WO2017198046A1 - 扇区转换方法、基站、网元、通信系统和存储介质 - Google Patents

扇区转换方法、基站、网元、通信系统和存储介质 Download PDF

Info

Publication number
WO2017198046A1
WO2017198046A1 PCT/CN2017/081851 CN2017081851W WO2017198046A1 WO 2017198046 A1 WO2017198046 A1 WO 2017198046A1 CN 2017081851 W CN2017081851 W CN 2017081851W WO 2017198046 A1 WO2017198046 A1 WO 2017198046A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
conversion
information
sector
network element
Prior art date
Application number
PCT/CN2017/081851
Other languages
English (en)
French (fr)
Inventor
谭伟
陈曦
蒲迎春
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017198046A1 publication Critical patent/WO2017198046A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2609Arrangements for range control, e.g. by using remote antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to networking technologies in the field of wireless communications, and in particular, to a sector conversion method, a base station, a control network element, a communication system, and a storage medium.
  • a single station low-order antenna 3 is usually deployed first.
  • Sectors such as the common 2-antenna 3-sector base station, meet the basic terminal wireless service requirements.
  • the network capacity the number of terminals and the throughput
  • the usual expansion method is that the sector is split into multiple sectors, for example, by adding a Radio Remote Unit (RRU) and an antenna to 2 antennas 6 Sector base station.
  • RRU Radio Remote Unit
  • the network capacity can be increased by more than 50% according to simulation prediction.
  • the staff usually needs to replace the antenna of the base station and manually upgrade the RRU of the base station.
  • the conversion operation is cumbersome, the conversion takes a long time, and the communication service cannot be provided during the conversion time, which may cause the terminal that is in the coverage of the base station to be unable to access the network; and the conversion cost is high.
  • embodiments of the present invention are expected to provide a sector conversion method, a base station, and a control network.
  • the meta, communication system and storage medium at least partially solve the above problems.
  • a first aspect of the embodiments of the present invention provides a sector conversion method, including:
  • sector conversion is implemented by adjusting operating parameters of the tunable antenna and the remote radio unit.
  • a second aspect of the embodiments of the present invention provides a sector conversion method, including:
  • the conversion instruction is used by the base station to perform operating parameters of the tunable antenna and the radio remote unit to implement sector conversion.
  • a third aspect of the embodiments of the present invention provides a base station, including:
  • a detecting unit configured to detect specified information; wherein the specified information is used to reflect a sector switching requirement;
  • the first sending unit is configured to send the specified information to the control network element
  • a first receiving unit configured to receive a conversion instruction returned by the control network element when the specified information meets the first preset condition
  • the response unit is configured to implement sector conversion by adjusting operating parameters of the adjustable antenna and the remote radio unit in response to the conversion instruction.
  • a fourth aspect of the embodiments of the present invention provides a control network element, including:
  • a second receiving unit configured to receive specified information sent by the base station, where the specified information user reflects a sector switching requirement
  • a determining unit configured to determine whether the specified information meets the first preset condition
  • a second sending unit configured to send a conversion instruction to the base station when the specified information meets the first preset condition
  • the conversion instruction is used by the base station to perform operating parameters of the tunable antenna and the radio remote unit to implement sector conversion.
  • a fifth aspect of the embodiments of the present invention provides a communication system, including:
  • the base station is configured to detect the specified information, where the specified information is used to reflect the sector conversion requirement; the specified information is sent to the control network element; and the control network element receives the specified information to satisfy the first preset condition Returning the conversion instruction; in response to the conversion instruction, realizing sector conversion by adjusting operating parameters of the adjustable antenna and the remote radio unit;
  • control network element is configured to receive the specified information sent by the base station, where the specified information is used to reflect the sector conversion requirement; determine whether the specified information meets the first preset condition; and when the specified information meets the first And transmitting, by the base station, a conversion instruction, where the conversion instruction is used by the base station to perform an operation parameter of the tunable antenna and the radio remote unit to implement sector conversion.
  • a sixth aspect of the embodiments of the present invention provides a base station, including:
  • a memory configured to store a computer program
  • a processor is coupled to the memory, and by performing the computer storage, the sector conversion method provided by the foregoing first aspect can be implemented.
  • a seventh aspect of the embodiments of the present invention provides a control network element, including:
  • a memory configured to store a computer program
  • a processor coupled to the memory, is capable of implementing the sector conversion method provided by the second aspect by performing the computer storage.
  • An eighth aspect of the embodiments of the present invention provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer first aspect and the second aspect provide the sector conversion method.
  • the embodiment of the present invention provides a sector conversion method, a base station, a control network element, a communication system, and a storage medium.
  • the detection information is sent to the control network element by detecting the specified information, and the adjustable antenna can be automatically adjusted based on the conversion instruction of the control network element.
  • the operating parameters of the remote unit of the radio realize automatic sector conversion, improve sector conversion efficiency and realize conversion automation.
  • FIG. 1 is a schematic flowchart of a first sector switching method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a tunable antenna according to an embodiment of the present invention.
  • FIG. 3A is a beam characteristic according to an embodiment of the present invention.
  • FIG. 3B is another beam characteristic according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a second sector switching method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a control unit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart diagram of a third sector switching method according to an embodiment of the present invention.
  • FIG. 8 to FIG. 12 are schematic diagrams showing a structure of a sector according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • this embodiment provides a sector conversion method, including:
  • Step S110 detecting specified information; wherein the specified information is used to reflect a sector conversion requirement;
  • Step S120 Send the specified information to the control network element.
  • Step S130 Receive a conversion instruction returned by the control network element when the specified information meets the first preset condition
  • Step S140 In response to the conversion instruction, sector conversion is implemented by adjusting operating parameters of the adjustable antenna and the remote radio unit.
  • the sector conversion method in this embodiment may be a sector conversion method applied to a base station.
  • the sector herein which may also be referred to as a sector, is the basic unit of communication services provided in a cellular communication network.
  • the sector conversion may include: performing a sector upgrade or the like according to the capacity expansion requirement. For example, according to the network capacity and the proportion of the terminal of the high-order MIMO capability in the network, the upgrade of 2 antennas and 3 sectors to 2 antennas and 6 sectors, and then from 2 antennas and 6 sectors to 4 antennas and 3 sectors can be upgraded.
  • the high order MIMO capability here is the ability to employ MIMO technology above a specified order.
  • the base station will detect the specified information, where the designated information can be used to control the network element to determine whether the sector conversion of the base station needs to be performed.
  • the control network element may be a management center server for maintaining an operation and maintenance center (OMC) of the network device or a self-organizing network (SON), and the like, Management network element for maintenance control.
  • the conversion instruction returned by the control network element is received in step S130.
  • the conversion instruction includes at least an operation instruction for indicating whether conversion is required to be performed, and various conversion parameters for performing conversion.
  • the conversion instruction may include how to reconfigure the operational parameters of the tunable antenna and the RRU, and the conversion parameters may include information such as the converted tunable antenna and the operational parameters of the RRU.
  • the control network element will instruct the base station to perform sector switching by a conversion instruction when it is determined that the current base station does need to perform sector conversion according to the specified information.
  • the RRU is at the far end
  • the baseband optical signal is converted into a radio frequency signal and amplified for transmission.
  • the RRU can be divided into four functional modules: an intermediate frequency module, a transceiver module, a power amplifier, and a filtering module.
  • the digital intermediate frequency module is used for modulation and demodulation of optical transmission, digital up-conversion, A/D conversion, etc.; the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal; and then transmits the radio frequency signal through the antenna port through the power amplifier and the filtering module.
  • the operating parameters such as the signal amplification factor of the RRU can be adjusted, thereby changing the radiation range of the wireless signal transmitted by the base station.
  • the sector switching can be realized by adjusting the operating parameters of the tunable antenna and the RRU in response to the switching instruction.
  • the tunable antenna is an antenna capable of transmitting and receiving signals for a new sector by rewriting its working parameters by software. For example, information such as the number of antennas for transmitting and receiving signals, adjusting the pitch angle, azimuth angle, total transmission power, and transmission power of a single channel can be adjusted by adjusting operating parameters.
  • the tunable antenna in this embodiment may be an adjustable split antenna. The adjustment of the working parameters of the tunable antenna and the RRU is completed, which is equivalent to re-dividing the sector covered by the base station, thereby realizing the adjustment of the sector.
  • the present embodiment provides a sector conversion method, which can realize the sector by interacting with the information of the control network element without changing the antenna of the antenna to the location of the base station and adjusting the working parameters of the antenna and the RRU.
  • Automatic conversion with multiple advantages such as high conversion efficiency and low conversion cost.
  • the specified information may include one or more of a capability parameter of the terminal, load status information of the base station, and network deployment information of the location where the base station is located.
  • the step S110 may include: detecting at least one of a terminal proportion, a network deployment information, a load status information, and a detection of neighboring area interference information, where the preset terminal capability is based on the terminal.
  • the capability information is determined by the statistics; the network deployment information is used to reflect the network deployment status of the location where the base station is located; the load status information is used to reflect the load status of the local base station; and the neighboring area interference information is used to reflect the neighboring cell.
  • the intensity of the interference may be the execution base station of the sector conversion method of this embodiment; or the base station that needs to perform sector conversion.
  • the control network element may determine whether to serve the first preset condition according to one or more of the foregoing information; generally, if the first preset condition is met, the base station is considered to have a sector switching requirement, if the first pre-compliance is not met If the condition is set, the base station is considered to have no sector switching requirement.
  • the step S110 may include: detecting a capability parameter of the terminal; and calculating, according to the capability parameter, a proportion of the terminal having a preset terminal capability in the current sector; the step S120 may include: sending the terminal proportion to the control
  • the step S130 may include: receiving a conversion instruction sent by the control network element when the proportion of the terminal is greater than a proportional threshold. For example, if the current sector formed by the base station is a low-order MIMO sector, and the capability parameter sent by the receiving terminal is used, the proportion of the terminal supporting the high-order MIMO capability that often resides in the sector formed by the base station is determined. Very high, in order to provide better communication services, it is determined that the base station has a need to upgrade to a higher order MIMO sector.
  • the base station will receive a conversion instruction.
  • the instruction for instructing the base station to perform the conversion is received, and after the ratio of the preset type of the sector is reached to reach the proportional threshold, it is apparent that the sector conversion of the base station satisfies the actual requirement instead of blind conversion.
