WO2017143871A1 - 基站发现及接入方法、装置、基站、用户设备、存储介质 - Google Patents

基站发现及接入方法、装置、基站、用户设备、存储介质 Download PDF

Info

Publication number
WO2017143871A1
WO2017143871A1 PCT/CN2017/000086 CN2017000086W WO2017143871A1 WO 2017143871 A1 WO2017143871 A1 WO 2017143871A1 CN 2017000086 W CN2017000086 W CN 2017000086W WO 2017143871 A1 WO2017143871 A1 WO 2017143871A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
type
information
access
sent
Prior art date
Application number
PCT/CN2017/000086
Other languages
English (en)
French (fr)
Inventor
施小娟
黄河
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017143871A1 publication Critical patent/WO2017143871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a base station discovery and access method, device, base station, user equipment, and storage medium.
  • the two most significant technical goals of the 5G technology goal are to achieve an increase in throughput and user peak rate by one to two orders of magnitude.
  • the industry has found that it is impossible to achieve 5G technical goals by simply enhancing or upgrading existing networks. Therefore, it is necessary to accelerate the deployment of new networks and new technologies based on the further evolution of existing networks and existing technologies. Research and other aspects of exploration.
  • the UDL Ultra Dense Network
  • the use of high-frequency bands with greater bandwidth such as 500MHz-1GHz
  • the frequency band above 6GHz are considered by the industry to be promising in future network development.
  • the densely deployed network refers to densely deploying low power nodes (LPNs) in indoor and/or outdoor hotspot areas to provide small cell coverage.
  • LPN refers to transmission power than conventional
  • the macro base station has a low transmission power and a coverage area smaller than that of the conventional macro base station (for example, several tens of meters), and specifically exists in the form of a micro base station (Pico).
  • UDN can effectively overcome the new features of traditional cellular wireless networks due to their wide coverage, uniform coverage, and fixed coverage characteristics, which cannot meet most of the communication services in the future 5G communication, which are concentrated in indoor and/or outdoor hotspots.
  • the use of high-frequency bands (such as the millimeter wave band) can overcome the current situation in which the low-frequency band has been stretched, providing sufficient bandwidth for future 5G communication systems.
  • UDN uses high frequency bands, it is expected that the two most significant 5G technical goals mentioned above can be achieved well.
  • nRAT new Radio Access Technology
  • an embodiment of the present invention provides a base station discovery and access method, apparatus, base station, user equipment, and storage medium, which are used to solve the base station discovery after using a high frequency carrier in a 5G network existing in the related art. , access information acquisition and base station access issues.
  • the UE detects a discovery reference signal (DRS) sent by the second type of base station;
  • DRS discovery reference signal
  • the UE sends the detected information of the second type of base station to the first type of base station, where the information of the second type of base station is used to trigger the first type of base station to notify the Three types of base stations are turned on;
  • the UE acquires access information of a third type of base station.
  • the DRS is periodically sent by the second type of base station, where at least one of the following signals is included: a synchronization signal, a cell reference signal (CRS), and a channel state indication reference signal (CSI-RS).
  • a synchronization signal a cell reference signal (CRS)
  • CRS cell reference signal
  • CSI-RS channel state indication reference signal
  • the information of the detected second type of base station includes at least one of the following: a cell identifier of the second type of base station, a base station identifier of the second type of base station, and a second type of base station DRS measurement results.
  • the method further includes:
  • the UE receives configuration information of the DRS of the second type of base station from the first type of base station.
  • the UE sends the detected second type of base station to the first type of base station.
  • the method further includes:
  • the UE sends the detected information of the second type of base station to the first type of base station.
  • the requirement includes at least one of the following:
  • the quality of the synchronization signal is above the threshold for the duration T;
  • the CRS signal quality is above the threshold for the duration T;
  • the CSI-RS signal quality is above the threshold for the duration T.
  • the acquiring, by the UE, the access information of the third type of base station includes:
  • the UE acquires access information of the third type of base station from the broadcast information sent by the second type of base station.
  • the access information of the third type of base station includes at least one of the following: a carrier frequency, a carrier bandwidth, a random access channel RACH configuration, and a physical random access channel PRACH configuration.
  • the method further includes:
  • the UE accesses the third type of base station according to the obtained access information of the third type of base station.
  • the UE accesses the third type of base station according to the obtained access information of the third type of base station, including:
  • the UE detects a downlink beam that determines that the third class base station transmits a signal strength that is not lower than a preset threshold
  • the UE sends an access request message MSG1 to the third type of base station in the direction in which the determined downlink beam is located, where the information about the determined downlink beam is included in the MSG1;
  • the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station.
  • the UE accesses the third type of base station according to the obtained access information of the third type of base station, including:
  • the UE sends an access request message MSG1 in multiple directions in a beamforming manner according to the obtained access information of the third type of base station;
  • the UE receives the access response message MSG2 sent by the base station of the third type of base station, and the MSG2 includes the information of the uplink beam that is determined by the base station and whose signal strength is not lower than a preset threshold.
  • the UE selects at least one base station belonging to the third type of base station, and sends a contention collision request message MSG3 on the uplink beam indicated by the MSG2 sent by the selected base station, where the MSG3 includes the selected base station transmit signal strength determined by the UE.
  • the MSG3 further includes at least one of the following: the capability information of the UE, the configuration information of the UE on the primary connection, and the UE received by the UE from the first type of base station. Capacity allocation policy information.
  • the method further includes:
  • the UE After receiving the logical cell identifier of the third type of base station, the UE reports the received logical cell identifier to the first type of base station.
  • the MSG4 includes secondary connection configuration information between the UE and the third type of base station.
  • the first type of base station receives information about the detected second type of base station sent by the user equipment, and the information of the second type of base station is used to trigger the first type of base station to notify the third type of base station to be turned on;
  • the first type of base station notifies the third type of base station to be turned on;
  • the first type of base station sends a radio resource control RRC message to the UE, where the RRC message includes access information of the third type of base station.
  • the method further includes:
  • the first type of base station sends configuration information of the discovery reference signal DRS of the second type of base station to the UE.
  • the information of the detected second type of base station includes at least one of the following: a cell identifier of the second type of base station, a base station identifier of the second type of base station, and a second type of base station
  • the measurement result of the reference signal DRS is found.
  • the access information of the third type of base station includes at least one of the following: a carrier frequency, a carrier bandwidth, a random access channel RACH configuration, and a physical random access channel PRACH configuration.
  • the configuration information of the DRSs of the plurality of base stations belonging to the second type of base station is used by the first type of base station system.
  • the first type of base station configures DRS configuration information of the base station belonging to the second type of base station in the vicinity of the UE according to the footprint information of the UE, where the UE
  • the footprint information includes: location information of the UE, or measurement information of a neighboring cell where the UE is located.
  • the notifying the third type of base station to be opened including:
  • the first type of base station notifies that the third type of base station that is co-located with the second type of base station is turned on;
  • the first type of base station notifies the second type of base station
  • the third type of base station in the coverage of the DRS signal is turned on;
  • the one-to-one co-station of the second type of base station and the third type of base station means that the second type of base station and the third type of base station are geographically one-to-one deployed in the same geographical position;
  • the class base station and the third type of base station part co-station means that the number of the second type of base stations is less than the third type of base stations, and only some of the two types of base stations are one-to-one deployed in the same geographical position;
  • the non-co-location of the class base station and the third type of base station means that the two types of base stations are completely separated and deployed geographically.
  • the second type of base station acquires configuration information of the uplink reference signal of the UE from the first type of base station;
  • the second type of base station detects an uplink reference signal sent by the UE
  • the second type of base station After detecting the uplink reference signal sent by the UE, the second type of base station notifies the third type of base station to enable or notify the first type of base station to detect the uplink reference signal sent by the UE, to trigger the first type of base station to notify the third
  • the class base station is turned on.
  • the third type of base station is notified to start or notify the first type of base station to detect the uplink reference signal sent by the UE to trigger the A type of base station notifies the third type of base station to open, including:
  • the second type of base station When the second type of base station and the third type of base station are co-located one-to-one, the second type of base station notifies the third-class base station to the third station after detecting the uplink reference signal.
  • the base station is turned on, or after the second type of base station notifies the first type of base station that the uplink reference signal is detected, the first type of base station notifies that the third type of base station is turned on;
  • the second type of base station detects the uplink reference signal, and then notifies The third type of base station in the uplink coverage of the second type of base station is turned on, or is notified by the first type of base station after the second type of base station notifies the first type of base station that the uplink reference signal is detected.
  • the third type of base station in the uplink coverage of the class base station is turned on;
  • the one-to-one co-station of the second type of base station and the third type of base station means that the second type of base station and the third type of base station are geographically one-to-one deployed in the same geographical position;
  • the class base station and the third type of base station part co-station means that the number of the second type of base stations is less than the third type of base stations, and only some of the two types of base stations are one-to-one deployed in the same geographical position;
  • the non-co-location of the class base station and the third type of base station means that the two types of base stations are completely separated and deployed geographically.
  • the first type of base station sends configuration information of the uplink reference signal of the user equipment UE to the second type of base station;
  • the first type of base station After receiving the notification message sent by the second type of base station, the first type of base station notifies the third type of base station to start;
  • the first type of base station sends the access information of the third type of base station to the UE.
  • the method further includes:
  • the first type of base station After the first type of base station and the UE establish a primary connection, the first type of base station configures an uplink reference signal for the UE.
  • the first type of base station provides the UE with access information of the third type of base station, including:
  • the first type of base station sends a radio resource control (RRC) message to the UE, where the RRC message includes access information of the third type of base station.
  • RRC radio resource control
  • the user equipment UE sends an uplink reference signal
  • the method further includes:
  • the UE accesses the third type of base station according to the obtained access information of the third type of base station.
  • the UE accesses the third type of base station according to the obtained access information of the third type of base station, including:
  • the UE detects a downlink beam that determines that the third class base station transmits a signal strength that is not lower than a preset threshold
  • the UE sends an access request message MSG1 to the third type of base station in the direction in which the determined downlink beam is located, where the information about the determined downlink beam is included in the MSG1;
  • the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station.
  • the UE accesses the third type of base station according to the obtained access information of the third type of base station, including:
  • the UE sends an access request message MSG1 in multiple directions in a beamforming manner according to the obtained access information of the third type of base station;
  • the UE receives the access response message MSG2 sent by the base station of the third type of base station, and the MSG2 includes the information of the uplink beam that is determined by the base station and whose signal strength is not lower than a preset threshold.
  • the UE selects at least one base station belonging to the third type of base station, and sends a contention collision request message MSG3 on the uplink beam indicated by the MSG2 sent by the selected base station, where the MSG3 includes the selected base station transmit signal strength determined by the UE.
  • the MSG3 further includes at least one of the following: the capability information of the UE, the configuration information of the UE on the primary connection, and the UE received by the UE from the first type of base station. Capacity allocation policy information.
  • the method further includes:
  • the UE After receiving the logical cell identifier of the third type of base station, the UE reports the received logical cell identifier to the first type of base station.
  • the MSG4 includes secondary connection configuration information between the UE and the third type of base station.
  • the third type of base station receives the access request message MSG1 sent by the user equipment UE;
  • the third type of base station sends an access response message MSG2 to the UE, where the MSG2 includes an uplink beam that is determined by the third type of base station and whose uplink signal strength is not lower than a preset threshold. information;
  • the third type of base station receives, in the determined uplink beam direction, a contention conflict request message (MSG3) sent by the UE, where the signal strength of the third type of base station determined by the UE is not lower than a preset threshold.
  • MSG3 contention conflict request message
  • the third type of base station sends a contention conflict resolution message MSG4 on the downlink beam indicated by the MSG3;
  • MSG2 and MSG4 only one message in MSG2 and MSG4 needs to include the logical cell identifier of the base station.
  • the MSG3 further includes at least one of the following: the capability information of the UE, the configuration information of the UE on the primary connection, and the UE received by the UE from the first type of base station. Capacity allocation policy information.
  • the MSG4 includes secondary connection configuration information between the UE and the third type of base station.
  • the base station discovery apparatus provided by the embodiment of the present invention is applied to a user equipment, and includes:
  • a detecting module configured to detect a discovery reference signal DRS sent by the second type of base station
  • a sending module configured to: when the DRS signal quality meets a preset condition, send the detected information of the second type of base station to the first type of base station, where the information of the second type of base station is used to trigger the first type of base station Notifying the third type of base station to be turned on;
  • the obtaining module is configured to obtain access information of the third type of base station.
  • the DRS is periodically sent by the second type of base station, and at least includes one of the following signals: a synchronization signal, a cell reference signal CRS, and a channel state indication reference signal CSI-RS.
  • the information of the detected second type of base station includes at least one of the following: a cell identifier of the second type of base station, a base station identifier of the second type of base station, and a second type of base station DRS measurement results.
  • the acquiring module is further configured to:
  • the base station discovery device further includes:
  • the access module is configured to access the third type of base station according to the obtained access information of the third type of base station.
  • the access module is further configured to:
  • the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station.
  • the access module is further configured to:
  • a base station discovery apparatus is applied to a first type of base station, and includes:
  • a receiving module configured to receive information about the detected second type of base station sent by the user equipment UE, where the information of the second type of base station is used to trigger the first type of base station to notify the third type of base station to be turned on;
  • a notification module configured to notify the third type of base station to be turned on
  • the sending module is configured to send a radio resource control RRC message to the UE, where the RRC message includes access information of the third type of base station.
  • a base station discovery apparatus is applied to a second type of base station, and includes:
  • An acquiring module configured to acquire configuration information of an uplink reference signal of the UE from the first type of base station
  • a detecting module configured to detect an uplink reference signal sent by the UE
  • a notification module configured to notify the third type of base station to enable or notify the first type of base station to detect an uplink reference signal sent by the UE, to trigger the first type of base station to notify, after the base station detects the uplink reference signal sent by the UE,
  • the third type of base station is turned on.
  • a base station discovery apparatus is applied to a first type of base station, and includes:
  • a sending module configured to send configuration information of an uplink reference signal of the user equipment UE to the second type of base station
  • the notification module is configured to notify the third type of base station to open after receiving the notification message sent by the second type of base station;
  • the sending module is further configured to send the access information of the third type of base station to the UE.
  • the base station discovery apparatus provided by another embodiment of the present invention is applied to a user equipment, and includes:
  • a sending module configured to send an uplink reference signal
  • An acquiring module configured to notify the first type of base station after the second type of base station detects the uplink reference signal sent by the user equipment, and notify the third type of base station to be started by the first type of base station or the second type of base station Obtaining access information of the third type of base station.
  • the base station discovery device further includes:
  • the access module is configured to access the third type of base station according to the obtained access information of the third type of base station.
  • the access module is further configured to:
  • the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station.
  • the access module is further configured to:
  • the access device provided by the embodiment of the present invention is applied to a third type of base station, and includes:
  • a receiving module configured to receive an access request message MSG1 sent by the user equipment UE;
  • a sending module configured to send an access response message (MSG2) to the UE, where the MSG2 includes information about an uplink beam that is determined by the third type of base station and whose uplink signal strength is not lower than a preset threshold;
  • the receiving module is further configured to receive, in the determined uplink beam direction, a contention conflict request message (MSG3) sent by the UE, where the signal strength of the third type of base station determined by the UE in the MSG3 is not lower than a preset Setting the information of the downlink beam of the threshold;
  • MSG3 contention conflict request message
  • the sending module is further configured to send a contention conflict resolution message MSG4 on the downlink beam indicated by the MSG3;
  • MSG2 and MSG4 only one message in MSG2 and MSG4 needs to include the logical cell identifier of the base station.
  • the user equipment provided by the embodiment of the present invention includes the foregoing base station discovery apparatus.
  • the base station provided by the embodiment of the present invention includes the foregoing base station discovery apparatus.
  • the base station provided by the embodiment of the present invention includes the access device described above.
  • the storage medium provided by the embodiment of the present invention stores computer executable instructions configured to perform the foregoing base station discovery method or access method.
