured by combining the positive second period (B region) and the negative second period (C region). For this reason, the number of times of switching can be reduced and harmonic distortion can be suppressed.
  • the switching of the control signal Ga is stopped using the enable signal En generated based on the voltage threshold generated using the positive and negative peak values of the phase voltage. For this reason, switching loss can be reduced while suppressing harmonics effectively with easy control.
  • FIG. 9 and FIG. 10 are waveform diagrams of each part for explaining the operation of the power converter 5.
  • Each phase voltage Vr, Vs, Vt, each phase current Ir, Is, It, and the control signal Gpra for the R phase, Gnra and enable signals Enra, Enrb, Enrc, and Enrd for the R phase are shown.
  • the period during which the enable signal En is output is set shorter than that in the case of FIG.
  • the number of times of switching is 46 per cycle, and the harmonic distortion factor (THD) of each phase current Ir, Is, It is 5.5%.
  • the number of times of switching is 34 times per cycle, and the harmonic distortion factor (THD) of each phase current Ir, Is, It is 12.9%.
  • the period during which the enable signal En is output that is, the limit period during which switching of the control signal Ga is stopped.
  • the switching frequency of the switching elements 52a to 52f can be reduced, and the effect of reducing the switching loss can be increased. If the period during which the enable signal En is output is set short, the switching loss reduction effect is reduced, but the harmonic suppression effect can be increased. For this reason, according to the characteristic requested
  • the value of the first coefficient K1 is desirably 0.86 or less in order to reliably perform the two-phase PWM control.
  • the switching of the control signal Ga is stopped during the period in which the enable signal En is output.
  • the present invention is not limited to this.
  • the number of times of switching may be limited.
  • the negative voltage threshold value may be generated by inverting the polarity of the positive voltage threshold value.
  • FIG. 11 is a schematic configuration diagram of a power conversion device 1A according to Embodiment 2 of the present invention.
  • a power converter 1A includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 ⁇ / b> A that controls the power converter 5.
  • the configuration other than the control unit 8A is the same as that of the first embodiment.
  • the control unit 8A includes a phase voltage processing unit 81A, a limiting signal generation unit 82A as a limiting unit, and a control signal generation unit 83A. Details of the control unit 8A are shown in FIGS.
  • the phase voltage processing unit 81A outputs the phase angle ⁇ of the phase voltage to the control signal generation unit 83A using the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2.
  • the control signal generation unit 83A includes a command value storage unit 31 that stores a command value Vdc * of the DC voltage Vdc, a voltage command generation unit 32A, a PWM signal generation unit 33 that generates a control signal Ga using a PWM signal, and a carrier. And a wave generator 34.
  • the carrier wave generator 34 and the PWM signal generator 33 are the same as those in the first embodiment.
  • the voltage command generation unit 32A stores a phase angle ⁇ from the phase voltage processing unit 81A, phase currents Ir, Is, It from the current detector 4, a DC voltage Vdc from the DC voltage detector 7, and a command value storage.
  • the command value Vdc * from the unit 31 is input.
  • the voltage command generator 32A generates each phase AC voltage command Vr *, Vs *, Vt * for controlling the DC voltage Vdc to the command value Vdc *, and each phase AC voltage command Vr *, Vs *, Based on Vt *, each phase modulation wave Mr *, Ms *, and Mt * for the power converter 5 is calculated.
  • the limit signal generation unit 82A includes a first storage unit 21 that holds the first coefficient K1, a second storage unit 22 that holds the second coefficient K2, an R-phase voltage threshold generation unit 23r, and an S-phase voltage threshold generation unit. 23s, a T-phase voltage threshold generation unit 23t, an R-phase voltage comparison unit 24r, an S-phase voltage comparison unit 24s, and a T-phase voltage comparison unit 24t. Then, the limit signal generation unit 82A receives the phase voltage command information 830 from the control signal generation unit 83A, and outputs an enable signal En (Enr, Ens, Ent) for each phase. The enable signal En is input to the control signal generation unit 83A.
  • the voltage threshold value generation units 23r, 23s, and 23t for each phase and the voltage comparison units 24r, 24s, and 24t for each phase have the same configurations as those of the first embodiment, but the phase voltage command information 830 Based on the above, a voltage threshold value for each phase AC voltage command Vr *, Vs *, Vt * is generated and compared. That is, in the voltage threshold value generators 23r, 23s, and 23t for each phase, the positive and negative values of the first coefficient K1 and the second coefficient K2 that satisfy K1> K2 ⁇ 0 and the AC voltage commands Vr *, Vs *, and Vt * for each phase.
  • each phase voltage comparison unit 24r, 24s, 24t each phase AC voltage command Vr *, Vs *, Vt * and voltage thresholds (positive first threshold, positive second threshold, negative second threshold, The enable signal En is output by comparing with the negative first threshold).
  • switching is stopped or the number of times is reduced in the first period in which the positive and negative peaks of each phase voltage are sandwiched and the second period in which the zero-cross point is sandwiched, and it is easy as in the first embodiment. Switching loss can be reduced while suppressing harmonics effectively with simple control.
  • FIG. 14 is a schematic configuration diagram of a power conversion device 1B according to Embodiment 3 of the present invention.
  • a power converter 1 ⁇ / b> B includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter that includes a power module. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 ⁇ / b> B that controls the power converter 5.
  • the configuration other than the control unit 8B is the same as that of the first embodiment.
  • the control unit 8B includes a phase voltage processing unit 81B, a limiting signal generating unit 82B as a limiting unit, and a control signal generating unit 83. Details of the control unit 8B are shown in FIGS. Note that the control signal generator 83 shown in FIG. 16 has the same configuration as that of the first embodiment. As illustrated in FIG. 15, the phase voltage processing unit 81B calculates the phase voltages Vr, Vs, and Vt using the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2, and each phase angle ⁇ r. , ⁇ s, ⁇ t are detected and output as phase voltage information 811 to the limit signal generator 82B.
  • phase voltage processing unit 81B outputs any one of the phase angles ⁇ r, ⁇ s, and ⁇ t to the control signal generation unit 83 as the phase angle ⁇ of the phase voltage.
  • the range of the phase angles ⁇ r, ⁇ s, ⁇ t is from 0 ° to 360 °, and when 360 ° or more, a value obtained by subtracting 360 ° from the phase angle is used.
  • the AC voltage detector 2 detects only two of the three AC voltages Vrs, Vst, and Vtr, the three-phase phase voltage using the two AC voltages is used. Vr, Vs, and Vt are calculated.
  • the limit signal generation unit 82B includes a first storage unit 26 that holds the first reference phase ⁇ 1, a second storage unit 27 that holds the second reference phase ⁇ 2, an R-phase voltage phase comparison unit 28r, and an S-phase voltage phase. A comparison unit 28s and a T-phase voltage phase comparison unit 28t are provided. Then, the limit signal generator 82B outputs the enable signal En (Enr, Ens, Ent) for each phase, and the enable signal En is input to the control signal generator 83.
  • any phase angle value satisfying 0 ° ⁇ ⁇ 2 ⁇ 1 ⁇ 90 ° can be set from the outside.
  • the adder adds 180 degrees based on the first reference phase ⁇ 1 and the second reference phase ⁇ 2, respectively, and four phase angle thresholds ⁇ 1, ⁇ 2, (180 ° + ⁇ 1), (180 ° + ⁇ 2) for each phase. ) Is generated and input to the voltage phase comparators 28r, 28s, and 28t of each phase.
  • the four phase angle threshold values for each phase are the positive first threshold value ⁇ 1, the positive second threshold value ⁇ 2, the negative first threshold value (180 ° + ⁇ 1), and the negative second threshold value (180 ° + ⁇ 2).
  • This is a phase angle corresponding to the voltage values of the four voltage threshold values (Vra, Vrb, Vrd, Vrc) generated in the first embodiment.
  • the A region that is the positive first period has a phase angle range of ⁇ 1 to (180 ° ⁇ 1)
  • the B region that is the positive second period has a phase angle range of 0. It is in the range of ° to ⁇ 2, and (180 ° ⁇ 2) to 180 °.
  • the C region which is the negative second period, has a phase angle range of 180 ° to (180 ° + ⁇ 2) and (360 ° ⁇ 2) to 360 °.
  • the D region which is the first negative period has a phase angle range of (180 ° + ⁇ 1) to (360 ° ⁇ 1).
  • the operation of the R-phase voltage phase comparator 28r will be described below with reference to FIG. 17 and with reference to the waveform diagram of FIG. Note that the operations of the S-phase voltage phase comparison unit 28s and the T-phase voltage phase comparison unit 28t are the same operations as the R-phase voltage phase comparison unit 28r for the S-phase and the T-phase, and the description thereof is omitted.
  • the phase angle ⁇ r of the R phase voltage Vr is input from the phase voltage processing unit 81B (step S1) and the phase angle ⁇ r satisfies 0 ° ⁇ r ⁇ 2 (step S2). Then, the enable signal Enrb is turned on.
  • the enable signal Enrb is maintained in the on state during a period in which the state satisfying 0 ° ⁇ r ⁇ 2 is continued (step S3). If the condition that the phase angle ⁇ r is given in step S2 does not satisfy the condition and ⁇ 1 ⁇ r ⁇ (180 ° ⁇ 1) is satisfied (step S4), the enable signal Enra is turned on. The enable signal Enra maintains the on state while the state satisfying ⁇ 1 ⁇ r ⁇ (180 ° ⁇ 1) continues (step S5).
  • step S6 If the condition that the phase angle ⁇ r is not satisfied in step S4 and (180 ° ⁇ 2) ⁇ r ⁇ 180 ° is satisfied (step S6), the enable signal Enrb is turned on. The enable signal Enrb is maintained in the ON state during a period in which the state satisfying (180 ° ⁇ 2) ⁇ r ⁇ 180 ° is continued (step S7). If the condition where the phase angle ⁇ r is not satisfied in step S6 and 180 ° ⁇ ⁇ r ⁇ (180 ° + ⁇ 2) is satisfied (step S8), the enable signal Enrc is turned on. The enable signal Enrc is kept on during the period in which the state satisfying 180 ° ⁇ ⁇ r ⁇ (180 ° + ⁇ 2) continues (step S9).
  • step S10 If the condition that the phase angle ⁇ r is not satisfied in step S8 satisfies (180 ° + ⁇ 1) ⁇ r ⁇ (360 ° ⁇ 1) (step S10), the enable signal Enrd is turned on.
  • the enable signal Enrd maintains the on state during a period in which the state satisfying (180 ° + ⁇ 1) ⁇ r ⁇ (360 ° ⁇ 1) is continued (step S11). If the condition that the phase angle ⁇ r is not satisfied in step S10 and (360 ° ⁇ 2) ⁇ r ⁇ 360 ° is satisfied (step S12), the enable signal Enrc is turned on.
  • the enable signal Enrc is kept on during the period in which the state satisfying (360 ° ⁇ 2) ⁇ r ⁇ 360 ° is continued (step S13). If the condition that the phase angle ⁇ r is given is not satisfied in step S12, all the R-phase enable signals Enr (Enra, Enrb, Enrc, Enrd) are turned off (step S14).
  • phase angle threshold values ⁇ 1, ⁇ 2, (180 ° + ⁇ 1), (180 ° + ⁇ 2) with respect to the phase angle ⁇ r of the R phase voltage are input to the R phase voltage phase comparison unit 28r, and (180 ° ⁇ 1). ), (180 ° ⁇ 2), (360 ° ⁇ 1), and (360 ° ⁇ 2) are calculated and used by the R phase voltage phase comparison unit 28r as phase angle threshold values.
  • Only the phase angle threshold values ⁇ 1 and ⁇ 2 that can use the first reference phase ⁇ 1 and the second reference phase ⁇ 2 as they are are input to the R phase voltage phase comparison unit 28r, and the remaining phase angle threshold values are input to the R phase voltage phase comparison unit 28r. It is also possible to use it by calculating with.
  • switching is stopped in the first period in which the positive and negative peaks of each phase voltage are sandwiched and in the second period in which the zero cross point is sandwiched, and the harmonics are effectively effectively applied as in the first embodiment.
  • the switching loss can be reduced while suppressing the above.
  • the switching of the control signal Ga is stopped using the enable signal En generated based on the phase angle threshold generated from the first reference phase ⁇ 1 and the second reference phase ⁇ 2. For this reason, switching loss can be reduced while suppressing harmonics effectively with easy control.
  • the period during which the enable signal En is output is set to be long, the switching frequency of the switching elements 52a to 52f can be reduced, and the effect of reducing the switching loss can be increased. If the period during which the enable signal En is output is set short, the switching loss reduction effect is reduced, but the harmonic suppression effect can be increased. For this reason, according to the characteristic requested
  • the value of the first reference phase ⁇ 1 is smaller than 60 °.
  • the second period across the zero cross point may be substantially zero, and in this case, the second reference phase ⁇ 2 is set to 0 °.
  • the switching may be limited to reduce the number of switchings instead of stopping the switching in the period in which the enable signal En is output.
  • FIG. 18 is a schematic configuration diagram of a power conversion device 1C according to the fourth embodiment of the present invention.
  • a power converter 1 ⁇ / b> C includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter that includes a power module. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 ⁇ / b> C that controls the power converter 5.
  • the configuration other than the control unit 8C is the same as that in the first embodiment.
  • the control unit 8C includes a phase voltage processing unit 81A, a limiting signal generation unit 82C as a limiting unit, and a control signal generation unit 83C. Details of the control unit 8C are shown in FIGS.
  • the phase voltage processing unit 81A has the same configuration as that of the second embodiment, and uses the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2 to determine the phase angle ⁇ of the phase voltage as a control signal generation unit. Output to 83C.
  • the control signal generation unit 83C includes a command value storage unit 31 that stores a command value Vdc * of the DC voltage Vdc, a voltage command generation unit 32C, a PWM signal generation unit 33 that generates a control signal Ga using a PWM signal, and a carrier. And a wave generator 34.
  • the carrier wave generator 34 and the PWM signal generator 33 are the same as those in the first embodiment.
  • the voltage command generation unit 32C stores the phase angle ⁇ from the phase voltage processing unit 81A, the phase currents Ir, Is, It from the current detector 4, the DC voltage Vdc from the DC voltage detector 7, and the command value storage.
  • the command value Vdc * from the unit 31 is input.
  • the voltage command generator 32C generates each phase AC voltage command Vr *, Vs *, Vt * for controlling the DC voltage Vdc to the command value Vdc *, and each phase AC voltage command Vr *, Vs *, Based on Vt *, each phase modulation wave Mr *, Ms *, and Mt * for the power converter 5 is calculated.
  • the phase angle ⁇ r *, ⁇ s *, ⁇ t * of each phase AC voltage command Vr *, Vs *, Vt * is detected and output as phase voltage command information 831 to the limit signal generator 82C.
  • the limit signal generation unit 82C includes a first storage unit 26 that holds the first reference phase ⁇ 1, a second storage unit 27 that holds the second reference phase ⁇ 2, an R-phase voltage phase comparison unit 28r, and an S-phase voltage phase. A comparison unit 28s and a T-phase voltage phase comparison unit 28t are provided. Then, the limit signal generator 82C The phase angle ⁇ r *, ⁇ s *, ⁇ t * as the phase voltage command information 831 is input from the control signal generation unit 83C, and the enable signal En (Enr, Ens, Ent) for each phase is output. The enable signal En is input to the control signal generation unit 83C.
  • the voltage phase comparison units 28r, 28s, and 28t for each phase have the same configuration as that of the third embodiment, but the phase angle ⁇ r * of each phase AC voltage command Vr *, Vs *, Vt *, A phase angle threshold for ⁇ s * and ⁇ t * is generated and compared. That is, using the first reference phase ⁇ 1 and the second reference phase ⁇ 2, four phase angle threshold values (positive first threshold value, positive second threshold value, negative first threshold value, negative second threshold value). Is calculated. In each phase voltage phase comparison unit 28r, 28s, 28t, the phase angle ⁇ r *, ⁇ s *, ⁇ t * of each phase voltage and each phase angle threshold value are compared in the same manner as in the third embodiment.
  • the enable signal En is output.
  • switching switching is stopped or the number of times is reduced in the first period sandwiching the positive and negative peaks of each phase voltage and the second period sandwiching the zero cross point, and the same as the third embodiment. Switching loss can be reduced while suppressing harmonics effectively with simple control.