  • the step S110 may include: detecting the network deployment information; the step S120 may include: sending the network deployment information to the control network element; the step S130 may include: receiving the control network element in the network
  • the deployment information indicates that the conversion instruction sent when the coverage parameter of the base station needs to be adjusted.
  • the network deployment information is sent to the control network element.
  • the network deployment information here is network deployment information in the vicinity of the base station, for example, network deployment information within a specified distance from the base station, or deployment information of neighboring base stations adjacent to the base station.
  • the network deployment information herein may include base station addition information, base station deletion information, or coverage change information of neighboring base stations, and signal power information of neighboring base stations.
  • Network deployment can determine whether the wireless environment is appropriate, you can decide this The communication environment of the base station. For example, if a new neighboring base station is detected, if the base station does not adjust the coverage, mutual interference may occur in the overlapping area, resulting in poor communication quality. In this case, the coverage of the base station may need to be adjusted.
  • the coverage parameter may include information such as coverage, wireless signal transmission power, and frequency of a wireless signal at each location within the coverage of the base station.
  • the base station adaptively adjusts the coverage parameter when the coverage parameter needs to be adjusted to implement sector conversion.
  • the step S110 may include: detecting the load status information of the local base station; the step S120 may include: sending the load status information to the control network element; the step S130 may include: receiving the control network element
  • the load status information indicates a conversion instruction sent when the network load of the base station is greater than a first predetermined threshold.
  • the base station if the base station is in the load condition information in the first predetermined time interval, if the base station is often at a high load ratio, this may cause problems such as poor communication quality and small communication bandwidth, and it is obvious that the base station has a capacity expansion. Demand. At this time, the expansion can be realized by the conversion of the sector. Therefore, in the embodiment, the load status information can be detected, and the load status information is transmitted to the control network element.
  • the step S110 may include: detecting the neighboring area interference information; the step S120 may include: sending the neighboring area interference information to the control network element; the step S130 may include: receiving the control network element in the The neighboring area interference information indicates that the interference strength of the neighboring cell is greater than the predetermined interference threshold, and the conversion instruction is sent.
  • the detection of the interference information of the neighboring area is also detected, for example, detecting the interference strength of the neighboring area.
  • the neighboring area here can be understood as a neighboring cell. In the embodiment of the present invention, the cell is a fan The district corresponds.
  • the neighboring area interference information is sent to the control network element, and after the control network element receives the corresponding information, it determines whether a strong neighboring area interference occurs. For example, by comparing with the predetermined interference threshold, it is determined whether there is a comparison. Strong neighborhood interference. If there is strong neighbor interference, there is a sector switching requirement, and sector conversion is required. Therefore, the base station will receive a corresponding conversion instruction and reduce neighbor interference by sector conversion.
  • the above provides four kinds of specified information and corresponding first preset conditions, and the above three optional manners can be used in any combination.
  • the method before the performing the sector conversion by adjusting the working parameters of the tunable antenna and the remote radio unit, the method further includes:
  • the terminal camped in the cell of the base station is handed over to the neighboring cell;
  • the method further includes:
  • the base station After the adjustment of the working parameters of the tunable antenna and the RRU is completed, the base station will automatically configure the new cell. After the new cell is configured, the neighboring cell of the neighboring cell of the base station is correctly configured to be adjacent to the neighboring cell. The cell sends a second update notification, so that the neighboring cell can add the newly configured new cell to the neighbor cell list.
  • the neighbor relationship is at least used to reflect which cells are adjacent to a cell.
  • the method when the control network element is received, when the specified information meets the first preset condition, the method further includes: selecting a conversion opportunity that satisfies the second preset condition; the step S140 may include: at the conversion timing, executing the conversion instruction to adjust the antenna and the radio frequency The operating parameters of the remote unit.
  • the switching timing that satisfies the second preset condition in the embodiment may be an opportunity that the negative influence is within a preset degree during the conversion.
  • the selecting a conversion opportunity that satisfies the second preset condition includes: selecting a time period in which the network load of the base station is less than a second predetermined threshold as the conversion timing.
  • the network load is less than the second predetermined threshold, so that the number of terminals that need to be switched to the adjacent sector is small, and the terminal communication is interrupted less, and the neighbor can be avoided. Excessive congestion of sectors.
  • selecting a conversion opportunity that satisfies the second preset condition may further include: selecting a neighboring base station not to perform sector conversion, and/or, a network load of the neighboring base station is lower than a third predetermined The time period of the threshold is to minimize the adverse effects of the sector conversion process.
  • the base station can know whether the neighboring base station needs to perform sector conversion, predetermined sector switching, current network load status of the neighboring base station, and the like by interacting with information between neighboring base stations.
  • the base station can determine a transition opportunity that satisfies the second preset condition by negotiating information with a neighboring base station.
  • the sector in this embodiment has a corresponding relationship with the cell.
  • the area of the sector is reduced, which may result in a reduction in the area of the corresponding cell.
  • the step S140 may include:
  • the tunable antenna in this embodiment may be an n-port splitting antenna that is remotely controllable.
  • the tunable antenna may include m antenna elements.
  • the antenna element is connected to the antenna port through a feed network.
  • m is greater than the n.
  • the value of n is usually an even number, for example, 2, 4, 6, or 8, and the like.
  • the feed network can include a plurality of power splitters and phase modulators.
  • the AISG interface control line is also shown in Figure 2 .
  • the AISG is an abbreviation of the antenna interface standards group, and the corresponding Chinese is an antenna interface standard group.
  • connection relationship inside the feed network can be adjusted by adjusting the connection relationship between the power splitter and the phase modulator.
  • the feed network may include two connection sub-networks, and the change of the feed network connected to the antenna vibrator may be realized by switching the connection sub-network, thereby realizing the adjustment of the beam characteristics of the antenna.
  • the feeder network may include two connection sub-networks, which are connected by a power splitter and a phase modulator, by changing or sharing the fierce power divider with the two connection sub-networks. And the phase modulator realizes the adjustment of the connection relationship inside the feed network, thereby adjusting the beam characteristics of the antenna.
  • the beam characteristics determine various parameters such as the coverage area and coverage of the antenna, and thus can be used for sector conversion.
  • the intelligent feeder network is connected to an external control device through a standard AISG interface, and has a combination of A and B feed networks therein.
  • the antenna horizontal pattern is a 33° dual beam.
  • the antenna horizontal pattern is a single beam of 65°.
  • the base station controls the splitting and synthesizing of the antenna pay-off diagram by controlling the change of the A and B feed modes through the remote ESC command, thereby completing the sector conversion.
  • 3A is a direction diagram of a dual beam; and FIG. 3B is a direction diagram of a single beam.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this embodiment provides a sector conversion method, including:
  • Step S210 Receive designation information sent by the base station, where the designation information is used to reflect a sector conversion requirement
  • Step S220 determining whether the specified information meets the first preset condition
  • Step S230 Send a conversion instruction to the base station when the specified information meets the first preset condition
  • the conversion instruction is used by the base station to perform operating parameters of the tunable antenna and the radio remote unit to implement sector conversion.
  • the sector conversion method in this embodiment may be applied to the method for controlling a network element in the first embodiment.
  • the control network element herein may be a structure such as an OMC or a SON central server.
  • the step S210 is to receive the specified information that is sent by the base station.
  • the specified information includes: at least one of a terminal ratio of the preset terminal capability, network deployment information, load status information, and detection of neighboring area interference information; The terminal ratio is determined according to the capability parameter of the terminal; the network deployment information is used to reflect the network deployment status of the location where the base station is located; the load status information is used to reflect the load status of the local base station; The information is used to reflect the interference strength of the neighboring cell.
  • the conversion instruction in this embodiment may include a simple conversion indication, and may also include a conversion parameter. These conversion parameters may include adjusted operating parameters of the antenna and RRU, and the like.
  • the control network element may query the pre-configured predetermined information by using the specified information as an index, and select a corresponding conversion parameter. In a specific implementation, the control network element may further output the specified information, receive a conversion parameter returned based on the specified information from a human-machine interaction interface, and form the conversion instruction based on the received conversion parameter.
  • the step S220 includes at least one of the following:
  • step S230 When it is determined in step S230 that the specified information satisfies the first preset condition, a conversion instruction for performing sector conversion is transmitted to the base station to assist the automatic conversion of the complete sector of the base station.
  • This embodiment provides a sector conversion method running in a control network element, which has the characteristics of fast conversion speed and low conversion cost.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • this embodiment provides a base station, including:
  • the detecting unit 110 is configured to detect specified information, where the specified information is used to reflect a sector switching requirement;
  • the first sending unit 120 is configured to send the specified information to the control network element.
  • the first receiving unit 130 is configured to receive a conversion instruction returned by the control network element when the specified information meets the first preset condition
  • the response unit 140 is configured to implement sector conversion by adjusting operating parameters of the adjustable antenna and the remote radio unit in response to the conversion instruction.
  • the detecting unit 110 and the response unit 140 may correspond to a processor that can pass through the base station; of course, it can also correspond to a logic circuit in the base station; in the process of the specific embodiment, the processor can be centrally processed.
  • CPU Central Processing Unit
  • MPU Microprocessor
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • Both the first sending unit 120 and the first receiving unit 130 can correspond to a communication interface in the base station, and can perform information interaction.
  • This embodiment can provide implementation hardware for implementing the sector switching method according to the first embodiment, and has the characteristics of high sector switching intelligence, high efficiency, and low negative impact on communication.
  • the detecting unit 110 may be specifically configured to detect at least one of a terminal proportion, a network deployment information, a load status information, and a neighboring area interference information that have a preset terminal capability;
  • the ratio of the terminal is determined according to the capability parameter of the terminal; the network deployment information is used to reflect the network deployment status of the location where the base station is located; and the load status information is used to reflect the load status of the base station; The neighboring area interference information is used to reflect the interference strength of the neighboring cell.
  • the base station structure corresponding to different designated information is provided below.
