WO2017198172A1 - 一种供电接入装置及其充放电控制方法 - Google Patents

一种供电接入装置及其充放电控制方法 Download PDF

Info

Publication number
WO2017198172A1
WO2017198172A1 PCT/CN2017/084722 CN2017084722W WO2017198172A1 WO 2017198172 A1 WO2017198172 A1 WO 2017198172A1 CN 2017084722 W CN2017084722 W CN 2017084722W WO 2017198172 A1 WO2017198172 A1 WO 2017198172A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage unit
power
power supply
access device
Prior art date
Application number
PCT/CN2017/084722
Other languages
English (en)
French (fr)
Inventor
刘家乐
徐俊
朱长东
何海斌
Original Assignee
上海电气分布式能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610339975.6A external-priority patent/CN106026201A/zh
Priority claimed from CN201610343620.4A external-priority patent/CN106026202A/zh
Priority claimed from CN201620472328.8U external-priority patent/CN205622244U/zh
Priority claimed from CN201620467454.4U external-priority patent/CN206442122U/zh
Application filed by 上海电气分布式能源科技有限公司 filed Critical 上海电气分布式能源科技有限公司
Priority to CA3019619A priority Critical patent/CA3019619C/en
Publication of WO2017198172A1 publication Critical patent/WO2017198172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to the field of electrical control, and in particular to a power supply access device and a charging and discharging control method thereof.
  • the energy storage unit is continuously charged and discharged, and the number of charge and discharge times of the energy storage unit is limited. After a period of use, the energy storage unit will be scrapped, and must be scrapped. Replacement makes the operating cost of the microgrid system higher.
  • the inverter, the DC converter and the unloader are each configured with a separate controller for control, and the devices in the system are relatively dispersed, so that the microgrid system occupies a large space and the operating cost is further improved.
  • the object of the present invention is to provide a power supply access device, which reduces the number of times of charging and discharging of the energy storage unit by changing the connection mode of the energy storage unit, thereby prolonging the use time of the energy storage unit.
  • the operating cost of the microgrid system composed of the power supply access device is reduced, and the microgrid system is ensured to supply power stably and reliably.
  • the invention provides a power supply access device for accessing a power generation unit and an energy storage unit and supplying power to a load.
  • the power supply access device comprises a rectifier, a DC converter, an unloader and an inverter, and the rectifier is used for the input of the power generation unit.
  • the rectification, DC converter is used to input boost to the input of the energy storage unit, the input of the power generation unit or the rectified power generation unit, the unloader is used to release excess energy, the inverter is used to convert the direct current into alternating current, and the power supply access device further includes
  • the charge and discharge control device and the controller are configured to control discharge or charging of the energy storage unit, and the controller controls the charge and discharge control device.
  • controller is connected to the DC converter, the unloader, and the inverter, and the controller is configured to control the DC converter, the unloader, and the inverter
  • the unloader is connected to the DC converter and the inverter, and the unloader is mounted on a high voltage bus bar between the DC converter and the inverter.
  • the charge and discharge control device is disposed between the energy storage unit and the high voltage bus.
  • the DC converter is a BOOST boost circuit.
  • the anode of the energy storage unit is connected to the charge and discharge control device through the inductance of the BOOST boost circuit, and then connected to the high voltage bus through the charge and discharge control device.
  • the DC converter is a bidirectional BUCK-BOOST circuit.
  • the anode of the energy storage unit is connected to the first end of the inductor of the bidirectional BUCK-BOOST circuit through the second controllable switch and the diode-connected diode parallel circuit, and the other end of the inductor is grounded, and the charge and discharge control device is connected. Between the first end of the inductor and the high voltage bus.
  • the second controllable switch is used to control whether to access the energy storage unit.
  • controlling whether to access the energy storage unit includes:
  • the energy storage unit When the power of the electric power generated by the power generating unit is greater than the product of the load power and the first coefficient, if the energy storage unit is not full, the energy storage unit is charged; if the energy storage unit is full, cut Out of the energy storage unit, starting the unloader;
  • the power of the electric power generated by the power generating unit is less than the product of the load power and the second coefficient, cutting into the energy storage unit, the energy storage unit is discharged, and the energy storage unit supplies power to the load together with the power generating unit.
  • the energy storage unit is cut out.
  • the charge and discharge control device includes a parallel unidirectional channel and a controllable channel.
  • the controllable channel When the controllable channel is disconnected, the energy storage unit is discharged through the unidirectional channel, and when the controllable channel is turned on, the energy storage unit is charged through the controllable channel. .
  • controllable channel is provided with a first controllable switch
  • unidirectional channel is provided with a diode for unidirectional conduction.