  • the base station using the high frequency carrier is in a closed state when no UE is served, and the low frequency transmission on the low frequency carrier is detected by the UE.
  • the DRS signal determines that the UE approaches or enters the base station using the high frequency carrier, or determines that the UE approaches or enters the base station using the high frequency carrier by detecting the uplink reference signal sent by the UE using the base station using the low frequency carrier, turns on the high frequency carrier, and uses
  • the access information of the base station of the high frequency carrier is notified to the UE through the primary connection, and the UE accesses the base station using the high frequency carrier according to the obtained access information.
  • the technical solution provided by the embodiment of the present invention can also implement the configuration process of synchronously completing the secondary connection in the access process, speed up the secondary connection configuration, and quickly use the primary connection and the secondary connection to simultaneously serve the UE, thereby improving the user data. Transmission rate and service experience.
  • Figure 1 is a schematic diagram of a network deployment of 5G PhanseI
  • FIG. 2 is a schematic diagram of coverage of a millimeter wave base station
  • FIG. 3 is a schematic flowchart of a method for discovering a base station based on a UE side according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a first access mode in a method for discovering a base station based on a UE according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a second access mode in a method for discovering a base station based on a UE according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of another base station discovery method based on a second type of base station side according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of an access method based on a third type of base station side according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram 1 of a network deployment applied to an embodiment of the present invention.
  • FIG. 9 is a flowchart of an implementation of Embodiment 1 of the present invention.
  • FIG. 11 is a schematic diagram 2 of a network deployment applied to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram 1 of a base station discovery apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a second schematic structural diagram of a base station discovery apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram 3 of a base station discovery apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram 4 of a base station discovery apparatus according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram 5 of a base station discovery apparatus according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of an access device according to an embodiment of the present invention.
  • the research and commercialization of any technology are gradually advanced. It is necessary to use nRAT to provide services for user equipment (UE) in one step. On the one hand, it requires a large number of long-term technical research work to overcome the nRAT independent network. Many problems have led to serious delays in the commercialization of 5G technology; on the other hand, the direct abandonment of existing networks and the large-scale deployment of wireless networks using nRAT will also waste existing investments.
  • the first phase of the 5G deploys a base station (such as LPN) using nRAT in the coverage or coverage boundary of a base station device (such as a macro base station) that has been deployed on the existing network.
  • the wireless access network jointly forms a service for the UE.
  • a base station employing 4G LTE technology and a multi-connection system using an LPN using a high frequency carrier (such as a carrier using 6 GHz or more) using nRAT jointly transmit data for the UE.
  • FIG. 1 is a schematic diagram of a network deployment in a 5G phase (Phanse) I.
  • the elliptical region in the figure is a base station using 4G LTE technology and using a low frequency carrier, and the present invention is called a centimeter wave base station (cm-eNB), and the wireless coverage is formed. That is, in the cell referred to in the related art, within the coverage of the cm-eNB, LPNs are densely deployed in some areas. These LPNs use high frequency carriers, and the signals are transmitted in a beamforming manner.
  • the present invention refers to these base stations as millimeter wave base stations. (mm-eNB).
  • the UE establishes a connection with the cm-eNB through the air interface, and when the UE enters the LPN dense deployment area, the UE can also establish a connection with the mm-eNB through the air interface, which is performed by the cm-eNB together with the mm-eNB.
  • Serving the UE where the connection between the UE and the cm-eNB is called the primary connection, the cm-eNB is called the primary base station, the connection between the UE and the mm-eNB is called the secondary connection, and the mm-eNB is called the secondary base station. .
  • mm-eNB if the common channel is omnidirectionally transmitted and the data channel is transmitted in a beamforming manner, then The access coverage of the mm-eNB as shown in FIG. 2 or the difference between the discovery coverage and the data transmission coverage may occur. Therefore, it is generally believed that a base station using a high frequency carrier also needs to use a beamforming to transmit a common channel.
  • the common channel is transmitted by using a beamforming method. If the base station discovery and the access method for the low-frequency carrier in the related art are directly applied, the cell access information acquisition and access method will inevitably result in high delay of base station discovery, information acquisition, and access. Low efficiency, high energy consumption, and ultimately affect the use efficiency and user experience of high frequency carriers.
  • the specific wireless space coverage attribute is not limited.
  • the base station may be a set of one or a group of cells, or may be a set of one or a group of beams.
  • the base station in the present invention does not limit the physical devices of the base stations to which the base station functions mentioned in the present invention are specific.
  • the base station may include a baseband processing unit (BBU) and a remote radio unit (RRU) on the physical device, or may include a wireless cloud center (RCC, Radio Cloud Center) and a wireless remote system (RSS, Radio Remote System), wherein the RSS can also be divided into a Radio Aggregation Unit (RAU) and a Radio Remote Unit (RAU).
  • BBU baseband processing unit
  • RRU remote radio unit
  • RRCC Radio Cloud Center
  • RSS Radio Remote System
  • the function of the base station mentioned in the present invention can be in the above BBU, RRU, RCC, RSS, RAU. Implemented on any device.
  • the low frequency carrier and the high frequency carrier in the present invention are relative concepts.
  • the frequency band used by the high frequency carrier is higher than the frequency band used by the low frequency carrier, and what carrier belongs to the low frequency carrier, and what carrier belongs to the high frequency carrier.
  • the specific system and the specific application may be different.
  • the carrier below 6 GHz is a low frequency carrier
  • the carrier above 6 GHz is a high frequency carrier
  • the carrier below 30 GHz is a low frequency carrier
  • above 30 GHz The carrier is a high frequency carrier.
  • the technical solution provided by the embodiment of the present invention relates to a first type of base station, a second type of base station, and a third type of base station.
  • the first type of base station belongs to a base station that uses a low frequency carrier, and adopts a related radio access technology RAT, such as LTE technology;
  • the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to a base station that uses a high frequency carrier, and the UE and
  • the first type of base station establishes a primary connection;
  • the first type of base station The coverage of the second base station may be a small base station, for example, the coverage of the second type of base station may be a low power node, and the coverage of the third type of base station may also be a low power node.
  • FIG. 3 is a schematic flowchart of a method for discovering a base station according to an embodiment of the present invention. This embodiment is based on a UE side, and the method includes:
  • Step 310 The UE detects a discovery reference signal (DRS, Discovery Reference Signal) sent by the second type of base station.
  • DRS Discovery Reference Signal
  • the second type of base station may periodically send the DRS.
  • the UE Before detecting the DRS periodically sent by the second type of base station, the UE receives the configuration information of the second type of base station periodically transmitting the DRS from the first type of base station, and the UE detects the DRS according to the received configuration information of the second type of base station.
  • the DRS sent by the second type of base station can be more accurate, faster, and more energy efficient.
  • the DRS configuration information of the base stations of the second type of base station in the coverage of the first type of base station, the first type of base stations may be uniformly configured into the same information, or may be separately configured as not identical information;
  • the first type of base station configures, for the UE, the base station of the second type of base station near the UE according to the footprint information of the UE.
  • DRS configuration information When the DRS configuration information of the base station of the second type of base station in the coverage of the first type of base station is configured to be different, the first type of base station configures, for the UE, the base station of the second type of base station near the UE according to the footprint information of the UE.
  • the DRS periodically transmitted by the second type of base station includes at least one of the following signals: a synchronization signal, that is, a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Cell Reference Signal (CRS). Cell Reference Signal) and/or channel state indication reference signal (CSI-RS, Channel-State Information–Reference Signal);
  • a synchronization signal that is, a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Cell Reference Signal (CRS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS Cell Reference Signal
  • Cell Reference Signal Cell Reference Signal
  • CSI-RS Channel state indication reference signal
  • the second type of base station may be a base station capable of providing access to the UE and providing a data transmission service, or may be a base station transmitting only the DRS;
  • Step 320 When the DRS signal quality meets a preset condition, the UE sends the detected information of the second type of base station to the first type of base station.
  • the information of the second type of base station is used to trigger the first type of base station to notify the third type of base.
  • the station is open.
  • the UE determines whether the DRS signal quality of the second type of base station satisfies the requirement reported to the first type of base station by detecting the DRS signal periodically sent by the second type of base station, and if the requirement is met, sends the detected second type of base station to the first type of base station.
  • Information
  • the second type of base station DRS signal quality satisfies the requirements reported to the first type of base station, including at least one of the following:
  • the PSS/SSS signal quality is above the threshold for the duration T;
  • the CRS signal quality is above the threshold for the duration T;
  • the CSI-RS signal quality is above the threshold for the duration T;
  • a cell identifier or a base station identifier such as a physical cell identifier (PCI)
  • PCI physical cell identifier
  • the first type of base station receives the information of the second type of base station sent by the UE, and notifies the third type of base station to start. Prior to this, if the third type of base station does not serve any UE, the third type of base station can be in the off state. Here, the third type of base station is in the off state, that is, the third type of base station may not transmit signals, but does not limit the third type of base station to receive signals. When the third type of base station is turned on, it means that the third type of base station starts to send the downlink signal.
  • the second type of base station and the third type of base station may be geographically one-to-one base stations deployed in the same geographical location, that is, the second type of base station and the third type of base station are one-to-one common station, or may be the second type.
  • the number of base stations is less than that of the third type of base stations, and the geographically completely separated deployment or the smaller number of second type base stations and some of the third type of base stations are co-located.
  • the first type of base station receives the information of the second type of base station sent by the UE, and the first type of base station notifies the first one of the second type of base station
  • the third type of base station is turned on; when the second type of base station and the third type of base station are not co-located or are co-located with some of the third type of base stations, the first type of base station notifies the third type of base station in the coverage of the second type of base station DRS signal to be turned on;
  • Step 330 The UE acquires access information of the third type of base station.
  • the UE acquires access information of the third type of base station through the primary connection.
  • the access information of the third type of base station may be stored in the first type of base station, or may be stored in an access information data center (AIC).
  • AIC in the present invention provides a function of storing information, specifically It can be integrated into the existing network element device, or it can be a separate device independent of the existing network element device, and its function can be realized.
  • the UE obtains access information of the third type of base station by receiving a radio resource control (RRC) message sent by the first type of base station, or accesses the information data center by using application layer data carried on the primary connection.
  • RRC radio resource control
  • the UE acquires access information of the third type of base station that is co-located with the second type of base station; and when the second type of base station and the third type When the base station is not co-located or co-located with a part of the third type of base station, the UE acquires access information of the third type of base station within the coverage of the second type of base station DRS signal, wherein all of the second type of base station DRS signal coverage
  • the base stations belonging to the third type of base station are configured with the same access information;
  • the second type of base station and the third type of base station are co-located one-to-one and the second type of base station can be a base station capable of providing access to the UE and providing a data transmission service
  • the UE can also broadcast from the second type of base station. Obtaining access information of the third type of base station in the information;
  • the access information of the third type of base station includes at least:
  • RACH random access channel
  • PRACH physical random access channel
  • the method may further include:
  • Step 340 The UE accesses the third base station according to the obtained access information of the third type of base station.
  • the UE receives the signal sent by the third type of base station and according to the obtained access information of the third type of base station Accessing the third type of base station can include the following two methods:
  • FIG. 4 is a flowchart of a method for a first access method, including:
  • Step 410 The UE detects a strongest downlink beam that is sent by the third type of base station.
  • the UE detects the strongest downlink beam transmitted by the third type of base station.
  • the technical solution provided by the present invention is not limited to detecting the strongest beam, and only needs to detect and determine that the transmitted signal strength is not low.
  • "strongest" is only a preferred solution.
  • the third type of base station transmits signals in multiple directions in a beamforming manner
  • the UE can implement time synchronization and frequency synchronization with the third type of base station by detecting signals transmitted by the third type of base station; time synchronization includes at least one of the following: frame synchronization, subframe synchronization, and symbol synchronization;
  • Step 420 The UE sends an access request message (MSG1) to the third base station in the direction in which the strongest downlink beam is located according to the obtained access information of the third type of base station, where the information of the strongest downlink beam is included in the MSG1. ;
  • the UE sends the MSG1 to the third base station in the direction indicated by the access information acquired in step 330 in the direction in which the strongest downlink beam is located;
  • the information of the strongest downlink beam may be the beam identifier of the strongest downlink beam
  • Step 430 The UE receives an access response message (MSG2) sent by the third type of base station on the strongest downlink beam notified by the UE.
  • MSG2 access response message
  • the logical cell identifier of the third type of base station may be included in the MSG2;
  • Step 440 The UE sends a contention conflict request message (MSG3) to the third type of base station in a direction in which the strongest downlink beam is located.
  • MSG3 contention conflict request message
  • the MSG3 may include at least one of the following: UE capability information, configuration information of the UE on the primary connection, and UE capability allocation policy information received by the UE from the primary base station (the first type of base station);
  • Step 450 The UE receives a contention conflict sent by the third type of base station on the strongest downlink beam. Resolve the message (MSG4);
  • the logical cell identifier of the third type of base station may be included in the MSG4; in the step 430 and the step 450, only one message in the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station;
  • the UE may report the logical cell identifier to the first type of base station.
  • the MSG4 may further include secondary connection configuration information between the UE and the third type of base station.
  • the third type of base station is turned off if no MSG1 from the UE is detected within the time T.
  • Figure 5 is a flowchart of a method for the second access mode, including:
  • Step 510 The UE sends an access request message (MSG1) in multiple directions according to the obtained access information of the third type of base station in a beamforming manner;
  • the UE sends the MSG1 in multiple directions in a beamforming manner on the resource indicated by the access information acquired in step 330;
  • Step 520 The UE receives an access response message (MSG2) sent by at least one base station that belongs to the third type of base station, where each MSG2 includes information of the strongest uplink beam of the UE determined by the base station;
  • MSG2 access response message
  • the base station detects the strongest uplink beam of the UE transmitting signal.
  • the technical solution provided by the present invention is not limited to detecting the strongest beam, and only needs to detect and determine that the transmitted signal strength is not lower than the preset.
  • the threshold beam is OK, and the "strongest" is just a preferred solution.
  • the logical cell identifier of the base station (belonging to the third type of base station) may also be included in the MSG2;
  • Step 530 The UE selects at least one third type of base station, and sends a contention collision request message (MSG3) in the direction of the strongest uplink beam indicated by the selected base station, and the MSG3 includes the selected base station belonging to the third type.
  • the MSG3 may include at least one of the following: UE capability information, configuration information of the UE on the primary connection, and UE capability allocation policy information received by the UE from the primary base station (the first type of base station);
  • Step 540 The UE receives a contention conflict resolution message (MSG4) sent by the selected base station on the strongest downlink beam indicated by the MSG3.
  • MSG4 contention conflict resolution message
  • the logical cell identifier of the third type of base station may be included in the MSG4; in the step 520 and the step 540, only one message in the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station;
  • the UE may report the logical cell identifier to the first type of base station.
  • the MSG4 may further include secondary connection configuration information between the UE and the third type of base station.
  • the second access mode is applicable to the case where the second type of base station and the third type of base station are not co-located or shared with some of the third type of base stations, and the third type of base station receives the notification of the first type of base station after the start of the notification. If MSG1 from the UE is not detected at time T, or MSG1 from the UE is detected, but does not respond to the UE, then it is turned off;
  • the embodiment of the present invention provides a schematic flowchart of a method for discovering a base station.
  • the embodiment is based on a first type of base station, and the method includes:
  • Step 101 The base station receives information about the detected second type of base station sent by the user equipment UE.
  • Step 102 The base station notifies a third type of base station
  • Step 103 The base station sends a radio resource control RRC message to the UE, where the RRC message includes access information of the third type of base station.
  • the UE establishes a primary connection with the base station, the base station belongs to a first type of base station that uses a low frequency carrier, the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to a high frequency carrier.
  • Base station belongs to a first type of base station that uses a low frequency carrier
  • the second type of base station belongs to a base station that uses a low frequency carrier
  • the third type of base station belongs to a high frequency carrier.
  • Base station Base station.
  • the method further includes:
  • Step 100 The base station sends configuration information of the discovery reference signal DRS of the second type of base station to the UE.
  • the information about the detected second type of base station includes at least one of the following: The cell identifier of the second type of base station, the base station identifier of the second type of base station, and the measurement result of the discovery reference signal DRS of the second type of base station.
  • the access information of the third type of base station includes at least one of the following: a carrier frequency, a carrier bandwidth, a random access channel RACH configuration, and a physical random access channel PRACH configuration.