Abstract

In a power conversion device (1) for converting multi-phase AC power to DC power, a control unit (8) is provided with: a control signal generation unit (83) for generating an each-phase AC voltage command for controlling a DC voltage to generate a control signal (Ga); and a restriction signal generation unit (82) for restricting the number of switching operations by restricting the control signal (Ga) on a per-phase basis. The restriction signal generation unit (82) generates an enable signal (En) for restricting the control signal (Ga) during a first period including a positive or negative peak of each phase voltage of the AC voltage and a second period including a zero-cross point.

Description

電力変換装置Power converter
 この発明は、複数相の交流と直流との間で電力変換を行う電力変換装置に関するものである。 The present invention relates to a power conversion device that performs power conversion between a plurality of phases of alternating current and direct current.
 従来、スイッチング素子とスイッチング素子に逆並列に接続されたダイオードがブリッジ接続された主回路を持つ電力変換装置のPWM(Pulse Width Modulation)制御において、電力変換装置を2相PWM制御する技術が開示されている。
 2相PWM制御は、各相の電圧ピーク近傍において当該相のスイッチングを一定期間停止させ、残りの2相でスイッチングを行い、スイッチング損失を低減する制御である。
Conventionally, a technology for performing two-phase PWM control of a power conversion device in PWM (Pulse Width Modulation) control of a power conversion device having a main circuit in which a switching element and a diode connected in reverse parallel to the switching element are bridge-connected is disclosed. ing.
In the two-phase PWM control, the switching of the phase is stopped for a certain period in the vicinity of the voltage peak of each phase, the switching is performed in the remaining two phases, and the switching loss is reduced.
 従来の2相PWM制御では、インバータの各相のスイッチングを制御する各相PWM信号を生成する際、少なくともいずれかの相について、相電圧および線電流を検出し、両者の位相差(力率角)を求める。求めた力率角は、各相PWM信号の発生動作の制御に用い、インバータの各相のスイッチング停止期間を、インバータの負荷に流れる線電流のピーク近傍に追従させる(例えば、特許文献1参照)。
 また、従来の別例による2相PWM制御を用いる電力変換装置では、出力電流および電圧指令値に基づき力率を演算し、力率に応じた周波数のキャリア信号を生成してスイッチング素子を制御するPWM信号を生成する(例えば、特許文献2参照)。
In the conventional two-phase PWM control, when generating each phase PWM signal for controlling the switching of each phase of the inverter, the phase voltage and the line current are detected for at least one of the phases, and the phase difference (power factor angle) between them is detected. ) The obtained power factor angle is used to control the generation operation of each phase PWM signal, and the switching stop period of each phase of the inverter is made to follow the vicinity of the peak of the line current flowing through the load of the inverter (see, for example, Patent Document 1). .
Further, in a power converter using two-phase PWM control according to another conventional example, a power factor is calculated based on an output current and a voltage command value, and a carrier signal having a frequency corresponding to the power factor is generated to control a switching element. A PWM signal is generated (see, for example, Patent Document 2).
特開平7-46855号公報JP-A-7-46855 特許第5615468号公報Japanese Patent No. 5615468
 上記特許文献1記載の2相PWM制御では、検出した負荷状態に基づき力率が求められ、力率に基づきスイッチング停止期間の追従制御を行うため、制御が複雑であった。またインバータの各相のスイッチング停止期間が、インバータの負荷に流れる線電流のピーク近傍に限定されるもので、スイッチング損失の低減化には限界があった。
 また、上記特許文献2記載の電力変換装置では、高調波の抑制効果を得るものであるが、各相電圧指令値のピーク近傍でのみ各相のスイッチングを停止し、同様にスイッチング損失の低減化には限界があった。
In the two-phase PWM control described in Patent Document 1, the power factor is obtained based on the detected load state, and the follow-up control of the switching stop period is performed based on the power factor, so the control is complicated. Further, the switching stop period of each phase of the inverter is limited to the vicinity of the peak of the line current flowing through the load of the inverter, and there is a limit to reducing the switching loss.
Moreover, in the power converter device of the said patent document 2, although the suppression effect of a harmonic is acquired, switching of each phase is stopped only near the peak of each phase voltage command value, and reduction of switching loss is similarly performed. There were limits.
 この発明は、上記のような問題点を解消するために成されたものであって、PWM制御を用いて複数相の交流電力を直流電力に変換する電力変換装置において、容易な制御で効果的に高調波を抑制しつつスイッチング損失の低減を図ることを目的とする。 The present invention has been made to solve the above-described problems, and is effective in easy control in a power conversion device that converts a plurality of phases of AC power into DC power using PWM control. An object of the present invention is to reduce switching loss while suppressing harmonics.
 この発明に係る電力変換装置は、それぞれ逆並列にダイオードが接続された複数のスイッチング素子がブリッジ接続されて構成され、複数相の交流電力を直流電力に変換する電力変換器と、上記電力変換器の交流側にそれぞれ設けられて交流電圧および交流電流を検出する交流電圧検出器および交流電流検出器と、上記電力変換器の直流端子の直流電圧を検出する直流電圧検出器と、これらの検出結果に基づいて上記電力変換器をPWM制御により出力制御する制御部とを備える。上記制御部は、上記直流電圧を制御するための各相交流電圧指令を生成して上記スイッチング素子をスイッチング制御する制御信号を生成する制御信号生成部と、該制御信号を各相毎に制限して上記スイッチング素子のスイッチング回数を制限する制限部とを備える。上記制限部は、上記交流電圧における各相電圧の正負のピークを挟む第1期間と、ゼロクロス点を挟む第2期間とを各相の制限期間として決定し、該制限期間において上記制御信号を制限する制限信号を発生する。 A power converter according to the present invention comprises a plurality of switching elements each connected in reverse parallel with a plurality of switching elements that are bridge-connected, a power converter that converts a plurality of phases of AC power into DC power, and the power converter AC voltage detector and AC current detector provided on the AC side of the power converter for detecting AC voltage and AC current, DC voltage detector for detecting DC voltage at the DC terminal of the power converter, and detection results thereof And a control unit for controlling the output of the power converter by PWM control based on the above. The control unit generates a control signal for generating a control signal for controlling the switching of the switching element by generating a phase AC voltage command for controlling the DC voltage, and limits the control signal for each phase. And a limiting unit that limits the number of switching times of the switching element. The limiting unit determines a first period that sandwiches positive and negative peaks of each phase voltage in the AC voltage and a second period that sandwiches a zero cross point as the limiting period of each phase, and limits the control signal in the limiting period. A limit signal is generated.
 この発明に係る電力変換装置によれば、上記交流電圧における各相電圧の正負のピークを挟む第1期間と、ゼロクロス点を挟む第2期間とを各相の制限期間として上記制御信号を制限するため、容易な制御で効果的に高調波を抑制しつつスイッチング損失を低減できる。 According to the power conversion device of the present invention, the control signal is limited by setting the first period sandwiching the positive and negative peaks of each phase voltage in the AC voltage and the second period sandwiching the zero-cross point as the limit period of each phase. Therefore, switching loss can be reduced while suppressing harmonics effectively with easy control.
この発明の実施の形態1による電力変換装置の概略構成を示す図である。It is a figure which shows schematic structure of the power converter device by Embodiment 1 of this invention. この発明の実施の形態1による電力変換器を示す回路図である。It is a circuit diagram which shows the power converter by Embodiment 1 of this invention. この発明の実施の形態1による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 1 of this invention. この発明の実施の形態1による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 1 of this invention. この発明の実施の形態1による制限信号生成部の一部を示すブロック図である。It is a block diagram which shows a part of limit signal generation part by Embodiment 1 of this invention. この発明の実施の形態1による制限信号の生成動作を説明するフローチャートである。It is a flowchart explaining the production | generation operation | movement of the restriction | limiting signal by Embodiment 1 of this invention. この発明の実施の形態1による制御信号の生成動作を説明するフローチャートである。It is a flowchart explaining the production | generation operation | movement of the control signal by Embodiment 1 of this invention. この発明の実施の形態1による電力変換装置の動作を説明する交流電圧波形図である。It is an alternating voltage waveform diagram explaining operation | movement of the power converter device by Embodiment 1 of this invention. この発明の実施の形態1による電力変換装置の動作を説明する各部の波形図である。It is a wave form diagram of each part explaining operation | movement of the power converter device by Embodiment 1 of this invention. この発明の実施の形態1による電力変換装置の別例による動作を説明する各部の波形図である。It is a wave form diagram of each part explaining the operation | movement by the other example of the power converter device by Embodiment 1 of this invention. この発明の実施の形態2による電力変換装置の概略構成を示す図である。It is a figure which shows schematic structure of the power converter device by Embodiment 2 of this invention. この発明の実施の形態2による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 2 of this invention. この発明の実施の形態2による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 2 of this invention. この発明の実施の形態3による電力変換装置の概略構成を示す図である。It is a figure which shows schematic structure of the power converter device by Embodiment 3 of this invention. この発明の実施の形態3による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 3 of this invention. この発明の実施の形態3による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 3 of this invention. この発明の実施の形態3による制限信号の生成動作を説明するフローチャートである。It is a flowchart explaining the production | generation operation | movement of the restriction | limiting signal by Embodiment 3 of this invention. この発明の実施の形態4による電力変換装置の概略構成を示す図である。It is a figure which shows schematic structure of the power converter device by Embodiment 4 of this invention. この発明の実施の形態4による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 4 of this invention. この発明の実施の形態4による制御部の一部を示すブロック図である。It is a block diagram which shows a part of control part by Embodiment 4 of this invention.
実施の形態1.
 以下、この発明の実施の形態1による電力変換装置を図に基づいて以下に説明する。図1は、この発明の実施の形態1による電力変換装置の概略構成図である。
 図1に示すように、電力変換装置1は、交流電圧検出器2と、フィルタ3と、交流電流検出器(以下、電流検出器と称す)4と、パワーモジュールにて構成される電力変換器5と、電力変換器5の直流側に接続される平滑コンデンサ6と、直流電圧検出器7と、電力変換器5を制御する制御部8とを備える。
Embodiment 1 FIG.
Hereinafter, a power converter according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a power conversion device according to Embodiment 1 of the present invention.
As shown in FIG. 1, a power converter 1 includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter that includes a power module. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 that controls the power converter 5.
 電力変換器5は、複数相交流この場合三相交流(R相、S相、T相)の交流電力から直流電力への電力変換を行うもので、交流側はフィルタ3を介して交流電圧源10に接続され、直流側は平滑コンデンサ6を介して負荷11に接続される。
 負荷11は、例えばモータと、直流電力をモータ駆動に必要な交流電力に変換するインバータとで構成される。
 なお、この実施の形態では、電力変換装置1の入力側のトランスや配線などによるインピーダンス成分およびリアクタンス成分をも含めて交流電圧源10として取り扱う。
The power converter 5 performs power conversion from AC power of three-phase AC (in this case, three-phase AC (R phase, S phase, T phase) to DC power, and the AC side is connected to the AC voltage source via the filter 3. The DC side is connected to a load 11 via a smoothing capacitor 6.
The load 11 is composed of, for example, a motor and an inverter that converts DC power into AC power necessary for driving the motor.
In this embodiment, the AC voltage source 10 is handled including the impedance component and reactance component due to the transformer and wiring on the input side of the power conversion device 1.
 図2に示すように、電力変換器5は、それぞれ逆並列にダイオード51a~51fが接続された複数(この場合6個)のスイッチング素子52a~52fがブリッジ接続されて構成される。なお、ダイオード51a~51fは3相の全波整流回路を構成している。
 電力変換器5の接続構成の詳細を以下に示す。ダイオード51aのアノードとダイオード51bのカソードとが、電流検出器4とフィルタ3とを介して、交流電圧源10のR相に接続される。そして、ダイオード51cのアノードとダイオード51dのカソードとが、電流検出器4とフィルタ3とを介して、交流電圧源10のS相に接続される。ダイオード51eのアノードとダイオード51fのカソードとが、電流検出器4とフィルタ3とを介して、交流電圧源10のT相に接続される。
As shown in FIG. 2, the power converter 5 is configured by bridge-connecting a plurality (six in this case) of switching elements 52a to 52f to which diodes 51a to 51f are connected in antiparallel. The diodes 51a to 51f constitute a three-phase full-wave rectifier circuit.
Details of the connection configuration of the power converter 5 are shown below. The anode of the diode 51 a and the cathode of the diode 51 b are connected to the R phase of the AC voltage source 10 via the current detector 4 and the filter 3. The anode of the diode 51 c and the cathode of the diode 51 d are connected to the S phase of the AC voltage source 10 through the current detector 4 and the filter 3. The anode of the diode 51 e and the cathode of the diode 51 f are connected to the T phase of the AC voltage source 10 via the current detector 4 and the filter 3.
 ダイオード51aのアノードとダイオード51bのカソードとの接続点、ダイオード51cのアノードとダイオード51dのカソードとの接続点、およびダイオード51eのアノードとダイオード51fのカソードとの接続点を、電力変換器5の交流端子5aとする。なお、図2では、各接続点からの端子を交流端子5aとして図示している。
 スイッチング素子52a~52fは、それぞれダイオード51a~51fと逆並列に接続される。ダイオード51aのカソードとダイオード51cのカソードとダイオード51eのカソード、およびこれらに接続されるスイッチング素子52a、52c、52eの端子は、互いに接続されて電力変換器5の直流端子5bの高電位側端子を形成する。
 ダイオード51bのアノードとダイオード51dのアノードとダイオード51fのアノード、およびこれらに接続されるスイッチング素子52b、52d、52fの端子とは、互いに接続されて、電力変換器5の直流端子5bの低電位側端子を形成する。
 なお、直流端子5bの高電位側端子、低電位側端子とを併せて、単に、直流端子5bと称す。
The connection point between the anode of the diode 51a and the cathode of the diode 51b, the connection point between the anode of the diode 51c and the cathode of the diode 51d, and the connection point of the anode of the diode 51e and the cathode of the diode 51f This is terminal 5a. In FIG. 2, terminals from each connection point are illustrated as AC terminals 5a.