  • the detecting unit 110 is configured to detect a capability parameter of the terminal, and calculate, according to the capability parameter, a proportion of terminals in the current sector that have a preset terminal capability;
  • the first sending unit 120 is configured to send the terminal proportion to the control network element
  • the first receiving unit 130 is configured to receive a conversion instruction that is sent by the control network element when the terminal ratio is greater than a proportional threshold.
  • the detecting unit 110 is further configured to detect network deployment information
  • the first sending unit 120 is further configured to send the network deployment information to the control network element;
  • the first receiving unit 130 is further configured to receive a conversion instruction that is sent by the control network element when the network deployment information indicates that the coverage parameter of the base station needs to be adjusted.
  • the detecting unit 110 is further configured to detect load status information of the base station
  • the first sending unit 120 is further configured to send the load status information to the control network element;
  • the first receiving unit 130 is further configured to receive a conversion instruction that is sent by the control network element when the load status information indicates that the network load of the local base station is greater than a first predetermined threshold.
  • the detecting unit 110 is further configured to detect neighboring area interference information
  • the first sending unit 120 is further configured to send the neighboring area interference information to the control network element;
  • the first receiving unit 130 is further configured to receive a conversion instruction that is sent by the control network element when the neighboring area interference information indicates that the interference strength of the neighboring cell is greater than a predetermined interference threshold.
  • the base station further includes:
  • the switching unit is configured to switch the terminal residing in the cell of the base station to the neighboring cell before the sector conversion is performed by adjusting the working parameters of the tunable antenna and the remote radio unit in response to the converting instruction;
  • the first sending unit 120 is further configured to send a first update notification to the neighboring cell, where the first update notification is used to notify the neighboring cell that the old cell formed by the local base station has been deleted.
  • the specific structure of the switching unit may correspond to an information processing structure such as a processor or a logic circuit, and may also correspond to a communication interface, which may be used for information exchanged with a neighboring base station or a terminal.
  • the base station further includes: a configuration unit, configured to perform the sector conversion after adjusting the working parameters of the adjustable antenna and the remote radio unit in response to the conversion instruction, according to the adjustable antenna and the radio frequency pull a working parameter of the remote unit, configuring a new cell; forming a unit, configured to form a second update notification based on the information of the new cell; the first sending unit 120 is further configured And sending the second update notification to the neighboring cell, where the second update notification is used to notify the neighboring cell to adjust the neighbor relationship.
  • the configuration unit and the structure of the forming unit in this embodiment may correspond to the aforementioned processor or processing circuit.
  • the base station further includes: a selecting unit, configured to: after receiving the conversion instruction returned by the control network element after the specified information meets the first preset condition, select a conversion that satisfies the second preset condition
  • the response unit 140 is configured to execute the conversion instruction to adjust operating parameters of the antenna and the remote radio unit at the conversion timing.
  • a selection unit is further added, and the hardware structure corresponding to the selection unit may be a processor or a dedicated logic circuit or the like.
  • the selecting unit is specifically configured to select a time period in which the network load of the base station is less than a second predetermined threshold, as the switching opportunity.
  • a time period in which the network load of the base station is less than a second predetermined threshold as the switching opportunity.
  • the response unit 140 is configured to execute the conversion instruction, and adjust a beam characteristic of the tunable antenna by adjusting a connection relationship inside the feed network in the tunable antenna.
  • the response unit 140 adjusts the beam characteristics of the tunable antenna by adjusting the connection relationship inside the tunable antenna, thereby implementing sector switching.
  • the beam characteristics are different, and the coverage area may be different, so that the sector conversion can be easily realized.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • control network element including:
  • the second receiving unit 210 is configured to receive specified information sent by the base station, where the specified information is used to reflect a sector switching requirement;
  • the determining unit 220 is configured to determine whether the specified information meets the first preset condition
  • the second sending unit 230 is configured to: when the specified information meets the first preset condition, Transmitting a conversion instruction to the base station;
  • the conversion instruction is used by the base station to perform operating parameters of the tunable antenna and the radio remote unit to implement sector conversion.
  • the control network element in this embodiment may be a network device capable of implementing the sector switching method in the second embodiment, and may be, for example, a SON central server or an OMC.
  • the second receiving unit 210 and the second sending unit 230 may correspond to a communication interface capable of communicating with the base station, and can assist and control the sector switching of the base station by interacting with the information of the base station, thereby improving the sector switching of the base station.
  • Efficiency and intelligence may correspond to a processor or a processing circuit in the control network element; the type of the processor may be referred to in the foregoing embodiment, and the processing circuit may be an application specific integrated circuit.
  • the determining unit 220 in this embodiment may be used to determine whether the proportion of the terminal is greater than a proportional threshold or the like, and determine whether the corresponding base station has a sector switching requirement.
  • the processor can complete the function implementation of the corresponding functional unit by executing a predetermined instruction, and has the characteristics of simple structure and simple implementation.
  • the specified information includes: at least one of a terminal proportion of the preset terminal capability, network deployment information, load status information, and detection of neighboring area interference information; and the terminal ratio is determined according to the capability parameter of the terminal.
  • the network deployment information is used to reflect the network deployment status of the location of the base station;
  • the load status information is used to reflect the load status of the local base station;
  • the neighboring area interference information is used to reflect the interference strength of the neighboring cell.
  • the determining unit 220 is configured to perform at least one of the following:
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • an embodiment of the present invention further provides a communication system, including:
  • the base station 310 is configured to detect the specified information, where the specified information is used to reflect the sector conversion requirement; the specified information is sent to the control network element; and the control network element receives the specified information to satisfy the first preset.
  • the returned conversion instruction in response to the conversion instruction, the sector conversion is realized by adjusting the working parameters of the adjustable antenna and the remote radio unit;
  • the control network element 320 is configured to receive the specified information sent by the base station, where the specified information is used to reflect the sector conversion requirement; determine whether the specified information meets the first preset condition; and when the specified information meets the first And transmitting, by the base station, a conversion instruction, where the conversion instruction is used by the base station to perform an operation parameter of the tunable antenna and the radio remote unit to implement sector conversion.
  • a wireless or wired connection is established between the base station and the control network element, and information can be mutually exchanged, and the automatic conversion of the sector of the base station can be realized by the interaction of the designated information and the conversion instruction, and the conversion effect is high. specialty.
  • the base station may correspond to the base station in the foregoing embodiment
  • the control network element may be the foregoing SON central server or a network element such as an OMC.
  • the specified information includes: at least one of a terminal ratio of the preset terminal capability, network deployment information, load status information, and detection of neighboring area interference information; the terminal ratio is determined according to the capability parameter of the terminal; the network The deployment information is used to reflect the network deployment status of the location of the base station; the load status information is used to reflect the load status of the local base station; and the neighboring area interference information is used to reflect the interference strength of the neighboring cell.
  • control network element 320 is configured to determine whether the proportion of the terminal is greater than a proportional threshold
  • the base station is further configured to perform the sector conversion after adjusting the operating parameters of the adjustable antenna and the remote radio unit in response to the conversion instruction, according to the adjustable antenna and the radio remote unit Working parameters, configuring a new cell;
  • the base station 310 is further configured to: after receiving the conversion instruction returned by the control network element when the specified information meets the first preset condition, select a conversion that satisfies the second preset condition. opportunity;
  • the conversion instruction is executed to adjust operating parameters of the antenna and the remote radio unit.
  • the base station 310 is configured to select a time period or a preset time period in which the network load of the base station is less than a second predetermined threshold, as the conversion timing.
  • the base station 310 is configured to execute the conversion instruction, and adjust a beam characteristic of the tunable antenna by adjusting a connection relationship inside the feed network in the tunable antenna.
  • This embodiment provides a base station, including:
  • a memory configured to store a computer program
  • the processor is connected to the memory, and by performing the computer storage, the sector conversion method provided by any one or more of the technical solutions in the first embodiment can be implemented.
  • the memory here is connected to the processor through a bus, and the processor can be: the base station can be Use processor AP (AP, Application Processor), CPU, DSP or FPGA.
  • AP Application Processor
  • CPU central processing unit
  • DSP Digital Signal processor
  • the memory may include: a removable storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.
  • the memory is connected to the processor via a bus; the bus may be connected by an integrated circuit (IIC) bus or an external device interconnect (PCI) bus or the like.
  • IIC integrated circuit
  • PCI external device interconnect
  • the base station provided by this embodiment may be an evolved base station (eNB) or a next generation base station (gNB), where the gNB may include at least a base station in a 5G system.
  • eNB evolved base station
  • gNB next generation base station
  • the embodiment further provides a control network element, including:
  • a memory configured to store a computer program
  • the processor is connected to the memory, and by performing the computer storage, the sector conversion method can be provided by any technical solution of Embodiment 2.
  • the memory in the control network element can also be a medium that can store program code, such as a mobile storage device, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • the processor can also be a CPU, an MCU, a DSP, an AP, or a PLC.
  • the memory in the control network element can also be connected via a bus as well as the processor.
  • control network element The difference between the control network element and the base station is that the computer program stored in the memory is different, and the flow of the sector conversion method performed is different.
  • a computer storage medium is also provided, the computer storage medium storing computer executable instructions for use in the sector conversion method provided in Embodiment 1 and/or Embodiment 2 For example, the methods provided in Embodiments 1 and/or 2 can be performed.
  • the computer storage mechanism may be a removable storage medium such as an optical disk, a magnetic tape or a mobile hard disk, etc., optionally a non-transitory storage medium.
  • the present example provides a method for converting from a low-order MIMO sector to a high-order MIMO volume sector, the method comprising:
  • Detecting cellular wireless networks network deployment and load status, high-capacity terminal ratio
  • the network management server OMC or the ad hoc network center server SON modifies the relevant sector according to the input of the maintenance personnel at an appropriate timing. Configure and notify the base station to convert;
  • the base station performs sector splitting, and automatically converts the low-order MIMO antenna and the radio remote unit into a high-order MIMO antenna and a radio remote unit. Generally, from a low-order MIMO sector to a high-order MIMO sector, the sector covered by the base station may be reduced.