  • the configuration information of the DRS of the base station of the second type of base station is uniformly configured by the base station to be the same information or separately configured to be not in the coverage of the base station. Exactly the same information;
  • the eNB configures DRS configuration information of the base station belonging to the second type of base station in the vicinity of the UE according to the footprint information of the UE, and the footprint information of the UE includes The location information of the UE or the measurement information of the neighboring cell where the UE is located.
  • the notifying the third type of base station to be opened including:
  • the base station When the second type of base station and the third type of base station are co-located, the base station notifies that the third type of base station that is co-located with the second type of base station is turned on;
  • the base station When the second type of base station and the third type of base station part are co-station or the second type of base station and the third type of base station are not co-located, the base station notifies the DRS signal coverage of the second type of base station The third type of base station in the range is turned on;
  • the one-to-one co-station of the second type of base station and the third type of base station means that the second type of base station and the third type of base station are geographically one-to-one deployed in the same geographical position;
  • the class base station and the third type of base station part co-station means that the number of the second type of base stations is less than the third type of base stations, and only some of the two types of base stations are one-to-one deployed in the same geographical position;
  • the non-co-location of the class base station and the third type of base station means that the two types of base stations are completely separated and deployed geographically.
  • the method for discovering a base station based on the first type of base station is provided in this embodiment.
  • the specific steps reference may be made to the specific content of the embodiment corresponding to FIG. 3, and details are not described herein again.
  • the base station using the high frequency carrier is not present.
  • any UE When any UE is served, it is in a closed state.
  • the UE detects the DRS signal transmitted on the low frequency carrier and determines that the UE approaches or enters the base station using the high frequency carrier, turns on the high frequency carrier, and passes the access information of the base station using the high frequency carrier.
  • the primary connection is notified to the UE, and the UE accesses the base station using the high frequency carrier according to the obtained access information. It not only ensures fast and efficient discovery of base stations, acquires access information and accesses the base station, but also reduces the energy consumption of the UE and the high-frequency carrier base station.
  • the technical solution provided by the embodiment of the present invention can also implement the configuration process of synchronously completing the secondary connection in the access process, speed up the secondary connection configuration, and quickly use the primary connection and the secondary connection to simultaneously serve the UE, thereby improving the user data. Transmission rate and service experience.
  • FIG. 6 is a schematic flowchart of another method for discovering a base station according to the present invention.
  • the embodiment is based on a second type of base station, and the method includes:
  • Step 610 The second type of base station acquires configuration information of the uplink reference signal of the UE from the first type of base station.
  • the first type of base station configures an uplink reference signal for the UE, and the first type of base station sends the configuration information of the uplink reference signal of the UE to the second type of base station;
  • the first type of base station may send the uplink reference signal configuration information of the UE that is close to or enters the second type of base station to the second type of base station according to the footprint information of the UE;
  • Step 620 The second type of base station detects an uplink reference signal sent by the UE.
  • the second type of base station may be a base station capable of providing access to the UE and providing a data transmission service, or may be a base station that only detects an uplink reference signal sent by the receiving UE;
  • Step 630 The second type of base station notifies the first type of base station that the uplink reference signal is detected, and the second type of base station notifies the third type of base station to be turned on, or the first type of base station notifies that the third base station class is turned on;
  • the second type of base station and the third type of base station may be geographically one-to-one base stations deployed in the same geographical location, that is, the second type of base station and the third type of base station are one-to-one common station, or may be the second type.
  • the number of base stations is less than that of the third type of base stations, and the geographically completely separated deployment or the smaller number of second type base stations and some of the third type of base stations are co-located.
  • the second type of base station and the third base station are When the second type of base station detects the uplink reference information, it notifies that the third type of base station with its one-to-one co-station is turned on, or after the second type of base station notifies the first type of base station that the uplink signal is detected, the first type of base station Notifying the third type of base station to be turned on; when the second type of base station and the third type of base station are not co-located or co-located with part of the third type of base station, the second type of base station notifies the uplink reference signal after detecting the uplink reference signal
  • the third type of base station is turned on, or after the second type of base station notifies the first type of base station that the uplink reference signal is detected, the first type of base station notifies the third type of base station in the uplink coverage of the second type of base station to be turned on.
  • the third type of base station can be in the off state.
  • the third type of base station is in the off state, that is, the third type of base station does not transmit signals, but does not limit the third type of base station to receive signals.
  • Step 640 The first type of base station provides the UE with access information of the third type of base station.
  • the first type of base station provides the access information of the third type of base station to the UE that sends the uplink reference signal according to the detected uplink reference signal that is notified by the second type of base station;
  • the access information of the third type of base station may be stored in the first type of base station, or stored in the access information data center AIC;
  • the first type of base station provides the UE with the access information of the third type of base station by sending an RRC message to the UE, or the third type of base station stored in the access information data center by means of the application layer data carried on the primary connection. Access information is provided to the UE;
  • the method may further include:
  • Step 650 The third type of base station completes accessing the UE according to the access information.
  • An embodiment of the present invention provides another base station discovery method based on a first type of base station side, including:
  • Step 301 The base station sends configuration information of an uplink reference signal of the user equipment UE to the second type of base station.
  • Step 302 After receiving the notification message sent by the second type of base station, the base station notifies the third type of base station to start;
  • Step 303 The base station sends the access information of the third type of base station to the UE.
  • the UE establishes a primary connection with the base station, the base station belongs to a first type of base station that uses a low frequency carrier, the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to a high frequency carrier.
  • Base station belongs to a first type of base station that uses a low frequency carrier
  • the second type of base station belongs to a base station that uses a low frequency carrier
  • the third type of base station belongs to a high frequency carrier.
  • Base station Base station.
  • the method may further include:
  • Step 300 After the base station and the UE establish a primary connection, the base station configures an uplink reference signal for the UE.
  • the base station provides the UE with the access information of the third type of base station, including:
  • the base station sends a radio resource control RRC message to the UE, where the RRC message includes access information of the third type of base station.
  • An embodiment of the present invention provides another base station discovery method based on a UE, including:
  • Step 401 The user equipment UE sends an uplink reference signal.
  • Step 402 After the second type of base station detects the uplink reference signal sent by the UE, notify the first type of base station, and after the first type of base station or the second type of base station notifies the third type of base station to be turned on, The UE acquires access information of the third type of base station.
  • the UE establishes a primary connection with the first type of base station, the first type of base station belongs to a base station that uses a low frequency carrier, the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to use.
  • Base station for high frequency carriers.
  • the method may further include:
  • Step 403 The UE accesses the first information according to the acquired access information of the third type of base station. Three types of base stations.
  • step 403 may specifically include:
  • the UE detects a downlink beam that determines that the third class base station transmits a signal strength that is not lower than a preset threshold
  • the UE sends an access request message MSG1 to the third type of base station in the direction in which the determined downlink beam is located, where the information about the determined downlink beam is included in the MSG1;
  • the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station.
  • step 403 may specifically include:
  • the UE sends an access request message MSG1 in multiple directions in a beamforming manner according to the obtained access information of the third type of base station;
  • the UE receives the access response message MSG2 sent by the base station of the third type of base station, and the MSG2 includes the information of the uplink beam that is determined by the base station and whose signal strength is not lower than a preset threshold.
  • the UE selects at least one base station belonging to the third type of base station, and sends a contention collision request message MSG3 on the uplink beam indicated by the MSG2 sent by the selected base station, where the MSG3 includes the selected base station transmit signal strength determined by the UE.
  • the MSG3 further includes at least one of the following: the capability information of the UE, the configuration information of the UE on the primary connection, and the UE received by the UE from the first type of base station. Capacity allocation policy information.
  • the method may further include:
  • the UE After receiving the logical cell identifier of the third type of base station, the UE reports the received logical cell identifier to the first type of base station.
  • the MSG4 includes secondary connection configuration information between the UE and the third type of base station.
  • An embodiment of the present invention further provides an access method, which is based on a third type of base station side
  • FIG. 7 is a schematic flowchart of a method for a third type of base station to complete access by the UE according to the access information, where the method includes:
  • Step 710 The third type of base station receives an access request message (MSG1) sent by the UE on the resource indicated by the access information.
  • MSG1 access request message
  • the third type of base station can obtain the information of the strongest uplink beam of the UE;
  • Step 720 The third type of base station sends an access response message (MSG2) to the UE, where the MSG2 includes the strongest uplink beam information of the UE determined by the third type of base station base station.
  • MSG2 access response message
  • the logical cell identifier of the third type of base station may also be included in the MSG2;
  • the third type of base station After the third type of base station receives the notification of the first type of base station or the second type of base station, it does not have time T. If MSG1 from the UE is detected, or MSG1 from the UE is detected, but does not respond to the UE, it is turned off;
  • Step 730 The third type of base station receives the contention conflict request message (MSG3) sent by the UE on the strongest uplink beam of the UE, where the MSG3 includes the strongest downlink beam information of the third type of base station.
  • MSG3 contention conflict request message
  • the MSG3 may include at least one of the following: UE capability information, configuration information of the UE on the primary connection, and UE capability allocation policy information received by the UE from the primary base station (the first type of base station);
  • Step 740 The third type of base station sends a contention conflict resolution message (MSG4) on the strongest downlink beam indicated by the MSG3.
  • MSG4 contention conflict resolution message
  • the logical cell identifier of the third type of base station may be included in the MSG4; in the step 720 and the step 740, only one message in the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station;
  • the MSG4 may further include secondary connection configuration information between the UE and the third type of base station.
  • the third type of base station detects the strongest uplink beam of the UE transmitting signal and the strongest downlink beam that the UE detects the third type of base station transmitting signal.
  • the technical solution provided by the present invention is not limited to detection. The strongest, only need to detect that the transmitted signal strength is not lower than the preset threshold, "strongest" is only a preferred solution.
  • An embodiment of the method for discovering another base station based on the second type of base station side or the first type of base station side, and the technical solution provided by the embodiment of the access method based on the third base station side corresponding to FIG. 7 , using a high frequency carrier The base station is in the off state when no UE is served, and the base station that uses the low frequency carrier detects the uplink reference signal sent by the UE to determine that the UE approaches or enters the base station using the high frequency carrier, turns on the high frequency carrier, and uses the high frequency carrier.
  • the access information of the base station is notified to the UE through the primary connection, and the UE accesses the base station using the high frequency carrier according to the obtained access information.
  • the technical solution provided by the embodiment of the present invention can also implement the configuration process of synchronously completing the secondary connection in the access process, speed up the secondary connection configuration, and can quickly make The primary connection and the secondary connection serve the UE at the same time, which improves the data transmission rate and service experience of the user.
  • FIG. 8 is a schematic diagram 1 of network deployment applied to an embodiment of the present invention.
  • the elliptical solid line area in the figure is the wireless coverage of the cm-eNB (corresponding to the first type of base station).
  • the UE has established a primary connection with the cm-eNB through the air interface.
  • the mm-eNB is densely deployed in some areas, and is in the area according to the self-organizing network (SON, Self-Organized Network) or other OAM (Operation Administration and Maintenance).
  • SON Self-Organized Network
  • OAM Operaation Administration and Maintenance
  • DRS-eNBs Selecting some of the mm-eNBs to enable the low frequency carrier function, and marking these mm-eNBs as DRS-eNBs (corresponding to the second type of base stations), as shown by the shaded LPNs in the figure, these DRS-eNBs are used at least in the low frequency carrier.
  • the DRS signal is periodically transmitted, and the DRS-eNB1 in FIG. 8 is taken as an example, and the range covered by the DRS signal, including mm-eNB1, mm-eNB2, mm-eNB3, and mm-eNB4 (corresponding to the third type of base station) ).
  • the DRS-eNB1 may be a base station that only transmits DRS on a low frequency carrier, or a base station that can provide access to the UE and provide a data transmission service.
  • the DRS-eNB transmits only the DRS signal on the low frequency carrier.
  • the same access information is configured for all mm-eNBs in the cm-eNB range by using SON or OAM, and the access information is stored in the cm-eNB or the AIC in addition to each mm-eNB. The following description of the present embodiment is described by taking an example stored in the AIC.
  • FIG. 9 is a flowchart of an implementation example of the first embodiment of the present invention.
  • the DRS-eNB1 in FIG. 8 and the mm-eNB1, mm-eNB2, mm-eNB3, and mm-eNB4 in the coverage area are taken as an example, including:
  • Step 900, mm-eNB1, mm-eNB2, mm-eNB3, and mm-eNB4 are in a closed state when no UE is served, and the DRS-eNB periodically transmits the DRS.
  • FIG. 10 is a timing diagram of a DRS signal periodically transmitted by a DRS-eNB, where the DRS includes a PSS, an SSS, and may further include a CRS and/or a CSI-RS.
  • Step 901 The cm-eNB sends DRS configuration information to the UE.
  • the DRS configurations of the three DRS-eNBs in the range of the cm-eNB shown in FIG. 8 are identical.
  • the DRS configuration information includes a discovery signal measurement timing (DMTC period, discovery signals measurement timing). Configuration), the offset of the DRS in the DMTC window, that is, the DMTC offset, and the duration of the DRS transmission window.
  • the DRS signal includes a CSI-RS
  • the configuration information of the CSI-RS may also be included in the DRS configuration information.
  • the cm-eNB may configure the DRS configuration information of the DRS-eNB (such as DRS-eNB1) in the vicinity of the UE for the UE according to the footprint information of the UE.
  • the footprint information of the UE is location information of the UE, or measurement information of a neighboring cell where the UE is located.
  • Step 902 The UE detects the DRS, determines that the DRS signal quality meets the requirement for reporting to the cm-eNB, and sends the detected information of the DRS-eNB to the cm-eNB.
  • the information of the DRS-eNB1, including the PCI1 may also include the DRS. Measurement results.
  • the DRS signal quality satisfies the requirements reported to the cm-eNB and can be one of the following requirements:
  • PSS/SSS signal quality is above the threshold
  • the CRS signal quality is above the threshold
  • Step 903 After receiving the information of the DRS-eNB1, the cm-eNB notifies all the mm-eNBs (mm-eNB1, mm-eNB2, mm-eNB3, mm-eNB4) in the DRS coverage of the DRS-eNB1 to be enabled.
  • mm-eNB1, mm-eNB2, mm-eNB3, and mm-eNB4 After receiving the notification of opening, mm-eNB1, mm-eNB2, mm-eNB3, and mm-eNB4 start to transmit downlink signals in multiple directions in a beamforming manner.
  • Step 904 The UE acquires access information of the mm-eNB.
  • all the mm-eNBs in the DRS coverage of the DRS-eNB1 are configured with the same access information, and the access information includes at least:
  • Carrier frequency, carrier bandwidth, RACH configuration and PRACH configuration are Carrier frequency, carrier bandwidth, RACH configuration and PRACH configuration.
  • the access information is stored in the AIC, and the UE obtains the access information of the mm-eNB (mm-eNB1, mm-eNB2, mm-eNB3, mm-eNB4) from the AIC by using the primary connection in the application layer data. .
  • 903 and 904 have no successive points in the execution order.
  • the UE accesses the mm-eNB by using the second access mode.
  • Step 905 The UE generates an access request message (MSG1) according to the RACH configuration on the carrier frequency indicated by the access information and the resource indicated by the PRACH configuration according to the access information acquired by the 904, and multiple times in a beamforming manner. Send MSG1 in the direction.
  • MSG1 access request message
  • the mm-eNB2 and the mm-eNB3 transmit the access response message (MSG2) in multiple directions in a beamforming manner, and the MSG2 sent by the mm-eNB2 includes the strongest uplink beam information of the UE detected by the mm-eNB2.
  • the MSG2 transmitted by the mm-eNB3 includes the strongest uplink beam information of the UE detected by the mm-eNB3, and the uplink beam information is the uplink beam identifier.
  • the MSG2 sent by the mm-eNB2 includes the logical cell identifier of the mm-eNB2, and the MSG2 sent by the mm-eNB3 includes the logical cell identifier of the mm-eNB3.
  • MSG2 includes information such as uplink time adjustment information, initial uplink grant information, and Temporary Cell Radio Network Temporary Identifier (Temporary C-RNTI), and is already in the third generation partner project (3GPP). , the 3rd Generation Partnership Project) is described in the technical specification 36.321, 36.300, and the present invention will not be described again.
  • 3GPP Third Generation Partner Project
  • mm-eNB1 and mm-eNB4 do not detect MSG1 from the UE within time T, or detect MSG1 from the UE, but comprehensively consider load, resource allocation. If the policy does not respond to the UE, it is turned off.
  • Step 907 The UE receives the MSG2 from the mm-eNB2 and the mm-eNB3, and selects to send a contention collision request message (MSG3) to the mm-eNB3, where the MSG3 includes the strongest downlink beam information of the mm-eNB3 determined by the UE.
  • MSG3 contention collision request message
  • the MSG3 may include UE capability information, configuration information of the UE on the primary connection.
  • the UE capability allocation policy information received by the UE from the primary base station may also be included;
  • the UE capability information includes the access layer version information of the UE, the UE classification information, the UE physical layer parameter information, and the UE radio frequency parameter information.
  • the configuration information of the UE on the primary connection includes the physical layer physical channel of the UE on the primary connection.
  • Configuration information, configuration information of the transport channel, configuration information of the radio bearer (RB, Radio Bearer), and configuration parameters of other related physical processes and protocol procedures are already in the 3rd Generation Partnership Project (3GPP). The details are described in the technical specification 36.331, and the present invention will not be described again.