  • the power access device includes one or more sets of energy storage unit access terminals.
  • the energy storage unit access terminal is configured to access an energy storage unit having the same charging and discharging characteristics.
  • the energy storage unit access terminal is configured to access an energy storage unit with different charging and discharging characteristics, and the controller discharges the energy storage unit with different priorities or different frequencies.
  • controller has a battery management function.
  • the battery management function includes:
  • the terminal voltage, charging and discharging current are collected in real time.
  • a plurality of or all of the rectifier, the DC converter, the unloader, and the inverter are disposed on the same PCB.
  • the invention also provides a charging and discharging control method for the above power supply access device, comprising the following steps:
  • the first coefficient is greater than or equal to the second coefficient.
  • the power supply access device and the charging and discharging control method thereof provided by the invention have the following beneficial effects: by changing the connection mode of the energy storage unit, the number of times of charging and discharging of the energy storage unit is reduced, thereby prolonging energy storage.
  • the use time of the unit reduces the operating cost of the microgrid system composed of the power supply access device, and ensures the stable and reliable power supply of the microgrid system.
  • the rectifier, the DC converter, the unloader, and the inverter are disposed by the DC converter, the unloader, and the inverter sharing controller and on the same PCB board Multiple or all of the devices further reduce redundant components, reducing space and reducing costs.
  • FIG. 1 is a schematic structural view of a power supply access device in the prior art
  • FIG. 2 is a schematic structural diagram of a power supply access device according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a bidirectional BUCK-BOOST circuit and a charge and discharge control device
  • FIG. 4 is a circuit diagram of a BOOST boost circuit and a charge and discharge control device
  • Figure 5 is another circuit diagram of the BOOST boost circuit and the charge and discharge control device
  • FIG. 6 is a schematic structural diagram of a power supply access device according to still another embodiment of the present invention.
  • a power supply access device configured to access a power generation unit and an energy storage unit and supply power to a load
  • the power supply access device includes a rectifier, a DC converter, an unloader, and an inverter.
  • the rectifier is used for rectification of the input of the power generation unit
  • the DC converter is used for inputting the input of the energy storage unit input, the input of the power generation unit or the rectified power generation unit, and the unloader is used for releasing more Residual energy
  • the inverter is used to convert direct current into alternating current
  • the power supply access device further comprises a charge and discharge control device for controlling discharge or charging of the energy storage unit, and the controller controls the charge and discharge control device.
  • the power generating unit may be a direct current power generating device and/or an alternating current power generating device.
  • the power generation unit may be one or more.
  • the power generating unit includes a DC power generating device and an AC power generating device, wherein the DC power generating device is a photovoltaic component, and the AC power generating device is a fan.
  • the AC power generating device may also be a diesel generator, and of course, may only include The fan, or only the photovoltaic, is not limited by the present invention.
  • the energy storage unit is a lead acid battery.
  • the energy storage unit may also be a battery such as a lead-acid battery, a lithium battery, a flow battery or a sodium-sulfur battery, which is not limited in the present invention.
  • the power supply access device further includes a controller connected to the DC converter, the unloader, and the inverter for controlling a DC converter, an unloader, an inverter, and charging and discharging Control device.
  • the DC converter, the unloader, the inverter and the charge and discharge control device share one controller, which can reduce redundant devices and reduce costs.
  • the charge and discharge control device is disposed between the energy storage unit and the high voltage bus.
  • the unloader is connected to the DC converter and the inverter, and the unloader is mounted on a high voltage bus bar between the DC converter and the inverter.
  • a plurality or all of the rectifier, the DC converter, the unloader, and the inverter are disposed on the same PCB board, thereby achieving the beneficial effects of reducing space and reducing cost.
  • the DC converter is a bidirectional BUCK-BOOST circuit, and the anode of the energy storage unit is connected to the bidirectional BUCK through a parallel circuit between the second controllable switch Q2 and the diode D2 of the single conduction.
  • a first end of the inductance L of the BOOST circuit, and the other end of the inductor L is grounded; a charge and discharge control device including a first controllable switch Q1 and a diode D1 of a single conduction, connected to the first end of the inductor L and the high voltage bus between.
  • the charging and discharging control device comprises a parallel unidirectional channel and a controllable channel.
  • the energy storage unit discharges through the unidirectional channel, that is, outputs power to the load; when the controllable channel is turned on, the storage is performed.