The switching elements 52a to 52f are connected in antiparallel with the diodes 51a to 51f, respectively. The cathode of the diode 51a, the cathode of the diode 51c, the cathode of the diode 51e, and the terminals of the switching elements 52a, 52c, and 52e connected to each other are connected to each other as a high potential side terminal of the DC terminal 5b of the power converter 5. Form.
The anode of the diode 51b, the anode of the diode 51d, the anode of the diode 51f, and the terminals of the switching elements 52b, 52d, and 52f connected thereto are connected to each other, and the low potential side of the DC terminal 5b of the power converter 5 Form a terminal.
The high potential side terminal and the low potential side terminal of the DC terminal 5b are simply referred to as a DC terminal 5b.
 スイッチング素子52a~52fは、制御部8が各スイッチング素子52a~52fに対してそれぞれ出力する制御信号(ゲート信号)Gaによって、オン/オフのいずれかの状態に制御される。なお、スイッチング素子52a~52fをオンさせる制御信号Gaの状態は、制御信号Gaがオンと称し、スイッチング素子52a~52fをオフさせる制御信号Gaの状態は、制御信号Gaがオフと称す。
 なお、スイッチング素子52a~52fは、駆動回路(図示省略)を有してオン/オフを切り替える。
The switching elements 52a to 52f are controlled to be either on or off by a control signal (gate signal) Ga output from the control unit 8 to each of the switching elements 52a to 52f. Note that the state of the control signal Ga that turns on the switching elements 52a to 52f is referred to as “on”, and the state of the control signal Ga that turns off the switching elements 52a to 52f is referred to as “off”.
The switching elements 52a to 52f have a drive circuit (not shown) and are switched on / off.
 フィルタ3は、例えば、各相に2つずつ接続された6つのリアクトルと、各相2つのリアクトルの間にΔ結線、あるいはY結線で接続される3つのコンデンサから構成される。
 平滑コンデンサ6は、電力変換器5の直流端子5b間に接続され、直流電圧を平滑する。
The filter 3 includes, for example, six reactors connected to each phase by two, and three capacitors connected by Δ connection or Y connection between the two reactors of each phase.
The smoothing capacitor 6 is connected between the DC terminals 5b of the power converter 5 and smoothes the DC voltage.
 交流電圧検出器2は、フィルタ3の交流電圧源10側に配設され、2相間の交流電圧、この場合、S相に対するR相の電圧Vrsと、T相に対するS相の電圧Vstと、R相に対するT相の電圧Vtrとを検出する。検出された交流電圧Vrs、Vst、Vtrの値は制御部8に送られる。なお、交流電圧Vrs、Vst、Vtrの検出値を、便宜上、単に交流電圧Vrs、Vst、Vtrと称す。
 この実施の形態では、3つの交流電圧Vrs、Vst、Vtrを検出しているが、2つのみを検出しても良い。
The AC voltage detector 2 is disposed on the side of the AC voltage source 10 of the filter 3 and is an AC voltage between two phases, in this case, an R-phase voltage Vrs for the S-phase, an S-phase voltage Vst for the T-phase, and R A T-phase voltage Vtr with respect to the phase is detected. The detected values of the alternating voltages Vrs, Vst, Vtr are sent to the control unit 8. Note that the detection values of the AC voltages Vrs, Vst, and Vtr are simply referred to as AC voltages Vrs, Vst, and Vtr for convenience.
In this embodiment, three AC voltages Vrs, Vst, and Vtr are detected, but only two may be detected.
 電流検出器4(4R、4S、4T)は、フィルタ3と電力変換器5との間に配設され、電力変換器5の交流端子5aに流れる交流電流としての相電流Ir、Is、Itの値を検出する。この場合、電流検出器4RはR相の相電流Irを検出し、電流検出器4SはS相の相電流Isを検出し、電流検出器4TはT相の相電流Itを検出する。検出された相電流Ir、Is、Itの値は、制御部8に送られる。
 なお、相電流Ir、Is、Itの検出値を、便宜上、単に相電流Ir、Is、Itと称す。
The current detector 4 (4R, 4S, 4T) is disposed between the filter 3 and the power converter 5, and is used for the phase currents Ir, Is, It as the alternating current flowing in the AC terminal 5a of the power converter 5. Detect value. In this case, the current detector 4R detects the R-phase phase current Ir, the current detector 4S detects the S-phase phase current Is, and the current detector 4T detects the T-phase phase current It. The detected values of the phase currents Ir, Is, It are sent to the control unit 8.
The detected values of the phase currents Ir, Is, It are simply referred to as phase currents Ir, Is, It for convenience.
 直流電圧検出器7は、平滑コンデンサ6の両端子間、即ち、電力変換器5の直流端子5b間に接続され、平滑コンデンサ6の直流電圧Vdcを検出する。そして、直流電圧(検出値)Vdcは制御部8に送られる。 The DC voltage detector 7 is connected between both terminals of the smoothing capacitor 6, that is, between the DC terminals 5b of the power converter 5, and detects the DC voltage Vdc of the smoothing capacitor 6. The DC voltage (detected value) Vdc is sent to the control unit 8.
 制御部8は、相電圧処理部81と、制限部としての制限信号生成部82と、制御信号生成部83とを備える。制御部8の詳細は、図3および図4に示す。
 図3に示すように、相電圧処理部81は、交流電圧検出器2から入力される交流電圧Vrs、Vst、Vtrを用いて、相電圧情報810として相電圧(相電圧値)Vr、Vs、Vtおよび相電圧の正負のピーク値(Vrmax、Vrmin)、(Vsmax、Vsmin)、(Vtmax、Vtmin)を演算し、制限信号生成部82へ出力する。さらに、相電圧処理部81は、相電圧の位相角θを制御信号生成部83へ出力する。なお、相電圧の正負のピーク値は、相電圧の最大電圧値(>0)および最小電圧値(<0)である。
 交流電圧検出器2が3つの交流電圧Vrs、Vst、Vtrの内、2つのみを検出する場合は、2つの交流電圧を用いて3相の相電圧Vr、Vs、Vtを演算する。
The control unit 8 includes a phase voltage processing unit 81, a limiting signal generation unit 82 as a limiting unit, and a control signal generation unit 83. Details of the control unit 8 are shown in FIGS.
As illustrated in FIG. 3, the phase voltage processing unit 81 uses the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2 as phase voltage information 810 as phase voltages (phase voltage values) Vr, Vs, Vt and positive and negative peak values (Vrmax, Vrmin), (Vsmax, Vsmin), (Vtmax, Vtmin) of the phase voltage are calculated and output to the limit signal generator 82. Furthermore, the phase voltage processing unit 81 outputs the phase angle θ of the phase voltage to the control signal generation unit 83. The positive and negative peak values of the phase voltage are the maximum voltage value (> 0) and the minimum voltage value (<0) of the phase voltage.
When the AC voltage detector 2 detects only two of the three AC voltages Vrs, Vst, and Vtr, the three-phase voltages Vr, Vs, and Vt are calculated using the two AC voltages.
 制限信号生成部82は、第1係数K1を保持する第1格納部21と、第2係数K2を保持する第2格納部22と、R相電圧閾値生成部23rと、S相電圧閾値生成部23sと、T相電圧閾値生成部23tと、R相電圧比較部24rと、S相電圧比較部24sと、T相電圧比較部24tとを備える。そして、制限信号生成部82は、各相の制御信号を制限する制限信号としてのイネーブル信号En(Enr、Ens、Ent)を出力し、イネーブル信号Enは、制御信号生成部83に入力される。 The limit signal generation unit 82 includes a first storage unit 21 that holds the first coefficient K1, a second storage unit 22 that holds the second coefficient K2, an R-phase voltage threshold generation unit 23r, and an S-phase voltage threshold generation unit. 23s, a T-phase voltage threshold generation unit 23t, an R-phase voltage comparison unit 24r, an S-phase voltage comparison unit 24s, and a T-phase voltage comparison unit 24t. The limit signal generation unit 82 outputs an enable signal En (Enr, Ens, Ent) as a limit signal for limiting the control signal of each phase, and the enable signal En is input to the control signal generation unit 83.
 第1係数K1、第2係数K2は、K1>K2≧0、となる任意の値を外部から設定可能とする。
 R相電圧閾値生成部23r、S相電圧閾値生成部23sおよびT相電圧閾値生成部23tの詳細は、図5に示す。R相電圧閾値生成部23rの動作について、図5に基づいて以下に説明する。なお、S相電圧閾値生成部23s、T相電圧閾値生成部23tの動作は、R相電圧閾値生成部23rと同様の動作をS相、T相について行うものであり、説明を省略する。
For the first coefficient K1 and the second coefficient K2, arbitrary values satisfying K1> K2 ≧ 0 can be set from the outside.
Details of the R-phase voltage threshold generation unit 23r, the S-phase voltage threshold generation unit 23s, and the T-phase voltage threshold generation unit 23t are illustrated in FIG. The operation of the R-phase voltage threshold generation unit 23r will be described below with reference to FIG. The operations of the S-phase voltage threshold generation unit 23s and the T-phase voltage threshold generation unit 23t are the same operations as the R-phase voltage threshold generation unit 23r for the S-phase and the T-phase, and will not be described.
 図5に示すように、R相電圧閾値生成部23rには、第1係数K1、第2係数K2およびR相電圧の正負のピーク値(Vrmax、Vrmin)が入力され、正側第1閾値Vra、正側第2閾値Vrb、負側第2閾値Vrc、負側第1閾値Vrdを、相電圧Vrに対する電圧閾値として出力する。
 正側ピーク値Vrmaxは、乗算器23aにて第1係数K1が掛けられ、また乗算器23bにて第2係数K2が掛けられる。そして、乗算器23a、23bは、正側第1閾値Vra、正側第2閾値Vrbを生成する。負側ピーク値Vrminは、乗算器23cにて第2係数K2が掛けられ、また乗算器23dにて第1係数K1が掛けられる。そして、乗算器23c、23dは、負側第2閾値Vrc、負側第1閾値Vrdを生成する。
As shown in FIG. 5, the first coefficient K1, the second coefficient K2, and the positive and negative peak values (Vrmax, Vrmin) of the R phase voltage are input to the R phase voltage threshold generation unit 23r, and the positive first threshold Vra , The positive second threshold Vrb, the negative second threshold Vrc, and the negative first threshold Vrd are output as voltage thresholds for the phase voltage Vr.
The positive peak value Vrmax is multiplied by the first coefficient K1 in the multiplier 23a, and is multiplied by the second coefficient K2 in the multiplier 23b. Then, the multipliers 23a and 23b generate a positive first threshold value Vra and a positive second threshold value Vrb. The negative peak value Vrmin is multiplied by the second coefficient K2 in the multiplier 23c, and is multiplied by the first coefficient K1 in the multiplier 23d. The multipliers 23c and 23d generate a negative second threshold value Vrc and a negative first threshold value Vrd.
 このように、R相電圧閾値生成部23r、S相電圧閾値生成部23sおよびT相電圧閾値生成部23tは、各相に対して4つの電圧閾値を設定し、設定された各相の電圧閾値は、R相電圧比較部24r、S相電圧比較部24sおよびT相電圧比較部24tに入力される。各相の4つの電圧閾値、計12個の電圧閾値は、以下のように設定される。
 Vra=K1・Vrmax
 Vrb=K2・Vrmax
 Vrc=K2・Vrmin
 Vrd=K1・Vrmin
 Vsa=K1・Vsmax
 Vsb=K2・Vsmax
 Vsc=K2・Vsmin
 Vsd=K1・Vsmin
 Vta=K1・Vtmax
 Vtb=K2・Vtmax
 Vtc=K2・Vtmin
 Vtd=K1・Vtmin
As described above, the R-phase voltage threshold generation unit 23r, the S-phase voltage threshold generation unit 23s, and the T-phase voltage threshold generation unit 23t set four voltage thresholds for each phase, and set the voltage threshold for each phase. Is input to the R-phase voltage comparison unit 24r, the S-phase voltage comparison unit 24s, and the T-phase voltage comparison unit 24t. Four voltage thresholds for each phase, a total of 12 voltage thresholds, are set as follows.
Vra = K1 ・ Vrmax
Vrb = K2 · Vrmax
Vrc = K2 · Vrmin
Vrd = K1 · Vrmin
Vsa = K1 ・ Vsmax
Vsb = K2 ・ Vsmax
Vsc = K2 / Vsmin
Vsd = K1 ・ Vsmin
Vta = K1 ・ Vtmax
Vtb = K2 ・ Vtmax
Vtc = K2 / Vtmin
Vtd = K1 · Vtmin
 次に、R相電圧比較部24rの動作について、図6に基づいて以下に説明する。なお、S相電圧比較部24s、T相電圧比較部24tの動作は、R相電圧比較部24rと同様の動作をS相、T相について行うものであり、説明を省略する。
 R相電圧比較部24rは、相電圧処理部81からR相電圧Vrが入力され(ステップS1)、R相電圧Vrの符号を検出する(ステップS2)。
 R相電圧Vrが正であれば、R相電圧Vrと正側第1閾値Vraとを比較し(ステップS3)、R相電圧Vrが正側第1閾値Vraを超えていればイネーブル信号Enraをオンさせる。R相電圧Vrが正側第1閾値Vraを超える状態が継続している期間は、イネーブル信号Enraはオン状態を維持する(ステップS4)。
 なお、イネーブル信号はオン、オフいずれかの状態を選択する信号であり、制限信号であるイネーブル信号を出力するとは、イネーブル信号をオンする事である。
Next, the operation of the R-phase voltage comparison unit 24r will be described with reference to FIG. The operations of the S-phase voltage comparison unit 24s and the T-phase voltage comparison unit 24t are the same operations as the R-phase voltage comparison unit 24r for the S-phase and the T-phase, and the description thereof is omitted.
The R phase voltage comparison unit 24r receives the R phase voltage Vr from the phase voltage processing unit 81 (step S1), and detects the sign of the R phase voltage Vr (step S2).
If the R-phase voltage Vr is positive, the R-phase voltage Vr and the positive first threshold value Vra are compared (step S3). If the R-phase voltage Vr exceeds the positive first threshold value Vra, the enable signal Enra is Turn it on. The enable signal Enra maintains the on state during the period in which the state in which the R-phase voltage Vr exceeds the positive first threshold value Vra continues (step S4).
Note that the enable signal is a signal for selecting one of the on and off states, and outputting the enable signal that is a limiting signal means turning on the enable signal.
 ステップS3において、R相電圧Vrが正側第1閾値Vra以下であれば、R相電圧Vrと正側第2閾値Vrbとを比較し(ステップS5)、R相電圧Vrが正側第2閾値Vrb未満であればイネーブル信号Enrbをオンさせる。R相電圧Vrが正で、しかも正側第2閾値Vrb未満の状態が継続している期間は、イネーブル信号Enrbはオン状態を維持する(ステップS6)。 If the R-phase voltage Vr is equal to or lower than the positive first threshold value Vra in step S3, the R-phase voltage Vr is compared with the positive second threshold value Vrb (step S5), and the R-phase voltage Vr is determined to be the positive second threshold value. If it is less than Vrb, the enable signal Enrb is turned on. The enable signal Enrb is maintained in the ON state during the period in which the state where the R-phase voltage Vr is positive and less than the positive second threshold value Vrb continues (step S6).
 ステップS2において、R相電圧Vrが負または0であれば、R相電圧Vrと負側第2閾値Vrcとを比較し(ステップS7)、R相電圧Vrが負側第2閾値Vrcを超えていればイネーブル信号Enrcをオンさせる。R相電圧Vrが負側第2閾値Vrcを超える状態が継続している期間は、イネーブル信号Enrcはオン状態を維持する(ステップS8)。
 ステップS7において、R相電圧Vrが負側第2閾値Vrc以下であれば、R相電圧Vrと負側第1閾値Vrdとを比較し(ステップS9)、R相電圧Vrが負側第1閾値Vrd未満であればイネーブル信号Enrdをオンさせる。R相電圧Vrが負で、しかも負側第1閾値Vrd未満の状態が継続している期間は、イネーブル信号Enrdはオン状態を維持する(ステップS10)。
If the R-phase voltage Vr is negative or 0 in step S2, the R-phase voltage Vr is compared with the negative second threshold value Vrc (step S7), and the R-phase voltage Vr exceeds the negative second threshold value Vrc. Then, the enable signal Enrc is turned on. The enable signal Enrc is kept on during the period in which the state where the R-phase voltage Vr exceeds the negative second threshold value Vrc continues (step S8).
In step S7, if the R-phase voltage Vr is equal to or less than the negative second threshold value Vrc, the R-phase voltage Vr and the negative first threshold value Vrd are compared (step S9), and the R-phase voltage Vr is the negative first threshold value. If it is less than Vrd, the enable signal Enrd is turned on. The enable signal Enrd is maintained in the on state during the period in which the R-phase voltage Vr is negative and is still below the negative first threshold value Vrd (step S10).