  • the UE only selects to send the MSG3 to the mm-eNB3 according to the comprehensive characteristics of the current transmission service of the UE, and of course, the UE may also select to send the MSG3 to the mm-eNB3 and the mm-eNB4 if necessary.
  • the information included in the random access procedure MSG3 in the related art is also included in the MSG3, which has been described in the 3GPP technical specifications 36.321 and 36.300, and the description is not repeated herein, and the MSG3 is indicated by the MSG2.
  • the initial uplink grant is sent, and the specific sending manner is the same as the description of the random access procedure in the related art, and the present invention will not be described again.
  • Step 908 After receiving the MSG3 sent by the UE, the mm-eNB3 sends a contention conflict resolution message (MSG4) on the strongest downlink beam of the mm-eNB3 included in the MSG3, and the MSG4 may include the logical cell identifier of the mm-eNB3, preferably The MSG4 may further include the secondary connection configuration information between the UE and the mm-eNB3, where the secondary connection configuration information includes configuration information of the physical layer physical channel of the UE on the secondary connection, configuration information of the transport channel, and radio bearer (RB, Radio Bearer configuration information and configuration parameters of other related physical processes and protocol procedures.
  • MSG4 contention conflict resolution message
  • the UE successfully accesses the mm-eNB3.
  • the mm-eNB3 by notifying the UE-capability information in the MSG3 to the mm-eNB3, the configuration information of the UE on the primary connection, and the UE capability allocation policy information received by the UE from the primary base station, the mm-eNB3 can directly directly UE and the MSG4.
  • the secondary connection configuration information between the mm-eNB3 is sent to the UE, so that the configuration process of the secondary connection is synchronously completed in the access process.
  • Step 909 The UE receives the logical cell identifier of the mm-eNB3 notified in the MSG2 or the MSG4, and sends the logical cell identifier to the cm-eNB.
  • the cm-eNB can establish a contact between the logical cell identifier and the mm-eNB3. Serve the UE.
  • FIG. 11 is a schematic diagram 2 of a network deployment applied to an implementation example of the present invention.
  • the difference is that in the network deployment diagram 2, all the mm-eNBs in the area have a low-frequency carrier function, and at least periodically transmit DRS signals on the low-frequency carrier.
  • all of these mm-eNBs may be base stations capable of providing access to the UE and providing data transmission services on the low frequency carrier, or devices transmitting only DRS signals.
  • the access information of all the mm-eNBs in the range of the cm-eNB is saved. The following description of the present embodiment is described by taking the example in the cm-eNB.
  • FIG. 12 is a flowchart of an implementation example of the second embodiment of the present invention.
  • the UE and the mm-eNB1, the mm-eNB2, and the mm-eNB3 are used as an example, including:
  • Step 1201 The mm-eNB high frequency carrier is in a closed state when no UE is served, and the mm-eNB periodically transmits the DRS on the low frequency carrier.
  • Step 1202 The cm-eNB sends DRS configuration information to the UE.
  • each mm-eNB in the range of FIG. 11 cm-eNB configures the same or different DRS configurations on the low frequency carrier, and when the DRS configuration of each mm-eNB is different, the cm-eNB may according to the footprint information of the UE.
  • Configuring one or more mm-eNBs near the UE at the low frequency for the UE The DRS configuration information on the carrier, such as mm-eNB1, mm-eNB2, and mm-eNB3 DRS configuration information, is configured in this embodiment.
  • Step 1203 The UE detects the DRS according to the DRS configuration information received by the 1202, determines that the DRS signal quality meets the requirement reported to the cm-eNB, and sends the detected eNB information to the cm-eNB, where is the mm-eNB3, and the reported information includes the PCI3.
  • the measurement result of the DRS of mm-eNB3 may also be included.
  • Step 1204 After receiving the information reported by the UE, the cm-eNB notifies that the mm-eNB3 is enabled, and after receiving the notification of the opening, the mm-eNB3 starts to send the downlink signal in multiple directions in a beamforming manner.
  • Step 1205 The UE acquires access information of the mm-eNB3 on the high frequency carrier.
  • the access information is stored in the cm-eNB, and the UE obtains the access information of the mm-eNB3 on the high frequency carrier by receiving the RRC message sent by the cm-eNB. Or if the mm-eNB3 can provide access to the UE and provide a data transmission service on the low frequency carrier, the UE can also obtain the access of the mm-eNB3 on the high frequency carrier from the broadcast information sent by the mm-eNB3 on the low frequency carrier. information.
  • 1204 and 1205 have no successive points in the execution order.
  • the UE accesses the mm-eNB by using the first access mode.
  • Step 1206 The UE detects the strongest downlink beam of the signal transmitted by the mm-eNB3.
  • the mm-eNB3 transmits information in multiple directions, such as PSS and/or SSS signals, or pilot signals in a beamforming manner, and the UE completes time synchronization and frequency with the mm-eNB3 by detecting the downlink signal sent by the mm-eNB3. Synchronize.
  • Step 1207 The UE sends an access request message (MSG1) to the mm-eNB3 in the direction in which the strongest downlink beam of the mm-eNB3 is detected in the direction of the received strong information of the mm-eNB3, and the MSG1 includes the The strongest downlink beam information.
  • MSG1 access request message
  • Step 1208 After receiving the MSG1, the mm-eNB receives the strongest downlink beam indicated by the MSG1. The direction sends an access response message (MSG2).
  • MSG2 access response message
  • the logical cell identifier of the mm-eNB3 is included in the MSG2.
  • Step 1209 After receiving the MSG2, the UE sends a contention conflict request message (MSG3) to the mm-eNB3 in the direction in which the strongest downlink beam of the mm-eNB3 is detected in 1206.
  • MSG3 contention conflict request message
  • the MSG3 may include UE capability information, configuration information of the UE on the primary connection.
  • the UE capability allocation policy information received by the UE from the primary base station may also be included;
  • Step 1210 After receiving the MSG3, the mm-eNB3 sends a contention conflict resolution message (MSG4) in the direction of the strongest downlink beam indicated by the MSG1.
  • MSG4 contention conflict resolution message
  • the logical cell identifier of the mm-eNB3 may be included in the MSG4; in the 1208 and 1210, only one message in the MSG2 and the MSG4 needs to include the logical cell identifier of the mm-eNB3;
  • Step 1211 The UE receives the logical cell identifier of the mm-eNB3 notified in the MSG2 or the MSG4, and sends the logical cell identifier to the cm-eNB.
  • the cm-eNB can establish a connection between the logical cell identifier and the mm-eNB3. Serve the UE.
  • the base station using the high frequency carrier is in the off state when no UE is served, and the UE is determined to approach or enter the use of the high frequency carrier by detecting the DRS signal transmitted on the low frequency carrier at a low frequency.
  • the base station turns on the high frequency carrier and notifies the access information of the base station using the high frequency carrier to the UE through the primary connection, and the UE accesses the base station using the high frequency carrier according to the obtained access information. It not only ensures fast and efficient discovery of base stations, acquires access information and accesses the base station, but also reduces the energy consumption of the UE and the high-frequency carrier base station.
  • Embodiment 1 and Embodiment 2 the configuration process of synchronously completing the secondary connection in the access process can be implemented, the secondary connection configuration is accelerated, and the primary connection and the secondary connection can be quickly used to serve the UE at the same time, thereby improving user data transmission. Rate and business experience.
  • the implementation example 3 is also exemplified by the network deployment diagram shown in FIG. 8.
  • Figure 13 is the present invention
  • the implementation flowchart of the implementation example 3 is similar to the DRS-eNB1 in FIG. 8 and the mm-eNB1, mm-eNB2, mm-eNB3, and mm-eNB4 in the coverage, including:
  • Step 1300 The cm-eNB sends the UE uplink reference signal configuration information to the DRS-eNB1.
  • the UE has established a primary connection with the cm-eNB, and the cm-eNB notifies the UE to send an uplink reference signal, such as a sounding reference signal (SRS).
  • the cm-eNB notifies all the DRS-eNBs in the cm-eNB of the uplink reference signal configuration information of all the UEs that have established the connection with the cm-eNB, or the cm-eNB determines that the UE is close to the DRS-eNB1 according to the footprint information of the UE.
  • the uplink reference signal configuration information of the UE is sent to the DRS-eNB1.
  • Specific uplink reference signal configuration information has been described in detail in the related art (for example, 3gpp TS36.331), and the present invention will not be described again.
  • Step 1301 The mm-eNB is in the off state when no UE is served, and the DRS-eNB1 detects the uplink reference signal sent by the UE according to the received uplink reference signal configuration information of the UE.
  • Step 1302 The DRS-eNB1 detects the uplink reference signal, and notifies the cm-eNB that it detects the uplink reference signal.
  • Step 1303 After receiving the notification, the cm-eNB notifies the mm-eNB (mm-eNB1, mm-eNB2, mm-eNB3, mm-eNB4) in the uplink coverage of the DRS-eNB1 to be enabled. After the mm-eNB is turned on, signals are transmitted in multiple directions in a beamforming manner.
  • the mm-eNB After the mm-eNB is turned on, signals are transmitted in multiple directions in a beamforming manner.
  • Step 1304 The UE acquires the access information of the mm-eNB, which is specifically described in the first embodiment.
  • the UE accesses the mm-eNB by using the first access mode.
  • Step 1305 The UE detects the strongest downlink beam of the signal transmitted by the nearby mm-eNB, and assumes that the UE detects the strongest downlink beam from the mm-eNB3.
  • Steps 1306 to 1310 are the same as those of the second embodiment 1207 to 1211. It should be noted that, in this implementation example, mm-eNB1, mm-eNB2, and mm-eNB4 are not detected when MSG1 from the UE is detected within the time T after the start.
  • the base station using the high frequency carrier does not serve any UE.
  • the base station using the low frequency carrier detects the uplink reference signal sent by the UE, and determines that the UE approaches or enters the base station using the high frequency carrier, turns on the high frequency carrier, and passes the access information of the base station using the high frequency carrier through the master.
  • the connection is notified to the UE, and the UE accesses the base station using the high frequency carrier according to the obtained access information. It not only ensures fast and efficient discovery of base stations, acquires access information and accesses the base station, but also reduces the energy consumption of the UE and the high-frequency carrier base station.
  • the embodiment of the present invention provides a base station discovery apparatus 10, which is applied to a user equipment, as shown in FIG.
  • the detecting module 11 is configured to detect a discovery reference signal DRS sent by the second type of base station;
  • the sending module 12 is configured to: when the DRS signal quality meets a preset condition, send the detected information of the second type of base station to the first type of base station, where the information of the second type of base station is used to trigger the first type
  • the base station notifies the third type of base station to be turned on;
  • the obtaining module 13 is configured to obtain access information of the third type of base station.
  • the UE establishes a primary connection with the first type of base station, the first type of base station belongs to a base station that uses a low frequency carrier, the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to use.
  • Base station for high frequency carriers.
  • the DRS is periodically sent by the second type of base station, and at least includes one of the following signals: a synchronization signal, a cell reference signal CRS, and a channel state indication reference signal CSI-RS.
  • the information of the detected second type of base station includes at least one of the following: a cell identifier of the second type of base station, a base station identifier of the second type of base station, and a second type of base station DRS measurement results.
  • the acquiring module 13 is further configured to:
  • the base station discovery apparatus 10 further includes:
  • the access module 14 is configured to access the third type of base station according to the obtained access information of the third type of base station.
  • the access module 14 is further configured to:
  • the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station.
  • the access module 14 is further configured to:
  • MSG3 contention conflict request message
  • an embodiment of the present invention further provides a user equipment, where the user equipment includes the foregoing base station discovery apparatus 10.
  • the embodiment of the present invention provides a base station discovery apparatus 20, which is applied to a first type of base station, as shown in FIG.
  • the receiving module 21 is configured to receive information about the detected second type of base station sent by the user equipment UE, where the information of the second type of base station is used to trigger the first type of base station to notify the third type of base station to be turned on;
  • the notification module 22 is configured to notify the third type of base station to be turned on;
  • the sending module 23 is configured to send a radio resource control RRC message to the UE, where the RRC message includes access information of the third type of base station.
  • the UE establishes a primary connection with the base station, the base station belongs to a first type of base station that uses a low frequency carrier, the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to a high frequency carrier.
  • Base station belongs to a first type of base station that uses a low frequency carrier
  • the second type of base station belongs to a base station that uses a low frequency carrier
  • the third type of base station belongs to a high frequency carrier.
  • Base station Base station.
  • an embodiment of the present invention further provides a base station, where the base station includes the foregoing base station discovery apparatus 20.
  • the embodiment of the present invention further provides a base station discovery apparatus 30, which is applied to a second type of base station, as shown in FIG. 16, and includes:
  • the obtaining module 31 is configured to acquire configuration information of an uplink reference signal of the UE from the first type of base station;
  • the detecting module 32 is configured to detect an uplink reference signal sent by the UE.
  • the notification module 33 is configured to notify the third type of base station to enable or notify the first type of base station to detect the uplink reference signal sent by the UE to trigger the first type of base station notification station after the base station detects the uplink reference signal sent by the UE.
  • the third type of base station is turned on.
  • the UE establishes a primary connection with the first type of base station, the first type of base station belongs to a base station that uses a low frequency carrier, the base station belongs to a second type of base station that uses a low frequency carrier, and the third type of base station belongs to use.
  • Base station for high frequency carriers.
  • an embodiment of the present invention further provides a base station, where the base station includes the foregoing base station discovery device 30.
  • the embodiment of the present invention provides a base station discovery apparatus 40, which is applied to a first type of base station, as shown in FIG. 17, and includes:
  • the sending module 41 is configured to send configuration information of the uplink reference signal of the user equipment UE to the second type of base station;
  • the notification module 42 is configured to notify the third type of base station to open after receiving the notification message sent by the second type of base station;
  • the sending module 41 is further configured to send the access information of the third type of base station to the UE.
  • the UE establishes a primary connection with the base station, the base station belongs to a first type of base station that uses a low frequency carrier, the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to a high frequency carrier.
  • Base station belongs to a first type of base station that uses a low frequency carrier
  • the second type of base station belongs to a base station that uses a low frequency carrier
  • the third type of base station belongs to a high frequency carrier.
  • Base station Base station.
  • an embodiment of the present invention further provides a base station, where the base station includes the foregoing base station discovery device 40.
  • the embodiment of the present invention provides a base station discovery device 50, which is applied to a user equipment, as shown in FIG. 18, and includes:
  • the sending module 51 is configured to send an uplink reference signal
  • the obtaining module 52 is configured to notify the first type of base station after the second type of base station detects the uplink reference signal sent by the user equipment, and notify the third type of base station to be started by the first type of base station or the second type of base station After that, access information of the third type of base station is obtained.
  • the user equipment establishes a primary connection with the first type of base station, the first type of base station belongs to a base station that uses a low frequency carrier, the second type of base station belongs to a base station that uses a low frequency carrier, and the third type of base station belongs to A base station using a high frequency carrier.
  • the base station discovery apparatus 50 further includes:
  • the access module 51 is configured to access the third type of base station according to the obtained access information of the third type of base station.
  • the access module 51 is further configured to:
  • the MSG2 and the MSG4 needs to include the logical cell identifier of the third type of base station.
  • the access module 51 is further configured to:
  • the embodiment of the present invention further provides a user equipment, where the user equipment includes the foregoing base station discovery apparatus 50.
  • This embodiment provides an access device 60, which is applied to a third type of base station, as shown in FIG.
  • the receiving module 61 is configured to receive an access request message MSG1 sent by the user equipment UE;
  • the sending module 62 is configured to send an access response message MSG2 to the UE, where the MSG2 includes information of an uplink beam that is determined by the third type of base station and whose signal strength is not lower than a preset threshold.
  • the receiving module 61 is further configured to receive, in the determined uplink beam direction, a contention conflict request message (MSG3) sent by the UE, where the signal strength of the third type of base station determined by the UE in the MSG3 is not lower than Information of a downlink beam of a preset threshold;
  • MSG3 contention conflict request message
  • the sending module 62 is further configured to send a contention conflict resolution message MSG4 on the downlink beam indicated by the MSG3;
  • MSG2 and MSG4 only one message in MSG2 and MSG4 needs to include the logical cell identifier of the base station.
  • an embodiment of the present invention further provides a base station, where the base station includes the access device 60.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the steps of the embodiment of any one of the foregoing base station discovery methods or access methods.
  • the storage medium is further arranged to store program code for performing the steps of an embodiment of any of the above described base station discovery methods or access methods.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor executes according to the stored program code in the storage medium.
  • the program code of the steps of the embodiment of any of the above-described base station discovery methods or access methods.
  • the division of modules is only a logical function division, and there may be another division manner in actual implementation.
  • the modules shown or discussed may be connected to each other through some interface, and may be in electrical, mechanical or other form.
  • the individual modules may or may not be physically separate, and may or may not be physical units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may be physically included separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of hardware plus software function modules.
  • the base station using the high frequency carrier is in the off state when no UE is served, and the UE detects that the UE is close to or enters the base station using the high frequency carrier by detecting the DRS signal transmitted on the low frequency carrier.
  • the base station that uses the low frequency carrier detects the uplink reference signal sent by the UE, determines that the UE approaches or enters the base station that uses the high frequency carrier, turns on the high frequency carrier, and notifies the UE of the access information of the base station using the high frequency carrier to the UE through the primary connection.
  • the UE accesses the base station using the high frequency carrier according to the obtained access information.
  • the current base station acquires access information and accesses the base station, which reduces the energy consumption of the UE and the high frequency carrier base station.
  • the configuration process of synchronously completing the secondary connection in the access process can be implemented, the secondary connection configuration is accelerated, and the primary connection and the secondary connection can be quickly used to serve the UE at the same time, thereby improving the data transmission rate and service experience of the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基站发现方法、接入方法、基站及用户设备,使用高频载波的基站在没有服务任何UE时处于关闭状态,借助UE检测低频载波上低频度发送的DRS信号判断UE接近或进入了使用高频载波的基站,或者借助让使用低频载波的基站检测UE发送的上行参考信号判断UE接近或进入了使用高频载波的基站,开启高频载波并将使用高频载波的基站的接入信息通过主连接通知给UE,UE根据所获得的接入信息接入使用高频载波的基站。既保证了快速、高效发现基站,获取接入信息并接入基站,又降低了UE和使用高频载波基站的能耗。