  • the energy unit is charged through the controllable channel.
  • controllable channel is provided with a first controllable switch Q1
  • the unidirectional channel is provided with a diode D1 for unidirectional conduction
  • the controller controls the opening and conducting of the first controllable switch Q1 through the control terminal A.
  • the second controllable switch Q2 is used to control whether to access the energy storage unit.
  • the specific control process is as follows:
  • the controller turns off the PWM signal of the control terminal A of the first controllable switch Q1, and simultaneously turns off the PWM of the control terminal B of the second controllable switch Q2, and the first controllable switch Q1 and the first The two controllable switches Q2 are all in the off state, and the energy storage unit is cut out to avoid overcharging of the energy storage unit to extend the service life of the energy storage unit;
  • the controller turns on the PWM signal of the control terminal A of the first controllable switch Q1, and turns off the PWM of the control terminal B of the second controllable switch Q2, and the first controllable switch Q1 is in an on state.
  • the second controllable switch Q2 is in an off state, and the electric power generated by the power generating unit is input to the high voltage bus, and the high voltage bus is charged to the energy storage unit;
  • the controller turns off the PWM signal of the control terminal A of the first controllable switch Q1, and turns off the PWM of the control terminal B of the second controllable switch Q2.
  • the first controllable switch Q1 and the second controllable switch Q2 are both at Disconnected state, cut out the energy storage unit;
  • the controller turns off the PWM signal of the control terminal A of the first controllable switch Q1, and simultaneously turns on the PWM of the control terminal B of the second controllable switch Q2, the first controllable switch Q1 is in an off state, and the second The control switch Q2 is in an on state, and is cut into the energy storage unit;
  • P IN is the power of the power generated by the power generation unit
  • P OUT is the load power
  • ⁇ 1 is the first coefficient
  • ⁇ 2 is the second coefficient, which may be the same or different.
  • the energy storage unit discharges slightly larger than P OUT and cuts out the energy storage unit or charges the energy storage unit.
  • Different ⁇ 1 and ⁇ 2 can be used.
  • P IN is less than P OUT
  • the energy storage unit is discharged and supplies power to the load together with the power generation unit;
  • P IN is greater than 1.05 times of P OUT , Whether the energy unit is full or not, and P IN is between 1.05 times P OUT and P OUT , and the energy storage unit is cut out, that is, the power and power of the power generated by the power generation unit are balanced.
  • the circuit shown in FIG. 4 is adopted, the DC converter is a BOOST boost circuit, and the anode of the energy storage unit is connected to the charge and discharge control device through the inductance L of the BOOST boost circuit, and then controlled by charge and discharge.
  • the device is connected to the high voltage bus.
  • the first controllable switch Q1 is connected in parallel with the diode D1 of the single conduction, and is connected between the inductor L and the high voltage bus.
  • the first controllable switch Q1 can use IGBT, MOS tube, if IGBT, MOS tube itself With a single-conducting diode, there is no need to set a single-way diode separately; however, if the current is large, a single-way diode can be set separately.
  • a circuit as shown in FIG. 5 is used, the DC converter is a BOOST boost circuit, and the first controllable switch Q1 can employ a bidirectional thyristor.
  • the power supply access device includes a group of energy storage unit access terminals.
  • the power supply access device includes two sets of energy storage unit access terminals, and is capable of accessing two Group energy storage unit: battery 1 and battery 2, battery 1 and battery 2 respectively control charging and discharging through charging and discharging control device.
  • two groups of battery discharging outputs can be used simultaneously. Power to ensure stable power supply to the power supply system; or when one battery is charging, use another battery to discharge output power.
  • the power supply access device may also include a group of energy storage unit access terminals, which is not limited by the present invention.
  • multiple sets of energy storage unit access terminals can access energy storage units with the same or different charging and discharging characteristics, for example, all connected to lead-acid batteries; or can be respectively connected to lead-acid batteries and Lithium batteries, in which lithium batteries are more suitable for frequent charge and discharge, so in the power supply process, the lithium battery is preferred; or the lead acid battery and the lithium battery are discharged at different frequencies.
  • the battery management system is mainly to improve battery utilization, prevent overcharging and overdischarging of the battery, extend battery life, and monitor battery status.
  • the controller implements the following functions of the BMS:
  • the controller implements the BMS function, which can effectively save 3% of the battery life, thereby reducing the cost of the overall equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种供电接入装置,用于接入发电单元与储能单元并向负载供电,供电接入装置包括整流器、直流变换器、卸荷器、逆变器与控制器,整流器用于发电单元输入的整流,直流变换器用于对储能单元输入、发电单元输入或整流后的发电单元输入升压,卸荷器用于释放多余能量,逆变器用于将直流转换为交流,供电接入装置还包括充放电控制装置,用于控制储能单元放电或充电,控制器控制充放电控制装置。本发明还提供一种供电接入装置的充放电控制方法。本发明提供的供电接入装置,通过改变储能单元的连接方式,减少了储能单元的充放电次数,从而延长储能单元的使用时间,降低由供电接入装置构成的微电网系统的运行成本,保证微电网系统稳定可靠地供电。