  • the aforementioned high capability terminal may be a high order MIMO terminal, but is not limited to a high MIMO terminal.
  • the trigger condition here is equivalent to the aforementioned first preset condition.
  • the deployment and load status of the network includes, but is not limited to, an increase in the number of base stations, a change in coverage of a single base station, and an interference in an overlapping area; and a network load higher than a certain threshold.
  • the triggering conditions include, but are not limited to, the proportion of the terminal supporting the high-order MIMO in the network reaches a certain pre-configured threshold; and the over-coverage condition reflected by the coverage indicator reaches a pre-configured threshold.
  • the cell configuration performed by the OMC or SON central server includes but is not limited to the following steps:
  • the OMC or SON sends a handover command to the base station
  • the base station cuts out the currently connected terminal to the neighboring cell
  • the base station blocks or deletes the cell
  • the base station sends control commands (including but not limited to the adjustable antenna's ESC command and/or the RF remote unit control command) to adjust from the low-order MIMO radio remote unit and the split antenna to a higher order.
  • control commands including but not limited to the adjustable antenna's ESC command and/or the RF remote unit control command
  • MIMO radio remote unit and antenna implement new radio parameters, base station re-establish and activate cell, base station and neighboring cell to perform configuration update notification of new cell establishment, neighboring cell to perform possible radio parameter adjustment, and the like.
  • the configuration update notification of the new cell may include but is not limited to the following parameters:
  • the cell/cell identity (ID) of the reconfiguration the number of cell transmission and reception antennas after changing to a high-order single cell, the antenna pitch angle and azimuth after changing to a high-order single cell, and the change to a high-order single cell Total transmit power and transmission power of each channel and new neighbor cell configuration.
  • the switching timing refers to the time after the terminal is moved out of the terminal on the base station in a period of small traffic.
  • the present example provides a method for implementing a low-order MIMO sector from a low-order MIMO sector to a high-order MIMO sector according to network load and terminal capability statistics, which may include:
  • Step 1 The terminal reports high-order MIMO capability to the base station
  • Step 2 The base station reports the proportion of the high-order MIMO capable terminal to the OMC or SON;
  • Step 3 After the OMC or SON determines that the proportion of the high-order MIMO capable terminal exceeds the threshold, the adjustment command is sent to the base station; the adjustment command here is a component of the foregoing handover instruction.
  • Step 4 The base station cuts out the remaining connected terminals to the neighboring cell.
  • Step 5 The base station performs configuration update and sends an update notification to notify the neighboring cell and the cell deletion of the local base station.
  • Step 6 The base station blocks or deletes the old cell
  • Step 7 The base station sends a control command to the antenna and the radio unit to adjust the low-order MIMO radio unit and the split antenna to a high-order MIMO radio unit and an antenna.
  • Step 8 Perform cell reconfiguration, re-establishment, and re-activation according to the radio parameters of the new high-order MIMO cell;
  • Step 9 The base station and the neighboring cell perform configuration update notification to notify the neighboring cell of the new base station.
  • Cell establishment
  • Step 10 The neighboring cell performs possible wireless parameter adjustment and the like.
  • Figure 8 is a diagram showing the network topology of a horizontal six sector 2T2R, where each hexagon defines the coverage of a base station. 6 short lines within 6 sides, each representing the azimuth of each sector antenna.
  • the MIMO configuration for each sector is 2T2R.
  • seven base stations are depicted with a station spacing of 500 meters, and the actual network is stretched out in this networking structure. Among them, T in 2T2R represents a transmitting antenna, and R represents a receiving antenna.
  • Figure 9 is a diagram showing the network topology of a three sector 4T4R. Each small hexagon in the figure indicates the coverage of one sector, and the short lines in the sector indicate the azimuth of each sector antenna.
  • the MIMO configuration for each sector is 4T4R. Seven base stations are depicted in Figure 9, with a station spacing of 500 meters, and the actual network is stretched out in this networking structure.
  • Figure 10 is a diagram showing the network topology of a vertical six-sector 2T2R. Each hexagon in the figure represents the coverage of a base station.
  • the solid line 6 is an outer circle and the dotted line 6 is an inner circle.
  • the MIMO configuration for each sector is 2T2R.
  • seven base stations are depicted with a station spacing of 500 meters, and the actual network is stretched out in this networking structure.
  • Figure 11 is a diagram showing the network topology of a twelve-sector 2T2R.
  • Each of the 12-edges in Figure 11 represents the coverage of a base station.
  • the MIMO configuration for each sector is 2T2R. Seven base stations are depicted in Figure 11, with a station spacing of 500 meters, and the actual network is stretched out in this networking structure.
  • Figure 12 is a diagram showing the network topology of a three sector 8T8R. Each small hexagon in Figure 12 represents the coverage of one sector, and the short lines within the sector indicate the azimuth of each sector antenna.
  • the MIMO configuration for each sector is 8T8R.
  • seven base stations are depicted with a station spacing of 500 meters, and the actual network is stretched out in this networking structure.
  • This example provides a conversion from a horizontal six sector 2T2R to a three sector 4T4R.
  • the base station is configured with 12 transmit channels and 12 uplink channels.
  • the specific device form is a horizontal six-sector 2T2R network topology.
  • the topology is shown in Figure 10.
  • Each short line in Figure 10 represents the azimuth of a sector antenna, and its base station is configured as 2T2R.
  • 4R terminals (4R terminals are terminals with 4 receiving antennas)
  • the proportion is increasing.
  • the process can be started and converted into a three-sector 4T4R network.
  • the topology is shown in Figure 11. Thereby supporting higher system capacity.
  • the specific steps are as follows:
  • the base station calculates the 4R terminal capability of the current network and reports it to the OMC or SON server.
  • the OMC or the SON server implements the manual command-based or automatically sends an adjustment command to the corresponding base station according to the prior configuration, and simultaneously transmits the corresponding wireless parameter after changing to the 4T4R sector to the base station.
  • the base station After receiving the adjustment command and the radio parameters, the base station first switches the remaining terminals to the same coverage neighboring sector, and then closes the sector;
  • the base station After the sector is closed, the base station adjusts the split antenna to a 4T4R single-sector antenna through the remote ESC command. At the same time, the two 2T2R antenna RRUs corresponding to the original split antenna are configured as a 4T4R radio unit.
  • the base station After the antenna and the radio unit are adjusted, the base station re-establishes and activates the cell, and configures the new cell according to the radio parameters configured by the OMC or the SON server;
  • the wireless parameters of the neighboring neighboring cells may also be changed accordingly.
  • This example provides a sector conversion method from a vertical six-cell 2T2R to a three-cell 4T4R.
  • the base station is configured with 12 transmit channels and 12 uplink channels.
  • the specific device form is a network topology of a vertical six-cell 2T2R.
  • the topology is shown in Figure 12.
  • the process can be started and converted into a three-cell 4T4R network.
  • the topology is shown in Figure 8. Thereby supporting higher system capacity.
  • the specific steps are as follows:
  • the base station calculates the 4R terminal capability of the current network and reports it to the OMC or SON server.
  • the OMC or the SON server manually or automatically sends an adjustment command to the corresponding base station according to the pre-configuration, and the corresponding radio parameter after the change to the 4T4R cell is also sent to the base station.
  • the base station After receiving the adjustment command and the radio parameters, the base station first switches the remaining terminals to the same coverage neighboring cell, and then closes the cell.
  • the base station After the cell is turned off, the base station adjusts the split antenna to the 4T4R single cell antenna through the remote ESC command. At the same time, the four antennas with the same set of different tilt angles are set to the same tilt angle.
  • the two 2T2R antenna RRUs corresponding to the antenna are configured as one 4T4R radio frequency unit; the four-port antennas are two dual-polarized antennas in one radome.
  • the base station After the antenna and radio unit are adjusted, the base station re-establishes and activates the cell, and configures the new cell according to the radio parameters configured by the OMC or SON server.
  • the wireless parameters of the neighboring neighboring cells may also be changed accordingly.
  • This example provides a sector conversion method of converting a twelve sector 2T2R into a three sector 8T8R.
  • the base station is configured with 24 transmit channels and 24 uplink channels.
  • the specific device form is a 12-sector 2T2R network topology.
  • the topology is shown in Figure 13.
  • Each short line in the figure represents the azimuth of a sector antenna, and its base station is configured as 2T2R.
  • the process can be started and converted into a three-sector 8T8R network.
  • the topology is shown in Figure 14. Thereby supporting higher system capacity.
  • the specific steps are as follows:
  • the base station calculates the 4R terminal capability of the current network and reports it to the OMC or SON server.
  • the OMC or SON server manually or automatically sends an adjustment command to the corresponding base station according to the prior configuration, and will change at the same time.
  • the corresponding radio parameters after the 8T8R sector are also sent to the base station.
  • the base station After receiving the adjustment command and the radio parameters, the base station first switches the remaining terminals to the same coverage neighboring cell, and then closes the cell.
  • the base station After the cell is closed, the base station adjusts the cell splitting antenna to the 8T8R single-cell antenna through the remote ESC command. At the same time, the four 2T2R antenna RRUs corresponding to the original splitting antenna are configured as an 8T8R radio unit.
  • the base station After the antenna and radio unit are adjusted, the base station re-establishes and activates the cell, and configures the new cell according to the radio parameters configured by the OMC or SON server.
  • the wireless parameters of the neighboring neighboring cells may also be changed accordingly.
  • the present example provides a sector conversion method that triggers a six-sector 2T2R transition to a three-sector 4T4R.
  • the base station is configured with 12 transmit channels and 12 uplink channels.
  • the specific device form is a six-sector 2T2R network topology.
  • the antenna width (horizontal half power angle) of the six sectors is narrow, the antenna gain is large, and the coverage radius of the sector is large.
  • the topology is shown in Figure 10.
  • the base station is configured as 2T2R.
  • the process can be started and converted into a three-sector 4T4R network.
  • the topology is as shown in FIG.
  • the width of the three-sector antenna increases, the antenna gain decreases, and the coverage shrinkage reduces the interference between adjacent sectors.
  • the specific steps are as follows:
  • the base station counts the uplink noise rise (IoT) in the live network and reports it to the OMC or SON server.
  • IoT uplink noise rise
  • the OMC or the SON server manually or automatically sends an adjustment command to the corresponding base station according to the prior configuration, and simultaneously transmits the corresponding wireless parameter changed to three sectors to the base station.
  • the base station After receiving the adjustment command and the radio parameters, the base station first switches the remaining terminals to the same coverage neighboring cell, and then closes the cell.
  • the base station After the cell is turned off, the base station adjusts the split antenna to a three-sector antenna through the remote ESC command. At the same time, the two 2T2R antenna RRUs corresponding to the original split antenna are configured as a 4T4R radio unit.
  • the base station After the antenna and radio unit are adjusted, the base station re-establishes and activates the cell, and configures the new cell according to the radio parameters configured by the OMC or SON server, in particular, adjusting the electronic tilt angle of the antenna to control coverage.
  • the wireless parameters of the neighboring neighboring cells may also be changed accordingly.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the base station automatically detects the specified information, and reports the specified information to the control network element.
  • the control network element determines that the condition for performing the sector conversion is satisfied according to the specified information
  • the base station sends the conversion command to the base station, and triggers the base station to perform the fan.
  • Zone conversion The control network element and the base station can easily realize sector conversion through information exchange, and can be widely applied to a mobile communication system, and has the characteristics of simple industrial realization and wide application prospect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种扇区转换方法、基站、控制网元及通信系统,应用于扇区转换方法包括:检测指定信息;其中,所述指定信息用于反映扇区转换需求;将所述指定信息发送给控制网元;接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换。本发明实施例还公开了一种计算机存储介质。