Description

基站发现及接入方法、装置、基站、用户设备、存储介质 技术领域
本发明涉及移动通信技术,尤指一种基站发现及接入方法、装置、基站、用户设备及存储介质。
背景技术
蜂窝移动通信技术经过短短数十年的发展,已经进入4G时代,而为了满足可以预测到的未来更高、更快、更新的通信需求,业界已经着手展开对未来5G技术的研究。目前,业界普遍认可的5G技术目标是:到2020年左右,实现每区域1000倍的移动数据流量增长,每用户设备(User Equipment,UE)10到100倍的吞吐量增长,连接设备数10到100倍的增长,低功率设备10倍的电池寿命延长,以及端到端5倍延迟的下降。
5G技术目标中最为显著的两个技术目标是实现吞吐量和用户峰值速率1~2个数量级的增长。业界经过分析发现,仅依靠对现有网络进行简单增强或者升级无法实现5G技术目标,因此有必要在对现有网络、现有技术进行进一步演进的基础上,加快对新型网络部署策略、新技术研究等方面的探索。
在网络部署策略方面,密集部署网络(UDN,Ultra Dense Network)和使用具有更大带宽(比如500MHz-1GHz)的高频频段,比如6GHz以上频段,被业界认为是未来网络发展中极具前景的两个手段。这其中,密集部署网络是指在室内和/或室外热点区域密集部署低功率节点(LPN,Low Power Node)以提供小小区(Small cell)覆盖,从概念上讲,LPN是指发射功率比传统宏基站的发射功率低、覆盖范围也比传统宏基站的覆盖范围小(比如几十米)的基站节点,具体在存在形态上,可以是微基站(Pico  Node)、家庭基站(Femto/Home(e)NB)、无线中继接入设备(Relay),以及任何其他可能出现的满足上述概念的基站节点或无线网络的网络接入节点。UDN可以有效克服传统蜂窝无线网络由于其广覆盖、均匀覆盖、固定覆盖特性而导致的无法满足未来5G通信中大部分通信业务集中出现在室内和/或室外热点区域的新特征。而高频频段(比如毫米波频段)的使用可以克服目前低频频段已经捉襟见肘的现状,为未来5G通信系统提供充足的带宽。尤其当UDN使用高频频段时,预期可以很好的实现上述两个最为显著的5G技术目标。
在新技术研究方面,设计更新的波形,更短子帧长度,更灵活上下行配置,更简单快速反馈机制的新型物理层帧(或子帧)结构,以及在此基础上设计增强通信过程,是业界普遍认同的5G新技术的重要方向。
新技术加上新的网络拓扑策略,一起构成了实现5G技术目标的新无线接入技术(nRAT,new Radio Access Technology)。
UDN使用高频频段时,由于高频载波的高路损,高空气吸收度(氧气吸收,雨衰落,雾衰落),以及对阴影衰落敏感等特点,如果继续使用相关通信系统中全方向天线发送信号,会使得高频载波的覆盖区域相比使用低频载波的相关通信系统(比如LTE系统)小很多,因此业界普遍认为需要通过提高高频通信系统的天线增益来提高高频载波的覆盖范围。由于高频载波具有更短的波长,从而可以保证单位面积上容纳更多的天线元素(Antenna Element),通过采用波束赋形的方法以提供更高的天线增益,提高高频载波的覆盖范围。而为保证高频载波的接入覆盖范围或者称发现覆盖范围和数据传输覆盖范围之间的一致性,一方面不仅需要对数据信道采用波束赋形技术,对公共信道,比如同步信道,广播信道,随机接入信道等,也需要以波束赋形的方式发送。
现有相关使用低频载波的通信系统中,公共信道均以全向广播方式发 送,相应的基站发现,小区接入信息的获取以及接入小区的过程也都是基于此前提设计的,高频载波中公共信道采用波束赋形的方式发送,如若直接应用相关技术中适用于低频载波的基站发现,小区接入信息获取及接入方法,势必造成基站发现、信息获取和接入的高时延,低效率,高能耗,并最终影响高频载波的使用效率和用户体验。因此5G网络中使用高频载波后,对基站发现,接入信息获取及基站接入提出了新的挑战。
发明内容
为了解决上述技术问题,本发明实施例提供了一种基站发现及接入方法、装置、基站、用户设备及存储介质,用以解决相关技术中存在的5G网络中使用高频载波后的基站发现、接入信息获取及基站接入的问题。
本发明实施例提供的基站发现方法,包括:
UE检测第二类基站发送的发现参考信号(DRS);
当所述DRS信号质量满足预设条件时,所述UE向第一类基站发送检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
所述UE获取第三类基站的接入信息。
本发明实施例中,所述DRS是由所述第二类基站周期性发送的,其中至少包括以下一种信号:同步信号、小区参考信号(CRS)、信道状态指示参考信号(CSI-RS)。
本发明实施例中,所述检测到的第二类基站的信息至少包括以下一种:所述第二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的DRS的测量结果。
本发明实施例中,所述方法之前还包括:
所述UE从所述第一类基站处接收所述第二类基站的DRS的配置信息。
本发明实施例中,在所述UE向第一类基站发送检测到的第二类基站的 信息之前,所述方法还包括:
所述UE判断所述第二类基站发送的DRS信号质量是否满足向所述第一类基站报告的要求;
若满足要求,则所述UE向所述第一类基站发送所述检测到的第二类基站的信息。
本发明实施例中,所述要求包括以下至少之一:
同步信号质量在持续时间T内高于门限;
CRS信号质量在持续时间T内高于门限;
CSI-RS信号质量在持续时间T内高于门限。
本发明实施例中,所述UE获取第三类基站的接入信息,包括:
所述UE通过接收所述第一类基站发送的无线资源控制RRC消息获取所述第三类基站的接入信息;或者,
所述UE通过从接入信息数据中心AIC处获取所述第三类基站的接入信息;或者,
所述UE从所述第二类基站发送的广播信息中获取所述第三类基站的接入信息。
本发明实施例中,所述第三类基站的接入信息包括以下至少一项:载波频率、载波带宽、随机接入信道RACH配置、物理随机接入信道PRACH配置。
本发明实施例中,所述方法还包括:
所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站。
本发明实施例中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
所述UE检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
所述UE接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
所述UE接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
所述UE根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
所述UE接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
所述UE选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
所述UE接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述MSG3中还包括以下至少一项:所述UE的能力信息,所述UE在主连接上的配置信息、所述UE从所述第一类基站处收到的UE能力分配策略信息。
本发明实施例中,所述方法之后还包括:
所述UE收到所述第三类基站的逻辑小区标识后,向所述第一类基站上报收到的逻辑小区标识。
本发明实施例中,所述MSG4中包括所述UE和所述第三类基站之间的辅连接配置信息。
本发明另一实施例提供的基站发现方法,包括:
第一类基站接收用户设备UE发送的检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
所述第一类基站通知第三类基站开启;
所述第一类基站向所述UE发送无线资源控制RRC消息,所述RRC消息中包含有所述第三类基站的接入信息。
本发明实施例中,所述方法之前还包括:
所述第一类基站向所述UE发送所述第二类基站的发现参考信号DRS的配置信息。
本发明实施例中,所述检测到的第二类基站的信息至少包括以下一种:所述第二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的发现参考信号DRS的测量结果。
本发明实施例中,所述第三类基站的接入信息包括以下至少一项:载波频率、载波带宽、随机接入信道RACH配置、物理随机接入信道PRACH配置。
本发明实施例中,所述第二类基站在所述第一类基站的覆盖范围内,属于所述第二类基站的若干个基站的DRS的配置信息由所述第一类基站统 一配置成相同的信息或单独配置成不完全相同的信息;
当单独配置成不完全相同的信息时,所述第一类基站根据所述UE的足迹信息为所述UE配置所述UE附近的属于第二类基站的基站的DRS配置信息,所述UE的足迹信息包括:所述UE的位置信息,或者所述UE所在位置邻区的测量信息。
本发明实施例中,所述通知第三类基站开启,包括:
当所述第二类基站和所述第三类基站一对一共站时,所述第一类基站通知与所述第二类基站一对一共站的所述第三类基站开启;
当所述第二类基站和所述第三类基站部分共站或所述第二类基站和所述第三类基站不共站时,所述第一类基站通知所述第二类基站的DRS信号覆盖范围内的第三类基站开启;
其中,所述第二类基站和所述第三类基站一对一共站是指所述第二类基站和所述第三类基站在地理上一对一部署在相同地理位置;所述第二类基站和所述第三类基站部分共站是指所述第二类基站数量少于所述第三类基站、两类基站中只有部分是一对一部署在相同地理位置;所述第二类基站和所述第三类基站不共站是指两类基站在地理上完全分离部署。
本发明另一实施例提供的基站发现方法,包括:
第二类基站从第一类基站获取UE的上行参考信号的配置信息;
所述第二类基站检测UE发送的上行参考信号;
当所述第二类基站检测到UE发送的上行参考信号后,通知第三类基站开启或者通知所述第一类基站检测到UE发送的上行参考信号以触发第一类基站通知所述第三类基站开启。
本发明实施例中,所述当所述第二类基站检测到UE发送的上行参考信号后,通知第三类基站开启或者通知所述第一类基站检测到UE发送的上行参考信号以触发第一类基站通知所述第三类基站开启,包括:
当所述第二类基站和所述第三类基站一对一共站时,所述第二类基站检测到上行参考信号后,通知与所述第二类基站一对一共站的所述第三基站开启,或者在所述第二类基站通知所述第一类基站检测到了上行参考信号后由所述第一类基站通知所述第三类基站开启;
当所述第二类基站和所述第三类基站部分共站或所述第二类基站和所述第三类基站不共站时,所述第二类基站检测到上行参考信号后,通知所述第二类基站上行覆盖范围内的第三类基站开启,或者在所述第二类基站通知所述第一类基站检测到上行参考信号后由所述第一类基站通知所述第二类基站上行覆盖范围内的第三类基站开启;
其中,所述第二类基站和所述第三类基站一对一共站是指所述第二类基站和所述第三类基站在地理上一对一部署在相同地理位置;所述第二类基站和所述第三类基站部分共站是指所述第二类基站数量少于所述第三类基站、两类基站中只有部分是一对一部署在相同地理位置;所述第二类基站和所述第三类基站不共站是指两类基站在地理上完全分离部署。
本发明另一实施例提供的基站发现方法,包括:
第一类基站向第二类基站发送用户设备UE的上行参考信号的配置信息;
所述第一类基站接收所述第二类基站发送的通知消息后通知第三类基站开启;
所述第一类基站向所述UE发送所述第三类基站的接入信息。
本发明实施例中,所述方法之前还包括:
所述第一类基站和所述UE建立主连接后,所述第一类基站为所述UE配置上行参考信号。
本发明实施例中,所述第一类基站向所述UE提供所述第三类基站的接入信息,包括:
所述第一类基站向所述UE发送无线资源控制(RRC)消息,所述RRC消息中包含第三类基站的接入信息。
本发明另一实施例提供的基站发现方法,包括:
用户设备UE发送上行参考信号;
当第二类基站检测到所述UE发送的上行参考信号后通知第一类基站,并且由所述第一类基站或所述第二类基站通知第三类基站开启,所述UE获取所述第三类基站的接入信息。
本发明实施例中,所述方法还包括:
所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站。
本发明实施例中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
所述UE检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
所述UE接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
所述UE接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
所述UE根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
所述UE接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
所述UE选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
所述UE接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述MSG3中还包括以下至少一项:所述UE的能力信息,所述UE在主连接上的配置信息、所述UE从所述第一类基站处收到的UE能力分配策略信息。
本发明实施例中,所述方法之后还包括:
所述UE收到所述第三类基站的逻辑小区标识后,向所述第一类基站上报收到的逻辑小区标识。
本发明实施例中,所述MSG4中包括所述UE和所述第三类基站之间的辅连接配置信息。
本发明实施例提供的接入方法,包括:
第三类基站接收用户设备UE发送的接入请求消息MSG1;
所述第三类基站向所述UE发送接入响应消息MSG2,MSG2中包含所述第三类基站确定的所述UE发射信号强度不低于预设阈值的上行波束的 信息;
所述第三类基站在所述确定的上行波束方向上接收所述UE发送的竞争冲突请求消息MSG3,MSG3中包含所述UE确定的所述第三类基站发射信号强度不低于预设阈值的下行波束的信息;
所述第三类基站在所述MSG3所指示的下行波束上发送竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述基站的逻辑小区标识。
本发明实施例中,所述MSG3中还包括以下至少一项:所述UE的能力信息,所述UE在主连接上的配置信息、所述UE从所述第一类基站处收到的UE能力分配策略信息。
本发明实施例中,所述MSG4中包括所述UE和所述第三类基站之间的辅连接配置信息。
本发明实施例提供的基站发现装置,应用于用户设备中,包括:
检测模块,配置为检测第二类基站发送的发现参考信号DRS;
发送模块,配置为当所述DRS信号质量满足预设条件时,向第一类基站发送检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
获取模块,配置为获取第三类基站的接入信息。
本发明实施例中,所述DRS是由所述第二类基站周期性发送的,其中至少包括以下一种信号:同步信号、小区参考信号CRS、信道状态指示参考信号CSI-RS。
本发明实施例中,所述检测到的第二类基站的信息至少包括以下一种:所述第二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的DRS的测量结果。
本发明实施例中,所述获取模块,还配置为:
通过接收所述第一类基站发送的无线资源控制RRC消息获取所述第三类基站的接入信息;或者,
通过从接入信息数据中心AIC处获取所述第三类基站的接入信息;或者,
从所述第二类基站发送的广播信息中获取所述第三类基站的接入信息。
本发明实施例中,所述基站发现装置还包括:
接入模块,配置为根据获取的所述第三类基站的接入信息接入所述第三类基站。
本发明实施例中,所述接入模块,还配置为:
检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述接入模块,还配置为:
根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
本发明另一实施例提供的基站发现装置,应用于第一类基站中,包括:
接收模块,配置为接收用户设备UE发送的检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
通知模块,配置为通知第三类基站开启;
发送模块,配置为向所述UE发送无线资源控制RRC消息,所述RRC消息中包含有所述第三类基站的接入信息。
本发明另一实施例提供的基站发现装置,应用于第二类基站中,包括:
获取模块,配置为从第一类基站获取UE的上行参考信号的配置信息;
检测模块,配置为检测UE发送的上行参考信号;
通知模块,配置为当所述基站检测到UE发送的上行参考信号后,通知第三类基站开启或者通知所述第一类基站检测到UE发送的上行参考信号以触发第一类基站通知所述第三类基站开启。
本发明另一实施例提供的基站发现装置,应用于第一类基站中,包括:
发送模块,配置为向第二类基站发送用户设备UE的上行参考信号的配置信息;
通知模块,配置为接收所述第二类基站发送的通知消息后通知第三类基站开启;
所述发送模块,还配置为向所述UE发送所述第三类基站的接入信息。
本发明另一实施例提供的基站发现装置,应用于用户设备中,包括:
发送模块,配置为发送上行参考信号;
获取模块,配置为当第二类基站检测到所述用户设备发送的上行参考信号后通知第一类基站,并且由所述第一类基站或所述第二类基站通知第三类基站开启后,获取所述第三类基站的接入信息。
本发明实施例中,所述基站发现装置还包括:
接入模块,配置为根据获取的所述第三类基站的接入信息接入所述第三类基站。
本发明实施例中,所述接入模块,还配置为:
检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述接入模块,还配置为:
根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向 上发送接入请求消息MSG1;
接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例提供的接入装置,应用于第三类基站中,包括:
接收模块,配置为接收用户设备UE发送的接入请求消息MSG1;
发送模块,配置为向所述UE发送接入响应消息MSG2,MSG2中包含所述第三类基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
所述接收模块,还配置为在所述确定的上行波束方向上接收所述UE发送的竞争冲突请求消息MSG3,MSG3中包含所述UE确定的所述第三类基站发射信号强度不低于预设阈值的下行波束的信息;
所述发送模块,还配置为在所述MSG3所指示的下行波束上发送竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述基站的逻辑小区标识。
本发明实施例提供的用户设备,包括上述所述的基站发现装置。
本发明实施例提供的基站,包括上述所述的基站发现装置。
本发明实施例提供的基站,包括上述所述的接入装置。
本发明实施例提供的存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行上述所述的基站发现方法或接入方法。
采用本发明实施例提供的基站发现及接入方法、装置、基站及用户设备、存储介质,使用高频载波的基站在没有服务任何UE时处于关闭状态,借助UE检测低频载波上低频度发送的DRS信号判断UE接近或进入了使用高频载波的基站,或者借助让使用低频载波的基站检测UE发送的上行参考信号判断UE接近或进入了使用高频载波的基站,开启高频载波并将使用高频载波的基站的接入信息通过主连接通知给UE,UE根据所获得的接入信息接入使用高频载波的基站。既保证了快速、高效发现基站,获取接入信息并接入基站,又降低了UE和使用高频载波基站的能耗。此外,本发明实施例提供的技术方案还可以实现在接入过程中同步完成辅连接的配置过程,加快了辅连接配置,能快速使用主连接和辅连接同时为UE服务,提高了用户的数据传输速率和业务体验。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为5G PhanseⅠ一种网络部署示意图一;
图2为毫米波基站的覆盖示意图;
图3为本发明实施例提供的基于UE侧的一种基站发现方法的流程示意 图;
图4为本发明实施例提供的基于UE侧的一种基站发现方法中第一接入方式的流程示意图;
图5为本发明实施例提供的基于UE侧的一种基站发现方法中第二接入方式的流程示意图;
图6为本发明实施例提供的基于第二类基站侧的另一种基站发现方法的流程示意图;
图7为本发明实施例提供的基于第三类基站侧的一种接入方法的流程示意图;
图8为应用于本发明实施示例的网络部署示意图一;
图9为本发明实施示例一的实施流程图;
图10为周期性发送DRS的时序图;
图11为应用于本发明实施示例的网络部署示意图二;
图12为本发明实施示例二的实施流程图;
图13为本发明实施示例三的实施流程图;
图14为本发明实施例提供的基站发现装置的结构示意图一;
图15为本发明实施例提供的基站发现装置的结构示意图二;
图16为本发明实施例提供的基站发现装置的结构示意图三;
图17为本发明实施例提供的基站发现装置的结构示意图四;
图18为本发明实施例提供的基站发现装置的结构示意图五;
图19为本发明实施例提供的接入装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
新技术加上新的网络拓扑策略,一起构成了实现5G技术目标的nRAT。然而任何技术的研究和商用都是逐步推进的,想要一步到位单独使用nRAT为用户终端(UE,User Equipment)提供服务,一方面需要大量、长时间周期的技术研究工作克服nRAT独立组网中的诸多问题,从而导致5G技术商用的严重拖后;另一方面直接抛弃现有网络而大规模部署采用nRAT的无线网络也将造成已有投资的浪费。因此,目前业界的普遍共识是:5G第一阶段(PhanseⅠ),在现网已经部署的基站设备(比如宏基站)的覆盖范围内或覆盖范围边界部署采用nRAT的基站(比如LPN),由两者共同组成无线接入网联合为UE服务,比如由采用4G LTE技术的基站和采用nRAT使用高频载波(比如使用6GHz以上的载波)的LPN构成的多连接系统联合为UE传输数据。
图1为5G阶段(Phanse)Ⅰ一种网络部署示意图,图中椭圆形区域为采用4G LTE技术且使用低频载波的基站,本发明称厘米波基站(cm-eNB),形成的无线覆盖范围,即相关技术中所称的小区,在cm-eNB覆盖范围内,部分区域密集部署了LPN,这些LPN使用高频载波,其信号以波束赋形方式发送,本发明将这些基站称为毫米波基站(mm-eNB)。在cm-eNB覆盖范围内,UE与cm-eNB通过空中接口建立连接,而当UE进入LPN密集部署区域,UE还可以与mm-eNB通过空中接口建立连接,由cm-eNB和mm-eNB一同为UE提供服务,这里,UE与cm-eNB之间的连接称为主连接,cm-eNB称为主基站,UE与mm-eNB之间的连接称为辅连接,mm-eNB称为辅基站。