 ステップS5においてR相電圧Vrが正側第2閾値Vrb以上である、或いは、ステップS9においてR相電圧Vrが負側第1閾値Vrd以上であれば、R相の全てのイネーブル信号Enr(Enra、Enrb、Enrc、Enrd)をオフさせる(ステップS11)。 If the R-phase voltage Vr is greater than or equal to the positive second threshold value Vrb in step S5, or if the R-phase voltage Vr is greater than or equal to the negative first threshold value Vrd in step S9, all R-phase enable signals Enr (Enra, (Enrb, Enrc, Enrd) are turned off (step S11).
 このようにR相電圧比較部24rは、R相電圧Vrの値と電圧閾値Vra~Vrdとを用いて、R相のイネーブル信号Enr(Enra、Enrb、Enrc、Enrd)のいずれか1つをオンさせるか、或いは全てをオフさせる。 In this way, the R-phase voltage comparison unit 24r turns on any one of the R-phase enable signals Enr (Enra, Enrb, Enrc, Enrd) using the value of the R-phase voltage Vr and the voltage thresholds Vra to Vrd. Or turn everything off.
 図4に示すように、制御信号生成部83は、直流電圧Vdcの指令値Vdc*を保持する指令値格納部31と、電圧指令生成部32と、PWM信号を用いた制御信号Gaを生成するPWM信号生成部33とキャリア波発生部34とを備える。
 電圧指令生成部32には、相電圧処理部81からの位相角θと、電流検出器4からの相電流Ir、Is、Itと、直流電圧検出器7からの直流電圧Vdcと、指令値格納部31からの指令値Vdc*とが入力される。そして、電圧指令生成部32は、直流電圧Vdcを指令値Vdc*に制御するための各相交流電圧指令Vr*、Vs*、Vt*を生成し、各相交流電圧指令Vr*、Vs*、Vt*に基づいて、電力変換器5に対する各相変調波Mr*、Ms*、Mt*を演算する。
As shown in FIG. 4, the control signal generation unit 83 generates a command value storage unit 31 that holds a command value Vdc * of the DC voltage Vdc, a voltage command generation unit 32, and a control signal Ga using a PWM signal. A PWM signal generator 33 and a carrier wave generator 34 are provided.
The voltage command generating unit 32 stores the phase angle θ from the phase voltage processing unit 81, the phase currents Ir, Is, It from the current detector 4, the DC voltage Vdc from the DC voltage detector 7, and the command value storage. The command value Vdc * from the unit 31 is input. Then, the voltage command generator 32 generates each phase AC voltage command Vr *, Vs *, Vt * for controlling the DC voltage Vdc to the command value Vdc *, and each phase AC voltage command Vr *, Vs *, Based on Vt *, each phase modulation wave Mr *, Ms *, and Mt * for the power converter 5 is calculated.
 キャリア波発生部34はPWM制御の為のキャリア波を発生してPWM信号生成部33に出力する。キャリア波は一般的に高周波数の三角波またはのこぎり波である。
 PWM信号生成部33は、R相PWM信号生成部33r、S相PWM信号生成部33s、T相PWM信号生成部33tとを備える。R相PWM信号生成部33rには、電圧指令生成部32からR相変調波Mr*が入力され、さらに制限信号生成部82からR相のイネーブル信号Enrが入力される。同様に、S相PWM信号生成部33sには、S相変調波Ms*とS相のイネーブル信号Ensとが入力され、T相PWM信号生成部33tには、T相変調波Mt*とT相のイネーブル信号Entとが入力される。
The carrier wave generator 34 generates a carrier wave for PWM control and outputs it to the PWM signal generator 33. The carrier wave is generally a high-frequency triangular wave or sawtooth wave.
The PWM signal generation unit 33 includes an R phase PWM signal generation unit 33r, an S phase PWM signal generation unit 33s, and a T phase PWM signal generation unit 33t. The R-phase PWM signal generation unit 33r receives the R-phase modulation wave Mr * from the voltage command generation unit 32, and further receives the R-phase enable signal Enr from the limit signal generation unit 82. Similarly, the S-phase PWM signal generator 33s receives the S-phase modulated wave Ms * and the S-phase enable signal Ens, and the T-phase PWM signal generator 33t receives the T-phase modulated wave Mt * and the T-phase. The enable signal Ent is input.
 各相のPWM信号生成部33r、33s、33tは、各相の変調波Mr*、Ms*、Mt*とキャリア波とをそれぞれ比較して、基本制御信号となる各相のPWM信号G、即ち、Gr(Gpr、Gnr)、Gs(Gps、Gns)、Gt(Gpt、Gnt)を生成する。なお、PWM信号Gpr、Gps、Gptは、電力変換器5内の高電位側のスイッチング素子52a、52c、52eに対し生成され、PWM信号Gnr、Gns、Gntは、電力変換器5内の低電位側のスイッチング素子52b、52d、52fに対し生成される。そして、各相のPWM信号生成部33r、33s、33tは、生成されたPWM信号Gr、Gs、Gtを、各相のイネーブル信号Enr、Ens、Entによりオンオフ切り替えを制限して制御信号Ga、即ち、Gra(Gpra、Gnra)、Gsa(Gpsa、Gnsa)、Gta(Gpta、Gnta)を生成する。 The PWM signal generation units 33r, 33s, and 33t for each phase compare the modulated waves Mr *, Ms *, and Mt * for each phase with the carrier waves, respectively, and the PWM signal G for each phase that becomes a basic control signal, that is, , Gr (Gpr, Gnr), Gs (Gps, Gns), and Gt (Gpt, Gnt). The PWM signals Gpr, Gps, Gpt are generated for the high potential side switching elements 52a, 52c, 52e in the power converter 5, and the PWM signals Gnr, Gns, Gnt are low potentials in the power converter 5. Are generated for the switching elements 52b, 52d, and 52f on the side. The PWM signal generators 33r, 33s, and 33t for each phase limit the on / off switching of the generated PWM signals Gr, Gs, and Gt by the enable signals Enr, Ens, and Ent for each phase, that is, the control signal Ga, , Gra (Gpra, Gnra), Gsa (Gpsa, Gnsa), and Gta (Gpta, Gnta).
 PWM信号Gr(Gpr、Gnr)とイネーブル信号Enrとに基づいて制御信号Gra(Gpra、Gnra)を生成するR相PWM信号生成部33rの動作について、図7に基づいて以下に説明する。なお、S相PWM信号生成部33s、T相PWM信号生成部33tの動作は、R相PWM信号生成部33rと同様の動作をS相、T相について行うものであり、説明を省略する。 The operation of the R-phase PWM signal generation unit 33r that generates the control signal Gra (Gpra, Gnra) based on the PWM signal Gr (Gpr, Gnr) and the enable signal Enr will be described below with reference to FIG. Note that the operations of the S-phase PWM signal generation unit 33s and the T-phase PWM signal generation unit 33t are the same operations as those of the R-phase PWM signal generation unit 33r for the S-phase and the T-phase, and will not be described.
 R相PWM信号生成部33rには、R相電圧比較部24rからイネーブル信号Enr(Enra、Enrb、Enrc、Enrd)が入力され(ステップSS1)、イネーブル信号Enraがオンのとき(ステップSS2)、制御信号Gpraは強制的にオンに設定され、制御信号Gnraは強制的にオフに設定される(ステップSS3)。イネーブル信号Enrbがオンのとき(ステップSS4)、制御信号Gpraは強制的にオフに設定され、制御信号Gnraは強制的にオフに設定される(ステップSS5)。イネーブル信号Enrcがオンのとき(ステップSS6)、制御信号Gpraは強制的にオフに設定され、制御信号Gnraは強制的にオフに設定される(ステップSS7)。イネーブル信号Enrdがオンのとき(ステップSS8)、制御信号Gpraは強制的にオフに設定され、制御信号Gnraは強制的にオンに設定される(ステップSS9)。イネーブル信号Enr(Enra、Enrb、Enrc、Enrd)が全てオフの時、制御信号GpraはPWM信号Gprに設定され、制御信号GnraはPWM信号Gnrに設定される(ステップSS10)。 The R-phase PWM signal generation unit 33r receives the enable signal Enr (Enra, Enrb, Enrc, Enrd) from the R-phase voltage comparison unit 24r (Step SS1), and when the enable signal Enra is on (Step SS2), the control is performed. The signal Gpra is forcibly set to on, and the control signal Gnra is forcibly set to off (step SS3). When the enable signal Enrb is on (step SS4), the control signal Gpra is forcibly set to off, and the control signal Gnra is forcibly set to off (step SS5). When the enable signal Enrc is on (step SS6), the control signal Gpra is forcibly set to off and the control signal Gnra is forcibly set to off (step SS7). When the enable signal Enrd is on (step SS8), the control signal Gpra is forcibly set to off and the control signal Gnra is forcibly set to on (step SS9). When all the enable signals Enr (Enra, Enrb, Enrc, Enrd) are off, the control signal Gpra is set to the PWM signal Gpr, and the control signal Gnra is set to the PWM signal Gnr (step SS10).
 このように、R相PWM信号生成部33rは、イネーブル信号Enrが入力されない期間(イネーブル信号Enrのオフ期間)は、変調波Mr*とキャリア波との比較結果であるR相のPWM信号GrをR相の制御信号Graとして用いる。そしてイネーブル信号Enrが入力される期間(イネーブル信号Enrのオン期間)である制限期間は、制御信号Graはオンまたはオフに固定されて切り替えを停止する。制御信号Gra(Gpra、Gnra)は電力変換器5に出力されてR相のスイッチング素子52a、52bをスイッチングする。このため、R相PWM信号生成部33rにイネーブル信号Enrが入力される期間(制限期間)は、R相のスイッチング素子52a、52bのオンオフの切り替えが停止される。 As described above, the R-phase PWM signal generation unit 33r receives the R-phase PWM signal Gr, which is a comparison result between the modulated wave Mr * and the carrier wave, during a period when the enable signal Enr is not input (the off period of the enable signal Enr). Used as R-phase control signal Gra. In a limited period, which is a period during which the enable signal Enr is input (the ON period of the enable signal Enr), the control signal Gra is fixed to ON or OFF, and switching is stopped. The control signal Gra (Gpra, Gnra) is output to the power converter 5 to switch the R- phase switching elements 52a, 52b. For this reason, during the period (limit period) in which the enable signal Enr is input to the R-phase PWM signal generation unit 33r, the on / off switching of the R- phase switching elements 52a and 52b is stopped.
 図8は、R相電圧Vrと、R相電圧Vrに対する4つの電圧閾値(Vra、Vrb、Vrc、Vrd)と、イネーブル信号Enrが出力される期間との関係を示した波形図である。正側第1期間であるA領域は、イネーブル信号Enraが出力され、制御信号Gpraがオン、制御信号Gnraがオフに固定される。正側第2期間できるB領域は、イネーブル信号Enrbが出力され、制御信号Gpra、Gnraが共にオフに固定される。負側第2期間であるC領域は、イネーブル信号Enrcが出力され、制御信号Gpra、Gnraが共にオフに固定される。負側第1期間であるD領域は、イネーブル信号Enrdが出力され、制御信号Gpraがオフ、制御信号Gnraがオンに固定される。 FIG. 8 is a waveform diagram showing the relationship between the R-phase voltage Vr, the four voltage thresholds (Vra, Vrb, Vrc, Vrd) for the R-phase voltage Vr, and the period during which the enable signal Enr is output. In the A region, which is the positive first period, the enable signal Enra is output, the control signal Gpra is turned on, and the control signal Gnra is fixed off. In the region B that can be generated in the positive second period, the enable signal Enrb is output, and both the control signals Gpra and Gnra are fixed off. In the C region, which is the negative second period, the enable signal Enrc is output, and both the control signals Gpra and Gnra are fixed off. In the D region, which is the negative first period, the enable signal Enrd is output, the control signal Gpra is fixed to be off, and the control signal Gnra is fixed to be on.
 各相電圧の正負のピークを挟む正側、負側の第1期間(A領域、D領域)は、相電圧の大きさと電力変換器5の直流電圧Vdcとの差分が小さく、スイッチングの切り替えを停止しても電圧変化が少ない。また、各相電圧のゼロクロス点を挟む正側、負側の第2期間(B領域、C領域)は、電流変移が小さく、スイッチングの切り替えを停止しても波形変化が少ない。なお、ゼロクロス点を挟む第2期間は、正側第2期間(B領域)と負側第2期間(C領域)とを合わせた期間で構成される。
 このため、スイッチング回数を低減できると共に、高調波歪みを抑制できる。また、相電圧の正負のピーク値を用いて生成した電圧閾値に基づいて生成するイネーブル信号Enを用いて制御信号Gaの切り替えを停止させる。このため、容易な制御で効果的に高調波を抑制しつつスイッチング損失を低減できる。
In the first period (A region, D region) on the positive side and the negative side across the positive and negative peaks of each phase voltage, the difference between the magnitude of the phase voltage and the DC voltage Vdc of the power converter 5 is small, and switching is switched. Little change in voltage even when stopped. Further, in the second period (B region and C region) on the positive side and the negative side across the zero cross point of each phase voltage, the current change is small, and the waveform change is small even when switching is stopped. Note that the second period across the zero cross point is configured by combining the positive second period (B region) and the negative second period (C region).
For this reason, the number of times of switching can be reduced and harmonic distortion can be suppressed. Further, the switching of the control signal Ga is stopped using the enable signal En generated based on the voltage threshold generated using the positive and negative peak values of the phase voltage. For this reason, switching loss can be reduced while suppressing harmonics effectively with easy control.
 図9、図10は、電力変換器5の動作を説明する各部の波形図であり、各相電圧Vr、Vs、Vtと、各相電流Ir、Is、Itと、R相に対する制御信号Gpra、Gnraと、R相に対するイネーブル信号Enra、Enrb、Enrc、Enrdとを示す。図9は、第1係数K1=0.85、第2係数K2=0.1に設定した場合を示し、図10は、第1係数K1=0.75、第2係数K2=0.2に設定した場合を示す。
 図9の場合は、図10の場合に比べて、イネーブル信号Enが出力される期間を短く設定した。図9の場合、スイッチング回数は1周期に46回、各相電流Ir、Is、Itの高調波歪率(THD)は5.5%である。また、図10の場合、スイッチング回数は1周期に34回、各相電流Ir、Is、Itの高調波歪率(THD)は12.9%である。
FIG. 9 and FIG. 10 are waveform diagrams of each part for explaining the operation of the power converter 5. Each phase voltage Vr, Vs, Vt, each phase current Ir, Is, It, and the control signal Gpra for the R phase, Gnra and enable signals Enra, Enrb, Enrc, and Enrd for the R phase are shown. FIG. 9 shows a case where the first coefficient K1 = 0.85 and the second coefficient K2 = 0.1, and FIG. 10 shows that the first coefficient K1 = 0.75 and the second coefficient K2 = 0.2. Indicates the case of setting.
In the case of FIG. 9, the period during which the enable signal En is output is set shorter than that in the case of FIG. In the case of FIG. 9, the number of times of switching is 46 per cycle, and the harmonic distortion factor (THD) of each phase current Ir, Is, It is 5.5%. In the case of FIG. 10, the number of times of switching is 34 times per cycle, and the harmonic distortion factor (THD) of each phase current Ir, Is, It is 12.9%.
 このように、第1係数K1、第2係数K2を調整して設定することによりイネーブル信号Enが出力される期間、即ち制御信号Gaの切り替えを停止させる制限期間をコントロールできる。イネーブル信号Enが出力される期間を長く設定した場合、スイッチング素子52a~52fのスイッチング回数を低減し、スイッチング損失の低減効果を大きくできる。イネーブル信号Enが出力される期間を短く設定した場合、スイッチング損失の低減効果は小さくなるが、高調波の抑制効果を大きくできる。
 このため、電力変換器5に要求される特性に応じて、スイッチング回数および高調波歪率を容易に最適化できる。
 また、第1係数K1を低くすると正負のピークを挟む第1期間が大きくなり、第2係数K2を高くするとゼロクロス点を挟む第2期間が大きくなり、それぞれ個別に調整できる。
Thus, by adjusting and setting the first coefficient K1 and the second coefficient K2, it is possible to control the period during which the enable signal En is output, that is, the limit period during which switching of the control signal Ga is stopped. When the period during which the enable signal En is output is set to be long, the switching frequency of the switching elements 52a to 52f can be reduced, and the effect of reducing the switching loss can be increased. If the period during which the enable signal En is output is set short, the switching loss reduction effect is reduced, but the harmonic suppression effect can be increased.
For this reason, according to the characteristic requested | required of the power converter 5, the frequency | count of switching and a harmonic distortion factor can be optimized easily.