Description

扇区转换方法、基站、网元、通信系统和存储介质
本申请基于申请号为201610333707.3、申请日为2016年05月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信领域的组网技术,尤其涉及一种扇区转换方法、基站、控制网元、通信系统和存储介质。
背景技术
在支持多输入多输出(Multiply Input Multiply Out,MIMO)技术的无线通信网络中,如第四代移动通信技术长期演进(Long Term Evolution,LTE)网络中,通常首先是部署单站低阶天线3扇区,如常见的2天线3扇区基站,以满足基本的终端无线服务需求。而随着网络容量(终端数、吞吐量)的提升,通常的扩容手段是扇区分裂为多扇区,例如通过增加射频拉远单元(Radio Remote Unit,RRU)和天线,改为2天线6扇区基站。以LTE技术为例,典型城区的2天线3扇区改为2天线6扇区后,根据仿真预测,网络容量能够提升50%以上。
但是在现有技术中扇区转换或升级过程中,通常都是需要工作人员更换基站的天线,手动升级基站的RRU。这样的扇区转换,转换操作繁琐、转换耗时长,在转换时间内都不能提供通信服务,可能会导致之前位于该基站覆盖范围内的终端不能接入网络;且转换成本高。
发明内容
有鉴于此,本发明实施例期望提供一种扇区转换方法、基站、控制网 元、通信系统及存储介质,至少部分解决上述问题。
为达到上述目的,本发明的技术方案是这样实现的:
本发明实施例第一方面提供一种扇区转换方法,包括:
检测指定信息;其中,所述指定信息用于反映扇区转换需求;
将所述指定信息发送给控制网元;
接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;
响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换。
本发明实施例第二方面提供一种扇区转换方法,包括:
接收基站发送的指定信息,其中,所述指定信息用于反映扇区转换需求;
判断所述指定信息是否满足第一预设条件;
当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;
其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
本发明实施例第三方面提供一种基站,包括:
检测单元,配置为检测指定信息;其中,所述指定信息用于反映扇区转换需求;
第一发送单元,配置为将所述指定信息发送给控制网元;
第一接收单元,配置为接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;
响应单元,配置为响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换。
本发明实施例第四方面提供一种控制网元,包括:
第二接收单元,配置为接收基站发送的指定信息,其中,所述指定信息用户反映扇区转换需求;
判断单元,配置为判断所述指定信息是否满足第一预设条件;
第二发送单元,配置为当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;
其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
本发明实施例第五方面提供一种通信系统,包括:
基站,配置为检测指定信息;其中,所述指定信息用于反映扇区转换需求;将所述指定信息发送给控制网元;接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换;
控制网元,配置为接收基站发送的指定信息,其中,所述指定信息用于反映扇区转换需求;判断所述指定信息是否满足第一预设条件;当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
本发明实施例第六方面提供一种基站,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器相连,通过执行所述计算机存储,能够实现前述第一方面提供的扇区转换方法。
本发明实施例第七方面提供了一种控制网元,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器相连,通过执行所述计算机存储,能够实现第二方面提供的扇区转换方法。
本发明实施例第八方面提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机第一方面和第二方面任意项提供所述扇区转换方法。
本发明实施例提供扇区转换方法、基站、控制网元、通信系统和存储介质,通过检测指定信息,将指定信息发送给控制网元,能够基于控制网元的转换指令,自动调整可调天线和射频拉远单元的工作参数,实现自动扇区转换,提升扇区转换效率及实现转换自动化。
附图说明
图1为本发明实施例提供的第一种扇区切换方法的流程示意图;
图2为本发明实施例提供的一种可调天线的结构示意图;
图3A为本发明实施例提供的一种波束特性;
图3B为本发明实施例提供的另一种波束特性;
图4为本发明实施例提供的第二种扇区切换方法的流程示意图;
图5为本发明实施例提供的一种基站的结构示意图;
图6为本发明实施例提供的一种控制单元的结构示意图;
图7为本发明实施例提供的第三种扇区切换方法的流程示意图;
图8至图12为本发明实施例提供的扇区结构示意图;
图13为本发明实施例提供的一种通信系统的结构示意图。
具体实施方式
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例一:
如图1所示,本实施例提供一种扇区转换方法,包括:
步骤S110:检测指定信息;其中,所述指定信息用于反映扇区转换需求;
步骤S120:将所述指定信息发送给控制网元;
步骤S130:接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;
步骤S140:响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换。
本实施例所述扇区转换方法可为应用于基站中的扇区转换方法。这里的扇区又可称为扇区,是蜂窝通信网络中提供通信服务的基本单位。
所述扇区转换可包括:根据扩容需求,进行扇区升级等。例如,可以根据网络容量以及网络中高阶MIMO能力的终端比例,进行2天线3扇区升级为2天线6扇区,再由2天线6扇区升级为4天线3扇区的升级演进。这里的高阶MIMO能力为采用指定阶数以上的MIMO技术的能力。
所述步骤S110中基站将会检测指定信息,这里的指定信息可用于控制网元判断是否需要进行本基站的扇区转换。在本实施例中所述控制网元可为用于维护网络设备的操作管理中心(Operation and Maintenance Center,OMC)或自组织网络(Self-Organized Network,SON)的管理中心服务器等能够对基站进行维护控制的管理网元。
在步骤S130中将接收控制网元返回的转换指令。所述转换指令至少包括用于指示是否需要执行转换的操作指令,以及进行转换的各种转换参数。所述转换指令可包括如何重新配置可调天线及RRU的工作参数,所述转换参数可包括转换后的可调天线和RRU的工作参数等信息。当然值得注意的是,所述控制网元,将在根据所述指定信息判断出当前基站确实需要进行扇区的转换时,通过转换指令指示基站进行扇区切换。所述RRU是在远端 将基带光信号转成射频信号放大传送出去。通常,RRU可分为四个功能模块:中频模块、收发信机模块、功放和滤波模块。数字中频模块用于光传输的调制解调、数字上下变频、A/D转换等;收发信机模块完成中频信号到射频信号的变换;再经过功放和滤波模块,将射频信号通过天线口发射出去。通过改变所述RRU的工作参数,可以调整所述RRU的信号放大倍数等工作参数,从而改变本基站发送的无线信号的辐射范围等。
在本实施例中步骤S140中,将响应切换指令,调整可调天线和RRU的工作参数,就能够实现扇区的转换。在本实施例中所述可调天线为通过软件改写其工作参数,就能够使其为新扇区收发信号的天线。具体如,可以通过调整工作参数,调整收发信号的天线数目、调整天线的俯仰角、方位角、总发射功率及单个信道的发射功率等信息。本实施例中的所述可调天线可为可调的劈裂天线。完成了可调天线和RRU的工作参数的调整,就相当于重新划分了基站覆盖的扇区,从而实现了扇区的调整。
总之,本实施例提供了一种扇区转换方法,能够无需工作人员到基站所在地更换天线,调整天线和RRU的工作参数的情况下,就能够通过与控制网元的信息交互,实现扇区的自动转换,具有转换效率高及转换成本低等多重优点。
所述指定信息可包括终端的能力参数、基站的负荷状况信息以及基站所在位置的网络部署信息其中的一个或多个。具体地如,所述步骤S110可包括:检测具有预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;其中,所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。本实施例中所述本基站可为本实施例扇区转换方法的执行基站;或需要进行扇区转换的基站。
所述控制网元可以根据上述信息中的一个或多个,判断是否服务第一预设条件;通常若符合第一预设条件,则认为本基站有扇区切换需求,若不符合第一预设条件,则认为本基站没有扇区切换需求。具体的实现方式有多种,以下提供几种可选方式:
可选方式一:
所述步骤S110可包括:检测终端的能力参数;根据所述能力参数,统计当前扇区内具有预设终端能力的终端比例;所述步骤S120可包括:将所述终端比例发送给所述控制网元;所述步骤S130可包括:接收所述控制网元在所述终端比例大于比例阈值时,发送的转换指令。例如,若本基站当前形成的扇区为低阶的MIMO扇区,而通过接收终端发送的能力参数,确定出经常驻留在本基站形成的扇区内的支持高阶MIMO能力的终端的比例很高,为了提供更好的通信服务,则确定本基站有升级到更高阶的MIMO扇区的需求。则所述基站将接收到转换指令。在本实施例中接收到指示基站执行转换的指令,为支持预设类型扇区的比例达到比例阈值之后发送的,显然使得基站的扇区转换满足了实际需求,而非盲目转换。
可选方式二:
所述步骤S110可包括:检测网络部署信息;所述步骤S120可包括:将所述网络部署信息发送给所述控制网元;所述步骤S130可包括:接收所述控制网元在所述网络部署信息表明需要调整本基站的覆盖参数时,发送的转换指令。
在本实施例中会将网络部署信息发送给控制网元。这里的网络部署信息为本基站附近的网络部署信息,例如,距离本基站指定距离内的网络部署信息,或与本基站相邻的相邻基站的部署信息。这里的网络部署信息可包括基站新增信息、基站删减信息、或相邻基站的覆盖范围变化信息、相邻基站的信号功率信息等。网络部署可决定无线环境是否适宜,可决定本 基站的通信环境。例如,检测到新增相邻基站,若本基站不调整覆盖范围,就可能会导致在交叠区域出现相互干扰,导致通信质量差;则此时,可能需要调整本基站的覆盖范围。在本实施例中所述覆盖参数可包括覆盖范围、无线信号发射功率以及本基站覆盖范围内每一个位置的无线信号的频率等信息。
这样,就实现了本基站在需要调整覆盖参数时,自适应的调整覆盖参数,以实现扇区的转换。
可选方式三:
所述步骤S110可包括:检测本基站的负荷状况信息;所述步骤S120可包括:将所述负荷状况信息发送给所述控制网元;所述步骤S130可包括:接收所述控制网元在所述负荷状况信息表明所述本基站的网络负荷大于第一预定门限时,发送的转换指令。
在本实施例中若本基站在第一预定时间间隔内的负荷状况信息,若本基站经常处于较高的负荷比例,这样可能会导致通信质量差及通信带宽小等问题,显然本基站有扩容的需求。此时,可以通过扇区的转换来实现扩容。故在本实施例中可检测所述负荷状况信息,将负荷状况信息传输到控制网元。
可选方式四:
所述步骤S110可包括:检测邻区干扰信息;所述步骤S120可包括:将所述邻区干扰信息发送给所述控制网元;所述步骤S130可包括:接收所述控制网元在所述邻区干扰信息表明邻小区的干扰强度大于预定干扰门限时,发送的转换指令。
若基站的覆盖范围过大,即扇区覆盖范围过大,就可能会导致邻区之间的相互干扰增强,在本实施例中还包括检测邻区干扰信息,例如,检测邻区干扰强度,这里的邻区可理解为邻小区。本发明实施例中小区是与扇 区相对应的。将邻区干扰信息发送给控制网元,控制网元接收到对应的信息之后,就会判断是否出现较强的邻区干扰,例如,通过与所述预定干扰门限比对,确定出是否有较强的邻区干扰。若有较强的邻区干扰,就存在扇区转换需求,就需要进行扇区转换,故所述基站将会接收到对应的转换指令,通过扇区转换减小邻区干扰。
以上提供了四种指定信息及对应的第一预设条件,上述三种可选方式可以任意结合使用。
可选地,在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之前,所述方法还包括:
将驻留在本基站小区内的终端切换到邻小区;
向邻小区发送第一更新通知;其中,所述第一更新通知用于通知所述邻小区已删除所述本基站形成的旧小区。
在进行扇区转换时,为了保持驻留在本基站形成的旧小区中的终端的通信持续性,在进行转换之前需要将这些终端切换到邻小区。由于进行扇区转换,相当于会删除旧小区,为了确保邻小区的邻区关系正确,在本实施例中在删除旧小区之前,还会形成第一更新通知,该通知将告知本基站的邻小区进行邻区关系更新。
可选地,在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之后,所述方法还包括:
根据可调天线及射频拉远单元的工作参数,配置新小区;
基于所述新小区的信息,形成第二更新通知;
向所述邻小区发送第二更新通知,其中,所述第二更新通知用于通知所述邻小区调整邻区关系。
在完成可调天线和RRU的工作参数调整之后,本基站将自动配置新小区,新小区配置之后,为了确保本基站的邻小区的邻区关系正确,会向邻 小区发送第二更新通知,方便邻小区将新配置的新小区添加到邻小区列表中。所述邻区关系至少用于反映与一个小区相邻的小区有哪些。
可选地,为了尽可能的缩小扇区切换导致的终端通信中断和邻扇区的通信拥堵,在本实施例中当接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令之后,所述方法还包括:选择满足第二预设条件的转换时机;所述步骤S140可包括:在所述转换时机,执行所述转换指令以调整所述天线及所述射频拉远单元的工作参数。在本实施例中所述满足第二预设条件的转换时机可为转换时负面影响在预设程度内的时机。显然在本实施例中进行扇区转换时,不是随机的,这样可以避免由于基站扇区的转换,导致的大量终端通信中断的问题。具体地如,所述选择满足第二预设条件的转换时机,包括:选择本基站的网络负荷小于第二预定门限的时间段,作为所述转换时机。根据本基站的网络负荷来确定,在本实施例中网络负荷小于第二预定门限的时间段,这样需要切换到邻扇区的终端数少,导致的终端通信中断的情况少,且能够避免邻扇区的过分拥堵。
当然在具体的实现过程中,选择满足所述第二预设条件的转换时机,还可包括:选择相邻基站不进行扇区转换,和/或,相邻基站的网络负荷低于第三预定门限的时间段,以尽可能的缩小扇区转换过程中的不利影响。例如,本基站可以通过与相邻基站之间的信息交互,知晓相邻基站是否需要进行扇区转换,预定何时进行扇区转换,相邻基站当前的网络负荷状况等。本基站可以通过与相邻基站之间的信息协商,确定出满足所述第二预设条件的转换时机。
值得注意的是:本实施例中的扇区与小区具有对应关系,例如,扇区的面积缩小,可能导致对应小区的面积缩小。
所述步骤S140可包括:
执行所述转换指令,通过调节所述可调天线中馈电网络内部的连接关 系,调整所述可调天线的波束特性。
例如,本实施例中所述可调天线可为远端可电调控制的n端口劈裂天线。如图2所示,所述可调天线可包括m个天线振子。天线振子通过馈电网络与天线端口连接。其中,所述m大于所述n。所述n的取值通常为偶数,例如,2、4、6或8等。所述馈电网络可包括多个功分器和调相器。在图2中还显示有AISG接口控制线。所述AISG为antenna interface standards group的缩写,对应的中文为天线接口标准组。
示例一,在本实施例中可通过调节功分器和调相器之前的连接关系,实现馈电网络内部的连接关系的调整。
示例二,馈电网络可包括两个连接子网络,可以通过连接子网络的切换,实现与天线振子连接的馈电网络的变化,从而实现天线的波束特性的调整。
示例三:馈电网络可包括两个连接子网络,这两个馈电子网络又通过功分器和调相器连接,通过改变与这两个连接子网络通过共用或不共用这凶恶功分器和调相器,实现馈电网络内部的连接关系的调整,从而调整天线的波束特性。
通常波束特性决定了天线的覆盖区域、覆盖范围等各种参数,从而能够用于扇区的转换。
例如,智能馈电网络通过标准的AISG接口和外部控制设备相连接,其内部有A和B两种馈电网络组合方式,在A馈电网络方式下天线水平方向图为33°的双波束,在B馈电网络方式下天线水平方向图为65°的单波束。基站通过远端电调命令控制A和B馈电方式的变化实现天线放线图的分裂与合成,从而完成扇区转换。图3A为双波束的方向图;图3B为单波束的方向图。
实施例二:
如图4所示,本实施例提供一种扇区转换方法,包括:
步骤S210:接收基站发送的指定信息,其中,所述指定信息用于反映扇区转换需求;
步骤S220:判断所述指定信息是否满足第一预设条件;
步骤S230:当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;
其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
本实施例所述扇区转换方法可为应用于实施例一中控制网元的方法,这里的控制网元可为OMC或SON中心服务器等结构。
步骤S210中将接收基站发送的指定信息,可选地,所述指定信息包括:预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。在步骤S220中,将判断是否符合所述第一预设条件。例如,判断所述终端比例是否大于比例阈值;判断所述网络部署信息是否表明需要调整本基站的覆盖参数。例如,判断是否有新增相邻基站,判断是否有相邻基站改变了覆盖范围等。再例如,判断基站的网络负荷是否高于第一预定门限。本实施例中所述转换指令可包括单纯的转换指示,也可以包括转换参数。这些转换参数可包括天线和RRU的调节后的工作参数等。具体地,所述控制网元可以以所述指定信息为索引,查询预先配置的预定信息,选择出对应的转换参数。在具体的实现时,所述控制网元还可以输出所述指定信息,从人机交互接口接收基于所述指定信息返回的转换参数,基于接收的转换参数,形成所述转换指令。
在一些实施例中所述步骤S220包括以下至少之一:
判断所述终端比例是否大于比例阈值;
判断所述网络部署信息是否表明需要调整本基站的覆盖参数;
判断所述负荷状况信息是否表明对应基站的网络负荷大于第一预定门限;
判断所述林区干扰信息是否表明邻小区的干扰强度大于预设干扰门限。
在步骤S230中当确定出指定信息满足第一预设条件时,向基站发送进行扇区转换的转换指令,以协助基站完整扇区的自动转换。
本实施例提供了一种运行在控制网元中的扇区转换方法,具有转换速度快,转换成本低的特点。
实施例三:
如图5所示,本实施例提供一种基站,包括:
检测单元110,配置为检测指定信息;其中,所述指定信息用于反映扇区转换需求;
第一发送单元120,配置为将所述指定信息发送给控制网元;
第一接收单元130,配置为接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;
响应单元140,配置为响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换。
本实施例提供一种基站能够自动完成扇区转换。在本实施例中所述检测单元110及响应单元140可对应于可以通过基站中的处理器;当然也可对应于基站中的逻辑电路;在具体实施例的过程中,处理器可以为中央处理器(CPU,Central Processing Unit)、微处理器(MPU)、数字信号处理器(DSP,Digital Signal Processor)或现场可编程门阵列(FPGA,Field  Programmable Gate Array)等。
所述第一发送单元120和所述第一接收单元130都可对应于基站中的通信接口,能够进行信息交互。本实施例能够为实现实施例一所述的扇区切换方法提供了实现硬件,具有扇区切换智能性高、效率高及对通信的负面影响小的特点。
所述指定信息的种类有多种,不同种类的指定信息,需要满足的第一预设条件可能不同。具体地如,所述检测单元110,可具体用于检测具有预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;
其中,所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。以下提供对应于不同指定信息的基站结构。
结构一:
所述检测单元110,配置为检测终端的能力参数;根据所述能力参数,统计当前扇区内具有预设终端能力的终端比例;
所述第一发送单元120,配置为将所述终端比例发送给所述控制网元;
所述第一接收单元130,配置为接收所述控制网元在所述终端比例大于比例阈值时,发送的转换指令。
结构二:
所述检测单元110,还配置为检测网络部署信息;
所述第一发送单元120,还配置为将所述网络部署信息发送给所述控制网元;
所述第一接收单元130,还配置为接收所述控制网元在所述网络部署信息表明需要调整本基站的覆盖参数时,发送的转换指令。
结构三:
所述检测单元110,还配置为检测本基站的负荷状况信息;
所述第一发送单元120,还配置为将所述负荷状况信息发送给所述控制网元;
所述第一接收单元130,还配置为接收所述控制网元在所述负荷状况信息表明所述本基站的网络负荷大于第一预定门限时,发送的转换指令。
结构四:
所述检测单元110,还配置为检测邻区干扰信息;
所述第一发送单元120,还配置为将所述邻区干扰信息发送给所述控制网元;
所述第一接收单元130,还配置为接收所述控制网元在所述邻区干扰信息表明邻小区的干扰强度大于预定干扰门限时,发送的转换指令。
上述四种结构的任意多种,可以在不冲突的情况下组合使用。
可选地,所述基站还包括:
切换单元,配置为在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之前,将驻留在本基站小区内的终端切换到邻小区;所述第一发送单元120,还用于向邻小区发送第一更新通知;其中,所述第一更新通知用于通知所述邻小区已删除所述本基站形成的旧小区。所述切换单元的具体结构可对应于处理器或逻辑电路等信息处理结构,同时还可对应于通信接口,该通信接口可用于与相邻基站或终端交互终端切换的信息。
可选地,所述基站还包括:配置单元,配置为在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之后,根据可调天线及射频拉远单元的工作参数,配置新小区;形成单元,配置为基于所述新小区的信息,形成第二更新通知;所述第一发送单元120,还配 置为向所述邻小区发送第二更新通知,其中,所述第二更新通知用于通知所述邻小区调整邻区关系。本实施例中所述配置单元和形成单元的结构,可对应于前述的处理器或处理电路。通过切换单元、配置单元及形成单元的引入,可以实现扇区转换时,终端的切换及邻小区的邻区关系的更新。
可选地,所述基站还包括:选择单元,配置为当接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令之后,选择满足第二预设条件的转换时机;所述响应单元140,配置为在所述转换时机,执行所述转换指令以调整所述天线及所述射频拉远单元的工作参数。在本实施例中还增设了选择单元,选择单元对应的硬件结构,可为处理器或专用逻辑电路等。通过选择单元的引入,与响应单元140配合使用,可以避免随机执行扇区切换导致的负面影响大的问题。例如,所述选择单元,具体用于选择本基站的网络负荷小于第二预定门限的时间段,作为所述转换时机。选择本基站的网络负荷较小时作为所述转换时机,可以尽可能减少终端的切换和对邻扇区的不利影响。
可选地,所述响应单元140,配置为执行所述转换指令,通过调节所述可调天线中馈电网络内部的连接关系,调整所述可调天线的波束特性。在本实施例中所述响应单元140,通过调整可调天线中馈电网络内部的连接关系,调整可调天线的波束特性,从而实现扇区的切换。波束特性不同,可能覆盖区域不同,就可以简便的实现扇区转换。
实施例四:
如图6所示,本实施例提供一种控制网元,包括:
第二接收单元210,配置为接收基站发送的指定信息,其中,所述指定信息用于反映扇区转换需求;
判断单元220,配置为判断所述指定信息是否满足第一预设条件;
第二发送单元230,配置为当所述指定信息满足所述第一预设条件时, 向所述基站发送转换指令;
其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
本实施例所述的控制网元,可为能够实现实施例二中所述扇区切换方法的网络设备,例如,可为SON中心服务器或OMC等。
所述第二接收单元210和所述第二发送单元230可对应于能够与基站进行通信的通信接口,能够通过与基站的信息交互,协助并控制基站的扇区切换,提高基站的扇区切换效率及智能性。所述判断单元220可对应于所述控制网元中的处理器或处理电路;所述处理器的类型可以参见前述实施例中,所述处理电路可为专用集成电路。总之,本实施例中所述判断单元220可用于进行终端比例是否大于比例阈值等判断对应基站是否有扇区切换需求的判断结构。在本发明各实施例中,所述处理器可通过执行预定指令,完成对应功能单元的功能实现,具有结构简单及实现简便的特点。
可选地,所述指定信息包括:预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。
在一些实施例中,所述判断单元220,配置为执行以下至少之一:
判断所述终端比例是否大于比例阈值;
判断所述网络部署信息是否表明需要调整本基站的覆盖参数;
判断所述负荷状况信息是否表明对应基站的网络负荷大于第一预定门限;
判断所述林区干扰信息是否表明邻小区的干扰强度大于预设干扰门限。
实施例五:
如图13所示,本发明实施例还提供一种通信系统,包括:
基站310,配置为检测指定信息;其中,所述指定信息用于反映扇区转换需求;将所述指定信息发送给控制网元;接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换;
控制网元320,配置为接收基站发送的指定信息,其中,所述指定信息用于反映扇区转换需求;判断所述指定信息是否满足第一预设条件;当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
本实施例中所述基站和所述控制网元之间建立有无线或有线连接,能够相互交互信息,通过指定信息及转换指令的交互,可以实现基站的扇区的自动转换,具有转换效果高的特点。在本实施例中所述基站可对应于前述实施例中的基站,所述控制网元可为前述的SON中心服务器或OMC等网元。