mm-eNB如果公共信道全向发送而数据信道以波束赋形方式发送,则 会出现如图2所示mm-eNB的接入覆盖范围或者称发现覆盖范围和数据传输覆盖范围之间的差异,因此业界普遍认为使用高频载波的基站也需要采用波束赋形发送公共信道。而公共信道采用波束赋形的方式发送,如若直接应用相关技术中适用于低频载波的基站发现,小区接入信息获取及接入方法,势必造成基站发现、信息获取和接入的高时延,低效率,高能耗,并最终影响高频载波的使用效率和用户体验。
需要说明的是,本发明中的基站,不限定其具体无线空间覆盖属性,在空间覆盖属性上,基站可以是一个或者一组小区的集合,也可以是一个或者一组波束的集合。本发明中的基站,也不限定本发明所提到的基站功能具体在哪些基站的物理装置上。基站在物理装置上可以包括基带处理单元(BBU,BaseBand Unit)和射频拉远单元(RRU,Remote Radio Unit),或者可以包括无线云中心(RCC,Radio Cloud Center)和无线远端系统(RSS,Radio Remote System),其中RSS中还可以分成射频汇聚单元(RAU,Radio Aggregation Unit)和射频拉远单元,本发明所提到的基站功能,可以在以上BBU,RRU,RCC,RSS,RAU中的任何一个装置上实现。
还需要说明的是,本发明中低频载波和高频载波,是相对的概念,高频载波使用的频段高于低频载波使用的频段,具体什么载波属于低频载波,什么载波属于高频载波,视具体系统和具体应用可以不同,举例如,在系统A中,6GHz以下的载波为低频载波,6GHz以上的载波为高频载波,而在系统B中,30GHz以下的载波为低频载波,30GHz以上的载波为高频载波。
本发明实施例提供的技术方案涉及第一类基站,第二类基站和第三类基站。其中,第一类基站属于使用低频载波的基站,采用相关无线接入技术RAT,比如LTE技术;第二类基站属于使用低频载波的基站,第三类基站属于使用高频载波的基站,UE与第一类基站建立了主连接;第一类基站 的覆盖范围比较大例如可以是宏基站,第二类基站的覆盖范围比较小例如可以是低功率节点,第三类基站的覆盖范围也比较小可以是低功率节点。
如图3为本发明实施例提供的一种基站发现方法的流程示意图,本实施例基于UE侧,该方法包括:
步骤310、UE检测第二类基站发送的发现参考信号(DRS,Discovery Reference Signal);优选的,第二类基站可以是周期性地发送DRS。
UE在检测第二类基站周期性发送的DRS之前,从第一类基站处接收第二类基站周期性发送DRS的配置信息,UE根据接收到的第二类基站的DRS的配置信息去检测第二类基站发送的DRS,能够更准确更快速更节能。第一类基站覆盖范围内的若干个属于第二类基站的基站的DRS配置信息,第一类基站可以统一配置成相同的信息,也可以单独配置成不完全相同的信息;
当第一类基站覆盖范围内的若干个属于第二类基站的基站的DRS配置信息配置成不同时,第一类基站根据UE的足迹信息为UE配置UE附近的属于第二类基站的基站的DRS配置信息;
第二类基站周期性发送的DRS中,至少包括以下一种信号:同步信号,即主同步信号(PSS,Primary Synchronization Signal)和辅同步信号(SSS,Secondary Synchronization Signal)、小区参考信号(CRS,Cell Reference Signal)和/或信道状态指示参考信号(CSI-RS,Channel-State Information–Reference Signal);
优选的,第二类基站可以是能够为UE提供接入并提供数据传输服务的基站,也可以是仅发送DRS的基站;
步骤320、当所述DRS信号质量满足预设条件时,UE向第一类基站发送检测到的第二类基站的信息;
这里,所述第二类基站的信息用于触发所述第一类基站通知第三类基 站开启。
UE通过检测第二类基站周期性发送的DRS信号,判断第二类基站DRS信号质量是否满足向第一类基站报告的要求,若满足要求则向第一类基站发送检测到的第二类基站的信息;
第二类基站DRS信号质量满足向第一类基站报告的要求,包括以下至少之一:
PSS/SSS信号质量在持续时间T内高于门限;
CRS信号质量在持续时间T内高于门限;
CSI-RS信号质量在持续时间T内高于门限;
向第一类基站发送检测到的第二类基站的信息,至少包括以下之一:第二类基站的小区标识或基站标识(比如物理小区标识(PCI,Physical Cell Identity)),第二类基站的DRS测量结果。
第一类基站收到UE发送的第二类基站的信息,通知第三类基站开启。在此之前,若第三类基站没有服务任何UE,第三类基站可以处于关闭状态。这里第三类基站处于关闭状态是指第三类基站可以不发送信号,但并不限定第三类基站可以接收信号。第三类基站开启,是指第三类基站开始发送下行信号。
本发明中,第二类基站和第三类基站可以是在地理上一对一部署在相同地理位置的基站,即第二类基站和第三类基站一对一共站,也可以是第二类基站数量少于第三类基站,在地理上完全分离部署或者所述数量较少的第二类基站和部分第三类基站共站。其中,当第二类基站和第三基站一对一共站时,第一类基站收到UE发送的第二类基站的信息后,第一类基站通知与第二类基站一对一共站的第三类基站开启;当第二类基站与第三类基站不共站或和部分第三类基站共站时,第一类基站通知第二类基站DRS信号覆盖范围内的第三类基站开启;
步骤330、UE获取第三类基站的接入信息;
UE通过主连接获取第三类基站的接入信息。
其中,第三类基站的接入信息可以保存在第一类基站中,或者也可以保存在接入信息数据中心(AIC,Access Information Center);本发明中所述AIC提供存储信息的功能,具体可以集成在相关现有的网元设备中,或者可以是独立于相关现有网元设备的独立的设备,实现其功能即可。
UE通过接收第一类基站发送的无线资源控制(RRC,Radio Resource Control)消息获取第三类基站的接入信息,或者通过以承载在主连接上的应用层数据的方式从接入信息数据中心AIC处获取第三类基站的接入信息;
其中,当第二类基站和第三类基站一对一共站时,UE获取的是与第二类基站一对一共站的第三类基站的接入信息;当第二类基站与第三类基站不共站或和部分第三类基站共站时,UE获取的是第二类基站DRS信号覆盖范围内的第三类基站的接入信息,其中,第二类基站DRS信号覆盖范围内所有属于第三类基站的基站配置相同的接入信息;
优选的,当第二类基站和第三类基站一对一共站且第二类基站可以是能够为UE提供接入并提供数据传输服务的基站时,UE也可以从第二类基站发送的广播信息中获取第三类基站的接入信息;
其中,第三类基站的接入信息至少包括:
载波频率,载波带宽,随机接入信道(RACH,Random Access Channel)配置和物理随机接入信道(PRACH,Physical Random Access Channel)配置;
可选的,该方法还可以包括:
步骤340、UE根据获取的第三类基站的接入信息接入第三基站;
UE接收第三类基站发送的信号并根据获取的第三类基站的接入信息 接入第三类基站可以包括以下两种方式:
如图4为第一接入方式的方法流程图,包括:
步骤410、UE检测第三类基站发送信号的最强下行波束;
需要说明的是,本实施例中UE检测第三类基站发射信号的最强下行波束,实际上本发明提供的技术方案并不限定为检测最强波束,只需要检测确定出发射信号强度不低于预设阈值的波束即可,“最强”只是一种优选的方案。
第三类基站以波束赋形方式向多个方向发送信号;
值得一提的是,UE可以通过检测第三类基站发送的信号实现与第三类基站的时间同步和频率同步;时间同步包括至少以下之一:帧同步,子帧同步,符号同步;
步骤420、UE根据所获取的第三类基站的接入信息,在最强下行波束所在的方向上向第三基站发送接入请求消息(MSG1),MSG1中包含所述最强下行波束的信息;
UE在最强下行波束所在的方向,在步骤330所获取的接入信息所指示的资源上向第三基站发送所述MSG1;
最强下行波束的信息可以是最强下行波束的波束标识;
步骤430、UE接收第三类基站在所述UE通知的最强下行波束上发送的接入响应消息(MSG2);
MSG2中可以包括第三类基站的逻辑小区标识;
步骤440、UE在最强下行波束所在的方向上向第三类基站发送竞争冲突请求消息(MSG3);
MSG3中可以至少包括包括以下之一:UE能力信息,UE在主连接上的配置信息、UE从主基站(第一类基站)处收到的UE能力分配策略信息;
步骤450、UE接收第三类基站在所述最强下行波束上发送的竞争冲突 解决消息(MSG4);
MSG4中可以包括第三类基站的逻辑小区标识;其中步骤430和步骤450中,MSG2和MSG4中只需要有一个消息中包含第三类基站的逻辑小区标识;
UE收到第三类基站的逻辑小区标识后,可以向第一类基站上报所述逻辑小区标识。
MSG4中还可以包括UE和第三类基站之间的辅连接配置信息。
第三类基站收到第一类基站的通知开启后,如果在时间T内没有检测到来自UE的MSG1,则关闭。
如图5为第二接入方式的方法流程图,包括:
步骤510、UE根据所获取的第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息(MSG1);
UE在步骤330所获取的接入信息所指示的资源上以波束赋形方式在多个方向上发送MSG1;
步骤520、UE接收至少一个属于第三类基站的基站发送的接入响应消息(MSG2),每个MSG2中包含该基站确定的UE的最强上行波束的信息;
需要说明的是,本实施例中基站检测UE发射信号的最强上行波束,实际上本发明提供的技术方案并不限定为检测最强波束,只需要检测确定出发射信号强度不低于预设阈值的波束即可,“最强”只是一种优选的方案。
MSG2中还可以包含该基站(属于第三类基站)的逻辑小区标识;
步骤530、UE选择至少一个第三类基站,在所选择的基站发送的MSG2所指示的最强上行波束方向上发送竞争冲突请求消息(MSG3),MSG3中包含所选择的属于第三类基站的这个基站的最强下行波束的信息;
MSG3中可以至少包括包括以下之一:UE能力信息,UE在主连接上的配置信息、UE从主基站(第一类基站)处收到的UE能力分配策略信息;
步骤540、UE接收所述选择的基站在所述MSG3所指示的最强下行波束上发送的竞争冲突解决消息(MSG4);
MSG4中可以包括第三类基站的逻辑小区标识;其中步骤520和步骤540中,MSG2和MSG4中只需要有一个消息中包含第三类基站的逻辑小区标识;
UE收到第三类基站的逻辑小区标识后,可以向第一类基站上报所述逻辑小区标识。
MSG4中还可以包括UE和第三类基站之间的辅连接配置信息。
需要说明的是,第二接入方式适用于第二类基站和第三类基站不共站或和部分第三类基站共站的情况,第三类基站收到第一类基站的通知开始后,在时间T没有检测到来自UE的MSG1,或者检测到了来自UE的MSG1,但不响应UE,则关闭;
本发明实施例提供一种基站发现方法的流程示意图,本实施例基于第一类基站侧,该方法包括:
步骤101、基站接收用户设备UE发送的检测到的第二类基站的信息;
步骤102、所述基站通知第三类基站;
步骤103、所述基站向所述UE发送无线资源控制RRC消息,所述RRC消息中包含有所述第三类基站的接入信息。
其中,所述UE与所述基站建立主连接,所述基站属于使用低频载波的第一类基站,所述第二类基站属于使用低频载波的基站,所述第三类基站属于使用高频载波的基站。
可选的,所述方法之前还包括:
步骤100、所述基站向所述UE发送所述第二类基站的发现参考信号DRS的配置信息。
可选的,所述检测到的第二类基站的信息至少包括以下一种:所述第 二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的发现参考信号DRS的测量结果。
可选的,所述第三类基站的接入信息包括以下至少一项:载波频率、载波带宽、随机接入信道RACH配置、物理随机接入信道PRACH配置。
可选的,所述第二类基站在所述基站的覆盖范围内,属于所述第二类基站的若干个基站的DRS的配置信息由所述基站统一配置成相同的信息或单独配置成不完全相同的信息;
当单独配置成不完全相同的信息时,所述基站根据所述UE的足迹信息为所述UE配置所述UE附近的属于第二类基站的基站的DRS配置信息,所述UE的足迹信息包括:所述UE的位置信息,或者所述UE所在位置邻区的测量信息。
可选的,所述通知第三类基站开启,包括:
当所述第二类基站和所述第三类基站一对一共站时,所述基站通知与所述第二类基站一对一共站的所述第三类基站开启;
当所述第二类基站和所述第三类基站部分共站或所述第二类基站和所述第三类基站不共站时,所述基站通知所述第二类基站的DRS信号覆盖范围内的第三类基站开启;
其中,所述第二类基站和所述第三类基站一对一共站是指所述第二类基站和所述第三类基站在地理上一对一部署在相同地理位置;所述第二类基站和所述第三类基站部分共站是指所述第二类基站数量少于所述第三类基站、两类基站中只有部分是一对一部署在相同地理位置;所述第二类基站和所述第三类基站不共站是指两类基站在地理上完全分离部署。
本实施例提供的基于第一类基站侧的基站发现方法,具体步骤的说明可参考图3对应的实施例的具体内容,在此不再赘述。
采用本发明实施例提供的上述技术方案,使用高频载波的基站在没有 服务任何UE时处于关闭状态,借助UE检测低频载波上低频度发送的DRS信号判断UE接近或进入了使用高频载波的基站,开启高频载波并将使用高频载波的基站的接入信息通过主连接通知给UE,UE根据所获得的接入信息接入使用高频载波的基站。既保证了快速、高效发现基站,获取接入信息并接入基站,又降低了UE和使用高频载波基站的能耗。此外,本发明实施例提供的技术方案还可以实现在接入过程中同步完成辅连接的配置过程,加快了辅连接配置,能快速使用主连接和辅连接同时为UE服务,提高了用户的数据传输速率和业务体验。
如图6为本发明提出的另一种基站发现方法的流程示意图,本实施例基于第二类基站侧,该方法包括:
步骤610、第二类基站从第一类基站获取UE的上行参考信号的配置信息;
UE和第一类基站建立主连接后,第一类基站为UE配置上行参考信号,第一类基站将UE上行参考信号的配置信息发送给第二类基站;
具体的,第一类基站可以根据UE的足迹信息将接近或进入第二类基站的UE的上行参考信号配置信息发送给第二类基站;
步骤620、第二类基站检测到UE发送的上行参考信号;
优选的,第二类基站可以是能够为UE提供接入并提供数据传输服务的基站,也可以是仅检测接收UE发送的上行参考信号的基站;
步骤630、第二类基站通知第一类基站检测到了上行参考信号,并且第二类基站通知第三类基站开启,或者第一类基站通知第三基站类开启;
本发明中,第二类基站和第三类基站可以是在地理上一对一部署在相同地理位置的基站,即第二类基站和第三类基站一对一共站,也可以是第二类基站数量少于第三类基站,在地理上完全分离部署或者所述数量较少的第二类基站和部分第三类基站共站。其中,当第二类基站和第三基站一 对一共站时,第二类基站检测到了上行参考信息后,通知与其一对一共站的第三类基站开启,或者在第二类基站通知第一类基站检测到了上行信号后由第一类基站通知该第三类基站开启;当第二类基站和第三类基站不共站或和部分第三类基站共站时,第二类基站检测到了上行参考信号后,通知其上行覆盖范围内的第三类基站开启,或者在第二类基站通知第一类基站检测到了上行参考信号后由第一类基站通知该第二类基站上行覆盖范围内的第三类基站开启。
在此之前,若第三类基站没有服务任何UE,第三类基站可以处于关闭状态。这里第三类基站处于关闭状态是指第三类基站不发送信号,但并不限定第三类基站可以接收信号。
步骤640、第一类基站向UE提供第三类基站的接入信息;
第一类基站根据第二类基站通知的检测到的上行参考信号,向发送所述上行参考信号的UE提供第三类基站的接入信息;
其中,第三类基站的接入信息可以保存在第一类基站中,或者保存在接入信息数据中心AIC;
第一类基站通过向UE发送RRC消息为UE提供第三类基站的接入信息,或者通过以承载在主连接上的应用层数据的方式将保存在接入信息数据中心的第三类基站的接入信息提供给UE;
优选的,该方法还可以包括:
步骤650、第三类基站根据其接入信息完成让所述UE接入。
具体的UE接入第三类基站的方式可以参照图4和图5对应的实施例的内容,在此不做赘述。
本发明实施例提供基于第一类基站侧的另一种基站发现方法,包括:
步骤301、基站向第二类基站发送用户设备UE的上行参考信号的配置信息;
步骤302、所述基站接收所述第二类基站发送的通知消息后通知第三类基站开启;
步骤303、所述基站向所述UE发送所述第三类基站的接入信息。
其中,所述UE与所述基站建立主连接,所述基站属于使用低频载波的第一类基站,所述第二类基站属于使用低频载波的基站,所述第三类基站属于使用高频载波的基站。
本发明实施例中,所述方法之前还可以包括:
步骤300、所述基站和所述UE建立主连接后,所述基站为所述UE配置上行参考信号。
本发明实施例中,所述基站向所述UE提供所述第三类基站的接入信息,包括:
所述基站向所述UE发送无线资源控制RRC消息,所述RRC消息中包含第三类基站的接入信息。
本发明实施例提供的另一种基于第一类基站侧的基站发现方法,相关步骤的说明可以参考前述各个实施例的具体内容,在此不再赘述。
本发明实施例提供基于UE的另一种基站发现方法,包括:
步骤401、用户设备UE发送上行参考信号;
步骤402、当第二类基站检测到所述UE发送的上行参考信号后通知第一类基站,并且由所述第一类基站或所述第二类基站通知第三类基站开启后,所述UE获取所述第三类基站的接入信息。
其中,所述UE与所述第一类基站建立主连接,所述第一类基站属于使用低频载波的基站,所述第二类基站属于使用低频载波的基站,所述第三类基站属于使用高频载波的基站。
进一步,所述方法还可以包括:
步骤403、所述UE根据获取的所述第三类基站的接入信息接入所述第 三类基站。
本发明实施例中,步骤403可以具体包括:
所述UE检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
所述UE接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
所述UE接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,步骤403可以具体包括:
所述UE根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
所述UE接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
所述UE选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
所述UE接收所述选择的基站在所述MSG3所指示的下行波束上发送 的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述MSG3中还包括以下至少一项:所述UE的能力信息,所述UE在主连接上的配置信息、所述UE从所述第一类基站处收到的UE能力分配策略信息。
更本发明实施例中,所述方法之后还可以包括:
所述UE收到所述第三类基站的逻辑小区标识后,向所述第一类基站上报收到的逻辑小区标识。
本发明实施例中,所述MSG4中包括所述UE和所述第三类基站之间的辅连接配置信息。
本发明实施例提供的另一种基于UE侧的基站发现方法,相关步骤的说明可以参考前述各个实施例的具体内容,在此不再赘述。
本发明实施例还提供一种接入方法,基于第三类基站侧,如图7为第三类基站根据其接入信息完成让所述UE接入的方法流程示意图,该方法包括:
步骤710、第三类基站在其接入信息所指示的资源上接收UE发送的接入请求消息(MSG1);
第三类基站接收MSG1的过程中,可以获知UE的最强上行波束的信息;
步骤720、第三类基站向UE发送接入响应消息(MSG2),MSG2中包含第三类基站基站确定的UE的最强上行波束信息;
MSG2中还可以包含第三类基站的逻辑小区标识;
第三类基站收到第一类基站或第二类基站的通知开启后,在时间T没 有检测到来自UE的MSG1,或者检测到了来自UE的MSG1,但不响应UE,则关闭;
步骤730、第三类基站在UE的最强上行波束上接收UE发送的竞争冲突请求消息(MSG3),MSG3中包含该第三类基站的最强下行波束信息;
MSG3中可以至少包括包括以下之一:UE能力信息,UE在主连接上的配置信息、UE从主基站(第一类基站)处收到的UE能力分配策略信息;
步骤740、第三类基站在MSG3所指示的最强下行波束上发送竞争冲突解决消息(MSG4);
MSG4中可以包括第三类基站的逻辑小区标识;其中步骤720和步骤740中,MSG2和MSG4中只需要有一个消息中包含第三类基站的逻辑小区标识;
MSG4中还可以包括UE和第三类基站之间的辅连接配置信息。
需要说明的是,本实施例中第三类基站检测UE发射信号的最强上行波束以及UE检测第三类基站发射信号的最强下行波束,实际上本发明提供的技术方案并不限定为检测最强,只需要检测发射信号强度不低于预设阈值的即可,“最强”只是一种优选的方案。
采用上述基于第二类基站侧或第一类基站侧的另一种基站发现方法的实施例以及图7对应的基于第三基站侧的接入方法的实施例提供的技术方案,使用高频载波的基站在没有服务任何UE时处于关闭状态,借助让使用低频载波的基站检测UE发送的上行参考信号判断UE接近或进入了使用高频载波的基站,开启高频载波并将使用高频载波的基站的接入信息通过主连接通知给UE,UE根据所获得的接入信息接入使用高频载波的基站。既保证了快速、高效发现基站,获取接入信息并接入基站,又降低了UE和使用高频载波基站的能耗。此外,本发明实施例提供的技术方案还可以实现在接入过程中同步完成辅连接的配置过程,加快了辅连接配置,能快速使 用主连接和辅连接同时为UE服务,提高了用户的数据传输速率和业务体验。
为了使本领域技术人员能够更清楚地理解本发明提供的技术方案,下面通过具体的实施例,对本发明提供的技术方案进行详细说明:
实施示例一
如图8为应用于本发明实施例的网络部署示意图一。图中椭圆形实线区域为cm-eNB(对应第一类基站)的无线覆盖范围,本实施示例中,UE已经通过空中接口与cm-eNB建立了主连接。在cm-eNB的覆盖范围内,部分区域密集部署了mm-eNB,并且根据自组织网络(SON,Self-Organized Network)或者其他网络运营管理和维护功能(OAM,Operation Administration and Maintenance),在区域内选择其中一些mm-eNB开启低频载波功能,将这些mm-eNB记为DRS-eNB(对应第二类基站),如图中带阴影的LPN所示,这些DRS-eNB至少用于在低频载波周期性发送DRS信号,以图8中的DRS-eNB1为例,其发送的DRS信号所覆盖的范围内,包括mm-eNB1,mm-eNB2,mm-eNB3和mm-eNB4(对应第三类基站)。DRS-eNB1可以是在低频载波仅发送DRS的基站,也可以是能够为UE提供接入并提供数据传输服务的基站,实施示例一中DRS-eNB在低频载波仅发送DRS信号。图8中,使用SON或OAM,为cm-eNB范围的所有mm-eNB配置相同的接入信息,接入信息除了保存在每个mm-eNB之外,还保存在cm-eNB或者AIC中,本实施示例后续说明书以保存在AIC中为例进行说明。