Further, when the first coefficient K1 is lowered, the first period sandwiching the positive and negative peaks is increased, and when the second coefficient K2 is increased, the second period sandwiching the zero cross point is increased and can be individually adjusted.
 なお、2相PWM制御を確実に実施して効果を得るためには、第1係数K1の値は0.86以下であることが望ましい。
 また、ゼロクロス点を挟む第2期間は実質0でも良く、その場合、第2係数K2=0に設定する。
Note that the value of the first coefficient K1 is desirably 0.86 or less in order to reliably perform the two-phase PWM control.
Further, the second period across the zero cross point may be substantially zero, and in this case, the second coefficient K2 = 0 is set.
 また、上記実施の形態においてイネーブル信号Enが出力される期間では、制御信号Gaの切り替えを停止させるとしたが、これに限るものではない。例えば、イネーブル信号Enが出力される期間において、スイッチング回数を低減させるように制限しても良い。
 また、制御部8内で各相4つの電圧閾値を生成したが、負側の電圧閾値は正側の電圧閾値の極性を反転させて生成しても良い。
In the above embodiment, the switching of the control signal Ga is stopped during the period in which the enable signal En is output. However, the present invention is not limited to this. For example, during the period when the enable signal En is output, the number of times of switching may be limited.
Further, although four voltage threshold values for each phase are generated in the control unit 8, the negative voltage threshold value may be generated by inverting the polarity of the positive voltage threshold value.
実施の形態2.
 次に、この発明の実施の形態2による電力変換装置を説明する。図11は、この発明の実施の形態2による電力変換装置1Aの概略構成図である。
 図11に示すように、電力変換装置1Aは、交流電圧検出器2と、フィルタ3と、交流電流検出器(以下、電流検出器と称す)4と、パワーモジュールにて構成される電力変換器5と、電力変換器5の直流側に接続される平滑コンデンサ6と、直流電圧検出器7と、電力変換器5を制御する制御部8Aとを備える。制御部8A以外の構成は、上記実施の形態1と同様である。
Embodiment 2. FIG.
Next, a power converter according to Embodiment 2 of the present invention will be described. FIG. 11 is a schematic configuration diagram of a power conversion device 1A according to Embodiment 2 of the present invention.
As shown in FIG. 11, a power converter 1A includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 </ b> A that controls the power converter 5. The configuration other than the control unit 8A is the same as that of the first embodiment.
 制御部8Aは、相電圧処理部81Aと、制限部としての制限信号生成部82Aと、制御信号生成部83Aとを備える。制御部8Aの詳細は、図12および図13に示す。
 相電圧処理部81Aは、交流電圧検出器2から入力される交流電圧Vrs、Vst、Vtrを用いて、相電圧の位相角θを制御信号生成部83Aへ出力する。
 制御信号生成部83Aは、直流電圧Vdcの指令値Vdc*を保持する指令値格納部31と、電圧指令生成部32Aと、PWM信号を用いた制御信号Gaを生成するPWM信号生成部33とキャリア波発生部34とを備える。キャリア波発生部34およびPWM信号生成部33は、上記実施の形態1と同様である。
The control unit 8A includes a phase voltage processing unit 81A, a limiting signal generation unit 82A as a limiting unit, and a control signal generation unit 83A. Details of the control unit 8A are shown in FIGS.
The phase voltage processing unit 81A outputs the phase angle θ of the phase voltage to the control signal generation unit 83A using the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2.
The control signal generation unit 83A includes a command value storage unit 31 that stores a command value Vdc * of the DC voltage Vdc, a voltage command generation unit 32A, a PWM signal generation unit 33 that generates a control signal Ga using a PWM signal, and a carrier. And a wave generator 34. The carrier wave generator 34 and the PWM signal generator 33 are the same as those in the first embodiment.
 電圧指令生成部32Aには、相電圧処理部81Aからの位相角θと、電流検出器4からの相電流Ir、Is、Itと、直流電圧検出器7からの直流電圧Vdcと、指令値格納部31からの指令値Vdc*とが入力される。そして、電圧指令生成部32Aは、直流電圧Vdcを指令値Vdc*に制御するための各相交流電圧指令Vr*、Vs*、Vt*を生成し、各相交流電圧指令Vr*、Vs*、Vt*に基づいて、電力変換器5に対する各相変調波Mr*、Ms*、Mt*を演算する。そして、各相交流電圧指令Vr*、Vs*、Vt*の正負のピーク値(Vr*max、Vr*min)、(Vs*max、Vs*min)、(Vt*max、Vt*min)を演算し、各相交流電圧指令Vr*、Vs*、Vt*と共に相電圧指令情報830として制限信号生成部82Aへ出力する。 The voltage command generation unit 32A stores a phase angle θ from the phase voltage processing unit 81A, phase currents Ir, Is, It from the current detector 4, a DC voltage Vdc from the DC voltage detector 7, and a command value storage. The command value Vdc * from the unit 31 is input. Then, the voltage command generator 32A generates each phase AC voltage command Vr *, Vs *, Vt * for controlling the DC voltage Vdc to the command value Vdc *, and each phase AC voltage command Vr *, Vs *, Based on Vt *, each phase modulation wave Mr *, Ms *, and Mt * for the power converter 5 is calculated. Then, the positive and negative peak values (Vr * max, Vr * min), (Vs * max, Vs * min), (Vt * max, Vt * min) of each phase AC voltage command Vr *, Vs *, Vt * are obtained. Calculated and output to the limit signal generation unit 82A as phase voltage command information 830 together with each phase AC voltage command Vr *, Vs *, Vt *.
 制限信号生成部82Aは、第1係数K1を保持する第1格納部21と、第2係数K2を保持する第2格納部22と、R相電圧閾値生成部23rと、S相電圧閾値生成部23sと、T相電圧閾値生成部23tと、R相電圧比較部24rと、S相電圧比較部24sと、T相電圧比較部24tとを備える。そして、制限信号生成部82Aは、制御信号生成部83Aから相電圧指令情報830を入力して、各相のイネーブル信号En(Enr、Ens、Ent)を出力する。イネーブル信号Enは、制御信号生成部83Aに入力される。 The limit signal generation unit 82A includes a first storage unit 21 that holds the first coefficient K1, a second storage unit 22 that holds the second coefficient K2, an R-phase voltage threshold generation unit 23r, and an S-phase voltage threshold generation unit. 23s, a T-phase voltage threshold generation unit 23t, an R-phase voltage comparison unit 24r, an S-phase voltage comparison unit 24s, and a T-phase voltage comparison unit 24t. Then, the limit signal generation unit 82A receives the phase voltage command information 830 from the control signal generation unit 83A, and outputs an enable signal En (Enr, Ens, Ent) for each phase. The enable signal En is input to the control signal generation unit 83A.
 この場合、各相の電圧閾値生成部23r、23s、23tと、各相の電圧比較部24r、24s、24tとは、それぞれ上記実施の形態1と同様の構成であるが、相電圧指令情報830に基づいて、各相交流電圧指令Vr*、Vs*、Vt*に対する電圧閾値を生成して比較する。即ち、各相の電圧閾値生成部23r、23s、23tにおいて、K1>K2≧0、となる第1係数K1、第2係数K2と各相交流電圧指令Vr*、Vs*、Vt*の正負のピーク値とを用いて、各相4個の電圧閾値(正側第1閾値、正側第2閾値、負側第2閾値、負側第1閾値)を演算する。そして、各相の電圧比較部24r、24s、24tにおいて、各相交流電圧指令Vr*、Vs*、Vt*と電圧閾値(正側第1閾値、正側第2閾値、負側第2閾値、負側第1閾値)とを比較することで、イネーブル信号Enを出力する。 In this case, the voltage threshold value generation units 23r, 23s, and 23t for each phase and the voltage comparison units 24r, 24s, and 24t for each phase have the same configurations as those of the first embodiment, but the phase voltage command information 830 Based on the above, a voltage threshold value for each phase AC voltage command Vr *, Vs *, Vt * is generated and compared. That is, in the voltage threshold value generators 23r, 23s, and 23t for each phase, the positive and negative values of the first coefficient K1 and the second coefficient K2 that satisfy K1> K2 ≧ 0 and the AC voltage commands Vr *, Vs *, and Vt * for each phase. Using the peak value, four voltage threshold values (positive first threshold value, positive second threshold value, negative second threshold value, negative first threshold value) for each phase are calculated. In each phase voltage comparison unit 24r, 24s, 24t, each phase AC voltage command Vr *, Vs *, Vt * and voltage thresholds (positive first threshold, positive second threshold, negative second threshold, The enable signal En is output by comparing with the negative first threshold).
 この実施の形態2においても、各相電圧の正負のピークを挟む第1期間およびゼロクロス点を挟む第2期間で、スイッチングの切り替えを停止あるいは回数を低減させ、上記実施の形態1と同様に容易な制御で効果的に高調波を抑制しつつスイッチング損失を低減できる。 Also in the second embodiment, switching is stopped or the number of times is reduced in the first period in which the positive and negative peaks of each phase voltage are sandwiched and the second period in which the zero-cross point is sandwiched, and it is easy as in the first embodiment. Switching loss can be reduced while suppressing harmonics effectively with simple control.
実施の形態3.
 次に、この発明の実施の形態3による電力変換装置を説明する。図14は、この発明の実施の形態3による電力変換装置1Bの概略構成図である。
 図14に示すように、電力変換装置1Bは、交流電圧検出器2と、フィルタ3と、交流電流検出器(以下、電流検出器と称す)4と、パワーモジュールにて構成される電力変換器5と、電力変換器5の直流側に接続される平滑コンデンサ6と、直流電圧検出器7と、電力変換器5を制御する制御部8Bとを備える。制御部8B以外の構成は、上記実施の形態1と同様である。
Embodiment 3 FIG.
Next, a power converter according to Embodiment 3 of the present invention will be described. FIG. 14 is a schematic configuration diagram of a power conversion device 1B according to Embodiment 3 of the present invention.
As shown in FIG. 14, a power converter 1 </ b> B includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter that includes a power module. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 </ b> B that controls the power converter 5. The configuration other than the control unit 8B is the same as that of the first embodiment.
 制御部8Bは、相電圧処理部81Bと、制限部としての制限信号生成部82Bと、制御信号生成部83とを備える。制御部8Bの詳細は、図15および図16に示す。なお、図16に示す制御信号生成部83は、上記実施の形態1と同様の構成である。
 図15に示すように、相電圧処理部81Bは、交流電圧検出器2から入力される交流電圧Vrs、Vst、Vtrを用いて、相電圧Vr、Vs、Vtを演算し、それぞれの位相角θr、θs、θtを検出して相電圧情報811として制限信号生成部82Bへ出力する。また、相電圧処理部81Bは、位相角θr、θs、θtのいずれか1つを相電圧の位相角θとして制御信号生成部83へ出力する。位相角θr、θs、θtの範囲は0°から360°までとし、360°以上になると、その位相角から360°を減算した値を用いる。
The control unit 8B includes a phase voltage processing unit 81B, a limiting signal generating unit 82B as a limiting unit, and a control signal generating unit 83. Details of the control unit 8B are shown in FIGS. Note that the control signal generator 83 shown in FIG. 16 has the same configuration as that of the first embodiment.
As illustrated in FIG. 15, the phase voltage processing unit 81B calculates the phase voltages Vr, Vs, and Vt using the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2, and each phase angle θr. , Θs, θt are detected and output as phase voltage information 811 to the limit signal generator 82B. Further, the phase voltage processing unit 81B outputs any one of the phase angles θr, θs, and θt to the control signal generation unit 83 as the phase angle θ of the phase voltage. The range of the phase angles θr, θs, θt is from 0 ° to 360 °, and when 360 ° or more, a value obtained by subtracting 360 ° from the phase angle is used.
 なお、上記実施の形態1と同様に、交流電圧検出器2が3つの交流電圧Vrs、Vst、Vtrの内、2つのみを検出する場合は、2つの交流電圧を用いて3相の相電圧Vr、Vs、Vtを演算する。 As in the first embodiment, when the AC voltage detector 2 detects only two of the three AC voltages Vrs, Vst, and Vtr, the three-phase phase voltage using the two AC voltages is used. Vr, Vs, and Vt are calculated.
 制限信号生成部82Bは、第1基準位相θ1を保持する第1格納部26と、第2基準位相θ2を保持する第2格納部27と、R相電圧位相比較部28rと、S相電圧位相比較部28sと、T相電圧位相比較部28tとを備える。そして、制限信号生成部82Bは、各相のイネーブル信号En(Enr、Ens、Ent)を出力し、イネーブル信号Enは、制御信号生成部83に入力される。 The limit signal generation unit 82B includes a first storage unit 26 that holds the first reference phase θ1, a second storage unit 27 that holds the second reference phase θ2, an R-phase voltage phase comparison unit 28r, and an S-phase voltage phase. A comparison unit 28s and a T-phase voltage phase comparison unit 28t are provided. Then, the limit signal generator 82B outputs the enable signal En (Enr, Ens, Ent) for each phase, and the enable signal En is input to the control signal generator 83.
 第1基準位相θ1、第2基準位相θ2は、0°≦θ2<θ1<90°、となる任意の位相角の値を外部から設定可能とする。
 各相において、第1基準位相θ1、第2基準位相θ2に基づいて、加算器でそれぞれ180°加算し、各相4個の位相角閾値θ1、θ2、(180°+θ1)、(180°+θ2)が生成され、各相の電圧位相比較部28r、28s、28tに入力される。
As the first reference phase θ1 and the second reference phase θ2, any phase angle value satisfying 0 ° ≦ θ2 <θ1 <90 ° can be set from the outside.
In each phase, the adder adds 180 degrees based on the first reference phase θ1 and the second reference phase θ2, respectively, and four phase angle thresholds θ1, θ2, (180 ° + θ1), (180 ° + θ2) for each phase. ) Is generated and input to the voltage phase comparators 28r, 28s, and 28t of each phase.
 なお、各相4個の位相角閾値は、正側第1閾値θ1、正側第2閾値θ2、負側第1閾値(180°+θ1)、負側第2閾値(180°+θ2)であり、上記実施の形態1で生成した各相4個の電圧閾値(Vra、Vrb、Vrd、Vrc)の電圧値に対応する位相角である。図8を参照すると、正側第1期間であるA領域は、位相角範囲がθ1~(180°-θ1)の範囲であり、正側第2期間であるB領域は、位相角範囲が0°~θ2、および(180°-θ2)~180°の範囲である。負側第2期間であるC領域は、位相角範囲が180°~(180°+θ2)、および(360°-θ2)~360°の範囲である。負側第1期間であるD領域は、位相角範囲が(180°+θ1)~(360°-θ1)の範囲である。 The four phase angle threshold values for each phase are the positive first threshold value θ1, the positive second threshold value θ2, the negative first threshold value (180 ° + θ1), and the negative second threshold value (180 ° + θ2). This is a phase angle corresponding to the voltage values of the four voltage threshold values (Vra, Vrb, Vrd, Vrc) generated in the first embodiment. Referring to FIG. 8, the A region that is the positive first period has a phase angle range of θ1 to (180 ° −θ1), and the B region that is the positive second period has a phase angle range of 0. It is in the range of ° to θ2, and (180 ° −θ2) to 180 °. The C region, which is the negative second period, has a phase angle range of 180 ° to (180 ° + θ2) and (360 ° −θ2) to 360 °. The D region which is the first negative period has a phase angle range of (180 ° + θ1) to (360 ° −θ1).
 次に、R相電圧位相比較部28rの動作について、図17に基づいて、また図8の波形図を参照して以下に説明する。なお、S相電圧位相比較部28s、T相電圧位相比較部28tの動作は、R相電圧位相比較部28rと同様の動作をS相、T相について行うものであり、説明を省略する。
 R相電圧位相比較部28rは、相電圧処理部81BからR相電圧Vrの位相角θrが入力され(ステップS1)、位相角θrが、0°<θr<θ2、を満たすと(ステップS2)、イネーブル信号Enrbをオンさせる。0°<θr<θ2、を満たす状態が継続している期間は、イネーブル信号Enrbはオン状態を維持する(ステップS3)。
 ステップS2において位相角θrが与えられた条件を満たさず、θ1<θr<(180°-θ1)を満たすと(ステップS4)、イネーブル信号Enraをオンさせる。θ1<θr<(180°-θ1)、を満たす状態が継続している期間は、イネーブル信号Enraはオン状態を維持する(ステップS5)。