所述指定信息包括:预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。
可选地,所述控制网元320,配置为判断所述终端比例是否大于比例阈值;
判断所述网络部署信息是否表明需要调整本基站的覆盖参数;
判断所述负荷状况信息是否表明对应基站的网络负荷大于第一预定门 限;
判断所述林区干扰信息是否表明邻小区的干扰强度大于预设干扰门限。
在一些实施例中,所述基站,还配置为在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之后,根据可调天线及射频拉远单元的工作参数,配置新小区;
基于所述新小区的信息,形成第二更新通知;
向所述邻小区发送第二更新通知,其中,所述第二更新通知用于通知所述邻小区调整邻区关系。
在另一些实施例中,所述基站310,还配置为当接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令之后,选择满足第二预设条件的转换时机;
所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换,包括:
在所述转换时机,执行所述转换指令以调整所述天线及所述射频拉远单元的工作参数。
可选地,所述基站310,配置为选择本基站的网络负荷小于第二预定门限的时间段或预设时间段,作为所述转换时机。
所述基站310,配置为执行所述转换指令,通过调节所述可调天线中馈电网络内部的连接关系,调整所述可调天线的波束特性。
本实施例提供一种基站,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器相连,通过执行所述计算机存储,能够实现实施例一中任意一个或多个技术方案提供的扇区转换方法。
这里的存储器通过总线与处理器相连,所述处理器可为:基站可为应 用处理器AP(AP,Application Processor)、CPU、DSP或FPGA。
所述存储器可包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
所述存储器与所述处理器通过总线连接;所述总线可为:集成电路(IIC)总线或外部上设备互连(PCI)总线等相连。
本实施例提供的基站可为演进型基站(eNB),也可以为下一代基站(gNB),这里的gNB可至少包括5G系统中的基站。
本实施例还提供一种控制网元,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器相连,通过执行所述计算机存储,能够实施例二任意技术方案提供所述扇区转换方法。
所述控制网元中的存储器同样可为移动存储设备、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所述处理器,同样可为CPU、MCU、DSP、AP或PLC等。
所述控制网元中的存储器与处理器同样可通过总线连接。
控制网元和基站的差异在于,存储器中存储的计算机程序不同,执行的扇区转换方法的流程不同。
在一些实施例中,还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于实施例一和/或实施例二提供的扇区转换方法,例如,可执行实施例一和/或二中提供的方法。
所述计算机存储机制可为移动存储介质,例如,光盘、磁带或移动硬盘等,可选为非瞬间存储介质。
以下结合上述实施例提供几个具体示例:
示例一:
本示例提供一种从低阶MIMO扇区转换到高阶MIMO量扇区的方法,该方法包括:
检测蜂窝无线网络中:网络的部署和负荷状态,高能力终端比例;
当蜂窝无线网络的部署,和负荷状态,和/或,高能力终端比例,满足触发条件时,网管服务器OMC或自组织网络中心服务器SON在合适的时机根据维护人员的输入或自动修改相关扇区配置,并通知基站进行转换;
基站进行扇区分裂,把低阶MIMO天线及射频拉远单元自动转换为高阶MIMO天线及射频拉远单元。一般从低阶MIMO扇区转换成高阶的MIMO扇区,基站覆盖的扇区可能会减少。
前述的高能力终端可为高阶MIMO终端,但不限于高MIMO终端。此处的触发条件相当于前述的第一预设条件。
可选地,所述的网络的部署和负荷状态包括但不限于:基站数量增加,单基站站覆盖范围变化信息、交叠区域的调干扰;网络负荷高于某门限等信息。
所述的触发条件包括但不限于:网络中支持高阶MIMO的终端的比例达到某个预先配置的门限值;根据覆盖指标反映的过覆盖情况达到某个预先配置的门限值。
所述的OMC或SON中心服务器,进行的小区配置包括但不限于如下步骤:
OMC或SON发送切换命令给基站;
基站将当前连接终端切出到邻小区;
基站和邻小区进行小区删除的配置更新通知;
基站闭塞或删除小区;
基站发送控制命令(包括但不限于可调天线的电调命令和/或射频拉远单元控制命令)实现从低阶MIMO射频拉远单元及劈裂天线调整为高阶 MIMO射频拉远单元及天线、实施新的无线参数、基站重新建立和激活小区、基站和邻小区进行新小区建立的配置更新通知、邻小区进行可能的无线参数调整等。
所述新小区的配置更新通知可包括但不限于如下参数:
重配置的小区/小区标识(Identification,ID)、变更为高阶单小区后的小区发射及接收天线数、变更为高阶单小区后的天线俯仰角及方位角、变更为高阶单小区后的总发射功率及各个信道发射功率及新的邻小区配置等。
切换时机指在话务量小的时段,先迁出本基站上的终端之后进行。
示例二:
图7所示,本示例提供给一种根据网络负荷以及终端能力统计,实现从原有低阶MIMO扇区到高阶MIMO扇区的方法,可包括:
步骤1:终端上报高阶MIMO能力给基站;
步骤2:基站上报高阶MIMO能力终端比例给OMC或SON;
步骤3:OMC或SON判断出高阶MIMO能力终端比例超过比阈值后,发送调整命令给基站;这里的调整命令为前述切换指令的组成部分。
步骤4:基站将剩余连接终端切出到邻小区;
步骤5:基站进行配置更新并发送更新通知,以通知邻小区及本基站的小区删除;
步骤6:基站闭塞或删除旧小区;
步骤7:基站发送控制命令给天线及射频单元,实现从低阶的MIMO射频单元及劈裂天线调整为高阶的MIMO射频单元及天线;
步骤8:按照新的高阶MIMO小区的无线参数进行小区重配置、重建立和重激活;
步骤9:基站和邻小区进行配置更新通知,通知邻小区本基站的新 小区建立;;
步骤10:邻小区进行可能的无线参数调整等。
图8是描述了水平六扇区2T2R的网络拓扑结构,图中每个6边形表示一个基站的覆盖范围。6边形内的6条短线,每条表示每个扇区天线的方位角。每个扇区的MIMO配置是2T2R。图8中描绘了7个基站,站间距为500米,实际网络是以这种组网结构伸展出去。其中,2T2R中的T表示发送天线,R表示接收天线。
图9是描述了三扇区4T4R的网络拓扑结构,图中每个小6边形表示一个扇区的覆盖范围,扇区内的短线表示每个扇区天线的方位角。每个扇区的MIMO配置是4T4R。图9中描绘了7个基站,站间距为500米,实际网络是以这种组网结构伸展出去。
图10是描述了垂直六扇区2T2R的网络拓扑结构,图中每个6边形表示一个基站的覆盖范围,图10中实线6边形是外圆扇区,虚线6边形是内圆扇区。每个扇区的MIMO配置是2T2R。图10中描绘了7个基站,站间距为500米,实际网络是以这种组网结构伸展出去。
图11是描述了十二扇区2T2R的网络拓扑结构,图11中每个12边形表示一个基站的覆盖范围,12边形内有12条短线,每条表示每个扇区天线的方位角。每个扇区的MIMO配置是2T2R。图11中描绘了7个基站,站间距为500米,实际网络是以这种组网结构伸展出去。
图12是描述了三扇区8T8R的网络拓扑结构,图12中每个小6边形表示一个扇区的覆盖范围,扇区内的短线表示每个扇区天线的方位角。每个扇区的MIMO配置是8T8R。图12中描绘了7个基站,站间距为500米,实际网络是以这种组网结构伸展出去。
示例三:
本示例提供从水平六扇区2T2R到三扇区4T4R的转换。
在网络中,基站下行配置12个发射通道,上行配置了12个收通道。具体的设备形式是水平六扇区2T2R的网络拓扑。拓扑结构如图10所示。图10中每条短线表示一个扇区天线的方位角,其基站配置为2T2R。随着支持4R终端(4R终端为具有4根接收天线的终端)比例不断上升,达到一定比例后,可以启动进程,转变为三扇区4T4R的网络,拓扑结构如图11所示。从而支持更高的系统容量。具体的转变步骤如下:
基站统计现网中4R终端能力,并上报OMC或者SON服务器;
当基站中4R能力终端比例超过某门限时,OMC或SON服务器根据事先配置实现基于人工指令的或者自动地发送调整命令给相应基站,同时将变更为4T4R扇区后的相应无线参数也发送给基站;
基站收到调整命令以及无线参数后,首先将剩余终端切换到同覆盖邻扇区,然后关闭扇区;
关闭扇区后,基站通过远端电调命令,将劈裂天线调整为4T4R单扇区天线;同时,将原来一副劈裂天线对应的2个2T2R天线RRU并柜配置为一个4T4R射频单元;
天线和射频单元调整完毕后,基站重新建立和激活小区,并按照OMC或SON服务器配置的无线参数配置新小区;
该基站重配置完成后,周围邻小区的无线参数也可能做相应更改。
示例四:
本示例提供从垂直六小区2T2R到为三小区4T4R的扇区转换方法。
在网络中,基站下行配置12个发射通道,上行配置了12个收通道。具体的设备形式是垂直六小区2T2R的网络拓扑。拓扑结构如图12所示。随着支持4R终端比例不断上升,达到一定比例后,可以启动进程,转变为三小区4T4R的网络,拓扑结构如图8所示。从而支持更高的系统容量。具体的转变步骤如下:
基站统计现网中4R终端能力,并上报OMC或者SON服务器。
当基站中4R能力终端比例超过某门限时,OMC或SON服务器根据事先配置实现人工地或者自动地发送调整命令给相应基站,同时将变更为4T4R小区后的相应无线参数也发送给基站。
基站收到调整命令以及无线参数后,首先将剩余终端切换到同覆盖邻小区,然后关闭小区。
关闭小区后,基站通过远端电调命令,将劈裂天线调整为4T4R单小区天线;同时,将原来一副不同倾角设置的4口天线设置为相同的倾角。天线对应的2个2T2R天线RRU并柜配置为一个4T4R射频单元;所述4口天线为两个双极化天线在一个天线罩中。
天线和射频单元调整完毕后,基站重新建立和激活小区,并按照OMC或SON服务器配置的无线参数配置新小区。
该基站重配置完成后,周围邻小区的无线参数也可能做相应更改。
示例五:
本示例提供一种将十二扇区2T2R转变为三扇区8T8R的扇区转换方法。
在网络中,基站下行配置24个发射通道,上行配置了24个收通道。具体的设备形式是十二扇区2T2R的网络拓扑。拓扑结构如图13所示。图中每条短线表示一个扇区天线的方位角,其基站配置为2T2R。随着支持4R终端比例不断上升,达到一定比例后,可以启动进程,转变为三扇区8T8R的网络,拓扑结构如图14所示。从而支持更高的系统容量。具体的转变步骤如下:
基站统计现网中4R终端能力,并上报OMC或者SON服务器。
当基站中4R能力终端比例超过某门限时,OMC或SON服务器根据事先配置实现人工地或者自动地发送调整命令给相应基站,同时将变 更为8T8R扇区后的相应无线参数也发送给基站。
基站收到调整命令以及无线参数后,首先将剩余终端切换到同覆盖邻小区,然后关闭小区。
关闭小区后,基站通过远端电调命令,将小区劈裂天线调整为8T8R单小区天线;同时,将原来一副劈裂天线对应的4个2T2R天线RRU并柜配置为一个8T8R射频单元。
天线和射频单元调整完毕后,基站重新建立和激活小区,并按照OMC或SON服务器配置的无线参数配置新小区。
该基站重配置完成后,周围邻小区的无线参数也可能做相应更改。
示例六:
为了收缩覆盖以降低干扰,本示例提供一种触发六扇区2T2R转变为三扇区4T4R的扇区转换方法。
在网络中,基站下行配置12个发射通道,上行配置了12个收通道。具体的设备形式是六扇区2T2R的网络拓扑。六扇区的天线宽度(水平半功率角)较窄,天线增益较大,扇区的覆盖半径较大。拓扑结构如图10所示。基站配置为2T2R。随着网络建设不断进行,站点数量不断增加,站间距不断减小,相邻站间干扰不断增大。当邻扇区干扰达到一定比例后,可以启动进程,转变为三扇区4T4R的网络,拓扑结构如图11所示。三扇区天线的宽度增加,天线增益减小,覆盖收缩从会降低邻扇区间的干扰。具体的转变步骤如下:
基站统计现网中上行噪声抬升(IoT),并上报OMC或者SON服务器。
当基站中长期统计IoT超过某门限时,OMC或SON服务器根据事先配置实现人工地或者自动地发送调整命令给相应基站,同时将变更为三扇区后的相应无线参数也发送给基站。
基站收到调整命令以及无线参数后,首先将剩余终端切换到同覆盖邻小区,然后关闭小区。
关闭小区后,基站通过远端电调命令,将劈裂天线调整为三扇区天线;同时,将原来一副劈裂天线对应的2个2T2R天线RRU并柜配置为一个4T4R射频单元。
天线和射频单元调整完毕后,基站重新建立和激活小区,并按照OMC或SON服务器配置的无线参数配置新小区,特别是调整天线的电子倾角,控制覆盖。
该基站重配置完成后,周围邻小区的无线参数也可能做相应更改。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。
工业实用性
本发明实施例中基站会自动检测指定信息,将指定信息上报控制网元,控制网元根据指定信息确定满足需要进行扇区转换的条件时,将转换指令下发给基站,可触发基站进行扇区转换。控制网元和基站可通过信息交换,简便实现扇区转换,可广泛应用到移动通信系统,具有工业实现简便及应用前景广泛的特点。

