WO2017197844A1 - 光伏逆变器集成系统控制芯片 - Google Patents

光伏逆变器集成系统控制芯片 Download PDF

Info

Publication number
WO2017197844A1
WO2017197844A1 PCT/CN2016/103684 CN2016103684W WO2017197844A1 WO 2017197844 A1 WO2017197844 A1 WO 2017197844A1 CN 2016103684 W CN2016103684 W CN 2016103684W WO 2017197844 A1 WO2017197844 A1 WO 2017197844A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
mos transistor
main controller
thermistor
fan
Prior art date
Application number
PCT/CN2016/103684
Other languages
English (en)
French (fr)
Inventor
何伟
廖志刚
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2017197844A1 publication Critical patent/WO2017197844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to the field of inverter technologies, and in particular, to a photovoltaic inverter integrated system control chip.
  • the bridge inverter circuit is usually driven by a PWM circuit, and the peripheral circuit of the PWM chip is complicated and has a single function, and needs to be well matched with other circuits and chips when used, and thus the integration degree and consistency are poor, especially It is aimed at different countries. Due to the different grid frequency requirements of different regions, the inverter cannot be compatible with the grid voltage of many countries, which causes the inverter and its control part to be limited in the application process in different countries, which is difficult to market. .
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, an inverter control circuit having a simple structure, good compatibility, good integration, and meeting the frequency requirements of a plurality of national power grids is provided.
  • the present invention adopts the following technical solutions.
  • a photovoltaic inverter integrated system control chip includes a control unit and an inverter unit, the control unit includes a main controller and a PWM controller, and the main controller, the PWM controller, and the inverter unit are sequentially powered a connection, wherein: the main controller is configured to issue a control signal; the PWM controller is configured to execute a control signal of the main controller to output a pulse signal; and the inverter unit is configured to execute a pulse signal output by the PWM controller
  • the DC voltage is inverted to an AC voltage;
  • the main controller is electrically connected to the active end of a switch, the first end of the switch is connected to the DC power supply end, and the second end of the switch is grounded, when When the active end of the switch is connected to the first end, the main controller adjusts the frequency of the AC voltage output by the inverter unit to 60 Hz by adjusting the frequency of the pulse signal of the PWM controller; when the active end of the switch is When the two ends are connected, the main controller adjusts the frequency of the AC
  • a thermistor, a fan and an NPN tube are further included, the thermistor is used for collecting the temperature of the inverter unit, the air outlet of the fan is facing the inverter unit, and the first end of the thermistor is connected.
  • the second end of the thermistor is grounded through a voltage dividing resistor, the second end of the thermistor is also connected to the main controller, and the first end of the fan is used to connect the 12V supply voltage.
  • the second end of the fan is connected to the collector of the NPN tube, the emitter of the NPN tube is grounded, and the base of the NPN tube is connected to the main controller, when the voltage of the second end of the thermistor is greater than the pre- When the value is set, the main controller controls the fan to operate, and when the voltage of the second end of the thermistor is less than a preset value, the main control The controller controls the fan to stop running.
  • a first comparator and a second comparator are disposed between the second end of the thermistor and the main controller, and the non-inverting terminal of the first comparator is used to access a 2/3 VDD voltage,
  • the inverting terminal of the second comparator is used to access the 1/3 VDD voltage, wherein VDD represents the voltage value of the DC power supply terminal, and the second end of the thermistor is connected to the inverting terminal of the first comparator and the second comparison
  • the non-inverting terminal of the device, the output ends of the first comparator and the second comparator are connected to the main controller, and when the voltage of the second terminal of the thermistor is less than 1/3 VDD, the main controller controls the fan to stop Running; when the voltage of the second terminal of the thermistor is greater than 1/3 VDD and less than 2/3 VDD, the main controller controls the fan to operate; when the voltage of the second terminal of the thermistor is greater than 2/3 VDD, The main controller enters an over-temperature protection state and controls fan
  • the thermistor is connected in parallel with a first resistor.
  • the fan has a first diode connected in parallel, a cathode of the first diode is connected to the first end of the fan, and an anode of the first diode is connected to the second end of the fan.
  • the inverter unit includes a first MOS transistor, a second MOS transistor, a third MOS transistor, and a fourth MOS transistor, and a drain of the first MOS transistor and a drain of the third MOS transistor are connected to a DC a high potential, a source of the first MOS transistor is connected to a drain of the second MOS transistor, a source of the third MOS transistor is connected to a drain of the fourth MOS transistor, and a source of the second MOS transistor Connected to the source of the fourth MOS transistor and then grounded through the current limiting resistor, the gate of the first MOS transistor, the gate of the second MOS transistor, the gate of the third MOS transistor, and the gate of the fourth MOS transistor Connected to the PWM controller, the source of the first MOS transistor and the source of the third MOS transistor constitute an AC signal output end, and the PWM controller is configured to execute a control signal sent by the control unit to drive the first MOS transistor, The second MOS transistor, the third MOS transistor, and