如图9为本发明实施示例一的实施流程图,以图8中DRS-eNB1及其覆盖范围内的mm-eNB1,mm-eNB2,mm-eNB3,mm-eNB4为例,包括:
步骤900、mm-eNB1,mm-eNB2,mm-eNB3,mm-eNB4在没有服务任何UE时,处于关闭状态,DRS-eNB周期性发送DRS。
如图10为DRS-eNB周期性发送的DRS信号的时序图,其中DRS包括PSS,SSS,还可以包含CRS和或CSI-RS。
步骤901、cm-eNB向UE发送DRS配置信息。
本实施示例中,图8所示cm-eNB范围内的三个DRS-eNB的DRS配置完全相同,如图10所示,DRS配置信息包括发现信号测量时间配置周期(DMTC period,discovery signals measurement timing configuration),DRS在DMTC窗口内的偏移,即DMTC偏移,以及DRS发送窗口时长等。如果DRS信号包括CSI-RS,则DRS配置信息中还可以包括CSI-RS的配置信息。
如果图8中cm-eNB范围内的三个DRS-eNB的DRS配置不同,则cm-eNB可以根据UE的足迹信息为UE配置UE附近的DRS-eNB(比如DRS-eNB1)的DRS配置信息。UE的足迹信息为UE的位置信息,或者UE所在位置邻区的测量信息。
步骤902、UE检测DRS,判断DRS信号质量满足向cm-eNB报告的要求,向cm-eNB发送检测到的DRS-eNB的信息,这里为DRS-eNB1的信息,包括PCI1,还可以包括DRS的测量结果。
DRS信号质量满足向cm-eNB报告的要求,可以是以下要求之一:
PSS/SSS信号质量高于门限;
CRS信号质量高于门限;
CSI-RS信号质量高于门限;
步骤903、cm-eNB收到DRS-eNB1的信息后,通知DRS-eNB1的DRS覆盖范围内的所有mm-eNB(mm-eNB1,mm-eNB2,mm-eNB3,mm-eNB4)开启。
mm-eNB1,mm-eNB2,mm-eNB3,mm-eNB4收到开启通知后,开始以波束赋形方式向多个方向发送下行信号。
步骤904、UE获取mm-eNB的接入信息。
本实施例中,为DRS-eNB1的DRS覆盖范围内的所有mm-eNB配置相同的接入信息,接入信息至少包括:
载波频率,载波带宽,RACH配置和PRACH配置。
本实施例中,接入信息保存在AIC中,UE通过主连接以应用层数据的方式从AIC获取mm-eNB(mm-eNB1,mm-eNB2,mm-eNB3,mm-eNB4)的接入信息。
其中903和904在执行顺序上没有先后之分。
图9后续步骤(905~908)中,UE采用第二接入方式接入mm-eNB。
步骤905、UE根据904所获取的接入信息,在接入信息所指示的载波频率,PRACH配置指示的资源上,根据RACH配置生成接入请求消息(MSG1),以波束赋形方式在多个方向上发送MSG1。
步骤906、mm-eNB2和mm-eNB3以波束赋形方式在多个方向发送接入响应消息(MSG2),mm-eNB2发送的MSG2中包含mm-eNB2检测到的UE的最强上行波束信息,mm-eNB3发送的MSG2中包含mm-eNB3检测到的UE的最强上行波束信息,上行波束信息为上行波束标识。优选的,mm-eNB2发送的MSG2中包含mm-eNB2的逻辑小区标识,mm-eNB3发送的MSG2中包含mm-eNB3的逻辑小区标识。
此外,MSG2中包含上行时间调整信息,初始上行授权信息,临时小区无线网络标识(Temporary C-RNTI,Temporary Cell Radio Network Temporary Identifier)等相关技术中的信息,已经在第三代合作伙伴项目(3GPP,the 3rd Generation Partnership Project)技术规范36.321,36.300中描述,本发明不再赘述。
本实施例中,mm-eNB1和mm-eNB4在时间T内没有检测到来自UE的MSG1,或者检测到了来自UE的MSG1,但是综合考虑负荷,资源分配 策略等不响应UE,则关闭。
步骤907、UE接收到来自mm-eNB2和mm-eNB3的MSG2,选择向mm-eNB3发送竞争冲突请求消息(MSG3),MSG3中包含UE确定的mm-eNB3的最强下行波束信息。
此外,MSG3中可以包含UE能力信息,UE在主连接上的配置信息。还可以包含UE从主基站收到的UE能力分配策略信息;
其中UE能力信息包括UE的接入层版本信息,UE分类信息,UE物理层参数信息,UE射频参数信息等信息,UE在主连接上的配置信息包括UE在主连接上的物理层物理信道的配置信息,传输信道的配置信息,无线承载(RB,Radio Bearer)的配置信息以及其他相关物理过程和协议过程的配置参数等,已经在第三代合作伙伴项目(3GPP,the 3rd Generation Partnership Project)技术规范36.331中详细说明,本发明不再赘述。
本实施例中,UE根据UE当前传输业务的综合特性,UE能力等只选择了向mm-eNB3发送MSG3,当然,需要的话,UE也可以选择向mm-eNB3和mm-eNB4发送MSG3。
本步骤中,除以上信息之外,MSG3中还包含相关技术中随机接入过程MSG3中所包含的信息,已经在3GPP技术规范36.321和36.300中说明,本发明不再赘述,MSG3在MSG2所指示的初始上行授权上发送,具体发送方式同相关技术中随机接入过程的描述,本发明也不再赘述。
步骤908、mm-eNB3接收到UE发送的MSG3后,在MSG3所包含的mm-eNB3的最强下行波束上发送竞争冲突解决消息(MSG4),MSG4中可以包括mm-eNB3的逻辑小区标识,优选的,MSG4中还可以包括UE和mm-eNB3之间的辅连接配置信息,辅连接配置信息包括UE在辅连接上的物理层物理信道的配置信息,传输信道的配置信息,无线承载(RB,Radio Bearer)的配置信息以及其他相关物理过程和协议过程的配置参数等。
至此,UE成功接入mm-eNB3。
本实施示例中通过在MSG3向mm-eNB3通知UE能力信息,UE在主连接上的配置信息,UE从主基站收到的UE能力分配策略信息,可以使得mm-eNB3在MSG4中直接将UE和mm-eNB3之间的辅连接配置信息发送给UE,从而在接入过程中同步完成辅连接的配置过程。
步骤909、UE收到MSG2或者MSG4中通知的mm-eNB3的逻辑小区标识,将该逻辑小区标识发送给cm-eNB,cm-eNB可以根据该逻辑小区标识和mm-eNB3之间建立联系,共同为UE服务。
实施示例二
如图11为应用于本发明实施示例的网络部署示意图二。实施示例一中详细描述的图8的网络部署示意图一相比,区别在于,网络部署示意图二中,区域内所有mm-eNB均具有低频载波功能,都在低频载波上至少周期性发送DRS信号,当然同样的,所有这些mm-eNB的在低频载波上,可以是能够为UE提供接入并提供数据传输服务的基站,也可以是仅发送DRS信号的设备。图11中,cm-eNB或者AIC中,保存了cm-eNB范围内所有mm-eNB的接入信息,本实施示例后续说明书以保存在cm-eNB中为例进行说明。
如图12为本发明实施示例二的实施流程图,以图中UE及mm-eNB1,mm-eNB2,mm-eNB3为例,包括:
步骤1201、mm-eNB高频载波在没有服务任何UE时,处于关闭状态,mm-eNB在低频载波上周期性发送DRS。
步骤1202、cm-eNB向UE发送DRS配置信息;
本实施示例中,图11cm-eNB范围内的每个mm-eNB在低频载波上配置相同或者不同的DRS配置,当每个mm-eNB的DRS配置不同时,cm-eNB可以根据UE的足迹信息为UE配置UE附近的一个或多个mm-eNB在低频 载波上的DRS配置信息,如本实施例配置了mm-eNB1,mm-eNB2,mm-eNB3的DRS配置信息。
步骤1203、UE根据1202接收的DRS配置信息检测DRS,判断DRS信号质量满足向cm-eNB报告的要求,向cm-eNB发送检测到的eNB的信息,这里为mm-eNB3,报告的信息包括PCI3,还可以包括mm-eNB3的DRS的测量结果。
步骤1204、cm-eNB收到UE报告的信息后,通知mm-eNB3开启,mm-eNB3收到开启通知后,开始以波束赋形的方式在多个方向发送下行信号。
步骤1205、UE获取mm-eNB3在高频载波上的接入信息。
本实施示例中,接入信息保存在cm-eNB中,UE通过接收cm-eNB发送的RRC消息获取mm-eNB3在高频载波上的接入信息。或者若mm-eNB3在低频载波上能够为UE提供接入并提供数据传输服务,则UE也可以从mm-eNB3在低频载波上发送的广播信息中获取mm-eNB3在高频载波上的接入信息。
其中1204和1205在执行顺序上没有先后之分。
图12后续步骤(1206~1210)中,UE采用第一接入方式接入mm-eNB。
步骤1206、UE检测mm-eNB3发送信号的最强下行波束。mm-eNB3以波束赋形方式向多个方向发送信息,比如PSS和/或SSS信号,或者导频信号,UE通过检测mm-eNB3发送的下行信号完成与mm-eNB3之间的时间同步和频率同步。
步骤1207、UE根据获取到的mm-eNB3的接入信息,在1206检测到的mm-eNB3的最强下行波束所在的方向上向mm-eNB3发送接入请求消息(MSG1),MSG1中包含该最强下行波束信息。
步骤1208、mm-eNB接收到MSG1后,在MSG1指示的最强下行波束 方向发送接入响应消息(MSG2)。
优选的,MSG2中包含mm-eNB3的逻辑小区标识。
步骤1209、UE接收到MSG2中后,在1206检测到的mm-eNB3的最强下行波束所在的方向向mm-eNB3发送竞争冲突请求消息(MSG3);
MSG3中可以包括UE能力信息,UE在主连接上的配置信息。还可以包括UE从主基站收到的UE能力分配策略信息;
步骤1210、mm-eNB3收到MSG3后,在MSG1指示的最强下行波束方向发送竞争冲突解决消息(MSG4);
MSG4中可以包含mm-eNB3的逻辑小区标识;其中1208和1210中,MSG2和MSG4中只需要有一个消息中包含mm-eNB3的逻辑小区标识;
步骤1211、UE收到MSG2或者MSG4中通知的mm-eNB3的逻辑小区标识,将该逻辑小区标识发送给cm-eNB,cm-eNB可以根据该逻辑小区标识和mm-eNB3之间建立联系,共同为UE服务。
通过以上实施示例一和实施示例二的实施过程,使用高频载波的基站在没有服务任何UE时处于关闭状态,借助检测低频载波上低频度发送的DRS信号判断UE接近或进入了使用高频载波的基站,开启高频载波并将使用高频载波的基站的接入信息通过主连接通知给UE,UE根据所获得的接入信息接入使用高频载波的基站。既保证了快速、高效发现基站,获取接入信息并接入基站,又降低了UE和使用高频载波基站的能耗。此外,实施例一和实施例二中可以实现在接入过程中同步完成辅连接的配置过程,加快了辅连接配置,能快速使用主连接和辅连接同时为UE服务,提高了用户的数据传输速率和业务体验。
实施示例三
实施示例三同样以图8所示的网络部署示意图为例。如图13为本发明 实施示例三的实施流程图,同样以图8中DRS-eNB1及其覆盖范围内的mm-eNB1,mm-eNB2,mm-eNB3,mm-eNB4为例,包括:
步骤1300、cm-eNB将UE上行参考信号配置信息发送给DRS-eNB1。
本发明中,UE已经与cm-eNB建立了主连接,cm-eNB通知UE发送上行参考信号,上行参考信号比如探测参考信号(SRS,sounding reference signals)。cm-eNB将所有和cm-eNB建立了连接的UE的上行参考信号配置信息通知给cm-eNB内的所有DRS-eNB,或者,cm-eNB根据UE的足迹信息判断UE接近了DRS-eNB1的范围,则将UE的上行参考信号配置信息发送给DRS-eNB1。具体上行参考信号配置信息相关技术中已有详细说明(比如3gpp TS36.331),本发明不再赘述。
步骤1301、mm-eNB在没有服务任何UE时,处于关闭状态,DRS-eNB1根据所收到的UE的上行参考信号配置信息,检测UE发送的上行参考信号。
步骤1302、DRS-eNB1检测到了上行参考信号,通知cm-eNB其检测到了上行参考信号。
步骤1303、cm-eNB收到通知后,通知DRS-eNB1上行覆盖范围内的mm-eNB(mm-eNB1,mm-eNB2,mm-eNB3,mm-eNB4)开启。mm-eNB开启后,以波束赋形方式在多个方向上发送信号。
步骤1304、UE获取mm-eNB的接入信息,具体同实施例一的描述。
图13后续步骤(1305~1309)中,UE采用第一接入方式接入mm-eNB。
步骤1305、UE检测其附近mm-eNB发送信号的最强下行波束,这里假设UE检测到了来自mm-eNB3的最强下行波束。
步骤1306~1310、同实施示例二1207~1211的说明。需要说明的是,本实施示例中,mm-eNB1,mm-eNB2,mm-eNB4在开启后时间T内没有检测到来自UE的MSG1,则关闭。
通过实施示例三的实施过程,使用高频载波的基站在没有服务任何UE 时处于关闭状态,借助让使用低频载波的基站检测UE发送的上行参考信号判断UE接近或进入了使用高频载波的基站,开启高频载波并将使用高频载波的基站的接入信息通过主连接通知给UE,UE根据所获得的接入信息接入使用高频载波的基站。既保证了快速、高效发现基站,获取接入信息并接入基站,又降低了UE和使用高频载波基站的能耗。
本发明实施例提供一种基站发现装置10,应用于用户设备中,如图14所示,包括:
检测模块11,配置为检测第二类基站发送的发现参考信号DRS;
发送模块12,配置为当所述DRS信号质量满足预设条件时,向第一类基站发送检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
获取模块13,配置为获取第三类基站的接入信息。
其中,所述UE与所述第一类基站建立主连接,所述第一类基站属于使用低频载波的基站,所述第二类基站属于使用低频载波的基站,所述第三类基站属于使用高频载波的基站。
本发明实施例中,所述DRS是由所述第二类基站周期性发送的,其中至少包括以下一种信号:同步信号、小区参考信号CRS、信道状态指示参考信号CSI-RS。
本发明实施例中,所述检测到的第二类基站的信息至少包括以下一种:所述第二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的DRS的测量结果。
本发明实施例中,所述获取模块13,还配置为:
通过接收所述第一类基站发送的无线资源控制RRC消息获取所述第三类基站的接入信息;或者,
通过从接入信息数据中心AIC处获取所述第三类基站的接入信息;或 者,
从所述第二类基站发送的广播信息中获取所述第三类基站的接入信息。
本发明实施例中,如图14所示,所述基站发现装置10还包括:
接入模块14,配置为根据获取的所述第三类基站的接入信息接入所述第三类基站。
本发明实施例中,所述接入模块14,还配置为:
检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述接入模块14,还配置为:
根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2 所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
本实施例用于实现上述各个方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各个方法实施例中的描述,在此不再赘述。
相应地,本发明实施例还提供一种用户设备,所述用户设备包括上述基站发现装置10。
本发明实施例提供一种基站发现装置20,应用于第一类基站中,如图15所示,包括:
接收模块21,配置为接收用户设备UE发送的检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
通知模块22,配置为通知第三类基站开启;
发送模块23,配置为向所述UE发送无线资源控制RRC消息,所述RRC消息中包含有所述第三类基站的接入信息。
其中,所述UE与所述基站建立主连接,所述基站属于使用低频载波的第一类基站,所述第二类基站属于使用低频载波的基站,所述第三类基站属于使用高频载波的基站。
本实施例用于实现上述各个方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各个方法实施例中的描述,在此不再赘述。
相应地,本发明实施例还提供一种基站,所述基站包括上述基站发现装置20。
本发明实施例还提供一种基站发现装置30,应用于第二类基站中,如图16所示,包括:
获取模块31,配置为从第一类基站获取UE的上行参考信号的配置信息;
检测模块32,配置为检测UE发送的上行参考信号;
通知模块33,配置为当所述基站检测到UE发送的上行参考信号后,通知第三类基站开启或者通知所述第一类基站检测到UE发送的上行参考信号以触发第一类基站通知所述第三类基站开启。
其中,所述UE与所述第一类基站建立主连接,所述第一类基站属于使用低频载波的基站,所述基站属于使用低频载波的第二类基站,所述第三类基站属于使用高频载波的基站。
本实施例用于实现上述各个方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各个方法实施例中的描述,在此不再赘述。
相应地,本发明实施例还提供一种基站,所述基站包括上述基站发现装置30。
本发明实施例提供一种基站发现装置40,应用于第一类基站中,如图17所示,包括:
发送模块41,配置为向第二类基站发送用户设备UE的上行参考信号的配置信息;
通知模块42,配置为接收所述第二类基站发送的通知消息后通知第三类基站开启;
所述发送模块41,还配置为向所述UE发送所述第三类基站的接入信息。
其中,所述UE与所述基站建立主连接,所述基站属于使用低频载波的第一类基站,所述第二类基站属于使用低频载波的基站,所述第三类基站属于使用高频载波的基站。
本实施例用于实现上述各个方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各个方法实施例中的描述,在此不再赘述。
相应地,本发明实施例还提供一种基站,所述基站包括上述基站发现装置40。
本发明实施例提供一种基站发现装置50,应用于用户设备中,如图18所示,包括:
发送模块51,配置为发送上行参考信号;
获取模块52,配置为当第二类基站检测到所述用户设备发送的上行参考信号后通知第一类基站,并且由所述第一类基站或所述第二类基站通知第三类基站开启后,获取所述第三类基站的接入信息。
其中,所述用户设备与所述第一类基站建立主连接,所述第一类基站属于使用低频载波的基站,所述第二类基站属于使用低频载波的基站,所述第三类基站属于使用高频载波的基站。
本发明实施例中,如图18所示,所述基站发现装置50还包括:
接入模块51,配置为根据获取的所述第三类基站的接入信息接入所述第三类基站。
本发明实施例中,所述接入模块51,还配置为:
检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
本发明实施例中,所述接入模块51,还配置为:
根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
本实施例用于实现上述各个方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各个方法实施例中的描述,在此不再赘述。
相应地,本发明实施例还提供一种用户设备,所述用户设备包括上述基站发现装置50。
本实施例提供一种接入装置60,应用于第三类基站中,如图19所示,包括:
接收模块61,配置为接收用户设备UE发送的接入请求消息MSG1;
发送模块62,配置为向所述UE发送接入响应消息MSG2,MSG2中包含所述第三类基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
所述接收模块61,还配置为在所述确定的上行波束方向上接收所述UE发送的竞争冲突请求消息MSG3,MSG3中包含所述UE确定的所述第三类基站发射信号强度不低于预设阈值的下行波束的信息;
所述发送模块62,还配置为在所述MSG3所指示的下行波束上发送竞争冲突解决消息MSG4;
其中,MSG2和MSG4中只需要有一个消息中包含所述基站的逻辑小区标识。
本实施例用于实现上述各方法实施例,本实施例中各个单元的工作流程和工作原理参见上述各方法实施例中的描述,在此不再赘述。
相应地,本发明实施例还提供一种基站,所述基站包括上述接入装置60。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述任一种基站发现方法或者接入方法的实施例步骤的程序代码。
可选地,存储介质还被设置为存储用于执行上述任一种基站发现方法或者接入方法的实施例步骤的程序代码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执 行上述任一种基站发现方法或者接入方法的实施例步骤的程序代码。
可选地,本实施例中的具体示例可以参考上述任一种基站发现方法或者接入方法的实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另一点,所显示或讨论的模块相互之间的连接可以是通过一些接口,可以是电性,机械或其它的形式。所述各个模块可以是或者也可以不是物理上分开的,可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理包括,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例的技术方案,使用高频载波的基站在没有服务任何UE时处于关闭状态,借助UE检测低频载波上低频度发送的DRS信号判断UE接近或进入了使用高频载波的基站,或者借助让使用低频载波的基站检测UE发送的上行参考信号判断UE接近或进入了使用高频载波的基站,开启高频载波并将使用高频载波的基站的接入信息通过主连接通知给UE,UE根据所获得的接入信息接入使用高频载波的基站。既保证了快速、高效发 现基站,获取接入信息并接入基站,又降低了UE和使用高频载波基站的能耗。此外,还可以实现接入过程中同步完成辅连接的配置过程,加快了辅连接配置,能快速使用主连接和辅连接同时为UE服务,提高了用户的数据传输速率和业务体验。