Description

一种供电接入装置及其充放电控制方法
本申请要求申请日为2016年5月20日的中国专利申请CN201610343620.4、CN201620472328.8、CN201610339975.6和CN201620467454.4的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及电气控制领域,具体涉及一种供电接入装置及其充放电控制方法。
背景技术
半导体功率器件的快速增容、现代控制理论的日趋成熟、电力系统的智能化发展为微电网系统中的微电网装置的发展带来了契机。
在典型的智能微电网系统,为了安全、高效地接入且充分利用分布式能源,包括整流器、逆变器、直流变换器、卸荷器以及储能单元,如图1所示,风机和光伏组件产生的电能向储能单元充电,由储能单元放电向直流或交流负载供电。
采用这样的结构,在微电网供电过程中,储能单元在不停地充电、放电,而储能单元的充放电次数都是有限的,经过一段时间的使用,储能单元就会报废,必须更换,使得微电网系统的运行成本较高。
另外,逆变器、直流变换器和卸荷器往往各自均配置有单独的控制器进行控制,并且系统中的各器件设置较为分散,使得微电网系统的占用较大空间、运行成本进一步提高。
发明内容
鉴于现有技术中存在的问题,本发明的目的是提供一种供电接入装置,通过改变储能单元的连接方式,减少了储能单元的充放电次数,从而延长储能单元的使用时间,降低由供电接入装置构成的微电网系统的运行成本,保证微电网系统稳定可靠地供电。
本发明提供一种供电接入装置,用于接入发电单元与储能单元并向负载供电,供电接入装置包括整流器、直流变换器、卸荷器与逆变器,整流器用于发电单元输入的整流,直流变换器用于对储能单元输入、发电单元输入或整流后的发电单元输入升压,卸荷器用于释放多余能量,逆变器用于将直流转换为交流,供电接入装置还包括充放电控制装置与控制器,所述充放电控制装置用于控制储能单元放电或者充电,控制器控制充放电控制装置。
进一步地,所述控制器与所述直流变换器、所述卸荷器以及所述逆变器连接,所述控制器用于控制所述直流变换器、所述卸荷器以及所述逆变器,所述卸荷器与所述直流变换器、所述逆变器连接,所述卸荷器挂载在所述直流变换器与所述逆变器之间的高压母线上。
进一步地,充放电控制装置设置于储能单元与高压母线之间。
进一步地,直流变换器为BOOST升压电路。
进一步地,储能单元的正极通过BOOST升压电路的电感与充放电控制装置连接,再通过充放电控制装置连接到高压母线上。
进一步地,所述直流变换器为双向BUCK-BOOST电路。
进一步地,所述储能单元的正极通过第二可控开关与单向导通的二极管并联电路,连接到双向BUCK-BOOST电路的电感的第一端,电感的另一端接地,充放电控制装置连接在电感的第一端与高压母线之间。
进一步地,所述第二可控开关用于控制是否接入储能单元。
进一步地,控制是否接入储能单元,包括:
所述发电单元发出的电的功率大于负载功率与第一系数的乘积时,如果所述储能单元未充满,对所述储能单元充电;如果所述储能单元已充满,切 出所述储能单元,启动卸荷器;
所述发电单元发出的电的功率小于负载功率与第二系数的乘积时,切入所述储能单元,所述储能单元放电,所述储能单元与所述发电单元一起向所述负载供电;
所述发电单元发出的电的功率大于或等于负载功率与第二系数的乘积且小于或等于负载功率与第一系数的乘积时,切出所述储能单元。
进一步地,充放电控制装置包括并联的单向通道与可控通道,其中可控通道断开时,储能单元通过单向通道放电,可控通道导通时,储能单元通过可控通道充电。
进一步地,可控通道设置有第一可控开关,单向通道设置有用于单向导通的二极管。
进一步地,供电接入装置包括一组或多组储能单元接入端。
进一步地,所述储能单元接入端,用于接入充放电特性相同的储能单元。
进一步地,储能单元接入端,用于接入充放电特性不同的储能单元,控制器以不同的优先级或不同的频率对储能单元放电。
进一步地,控制器具有电池管理功能。
进一步地,所述电池管理功能包括:
估测储能单元的荷电状态;
在储能单元充放电过程中,实时采集端电压、充放电电流。
进一步地,所述整流器、所述直流变换器、所述卸荷器和所述逆变器中的多个或全部设置于同一个PCB板上。
本发明还提供一种上述供电接入装置的充放电控制方法,包括以下步骤:
(a)发电单元发出的电的功率大于负载功率与第一系数的乘积时,如果储能单元未充满,控制向储能单元充电;如果储能单元已充满,切出储能单元,启动卸荷器;
(b)发电单元发出的电的功率小于负载功率与第二系数的乘积时,控制储能单元放电,储能单元与发电单元一起向负载供电;
(c)发电单元发出的电的功率大于或等于负载功率与第二系数的乘积且小于或等于负载功率与第一系数的乘积时,切出储能单元。
进一步地,第一系数大于或等于所述第二系数。
与现有技术相比,本发明提供的供电接入装置及其充放电控制方法,具有以下有益效果:通过改变储能单元的连接方式,减少了储能单元的充放电次数,从而延长储能单元的使用时间,降低由供电接入装置构成的微电网系统的运行成本,保证微电网系统稳定可靠地供电。另外,通过所述直流变换器、所述卸荷器以及所述逆变器共用控制器以及在同一PCB板上设置所述整流器、所述直流变换器、所述卸荷器和所述逆变器中的多个或全部,进一步减少了冗余器件,减小了空间,降低了成本。
附图说明
图1是现有技术中的供电接入装置的结构示意图;
图2是本发明的一个实施例的供电接入装置的结构示意图;
图3是双向BUCK-BOOST电路与充放电控制装置的电路图;
图4是BOOST升压电路与充放电控制装置的一种电路图;
图5是BOOST升压电路与充放电控制装置的另一种电路图;
图6是本发明的又一个实施例的供电接入装置的结构示意图。
具体实施方式
如图2所示,本发明的一个实施例的供电接入装置,用于接入发电单元与储能单元并向负载供电,供电接入装置包括整流器、直流变换器、卸荷器、逆变器与控制器,整流器用于发电单元输入的整流,直流变换器用于对储能单元输入、发电单元输入或整流后的发电单元输入升压,卸荷器用于释放多 余能量,逆变器用于将直流转换为交流,供电接入装置还包括充放电控制装置,用于控制储能单元放电或者充电,控制器控制充放电控制装置。
发电单元可以为直流发电装置和/或交流发电装置。
发电单元可以是一个,也可以是多个。
本实施例中发电单元两个,发电单元包括直流发电装置和交流发电装置,其中直流发电装置为光伏组件,交流发电装置为风机,当然交流发电装置也可以为柴油发电机,当然也可以只包括风机,或者只包括光伏,本发明对此不作限制。
本实施例中,储能单元为铅酸电池。储能单元也可以是铅酸电池、锂电池、液流电池或钠硫电池等电池,本发明对此不作限制。
供电接入装置还包括控制器,所述控制器与所述直流变换器、所述卸荷器以及所述逆变器连接,用于控制直流变换器、卸荷器、逆变器与充放电控制装置。所述直流变换器、所述卸荷器、所述逆变器与充放电控制装置共用一个控制器,可以减少冗余器件,降低成本。
充放电控制装置设置于储能单元与高压母线之间。
所述卸荷器与所述直流变换器、所述逆变器连接,所述卸荷器挂载在所述直流变换器与所述逆变器之间的高压母线上。
所述整流器、所述直流变换器、所述卸荷器和所述逆变器中的多个或全部设置于同一个PCB板上,以此达到减小空间,降低成本的有益效果。
本实施例中,一种电路如图3所示,直流变换器为双向BUCK-BOOST电路,储能单元的正极通过第二可控开关Q2与单向导通的二极管D2并联电路,连接到双向BUCK-BOOST电路的电感L的第一端,电感L的另一端接地;包括第一可控开关Q1与单向导通的二极管D1的充放电控制装置,连接在电感L的第一端与高压母线之间。
充放电控制装置包括并联的单向通道与可控通道,其中可控通道断开时,储能单元通过单向通道放电,即向负载输出功率;可控通道导通时,储 能单元通过可控通道充电。
具体地,可控通道设置有第一可控开关Q1,单向通道设置有用于单向导通的二极管D1,控制器通过控制端A控制第一可控开关Q1的断开与导通。
本实施例中的供电接入装置的充放电控制方法,包括以下步骤:
(a)发电单元发出的电的功率大于负载功率与第一系数的乘积时,如果储能单元未充满,控制向储能单元充电;如果储能单元已充满,切出储能单元,启动卸荷器;
(b)发电单元发出的电的功率小于负载功率与第二系数的乘积时,控制储能单元放电,储能单元与发电单元一起向负载供电;
(c)发电单元发出的电的功率大于或等于负载功率与第二系数的乘积且小于或等于负载功率与第一系数的乘积时,切出储能单元。
第二可控开关Q2用于控制是否接入储能单元,具体控制流程如下:
(1)PIN1POUT时,如果储能单元已充满,切出储能单元,并启动卸荷器,释放多余的功率;如果储能单元未充满,对储能单元充电;