Next, the operation of the R-phase voltage phase comparator 28r will be described below with reference to FIG. 17 and with reference to the waveform diagram of FIG. Note that the operations of the S-phase voltage phase comparison unit 28s and the T-phase voltage phase comparison unit 28t are the same operations as the R-phase voltage phase comparison unit 28r for the S-phase and the T-phase, and the description thereof is omitted.
When the phase angle θr of the R phase voltage Vr is input from the phase voltage processing unit 81B (step S1) and the phase angle θr satisfies 0 ° <θr <θ2 (step S2). Then, the enable signal Enrb is turned on. The enable signal Enrb is maintained in the on state during a period in which the state satisfying 0 ° <θr <θ2 is continued (step S3).
If the condition that the phase angle θr is given in step S2 does not satisfy the condition and θ1 <θr <(180 ° −θ1) is satisfied (step S4), the enable signal Enra is turned on. The enable signal Enra maintains the on state while the state satisfying θ1 <θr <(180 ° −θ1) continues (step S5).
 ステップS4において位相角θrが与えられた条件を満たさず、(180°-θ2)<θr<180°、を満たすと(ステップS6)、イネーブル信号Enrbをオンさせる。(180°-θ2)<θr<180°、を満たす状態が継続している期間は、イネーブル信号Enrbはオン状態を維持する(ステップS7)。
 ステップS6において位相角θrが与えられた条件を満たさず、180°≦θr<(180°+θ2)、を満たすと(ステップS8)、イネーブル信号Enrcをオンさせる。180°≦θr<(180°+θ2)、を満たす状態が継続している期間は、イネーブル信号Enrcはオン状態を維持する(ステップS9)。
If the condition that the phase angle θr is not satisfied in step S4 and (180 ° −θ2) <θr <180 ° is satisfied (step S6), the enable signal Enrb is turned on. The enable signal Enrb is maintained in the ON state during a period in which the state satisfying (180 ° −θ2) <θr <180 ° is continued (step S7).
If the condition where the phase angle θr is not satisfied in step S6 and 180 ° ≦ θr <(180 ° + θ2) is satisfied (step S8), the enable signal Enrc is turned on. The enable signal Enrc is kept on during the period in which the state satisfying 180 ° ≦ θr <(180 ° + θ2) continues (step S9).
 ステップS8において位相角θrが与えられた条件を満たさず、(180°+θ1)<θr<(360°-θ1)、を満たすと(ステップS10)、イネーブル信号Enrdをオンさせる。(180°+θ1)<θr<(360°-θ1)、を満たす状態が継続している期間は、イネーブル信号Enrdはオン状態を維持する(ステップS11)。
 ステップS10において位相角θrが与えられた条件を満たさず、(360°-θ2)<θr≦360°、を満たすと(ステップS12)、イネーブル信号Enrcをオンさせる。(360°-θ2)<θr≦360°、を満たす状態が継続している期間は、イネーブル信号Enrcはオン状態を維持する(ステップS13)。
 ステップS12において位相角θrが与えられた条件を満たさない場合は、R相の全てのイネーブル信号Enr(Enra、Enrb、Enrc、Enrd)をオフさせる(ステップS14)。
If the condition that the phase angle θr is not satisfied in step S8 satisfies (180 ° + θ1) <θr <(360 ° −θ1) (step S10), the enable signal Enrd is turned on. The enable signal Enrd maintains the on state during a period in which the state satisfying (180 ° + θ1) <θr <(360 ° −θ1) is continued (step S11).
If the condition that the phase angle θr is not satisfied in step S10 and (360 ° −θ2) <θr ≦ 360 ° is satisfied (step S12), the enable signal Enrc is turned on. The enable signal Enrc is kept on during the period in which the state satisfying (360 ° −θ2) <θr ≦ 360 ° is continued (step S13).
If the condition that the phase angle θr is given is not satisfied in step S12, all the R-phase enable signals Enr (Enra, Enrb, Enrc, Enrd) are turned off (step S14).
 この場合、R相電圧の位相角θrに対する4個の位相角閾値θ1、θ2、(180°+θ1)、(180°+θ2)がR相電圧位相比較部28rに入力され、さらに(180°-θ1)、(180°-θ2)、(360°-θ1)、(360°-θ2)が位相角閾値としてR相電圧位相比較部28rで演算されて用いられる。なお、第1基準位相θ1、第2基準位相θ2をそのまま使用できる位相角閾値θ1、θ2のみR相電圧位相比較部28rに入力して、残りの位相角閾値をR相電圧位相比較部28r内で演算して用いても良い。 In this case, four phase angle threshold values θ1, θ2, (180 ° + θ1), (180 ° + θ2) with respect to the phase angle θr of the R phase voltage are input to the R phase voltage phase comparison unit 28r, and (180 ° −θ1). ), (180 ° −θ2), (360 ° −θ1), and (360 ° −θ2) are calculated and used by the R phase voltage phase comparison unit 28r as phase angle threshold values. Only the phase angle threshold values θ1 and θ2 that can use the first reference phase θ1 and the second reference phase θ2 as they are are input to the R phase voltage phase comparison unit 28r, and the remaining phase angle threshold values are input to the R phase voltage phase comparison unit 28r. It is also possible to use it by calculating with.
 この実施の形態3においても、各相電圧の正負のピークを挟む第1期間およびゼロクロス点を挟む第2期間で、スイッチングの切り替えを停止させ、上記実施の形態1と同様に効果的に高調波を抑制しつつスイッチング損失を低減できる。
 また、第1基準位相θ1、第2基準位相θ2から生成した位相角閾値に基づいて生成するイネーブル信号Enを用いて制御信号Gaの切り替えを停止する。このため、容易な制御で効果的に高調波を抑制しつつスイッチング損失を低減できる。
Also in the third embodiment, switching is stopped in the first period in which the positive and negative peaks of each phase voltage are sandwiched and in the second period in which the zero cross point is sandwiched, and the harmonics are effectively effectively applied as in the first embodiment. The switching loss can be reduced while suppressing the above.
Further, the switching of the control signal Ga is stopped using the enable signal En generated based on the phase angle threshold generated from the first reference phase θ1 and the second reference phase θ2. For this reason, switching loss can be reduced while suppressing harmonics effectively with easy control.
 また、第1基準位相θ1、第2基準位相θ2を調整して設定することによりイネーブル信号Enが出力される期間、即ち制御信号Gaの切り替えを停止させる制限期間をコントロールできる。イネーブル信号Enが出力される期間を長く設定した場合、スイッチング素子52a~52fのスイッチング回数を低減し、スイッチング損失の低減効果を大きくできる。イネーブル信号Enが出力される期間を短く設定した場合、スイッチング損失の低減効果は小さくなるが、高調波の抑制効果を大きくできる。
 このため、電力変換器5に要求される特性に応じて、スイッチング回数および高調波歪率を容易に最適化できる。
 また、第1基準位相θ1を小さくすると正負のピークを挟む第1期間が大きくなり、第2基準位相θ2を大きくするとゼロクロス点を挟む第2期間が大きくなり、それぞれ個別に調整できる。
Further, by adjusting and setting the first reference phase θ1 and the second reference phase θ2, it is possible to control the period during which the enable signal En is output, that is, the limit period during which switching of the control signal Ga is stopped. When the period during which the enable signal En is output is set to be long, the switching frequency of the switching elements 52a to 52f can be reduced, and the effect of reducing the switching loss can be increased. If the period during which the enable signal En is output is set short, the switching loss reduction effect is reduced, but the harmonic suppression effect can be increased.
For this reason, according to the characteristic requested | required of the power converter 5, the frequency | count of switching and a harmonic distortion factor can be optimized easily.
Further, if the first reference phase θ1 is decreased, the first period sandwiching the positive and negative peaks is increased, and if the second reference phase θ2 is increased, the second period sandwiching the zero cross point is increased, and can be individually adjusted.
 なお、2相PWM制御を確実に実施して効果を得るためには、第1基準位相θ1の値は60°より小さくすることが望ましい。
 また、ゼロクロス点を挟む第2期間は実質0でも良く、その場合、第2基準位相θ2を0°に設定する。
In order to obtain the effect by reliably performing the two-phase PWM control, it is desirable that the value of the first reference phase θ1 is smaller than 60 °.
Further, the second period across the zero cross point may be substantially zero, and in this case, the second reference phase θ2 is set to 0 °.
 また、上記実施の形態3においても、イネーブル信号Enが出力される期間において、スイッチングを停止するのではなく、スイッチング回数を低減させるように制限しても良い。 Also in the third embodiment, the switching may be limited to reduce the number of switchings instead of stopping the switching in the period in which the enable signal En is output.
実施の形態4.
 次に、この発明の実施の形態4による電力変換装置を説明する。図18は、この発明の実施の形態4による電力変換装置1Cの概略構成図である。
 図18に示すように、電力変換装置1Cは、交流電圧検出器2と、フィルタ3と、交流電流検出器(以下、電流検出器と称す)4と、パワーモジュールにて構成される電力変換器5と、電力変換器5の直流側に接続される平滑コンデンサ6と、直流電圧検出器7と、電力変換器5を制御する制御部8Cとを備える。制御部8C以外の構成は、上記実施の形態1と同様である。
Embodiment 4 FIG.
Next, a power converter according to Embodiment 4 of the present invention will be described. FIG. 18 is a schematic configuration diagram of a power conversion device 1C according to the fourth embodiment of the present invention.
As shown in FIG. 18, a power converter 1 </ b> C includes an AC voltage detector 2, a filter 3, an AC current detector (hereinafter referred to as a current detector) 4, and a power converter that includes a power module. 5, a smoothing capacitor 6 connected to the DC side of the power converter 5, a DC voltage detector 7, and a control unit 8 </ b> C that controls the power converter 5. The configuration other than the control unit 8C is the same as that in the first embodiment.
 制御部8Cは、相電圧処理部81Aと、制限部としての制限信号生成部82Cと、制御信号生成部83Cとを備える。制御部8Cの詳細は、図19および図20に示す。
 相電圧処理部81Aは、上記実施の形態2と同様の構成であり、交流電圧検出器2から入力される交流電圧Vrs、Vst、Vtrを用いて、相電圧の位相角θを制御信号生成部83Cへ出力する。
 制御信号生成部83Cは、直流電圧Vdcの指令値Vdc*を保持する指令値格納部31と、電圧指令生成部32Cと、PWM信号を用いた制御信号Gaを生成するPWM信号生成部33とキャリア波発生部34とを備える。キャリア波発生部34およびPWM信号生成部33は、上記実施の形態1と同様である。
The control unit 8C includes a phase voltage processing unit 81A, a limiting signal generation unit 82C as a limiting unit, and a control signal generation unit 83C. Details of the control unit 8C are shown in FIGS.
The phase voltage processing unit 81A has the same configuration as that of the second embodiment, and uses the AC voltages Vrs, Vst, and Vtr input from the AC voltage detector 2 to determine the phase angle θ of the phase voltage as a control signal generation unit. Output to 83C.
The control signal generation unit 83C includes a command value storage unit 31 that stores a command value Vdc * of the DC voltage Vdc, a voltage command generation unit 32C, a PWM signal generation unit 33 that generates a control signal Ga using a PWM signal, and a carrier. And a wave generator 34. The carrier wave generator 34 and the PWM signal generator 33 are the same as those in the first embodiment.
 電圧指令生成部32Cには、相電圧処理部81Aからの位相角θと、電流検出器4からの相電流Ir、Is、Itと、直流電圧検出器7からの直流電圧Vdcと、指令値格納部31からの指令値Vdc*とが入力される。そして、電圧指令生成部32Cは、直流電圧Vdcを指令値Vdc*に制御するための各相交流電圧指令Vr*、Vs*、Vt*を生成し、各相交流電圧指令Vr*、Vs*、Vt*に基づいて、電力変換器5に対する各相変調波Mr*、Ms*、Mt*を演算する。そして、各相交流電圧指令Vr*、Vs*、Vt*の位相角θr*、θs*、θt*を検出して相電圧指令情報831として制限信号生成部82Cへ出力する。 The voltage command generation unit 32C stores the phase angle θ from the phase voltage processing unit 81A, the phase currents Ir, Is, It from the current detector 4, the DC voltage Vdc from the DC voltage detector 7, and the command value storage. The command value Vdc * from the unit 31 is input. Then, the voltage command generator 32C generates each phase AC voltage command Vr *, Vs *, Vt * for controlling the DC voltage Vdc to the command value Vdc *, and each phase AC voltage command Vr *, Vs *, Based on Vt *, each phase modulation wave Mr *, Ms *, and Mt * for the power converter 5 is calculated. Then, the phase angle θr *, θs *, θt * of each phase AC voltage command Vr *, Vs *, Vt * is detected and output as phase voltage command information 831 to the limit signal generator 82C.
 制限信号生成部82Cは、第1基準位相θ1を保持する第1格納部26と、第2基準位相θ2を保持する第2格納部27と、R相電圧位相比較部28rと、S相電圧位相比較部28sと、T相電圧位相比較部28tとを備える。そして、制限信号生成部82Cは、
制御信号生成部83Cから相電圧指令情報831である位相角θr*、θs*、θt*を入力して、各相のイネーブル信号En(Enr、Ens、Ent)を出力する。イネーブル信号Enは、制御信号生成部83Cに入力される。
The limit signal generation unit 82C includes a first storage unit 26 that holds the first reference phase θ1, a second storage unit 27 that holds the second reference phase θ2, an R-phase voltage phase comparison unit 28r, and an S-phase voltage phase. A comparison unit 28s and a T-phase voltage phase comparison unit 28t are provided. Then, the limit signal generator 82C
The phase angle θr *, θs *, θt * as the phase voltage command information 831 is input from the control signal generation unit 83C, and the enable signal En (Enr, Ens, Ent) for each phase is output. The enable signal En is input to the control signal generation unit 83C.
 この場合、各相の電圧位相比較部28r、28s、28tは、それぞれ上記実施の形態3と同様の構成であるが、各相交流電圧指令Vr*、Vs*、Vt*の位相角θr*、θs*、θt*に対する位相角閾値を生成して比較する。即ち、第1基準位相θ1、第2基準位相θ2を用いて、各相4個の位相角閾値(正側第1閾値、正側第2閾値、負側第1閾値、負側第2閾値)を演算する。そして、各相の電圧位相比較部28r、28s、28tにおいて、各相電圧の位相角θr*、θs*、θt*と各位相角閾値とを、上記実施の形態3と同様に比較することで、イネーブル信号Enを出力する。 In this case, the voltage phase comparison units 28r, 28s, and 28t for each phase have the same configuration as that of the third embodiment, but the phase angle θr * of each phase AC voltage command Vr *, Vs *, Vt *, A phase angle threshold for θs * and θt * is generated and compared. That is, using the first reference phase θ1 and the second reference phase θ2, four phase angle threshold values (positive first threshold value, positive second threshold value, negative first threshold value, negative second threshold value). Is calculated. In each phase voltage phase comparison unit 28r, 28s, 28t, the phase angle θr *, θs *, θt * of each phase voltage and each phase angle threshold value are compared in the same manner as in the third embodiment. The enable signal En is output.
 この実施の形態4においても、各相電圧の正負のピークを挟む第1期間およびゼロクロス点を挟む第2期間で、スイッチングの切り替えを停止あるいは回数を低減させ、上記実施の形態3と同様に容易な制御で効果的に高調波を抑制しつつスイッチング損失を低減できる。 Also in the fourth embodiment, switching switching is stopped or the number of times is reduced in the first period sandwiching the positive and negative peaks of each phase voltage and the second period sandwiching the zero cross point, and the same as the third embodiment. Switching loss can be reduced while suppressing harmonics effectively with simple control.
 なお、上記各実施の形態で用いる物理量の単位は、各実施の形態で記載された単位に限定されるものではない。
 またこの発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
Note that the unit of physical quantity used in each of the above embodiments is not limited to the unit described in each embodiment.
Further, within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