Claims (57)

  1. 一种基站发现方法,包括:
    用户设备UE检测第二类基站发送的发现参考信号DRS;
    当所述DRS信号质量满足预设条件时,所述UE向第一类基站发送检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
    所述UE获取第三类基站的接入信息。
  2. 根据权利要求1所述的方法,其中,所述DRS是由所述第二类基站周期性发送的,其中至少包括以下一种信号:同步信号、小区参考信号CRS、信道状态指示参考信号CSI-RS。
  3. 根据权利要求1所述的方法,其中,所述检测到的第二类基站的信息至少包括以下一种:所述第二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的DRS的测量结果。
  4. 根据权利要求1所述的方法,其中,所述方法之前还包括:
    所述UE从所述第一类基站处接收所述第二类基站的DRS的配置信息。
  5. 根据权利要求2所述的方法,其中,在所述UE向第一类基站发送检测到的第二类基站的信息之前,所述方法还包括:
    所述UE判断所述第二类基站发送的DRS信号质量是否满足向所述第一类基站报告的要求;
    若满足要求,则所述UE向所述第一类基站发送所述检测到的第二类基站的信息。
  6. 根据权利要求5所述的方法,其中,所述要求包括以下至少之一:
    同步信号质量在持续时间T内高于门限;
    CRS信号质量在持续时间T内高于门限;
    CSI-RS信号质量在持续时间T内高于门限。
  7. 根据权利要求1所述的方法,其中,所述UE获取第三类基站的接入信息,包括:
    所述UE通过接收所述第一类基站发送的无线资源控制RRC消息获取所述第三类基站的接入信息;或者,
    所述UE通过从接入信息数据中心AIC处获取所述第三类基站的接入信息;或者,
    所述UE从所述第二类基站发送的广播信息中获取所述第三类基站的接入信息。
  8. 根据权利要求1或7所述的方法,其中,所述第三类基站的接入信息包括以下至少一项:载波频率、载波带宽、随机接入信道RACH配置、物理随机接入信道PRACH配置。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站。
  10. 根据权利要求9所述的方法,其中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
    所述UE检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
    所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
    所述UE接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
    所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
    所述UE接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
  11. 根据权利要求9所述的方法,其中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
    所述UE根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
    所述UE接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
    所述UE选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
    所述UE接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
  12. 根据权利要求10或11所述的方法,其中,所述MSG3中还包括以下至少一项:所述UE的能力信息,所述UE在主连接上的配置信息、所述UE从所述第一类基站处收到的UE能力分配策略信息。
  13. 根据权利要求10或11所述的方法,其中,所述方法之后还包括:
    所述UE收到所述第三类基站的逻辑小区标识后,向所述第一类基站上报收到的逻辑小区标识。
  14. 根据权利要求10或11所述的方法,其中,所述MSG4中包括所述UE和所述第三类基站之间的辅连接配置信息。
  15. 一种基站发现方法,包括:
    第一类基站接收用户设备UE发送的检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
    所述第一类基站通知第三类基站开启;
    所述第一类基站向所述UE发送无线资源控制RRC消息,所述RRC消息中包含有所述第三类基站的接入信息。
  16. 根据权利要求15所述的方法,其中,所述方法之前还包括:
    所述第一类基站向所述UE发送所述第二类基站的发现参考信号DRS的配置信息。
  17. 根据权利要求16所述的方法,其中,所述检测到的第二类基站的信息至少包括以下一种:所述第二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的发现参考信号DRS的测量结果。
  18. 根据权利要求15所述的方法,其中,所述第三类基站的接入信息包括以下至少一项:载波频率、载波带宽、随机接入信道RACH配置、物理随机接入信道PRACH配置。
  19. 根据权利要求16所述的方法,其中,
    所述第二类基站在所述第一类基站的覆盖范围内,属于所述第二类基站的若干个基站的DRS的配置信息由所述第一类基站统一配置成相同的信息或单独配置成不完全相同的信息;
    当单独配置成不完全相同的信息时,所述第一类基站根据所述UE的足迹信息为所述UE配置所述UE附近的属于第二类基站的基站的DRS配置信息,所述UE的足迹信息包括:所述UE的位置信息,或者所述UE所在位置邻区的测量信息。
  20. 根据权利要求15所述的方法,其中,所述通知第三类基站开启,包括:
    当所述第二类基站和所述第三类基站一对一共站时,所述第一类基站通知与所述第二类基站一对一共站的所述第三类基站开启;
    当所述第二类基站和所述第三类基站部分共站或所述第二类基站和所述第三类基站不共站时,所述第一类基站通知所述第二类基站的DRS信号覆盖范围内的第三类基站开启;
    其中,所述第二类基站和所述第三类基站一对一共站是指所述第二类基站和所述第三类基站在地理上一对一部署在相同地理位置;所述第二类基站和所述第三类基站部分共站是指所述第二类基站数量少于所述第三类基站、两类基站中只有部分是一对一部署在相同地理位置;所述第二类基站和所述第三类基站不共站是指两类基站在地理上完全分离部署。
  21. 一种基站发现方法,包括:
    第二类基站从第一类基站获取UE的上行参考信号的配置信息;
    所述第二类基站检测UE发送的上行参考信号;
    当所述第二类基站检测到UE发送的上行参考信号后,通知第三类基站开启或者通知所述第一类基站检测到UE发送的上行参考信号以触发第一类基站通知所述第三类基站开启。
  22. 根据权利要求21所述的方法,其中,所述当所述第二类基站检测到UE发送的上行参考信号后,通知第三类基站开启或者通知所述第一类基站检测到UE发送的上行参考信号以触发第一类基站通知所述第三类基站开启,包括:
    当所述第二类基站和所述第三类基站一对一共站时,所述第二类基站检测到上行参考信号后,通知与所述第二类基站一对一共站的所述第三基站开启,或者在所述第二类基站通知所述第一类基站检测到了上行参考信号后由所述第一类基站通知所述第三类基站开启;
    当所述第二类基站和所述第三类基站部分共站或所述第二类基站和所 述第三类基站不共站时,所述第二类基站检测到上行参考信号后,通知所述第二类基站上行覆盖范围内的第三类基站开启,或者在所述第二类基站通知所述第一类基站检测到上行参考信号后由所述第一类基站通知所述第二类基站上行覆盖范围内的第三类基站开启;
    其中,所述第二类基站和所述第三类基站一对一共站是指所述第二类基站和所述第三类基站在地理上一对一部署在相同地理位置;所述第二类基站和所述第三类基站部分共站是指所述第二类基站数量少于所述第三类基站、两类基站中只有部分是一对一部署在相同地理位置;所述第二类基站和所述第三类基站不共站是指两类基站在地理上完全分离部署。
  23. 一种基站发现方法,包括:
    第一类基站向第二类基站发送用户设备UE的上行参考信号的配置信息;
    所述第一类基站接收所述第二类基站发送的通知消息后通知第三类基站开启;
    所述第一类基站向所述UE发送所述第三类基站的接入信息。
  24. 根据权利要求23所述的方法,其中,所述方法之前还包括:
    所述第一类基站和所述UE建立主连接后,所述第一类基站为所述UE配置上行参考信号。
  25. 根据权利要求23所述的方法,其中,所述第一类基站向所述UE提供所述第三类基站的接入信息,包括:
    所述第一类基站向所述UE发送无线资源控制RRC消息,所述RRC消息中包含第三类基站的接入信息。
  26. 一种基站发现方法,包括:
    用户设备UE发送上行参考信号;
    当第二类基站检测到所述UE发送的上行参考信号后通知第一类基站, 并且由所述第一类基站或所述第二类基站通知第三类基站开启,所述UE获取所述第三类基站的接入信息。
  27. 根据权利要求26所述的方法,其中,所述方法还包括:
    所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站。
  28. 根据权利要求27所述的方法,其中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
    所述UE检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
    所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
    所述UE接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
    所述UE在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
    所述UE接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
  29. 根据权利要求27所述的方法,其中,所述UE根据获取的所述第三类基站的接入信息接入所述第三类基站,包括:
    所述UE根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
    所述UE接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
    所述UE选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
    所述UE接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
  30. 根据权利要求28或29所述的方法,其中,所述MSG3中还包括以下至少一项:所述UE的能力信息,所述UE在主连接上的配置信息、所述UE从所述第一类基站处收到的UE能力分配策略信息。
  31. 根据权利要求28或29所述的方法,其中,所述方法之后还包括:
    所述UE收到所述第三类基站的逻辑小区标识后,向所述第一类基站上报收到的逻辑小区标识。
  32. 根据权利要求28或29所述的方法,其中,所述MSG4中包括所述UE和所述第三类基站之间的辅连接配置信息。
  33. 一种接入方法,包括:
    第三类基站接收用户设备UE发送的接入请求消息MSG1;
    所述第三类基站向所述UE发送接入响应消息MSG2,MSG2中包含所述第三类基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
    所述第三类基站在所述确定的上行波束方向上接收所述UE发送的竞争冲突请求消息MSG3,MSG3中包含所述UE确定的所述第三类基站发射信号强度不低于预设阈值的下行波束的信息;
    所述第三类基站在所述MSG3所指示的下行波束上发送竞争冲突解决 消息MSG4;
    其中,MSG2和MSG4中只需要有一个消息中包含所述基站的逻辑小区标识。
  34. 根据权利要求33所述的方法,其中,所述MSG3中还包括以下至少一项:所述UE的能力信息,所述UE在主连接上的配置信息、所述UE从所述第一类基站处收到的UE能力分配策略信息。
  35. 根据权利要求33所述的方法,其中,所述MSG4中包括所述UE和所述第三类基站之间的辅连接配置信息。
  36. 一种基站发现装置,应用于用户设备中,包括:
    检测模块,配置为检测第二类基站发送的发现参考信号DRS;
    发送模块,配置为当所述DRS信号质量满足预设条件时,向第一类基站发送检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
    获取模块,配置为获取第三类基站的接入信息。
  37. 根据权利要求36所述的基站发现装置,其中,所述DRS是由所述第二类基站周期性发送的,其中至少包括以下一种信号:同步信号、小区参考信号CRS、信道状态指示参考信号CSI-RS。
  38. 根据权利要求36所述的基站发现装置,其中,所述检测到的第二类基站的信息至少包括以下一种:所述第二类基站的小区标识、所述第二类基站的基站标识、所述第二类基站的DRS的测量结果。
  39. 根据权利要求36所述的基站发现装置,其中,所述获取模块,还配置为:
    通过接收所述第一类基站发送的无线资源控制RRC消息获取所述第三类基站的接入信息;或者,
    通过从接入信息数据中心AIC处获取所述第三类基站的接入信息;或 者,
    从所述第二类基站发送的广播信息中获取所述第三类基站的接入信息。
  40. 根据权利要求36所述的基站发现装置,其中,所述基站发现装置还包括:
    接入模块,配置为根据获取的所述第三类基站的接入信息接入所述第三类基站。
  41. 根据权利要求40所述的基站发现装置,其中,所述接入模块,还配置为:
    检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
    在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
    接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
    在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
    接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
  42. 根据权利要求40所述的基站发现装置,其中,所述接入模块,还配置为:
    根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
    接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2, MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
    选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
    接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
  43. 一种基站发现装置,应用于第一类基站中,包括:
    接收模块,配置为接收用户设备UE发送的检测到的第二类基站的信息,所述第二类基站的信息用于触发所述第一类基站通知第三类基站开启;
    通知模块,配置为通知第三类基站开启;
    发送模块,配置为向所述UE发送无线资源控制RRC消息,所述RRC消息中包含有所述第三类基站的接入信息。
  44. 一种基站发现装置,应用于第二类基站中,包括:
    获取模块,配置为从第一类基站获取UE的上行参考信号的配置信息;
    检测模块,配置为检测UE发送的上行参考信号;
    通知模块,配置为当所述基站检测到UE发送的上行参考信号后,通知第三类基站开启或者通知所述第一类基站检测到UE发送的上行参考信号以触发第一类基站通知所述第三类基站开启。
  45. 一种基站发现装置,应用于第一类基站中,包括:
    发送模块,配置为向第二类基站发送用户设备UE的上行参考信号的配置信息;
    通知模块,配置为接收所述第二类基站发送的通知消息后通知第三类 基站开启;
    所述发送模块,还配置为向所述UE发送所述第三类基站的接入信息。
  46. 一种基站发现装置,应用于用户设备中,包括:
    发送模块,配置为发送上行参考信号;
    获取模块,配置为当第二类基站检测到所述用户设备发送的上行参考信号后通知第一类基站,并且由所述第一类基站或所述第二类基站通知第三类基站开启后,获取所述第三类基站的接入信息。
  47. 根据权利要求46所述的基站发现装置,其中,所述基站发现装置还包括:
    接入模块,配置为根据获取的所述第三类基站的接入信息接入所述第三类基站。
  48. 根据权利要求46所述的基站发现装置,其中,所述接入模块,还配置为:
    检测确定所述第三类基站发射信号强度不低于预设阈值的下行波束;
    在所述确定的下行波束所在的方向上向所述第三类基站发送接入请求消息MSG1,MSG1中包含所述确定的下行波束的信息;
    接收所述第三类基站在所述确定的下行波束上发送的接入响应消息MSG2;
    在所述确定的下行波束所在的方向上向所述第三类基站发送竞争冲突请求消息MSG3;
    接收所述第三类基站在所述确定的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需其中一个消息中包含所述第三类基站的逻辑小区标识。
  49. 根据权利要求46所述的基站发现装置,其中,所述接入模块,还 配置为:
    根据获取的所述第三类基站的接入信息,以波束赋形方式在多个方向上发送接入请求消息MSG1;
    接收至少一个属于所述第三类基站的基站发送的接入响应消息MSG2,MSG2中包含所述基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
    选择至少一个属于所述第三类基站的基站,在选择的基站发送的MSG2所指示的上行波束上发送竞争冲突请求消息MSG3,MSG3中包含UE确定的所述选择的基站发射信号强度不低于预设阈值的下行波束的信息;
    接收所述选择的基站在所述MSG3所指示的下行波束上发送的竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需要有一个消息中包含所述第三类基站的逻辑小区标识。
  50. 一种接入装置,应用于第三类基站中,包括:
    接收模块,配置为接收用户设备UE发送的接入请求消息MSG1;
    发送模块,配置为向所述UE发送接入响应消息MSG2,MSG2中包含所述第三类基站确定的所述UE发射信号强度不低于预设阈值的上行波束的信息;
    所述接收模块,还配置为在所述确定的上行波束方向上接收所述UE发送的竞争冲突请求消息MSG3,MSG3中包含所述UE确定的所述第三类基站发射信号强度不低于预设阈值的下行波束的信息;
    所述发送模块,还配置为在所述MSG3所指示的下行波束上发送竞争冲突解决消息MSG4;
    其中,MSG2和MSG4中只需要有一个消息中包含所述基站的逻辑小区标识。
  51. 一种用户设备,所述用户设备包括权利要求36-42任一项所述的基站发现装置。
  52. 一种基站,所述基站包括权利要求43所述的基站发现装置。
  53. 一种基站,所述基站包括权利要求44所述的基站发现装置。
  54. 一种基站,所述基站包括权利要求45所述的基站发现装置。
  55. 一种用户设备,所述用户设备包括权利要求46-49任一项所述的基站发现装置。
  56. 一种基站,所述基站包括权利要求50所述的接入装置。
  57. 一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-35任一项所述的基站发现方法或接入方法。
PCT/CN2017/000086 2016-02-26 2017-01-03 基站发现及接入方法、装置、基站、用户设备、存储介质 WO2017143871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610109751.6A CN107135528A (zh) 2016-02-26 2016-02-26 一种基站发现方法、接入方法、基站及用户设备
CN201610109751.6 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017143871A1 true WO2017143871A1 (zh) 2017-08-31

Family

ID=59684958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000086 WO2017143871A1 (zh) 2016-02-26 2017-01-03 基站发现及接入方法、装置、基站、用户设备、存储介质

Country Status (2)

Country Link
CN (1) CN107135528A (zh)
WO (1) WO2017143871A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600158B (zh) * 2017-09-30 2022-05-17 中国电信股份有限公司 波束调度方法、ue及通信系统
CN110351856A (zh) * 2018-04-03 2019-10-18 英特尔公司 确定用于pdcch的波束的装置和方法
CN113287366A (zh) 2019-01-11 2021-08-20 中兴通讯股份有限公司 无线系统中的两步随机接入过程
CN113615297B (zh) 2019-03-28 2024-02-20 中兴通讯股份有限公司 无线网络接入节点中随机接入信道配置的协同优化
CN111601347B (zh) * 2019-06-19 2021-10-01 维沃移动通信有限公司 上报方法、配置方法、终端及网络侧设备
CN112153556A (zh) * 2019-06-28 2020-12-29 中国移动通信有限公司研究院 一种信号传输方法、通信设备及基站
WO2024026754A1 (zh) * 2022-08-03 2024-02-08 北京小米移动软件有限公司 一种传输测量配置信息的方法、装置、设备以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686683A (zh) * 2012-09-14 2014-03-26 中兴通讯股份有限公司 小小区的配置方法及装置
CN104105174A (zh) * 2013-04-03 2014-10-15 中国移动通信集团公司 一种包括小小区基站的通信系统、装置和方法
CN104159242A (zh) * 2013-05-14 2014-11-19 华为技术有限公司 通信方法、基站和用户设备
US20150049649A1 (en) * 2013-08-19 2015-02-19 Blackberry Limited Wireless access network node having an off state

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869112B (zh) * 2011-07-05 2017-02-08 中兴通讯股份有限公司 辅服务小区随机接入的方法和用户设备
CN104349330A (zh) * 2013-08-05 2015-02-11 中兴通讯股份有限公司 一种辅助多模终端发现通信机会的方法、系统及设备
CN104735685B (zh) * 2013-12-20 2019-04-23 中兴通讯股份有限公司 一种信息处理方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686683A (zh) * 2012-09-14 2014-03-26 中兴通讯股份有限公司 小小区的配置方法及装置
CN104105174A (zh) * 2013-04-03 2014-10-15 中国移动通信集团公司 一种包括小小区基站的通信系统、装置和方法
CN104159242A (zh) * 2013-05-14 2014-11-19 华为技术有限公司 通信方法、基站和用户设备
US20150049649A1 (en) * 2013-08-19 2015-02-19 Blackberry Limited Wireless access network node having an off state

Also Published As

Publication number Publication date
CN107135528A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2017143871A1 (zh) 基站发现及接入方法、装置、基站、用户设备、存储介质
TWI653847B (zh) 支援移動性之方法以及使用者設備
CN110603888B (zh) 无线电网络节点、无线装置和在无线通信网络中用于执行随机接入的方法
US11665624B2 (en) Measurement configuration for global cell identifier reporting
CN111345109B (zh) 用于无线通信中的低频带锚定高频带连接的技术
JP6876150B2 (ja) 無線通信ネットワークにおいて通信するための無線デバイス、無線ネットワークノード、及びそれらで実行される方法
US10568136B2 (en) Method and apparatus for control plane and user plane transmissions in a customized C-RAN
JP5770931B2 (ja) 高速ユーザのためのセル分割
US20180249461A1 (en) Methods and apparatuses to form self-organized multi-hop millimeter wave backhaul links
US20150215852A1 (en) Method and apparatus for finding small cells
CN115765945A (zh) 用于在随机接入过程期间执行初始波束对准的方法和设备
WO2019169359A1 (en) System and method for hierarchical paging, cell selection and cell reselection
US20150181492A1 (en) Base station and method for early handover using uplink channel characteristics
CN104811962B (zh) 小小区基站状态切换方法及装置
CN109792667B (zh) 用于基于测量的移动性的方法和设备
CN107135533B (zh) 一种信号传输方法、终端和网络侧设备
WO2013044884A1 (zh) 无线连接重建方法、用户设备和基站
TW201922037A (zh) 用於改善多載波利用之傳訊
EP2591632B1 (en) Carrier selection
US11363650B2 (en) Fifth generation (5G) global unique temporary identity (GUTI) reallocation for cellular-internet of things (CIOT)
KR20210003044A (ko) 통신 시스템에서 그룹 핸드오버를 위한 방법 및 장치
Lokhandwala et al. Phantom Cell Realization in LTE and its performance analysis
WO2021223210A1 (en) Eps bearer reestablishment after handoff
CN114930916A (zh) 基于ue组的小区重选
JP2024514794A (ja) 通信の方法、端末装置及びコンピュータ可読媒体

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17755700

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17755700

Country of ref document: EP

Kind code of ref document: A1