具体地,如果储能单元已充满,控制器关闭第一可控开关Q1的控制端A的PWM信号,同时关闭第二可控开关Q2的控制端B的PWM,第一可控开关Q1与第二可控开关Q2均处于断开状态,切出储能单元,避免储能单元过度充电,以延长储能单元的使用寿命;
如果储能单元未充满,控制器打开第一可控开关Q1的控制端A的PWM信号,同时关闭第二可控开关Q2的控制端B的PWM,第一可控开关Q1处于接通状态,而第二可控开关Q2处于断开状态,发电单元发出的电输入到高压母线,由高压母线向储能单元充电;
(2)φ2POUT≤PIN≤φ1POUT时,将储能单元切出,仅发电单元向负载供电,以达到功率平衡,减少对储能单元的充放电的次数,从而延长储能单元的使用寿命;
具体地,控制器关闭第一可控开关Q1的控制端A的PWM信号,同时关闭第二可控开关Q2的控制端B的PWM,第一可控开关Q1与第二可控开关Q2均处于断开状态,切出储能单元;
(3)PIN2POUT时,将储能单元切入,储能单元放电,与发电单元一起向负载供电,以达到功率平衡;
具体地,控制器关闭第一可控开关Q1的控制端A的PWM信号,同时打开第二可控开关Q2的控制端B的PWM,第一可控开关Q1处于断开状态,而第二可控开关Q2处于接通状态,切入储能单元;
其中,PIN为发电单元发出的电的功率,POUT为负载功率。φ1为第一系数、φ2为第二系数,可以相同,也可以不同。
φ1与φ2相同时,例如φ1=1,φ2=1,此时PIN小于POUT时,储能单元放电,与发电单元一起向负载供电;PIN等于POUT时,切出储能单元;PIN大于POUT时,如果储能单元已充满,切出储能单元,避免储能单元过度充电,延长储能单元的使用寿命,如果储能单元未充满,使用多余的功率向储能单元充电。
为了避免PIN等于POUT附近频繁切换,也就是稍小于POUT,储能单元放电,稍大于POUT又切出储能单元或向储能单元充电,可以使用不同的φ1与φ2,φ1大于φ2例如φ1=1.05,φ2=1,此时PIN小于POUT时,储能单元放电,与发电单元一起向负载供电;PIN大于POUT的1.05倍时,根据储能单元是否充满,进行相应的操作;而PIN处于POUT与POUT的1.05倍之间,切出储能单元,也就是发电单元发出的电的功率与负载功率平衡。
在另一个实施例中,采用如图4所示的电路,直流变换器为BOOST升压电路,储能单元的正极通过BOOST升压电路的电感L与充放电控制装置连接,再通过充放电控制装置连接到高压母线上。具体地,第一可控开关Q1与单向导通的二极管D1并联后,连接在电感L与高压母线之间。
第一可控开关Q1可以采用IGBT、MOS管,如果IGBT、MOS管本身 自带单向导通二极管,此时无需单独设置单向导通二极管;但如果电流较大时,也可单独设置单向导通二极管。
在另一个实施例中,采用如图5所示的电路,直流变换器为BOOST升压电路,第一可控开关Q1可以采用双向晶闸管。
本实施例中,供电接入装置包括一组储能单元接入端,在另一个实施例中,如图6所示,供电接入装置包括两组储能单元接入端,能够接入两组储能单元:电池1与电池2,电池1与电池2分别通过充放电控制装置控制充电与放电,当负载与发电单元发出的电的功率相差较大时,可以同时使用两组电池放电输出功率,以保证供电系统稳定供电;或者一组电池充电时,使用另一组电池放电输出功率。
当然供电接入装置也可以包括一组储能单元接入端,本发明对此不作限制。
使用本实施例中的供电接入装置,多组储能单元接入端可以接入充放电特性相同或不同的储能单元,例如都接入铅酸电池;也可以分别接入铅酸电池和锂电池,其中锂电池更适合于频繁充放电,因此在供电过程中,优先使用锂电池;或者以不同的频率对铅酸电池与锂电池放电。
电池管理系统(BMS)主要是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,延长电池的使用寿命,监控电池的状态。
本实施例中,控制器实现以下BMS的功能:
(1)估测储能单元的荷电状态(State of Charge,即SOC),即储能单元的剩余电量,保证SOC维持在合理的范围内,从而防止由于过充电或过放电对储能单元的造成损伤;
(2)在储能单元充放电过程中,实时采集端电压、充放电电流,防止电池发生过充电或过放电现象。
控制器实现BMS功能,可有效的节约电池使用寿命3%,从而降低整体设备的成本。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (19)