Claims (9)

  1. それぞれ逆並列にダイオードが接続された複数のスイッチング素子がブリッジ接続されて構成され、複数相の交流電力を直流電力に変換する電力変換器と、上記電力変換器の交流側にそれぞれ設けられて交流電圧および交流電流を検出する交流電圧検出器および交流電流検出器と、上記電力変換器の直流端子の直流電圧を検出する直流電圧検出器と、これらの検出結果に基づいて上記電力変換器をPWM制御により出力制御する制御部とを備え、
    上記制御部は、
     上記直流電圧を制御するための各相交流電圧指令を生成して上記スイッチング素子をスイッチング制御する制御信号を生成する制御信号生成部と、該制御信号を各相毎に制限して上記スイッチング素子のスイッチング回数を制限する制限部とを備え、
     上記制限部は、上記交流電圧における各相電圧の正負のピークを挟む第1期間と、ゼロクロス点を挟む第2期間とを各相の制限期間として決定し、該制限期間において上記制御信号を制限する制限信号を発生する、
    電力変換装置。
    A plurality of switching elements each connected in reverse parallel with a diode are bridge-connected to form a power converter that converts a plurality of phases of AC power into DC power, and an AC that is provided on the AC side of the power converter. An AC voltage detector and an AC current detector for detecting a voltage and an AC current, a DC voltage detector for detecting a DC voltage at a DC terminal of the power converter, and PWMing the power converter based on the detection results A control unit for controlling output by control,
    The control unit
    A control signal generator for generating a control signal for switching control of the switching element by generating each phase AC voltage command for controlling the DC voltage; and limiting the control signal for each phase of the switching element. With a limiting unit that limits the number of switching times,
    The limiting unit determines a first period that sandwiches positive and negative peaks of each phase voltage in the AC voltage and a second period that sandwiches a zero cross point as the limiting period of each phase, and limits the control signal in the limiting period. Generate a limit signal,
    Power conversion device.
  2. 上記制御部は、上記第1期間および上記第2期間において、上記制御信号のオンオフ切り替えを停止する、
    請求項1に記載の電力変換装置。
    The control unit stops on / off switching of the control signal in the first period and the second period.
    The power conversion device according to claim 1.
  3. 上記制御部は、上記第1期間において上記各相電圧の極性に応じて上記制御信号のオンオフを固定し、上記第2期間において上記制御信号をオフに固定する、
    請求項2に記載の電力変換装置。
    The control unit fixes the control signal on / off according to the polarity of each phase voltage in the first period, and fixes the control signal off in the second period.
    The power conversion device according to claim 2.
  4. 上記制限部は、上記第1期間および上記第2期間に対応する第1閾値および第2閾値を設定して上記制限期間を決定する、
    請求項1から請求項3のいずれか1項に記載の電力変換装置。
    The limiting unit determines the limiting period by setting a first threshold and a second threshold corresponding to the first period and the second period.
    The power converter according to any one of claims 1 to 3.
  5. 上記制限部は、上記第2期間が実質0となるように上記第2閾値を設定する、
    請求項4に記載の電力変換装置。
    The limiting unit sets the second threshold so that the second period is substantially zero;
    The power conversion device according to claim 4.
  6. 上記制限部は、上記各相電圧あるいは上記各相交流電圧指令の電圧値に対して上記第1閾値および上記第2閾値を設定する、
    請求項4または請求項5に記載の電力変換装置。
    The limiting unit sets the first threshold value and the second threshold value for the voltage value of each phase voltage or each phase AC voltage command,
    The power conversion device according to claim 4 or 5.
  7. 上記制限部は、上記各相電圧あるいは上記各相交流電圧指令の位相に対して上記第1閾値および上記第2閾値を設定する、
    請求項4または請求項5に記載の電力変換装置。
    The limiting unit sets the first threshold and the second threshold with respect to the phase of each phase voltage or each phase AC voltage command.
    The power conversion device according to claim 4 or 5.
  8. 上記制限部は、外部から設定可能な第1係数および第2係数を保持し、上記各相電圧あるいは上記各相交流電圧指令のピーク値と上記第1係数および上記第2係数とに基づいて上記第1閾値および上記第2閾値を演算する、
    請求項6に記載の電力変換装置。
    The limiting unit holds a first coefficient and a second coefficient that can be set from the outside, and is based on the peak value of each phase voltage or each phase AC voltage command and the first coefficient and the second coefficient. Calculating a first threshold and the second threshold;
    The power conversion device according to claim 6.
  9. 上記制限部は、外部から設定可能な第1基準位相および第2基準位相を保持し、該第1基準位相および上記第2基準位相に基づいて上記第1閾値および上記第2閾値を演算する、
    請求項7に記載の電力変換装置。
    The limiting unit holds a first reference phase and a second reference phase that can be set from the outside, and calculates the first threshold value and the second threshold value based on the first reference phase and the second reference phase.
    The power conversion device according to claim 7.
PCT/JP2016/064493 2016-05-16 2016-05-16 Power conversion device WO2017199293A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018517937A JP6452894B2 (en) 2016-05-16 2016-05-16 Power converter
PCT/JP2016/064493 WO2017199293A1 (en) 2016-05-16 2016-05-16 Power conversion device
TW105120155A TW201742363A (en) 2016-05-16 2016-06-27 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064493 WO2017199293A1 (en) 2016-05-16 2016-05-16 Power conversion device