Claims (34)

  1. 一种扇区转换方法,包括:
    检测指定信息;其中,所述指定信息用于反映扇区转换需求;
    将所述指定信息发送给控制网元;
    接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;
    响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换。
  2. 根据权利要求1所述的方法,其中,
    所述检测指定信息,包括:
    检测具有预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;
    其中,所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。
  3. 根据权利要求2所述的方法,其中,
    所述接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令,包括:
    接收所述控制网元在所述终端比例大于比例阈值时,发送的转换指令。
  4. 根据权利要求2所述的方法,其中,
    所述接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令,包括:
    接收所述控制网元在所述网络部署信息表明需要调整本基站的覆盖参 数时,发送的转换指令。
  5. 根据权利要求2所述的方法,其中,
    所述接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令,包括:
    接收所述控制网元在所述负荷状况信息表明所述本基站的网络负荷大于第一预定门限时,发送的转换指令。
  6. 根据权利要求2任一项所述的方法,其中,
    所述接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令,包括:
    接收所述控制网元在所述邻区干扰信息表明邻小区的干扰强度大于预定干扰门限时,发送的转换指令。
  7. 根据权利要求1至6任一项所述的方法,其中,
    在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之前,所述方法还包括:
    将驻留在本基站小区内的终端切换到邻小区;
    向邻小区发送第一更新通知;其中,所述第一更新通知用于通知所述邻小区已删除所述本基站形成的旧扇区。
  8. 根据权利要求7所述的方法,其中,
    在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之后,所述方法还包括:
    根据可调天线及射频拉远单元的工作参数,配置新小区;
    基于所述新小区的信息,形成第二更新通知;
    向所述邻小区发送第二更新通知,其中,所述第二更新通知用于通知所述邻小区调整邻区关系。
  9. 根据权利要求1至6任一项所述的方法,其中,
    当接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令之后,所述方法还包括:
    选择满足第二预设条件的转换时机;
    所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换,包括:
    在所述转换时机,执行所述转换指令以调整所述天线及所述射频拉远单元的工作参数。
  10. 根据权利要求9所述的方法,其中,
    所述选择满足第二预设条件的转换时机,包括:
    选择本基站的网络负荷小于第二预定门限的时间段或预设时间段,作为所述转换时机。
  11. 根据权利要求1至6任一项所述的方法,其中,
    所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换,包括:
    执行所述转换指令,通过调节所述可调天线中馈电网络内部的连接关系,调整所述可调天线的波束特性。
  12. 一种扇区转换方法,包括:
    接收基站发送的指定信息,其中,所述指定信息用于反映扇区转换需求;
    判断所述指定信息是否满足第一预设条件;
    当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;
    其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
  13. 根据权利要求12所述的方法,其中,
    所述指定信息包括:预设终端能力的终端比例、网络部署信息、负荷 状况信息及检测邻区干扰信息的至少其中之一;所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。
  14. 根据权利要求13所述的方法,其中,
    所述判断所述指定信息是否满足第一预设条件,包括以下至少之一:
    判断所述终端比例是否大于比例阈值;
    判断所述网络部署信息是否表明需要调整本基站的覆盖参数;
    判断所述负荷状况信息是否表明对应基站的网络负荷大于第一预定门限;
    判断所述林区干扰信息是否表明邻小区的干扰强度大于预设干扰门限。
  15. 一种基站,包括:
    检测单元,配置为检测指定信息;其中,所述指定信息用于反映扇区转换需求;
    第一发送单元,配置为将所述指定信息发送给控制网元;
    第一接收单元,配置为接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;
    响应单元,配置为响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换。
  16. 根据权利要求15所述的基站,其中,
    所述检测单元,配置为检测具有预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;
    其中,所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于 反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。
  17. 根据权利要求16所述的基站,其中,
    所述第一接收单元,配置为接收所述控制网元在所述终端比例大于比例阈值时,发送的转换指令。
  18. 根据权利要求16所述的基站,其中,
    所述第一接收单元,还配置为接收所述控制网元在所述网络部署信息表明需要调整本基站的覆盖参数时,发送的转换指令。
  19. 根据权利要求16所述的基站,其中,
    所述第一接收单元,还配置为接收所述控制网元在所述负荷状况信息表明所述本基站的网络负荷大于第一预定门限时,发送的转换指令。
  20. 根据权利要求16所述的基站,其中,
    所述第一接收单元,还配置为接收所述控制网元在所述邻区干扰信息表明邻小区的干扰强度大于预定干扰门限时,发送的转换指令。
  21. 根据权利要求16至20任一项所述的基站,其中,
    所述基站还包括:
    切换单元,配置为在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之前,将驻留在本基站小区内的终端切换到邻小区;
    所述第一发送单元,还配置为向邻小区发送第一更新通知;其中,所述第一更新通知用于通知所述邻小区已删除所述本基站形成的旧小区。
  22. 根据权利要求21所述的基站,其中,
    所述基站还包括:
    配置单元,配置为在所述响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换之后,根据可调天线及射频拉远单元 的工作参数,配置新小区;
    形成单元,配置为基于所述新小区的信息,形成第二更新通知;
    所述第二发送单元,还配置为向所述邻小区发送第二更新通知,其中,所述第二更新通知用于通知所述邻小区调整邻区关系。
  23. 根据权利要求16至22任一项所述的基站,其中,
    所述基站还包括:
    选择单元,配置为当接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令之后,选择满足第二预设条件的转换时机;
    所述响应单元,配置为在所述转换时机,执行所述转换指令以调整所述天线及所述射频拉远单元的工作参数。
  24. 根据权利要求23所述的基站,其中,
    所述选择单元,具体用于选择本基站的网络负荷小于第二预定门限的时间段,作为所述转换时机。
  25. 根据权利要求16至20任一项所述的基站,其中,
    所述响应单元,具体用于执行所述转换指令,通过调节所述可调天线中馈电网络内部的连接关系,调整所述可调天线的波束特性。
  26. 一种控制网元,其中,包括:
    第二接收单元,配置为接收基站发送的指定信息,其中,所述指定信息用户反映扇区转换需求;
    判断单元,配置为判断所述指定信息是否满足第一预设条件;
    第二发送单元,配置为当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;
    其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
  27. 根据权利要求26所述的控制网元,其中,
    所述指定信息包括:预设终端能力的终端比例、网络部署信息、负荷状况信息及检测邻区干扰信息的至少其中之一;所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。
  28. 根据权利要求27所述的控制网元,其中,
    所述判断单元,配置为执行以下至少之一:
    判断所述终端比例是否大于比例阈值;
    判断所述网络部署信息是否表明需要调整本基站的覆盖参数;
    判断所述负荷状况信息是否表明对应基站的网络负荷大于第一预定门限;
    判断所述林区干扰信息是否表明邻小区的干扰强度大于预设干扰门限。
  29. 一种通信系统,包括:
    基站,配置为检测指定信息;其中,所述指定信息用于反映扇区转换需求;将所述指定信息发送给控制网元;接收所述控制网元在所述指定信息满足第一预设条件时,返回的转换指令;响应所述转换指令,通过调整可调天线及射频拉远单元的工作参数实现扇区转换;
    控制网元,配置为接收基站发送的指定信息,其中,所述指定信息用于反映扇区转换需求;判断所述指定信息是否满足第一预设条件;当所述指定信息满足所述第一预设条件时,向所述基站发送转换指令;其中,所述转换指令用于供所述基站执行可调天线及射频拉远单元的工作参数,以实现扇区转换。
  30. 根据权利要求29所述的通信系统,其中,
    所述指定信息包括:预设终端能力的终端比例、网络部署信息、负荷 状况信息及检测邻区干扰信息的至少其中之一;所述终端比例是根据终端的能力参数统计确定的;所述网络部署信息用于反映本基站所在位置的网络部署状况;所述负荷状况信息用于反映所述本基站的负荷状况;所述邻区干扰信息用于反映邻小区的干扰强度。
  31. 根据权利要求30所述的通信系统,其中,
    所述控制网元,配置为判断所述终端比例是否大于比例阈值;
    判断所述网络部署信息是否表明需要调整本基站的覆盖参数;
    判断所述负荷状况信息是否表明对应基站的网络负荷大于第一预定门限;
    判断所述林区干扰信息是否表明邻小区的干扰强度大于预设干扰门限。
  32. 一种基站,包括:
    存储器,配置为存储计算机程序;
    处理器,与所述存储器相连,通过执行所述计算机存储,能够实现权利要求1至11任一项所述的方法。
  33. 一种控制网元,包括:
    存储器,配置为存储计算机程序;
    处理器,与所述存储器相连,通过执行所述计算机存储,能够实现权利要求12至14任一项所述的方法。
  34. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至14任一项所述的方法。
PCT/CN2017/081851 2016-05-18 2017-04-25 扇区转换方法、基站、网元、通信系统和存储介质 WO2017198046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610333707.3 2016-05-18
CN201610333707.3A CN107404729A (zh) 2016-05-18 2016-05-18 扇区转换方法、基站、网元及通信系统

Publications (1)

Publication Number Publication Date
WO2017198046A1 true WO2017198046A1 (zh) 2017-11-23

Family

ID=60324805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081851 WO2017198046A1 (zh) 2016-05-18 2017-04-25 扇区转换方法、基站、网元、通信系统和存储介质

Country Status (2)

Country Link
CN (1) CN107404729A (zh)
WO (1) WO2017198046A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115474249A (zh) * 2021-06-11 2022-12-13 上海华为技术有限公司 一种小区调整的方法、相关装置以及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067927A (zh) * 2013-01-09 2013-04-24 上海大唐移动通信设备有限公司 一种小区间干扰的优化方法及装置
US20130157710A1 (en) * 2011-12-16 2013-06-20 Telefonaktiebolaget LM Ericsson(pUb) Methods Providing Multipoint Communications Based on Sector Loads And Related Network Nodes
CN103188713A (zh) * 2011-12-28 2013-07-03 华为技术有限公司 无线通讯网络容量管理的方法及基站
CN103297978A (zh) * 2012-02-29 2013-09-11 鼎桥通信技术有限公司 一种小区配置方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418464B2 (en) * 2004-01-27 2008-08-26 International Business Machines Corporation Method, system, and program for storing data for retrieval and transfer
CN103650560B (zh) * 2013-07-22 2017-09-29 华为技术有限公司 共小区的频率规划方法和设备
CN103648118B (zh) * 2013-11-25 2017-04-12 华为技术服务有限公司 一种天馈合并方法和装置
CN104735684B (zh) * 2015-03-24 2018-05-22 浙江大学 一种蜂窝移动通信网络公共控制信号立体覆盖的多扇区联合控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157710A1 (en) * 2011-12-16 2013-06-20 Telefonaktiebolaget LM Ericsson(pUb) Methods Providing Multipoint Communications Based on Sector Loads And Related Network Nodes
CN103188713A (zh) * 2011-12-28 2013-07-03 华为技术有限公司 无线通讯网络容量管理的方法及基站
CN103297978A (zh) * 2012-02-29 2013-09-11 鼎桥通信技术有限公司 一种小区配置方法和装置
CN103067927A (zh) * 2013-01-09 2013-04-24 上海大唐移动通信设备有限公司 一种小区间干扰的优化方法及装置

Also Published As

Publication number Publication date
CN107404729A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
TWI653847B (zh) 支援移動性之方法以及使用者設備
JP6571072B2 (ja) クラウドran環境でrrhの電源を制御する方法
CN102932927B (zh) 无线通信方法、基站和终端
IL266392A (en) Handling limited availability of network slices
KR101613419B1 (ko) 무선 링크 장애 동안 통화 중단 회피
US9820324B2 (en) Network control of terminals with respect to multiple radio access networks
CN112567806A (zh) 第一网络节点、第二网络节点、无线设备及其执行的用于处理链路切换的方法
WO2013178132A1 (zh) 天线波束对准方法及装置
CN107615820B (zh) 集群管理器、无线电节点和控制节点中使用的方法和设备
CN101998468A (zh) 一种移动通信系统中自优化的实现方法、系统和基站
WO2017143871A1 (zh) 基站发现及接入方法、装置、基站、用户设备、存储介质
US20180192345A1 (en) Backhaul aware cell range optimization of small cells in heterogenous networks
WO2017028933A1 (en) Radio base station
US10237041B2 (en) Method and apparatus for self-configuration and self-optimization in a wireless communication system
JP2016529816A (ja) ダウンリンクパワー調整の通知方法及び装置、ならびにダウンリンクパワー調整の取得方法及び装置
EP3089513A1 (en) Providing information related to an establishment of an association between one or more base station transceivers and a mobile transceiver in a mobile communication system
WO2015020596A1 (en) Terminal and method for inter rat access selection in a communications network
JP6190960B2 (ja) 補償セルの利用可能なキャパシティに基づく通信システム無線カバレッジ再構成
CN104955127A (zh) 一种跨系统网络信息交互的方法、终端系统网络网元
WO2015139475A1 (zh) 融合组网配置方法及装置
US10638390B2 (en) Terminal handover method, controller, terminal, base station, and system
JP7277589B2 (ja) 無線チャネル高速走査
WO2017198046A1 (zh) 扇区转换方法、基站、网元、通信系统和存储介质
US10681702B2 (en) Communication method and device
US20150099522A1 (en) Method for avoiding small cell interference during connection of plural lte base stations

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798610

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798610

Country of ref document: EP

Kind code of ref document: A1