  1. 一种供电接入装置,用于接入发电单元与储能单元并向负载供电,所述供电接入装置包括整流器、直流变换器、卸荷器与逆变器,所述整流器用于发电单元输入的整流,所述直流变换器用于对储能单元输入、发电单元输入或整流后的发电单元输入升压,所述卸荷器用于释放多余能量,所述逆变器用于将直流转换为交流,其特征在于,供电接入装置还包括充放电控制装置与控制器,所述充放电控制装置用于控制所述储能单元放电或者充电,所述控制器控制所述充放电控制装置。
  2. 如权利要求1所述的供电接入装置,其特征在于,所述控制器与所述直流变换器、所述卸荷器以及所述逆变器连接,所述控制器用于控制所述直流变换器、所述卸荷器以及所述逆变器,所述卸荷器与所述直流变换器、所述逆变器连接,所述卸荷器挂载在所述直流变换器与所述逆变器之间的高压母线上。
  3. 如权利要求1或2所述的供电接入装置,其特征在于,所述充放电控制装置设置于所述储能单元与高压母线之间。
  4. 如权利要求3所述的供电接入装置,其特征在于,所述直流变换器为BOOST升压电路。
  5. 如权利要求4所述的供电接入装置,其特征在于,所述储能单元的正极通过BOOST升压电路的电感与充放电控制装置连接,再通过充放电控制装置连接到高压母线上。
  6. 如权利要求3所述的供电接入装置,其特征在于,所述直流变换器为双向BUCK-BOOST电路。
  7. 如权利要求6所述的供电接入装置,其特征在于,所述储能单元的正极通过第二可控开关与单向导通的二极管并联电路,连接到双向BUCK-BOOST电路的电感的第一端,电感的另一端接地,充放电控制装置 连接在电感的第一端与高压母线之间。
  8. 如权利要求7所述的供电接入装置,其特征在于,所述第二可控开关用于控制是否接入储能单元。
  9. 如权利要求8所述的供电接入装置,其特征在于,控制是否接入储能单元,包括:
    所述发电单元发出的电的功率大于负载功率与第一系数的乘积时,如果所述储能单元未充满,对所述储能单元充电;如果所述储能单元已充满,切出所述储能单元,启动卸荷器;
    所述发电单元发出的电的功率小于负载功率与第二系数的乘积时,切入所述储能单元,所述储能单元放电,所述储能单元与所述发电单元一起向所述负载供电;
    所述发电单元发出的电的功率大于或等于负载功率与第二系数的乘积且小于或等于负载功率与第一系数的乘积时,切出所述储能单元。
  10. 如权利要求1-9中至少一项所述的供电接入装置,其特征在于,所述充放电控制装置包括并联的单向通道与可控通道,其中所述可控通道断开时,储能单元通过所述单向通道放电,所述可控通道导通时,储能单元通过可控通道充电。
  11. 如权利要求10所述的供电接入装置,其特征在于,所述可控通道设置有第一可控开关,所述单向通道设置有用于单向导通的二极管。
  12. 如权利要求1-11中至少一项所述的供电接入装置,其特征在于,所述供电接入装置包括一组或多组储能单元接入端。
  13. 如权利要求12所述的供电接入装置,其特征在于,所述储能单元接入端,用于接入充放电特性相同的储能单元。
  14. 如权利要求12所述的供电接入装置,其特征在于,所述储能单元接入端,用于接入充放电特性不同的储能单元,所述控制器以不同的优先级或不同的频率对所述储能单元放电。
  15. 如权利要求1-14中至少一项所述的供电接入装置,其特征在于,所述控制器具有电池管理功能。
  16. 如权利要求15所述的供电接入装置,其特征在于,所述电池管理功能包括:
    估测储能单元的荷电状态;
    在储能单元充放电过程中,实时采集端电压、充放电电流。
  17. 如权利要求1-16中至少一项所述的供电接入装置,其特征在于,所述整流器、所述直流变换器、所述卸荷器和所述逆变器中的多个或全部设置于同一个PCB板上。
  18. 一种如权利要求1-17中至少一项所述的供电接入装置的充放电控制方法,其特征在于,包括以下步骤:
    (a)发电单元发出的电的功率大于负载功率与第一系数的乘积时,如果所述储能单元未充满,控制向所述储能单元充电;如果所述储能单元已充满,切出所述储能单元,启动卸荷器;
    (b)所述发电单元发出的电的功率小于所述负载功率与第二系数的乘积时,控制所述储能单元放电,所述储能单元与所述发电单元一起向所述负载供电;
    (c)所述发电单元发出的电的功率大于或等于所述负载功率与第二系数的乘积且小于或等于负载功率与第一系数的乘积时,切出所述储能单元。
  19. 如权利要求18所述的供电接入装置的充放电控制方法,其特征在于,所述第一系数大于或等于所述第二系数。
PCT/CN2017/084722 2016-05-20 2017-05-17 一种供电接入装置及其充放电控制方法 WO2017198172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3019619A CA3019619C (en) 2016-05-20 2017-05-17 Power supply connection device, and charging-discharging control method for same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610339975.6A CN106026201A (zh) 2016-05-20 2016-05-20 一种供电接入装置
CN201620467454.4 2016-05-20
CN201610343620.4 2016-05-20
CN201610343620.4A CN106026202A (zh) 2016-05-20 2016-05-20 一种供电接入装置及其充放电控制方法
CN201620472328.8 2016-05-20
CN201620472328.8U CN205622244U (zh) 2016-05-20 2016-05-20 一种供电接入装置
CN201620467454.4U CN206442122U (zh) 2016-05-20 2016-05-20 一种供电接入装置
CN201610339975.6 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017198172A1 true WO2017198172A1 (zh) 2017-11-23