Publications (1)

Publication Number Publication Date
WO2017199293A1 true WO2017199293A1 (en) 2017-11-23

Family

ID=60324881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064493 WO2017199293A1 (en) 2016-05-16 2016-05-16 Power conversion device

Country Status (3)

Country Link
JP (1) JP6452894B2 (en)
TW (1) TW201742363A (en)
WO (1) WO2017199293A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265495A (en) * 1990-03-14 1991-11-26 Hitachi Ltd Power converter, pwm controller therefor, and induction motor controller
JP2000102290A (en) * 1998-09-25 2000-04-07 Mitsubishi Electric Corp Drive controller for motor
JP2012005202A (en) * 2010-06-15 2012-01-05 Fuji Electric Co Ltd Three-phase power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265495A (en) * 1990-03-14 1991-11-26 Hitachi Ltd Power converter, pwm controller therefor, and induction motor controller
JP2000102290A (en) * 1998-09-25 2000-04-07 Mitsubishi Electric Corp Drive controller for motor
JP2012005202A (en) * 2010-06-15 2012-01-05 Fuji Electric Co Ltd Three-phase power converter

Also Published As

Publication number Publication date
JP6452894B2 (en) 2019-01-16
JPWO2017199293A1 (en) 2018-07-12
TW201742363A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
EP3220531A1 (en) Power conversion device
US9722508B2 (en) Power conversion device and three-phase alternating current power supply device
EP3093971A1 (en) Conversion device
EP2814154B1 (en) Method of reducing input current distortion in a rectifier
US10110113B2 (en) Active filter and AC-DC conversion device
CN105939128B (en) Conversion device
EP3276813A1 (en) Three-phase/single-phase matrix converter
BR112017011261B1 (en) CONTROL METHOD FOR LOAD AND DISCHARGE CIRCUIT AND DIRECT ENERGY CONVERTER
KR20160122923A (en) Apparatus and method for generating offset voltage of 3-phase inverter
AU2017336112B2 (en) Control device for power converter
WO2010113218A1 (en) Power conversion apparatus
WO2014030181A1 (en) Power conversion device
JPWO2018066087A1 (en) POWER CONVERTER AND CONTROL METHOD OF POWER CONVERTER
US10389292B1 (en) DC bus regulation using rectifier and inverter
JP6452894B2 (en) Power converter
WO2016135889A1 (en) Motor drive control device and air conditioner
JP4893113B2 (en) Control device for rectifier circuit
US11437921B2 (en) Direct power converter and control device to improve an input power factor
JP2015012657A (en) Power conversion device and power conversion method
EP3280041A1 (en) Dc/ac system linking device and ac/ac system linking device
JP2020167778A (en) Control apparatus for direct type power converter
JP4851844B2 (en) Power converter
JP2007074799A (en) Controller of rectifying circuit
JP3222794B2 (en) Power converter
JP5523499B2 (en) Power converter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902313

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902313

Country of ref document: EP

Kind code of ref document: A1