Family

ID=60326442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084722 WO2017198172A1 (zh) 2016-05-20 2017-05-17 一种供电接入装置及其充放电控制方法

Country Status (2)

Country Link
CA (1) CA3019619C (zh)
WO (1) WO2017198172A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088461A (zh) * 2018-10-10 2018-12-25 北京动力京工科技有限公司 一种充放电独立的多路不同种类电池组并联控制装置及方法
CN114844030A (zh) * 2022-06-09 2022-08-02 国网湖北综合能源服务有限公司 直流微网母线管理方法及能源供给系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217273A (ja) * 1999-01-22 2000-08-04 Ntt Power & Building Facilities Inc 交流無停電電源システム
CN102088198A (zh) * 2009-12-04 2011-06-08 三星Sdi株式会社 能量存储系统
CN104269914A (zh) * 2014-10-15 2015-01-07 四川东方电气自动控制工程有限公司 一种风光互补控制逆变一体机
CN205622244U (zh) * 2016-05-20 2016-10-05 上海电气分布式能源科技有限公司 一种供电接入装置
CN106026202A (zh) * 2016-05-20 2016-10-12 上海电气分布式能源科技有限公司 一种供电接入装置及其充放电控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217273A (ja) * 1999-01-22 2000-08-04 Ntt Power & Building Facilities Inc 交流無停電電源システム
CN102088198A (zh) * 2009-12-04 2011-06-08 三星Sdi株式会社 能量存储系统
CN104269914A (zh) * 2014-10-15 2015-01-07 四川东方电气自动控制工程有限公司 一种风光互补控制逆变一体机
CN205622244U (zh) * 2016-05-20 2016-10-05 上海电气分布式能源科技有限公司 一种供电接入装置
CN106026202A (zh) * 2016-05-20 2016-10-12 上海电气分布式能源科技有限公司 一种供电接入装置及其充放电控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088461A (zh) * 2018-10-10 2018-12-25 北京动力京工科技有限公司 一种充放电独立的多路不同种类电池组并联控制装置及方法
CN114844030A (zh) * 2022-06-09 2022-08-02 国网湖北综合能源服务有限公司 直流微网母线管理方法及能源供给系统
CN114844030B (zh) * 2022-06-09 2024-04-09 国网湖北综合能源服务有限公司 直流微网母线管理方法及能源供给系统

Also Published As

Publication number Publication date
CA3019619C (en) 2021-02-23
CA3019619A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
US10637283B2 (en) Power supply system and method
US20190214833A1 (en) Fast Charging Method and Related Device for Series Battery Pack
Moo et al. Parallel operation of battery power modules
US20190168632A1 (en) Electric-vehicle energy management system, control method thereof, and electric vehicle
EP2720358B1 (en) Temperature controlling system and method of battery
US10298006B2 (en) Energy storage system and method of driving the same
CN106961150B (zh) 复合储能电池的控制方法及系统
CN109245220B (zh) 一种最少开关的充放电限流电池组并联控制装置及控制方法
EP4432507A1 (en) Optical storage system and optical storage scheduling method
JP2015195674A (ja) 蓄電池集合体制御システム
CN112655131A (zh) 蓄电装置和充电方法
WO2022217721A1 (zh) 智慧电池
WO2017198172A1 (zh) 一种供电接入装置及其充放电控制方法
CN205622244U (zh) 一种供电接入装置
CN105048596A (zh) 蓄电池组混合充放电控制装置
CN114667659A (zh) 蓄电系统
CN106026202A (zh) 一种供电接入装置及其充放电控制方法
CN109804520B (zh) 电力转换系统、电力供给系统及电力转换装置
JP2011154925A (ja) リチウムイオン組電池の充電システムおよび充電方法
US20160276850A1 (en) Charging Bus
JP2003169424A (ja) 二次電池の充電方法、充電装置
CN216959380U (zh) 一种通过电池直流侧取电的储能电池保护系统
CN204928261U (zh) 蓄电池组混合充放电控制装置
Joseph et al. Battery management system for DC nanogrid
CN114448070B (zh) 大功率便携储能设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3019619

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798735

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17798735

Country of ref document: EP

Kind code of ref document: A1