  • the method further includes a light emitting diode, the cathode of the light emitting diode is grounded, and the anode of the light emitting diode is connected to the main controller through a current limiting resistor, and the main controller emits light by controlling the lighting state of the light emitting diode. prompt.
  • the main controller and the PWM controller constitute a control unit, and the control unit can flexibly control the inverter unit, and at the same time, the inverter unit can be made by adjusting the switch.
  • the frequency of the output AC voltage is adjusted to 50HZ, 55HZ or 60HZ, which satisfies the requirements of voltage standards of multiple national grid standards, and has good versatility and compatibility.
  • the invention has simple structure and is easy to implement, and is suitable for inversion. Promote applications in the field of control technology.
  • FIG. 1 is a schematic diagram of an inverter control circuit of the present invention.
  • Figure 2 is a block diagram of the composition of the control unit.
  • FIG. 3 is a schematic structural view of the control unit after packaging.
  • the invention discloses a photovoltaic inverter integrated system control chip, which is shown in FIG. 1 and FIG. 2, which comprises a control unit 1 and an inverter unit 2, the control unit 1 including a main controller 10 and PWM control
  • the main controller 10, the PWM controller 11 and the inverter unit 2 are electrically connected in sequence, wherein:
  • the main controller 10 is configured to issue a control signal
  • the PWM controller 11 is configured to execute a control signal of the main controller 10 to output a pulse signal;
  • the inverter unit 2 is configured to perform a pulse signal output by the PWM controller 11 to invert a DC voltage into an AC voltage;
  • the main controller 10 is electrically connected to the active end of a switch S1, the first end of the switch S1 is connected to the DC power supply terminal VDD, and the second end of the switch S1 is grounded, when the switch S1 is When the active end is connected to the first end, the main controller 10 adjusts the frequency of the AC voltage output by the inverter unit 2 to 60 Hz by adjusting the frequency of the pulse signal of the PWM controller 11; when the active end of the switch S1 is active When connected to the second end, the main controller 10 adjusts the frequency of the AC voltage output by the inverter unit 2 to 50 Hz by adjusting the frequency of the pulse signal of the PWM controller 11; when the active end of the switch S1 is suspended, The main controller 10 adjusts the frequency of the alternating current voltage output from the inverter unit 2 to 55 Hz by adjusting the frequency of the pulse signal of the PWM controller 11.
  • the control unit 1 is configured by integrating the main controller 10 and the PWM controller 11, and the inverter unit 2 can be flexibly controlled by the control unit 1, and at the same time, by adjusting the switch S1, the inverse can be made
  • the frequency of the AC voltage outputted by the variable unit 2 is adjusted to 50HZ, 55HZ or 60HZ, thereby meeting the requirements of voltage standards of a plurality of national grid standards, and has good versatility and compatibility.
  • the present invention has a simple structure and is easy to implement, and is suitable for Promote application in the field of inverter control technology.
  • a thermistor R2 in order to realize automatic temperature control, a thermistor R2, a fan M1 and an NPN tube Q5 are included, and the thermistor R2 is used for collecting the temperature of the inverter unit 2, and the air outlet of the fan M1.
  • the first end of the thermistor R2 is connected to the DC power supply terminal VDD, the second end of the thermistor R2 is grounded through the voltage dividing resistor R8, and the second end of the thermistor R2
  • the first end of the fan M1 is used to access a 12V supply voltage, the second end of the fan M1 is connected to the collector of the NPN tube Q5, and the emitter of the NPN tube Q5 is grounded.
  • the base of the NPN tube Q5 is connected to the main controller 10.
  • the main controller 10 controls the fan M1 to operate when the thermistor
  • the main controller 10 controls the fan M1 to stop operating.
  • a first comparator U1 and a second comparator U2 are disposed between the second end of the thermistor R2 and the main controller 10, and the non-inverting end of the first comparator U1 is used for accessing 2 / 3 VDD voltage, the inverting terminal of the second comparator U2 is used to access 1/3 VDD voltage, wherein VDD represents the voltage value of the DC power supply terminal VDD, and the second end of the thermistor R2 is connected to the An inverting terminal of the comparator U1 and an inverting terminal of the second comparator U2, the outputs of the first comparator U1 and the second comparator U2 are connected to the main controller 10, when the thermistor R2 When the two-terminal voltage is less than 1/3 VDD, the main controller 10 controls the fan M1 to stop running; when the voltage of the second terminal of the thermistor R2 is greater than 1/3 VDD and less than 2/3 VDD, the main controller 10 The fan M1 is controlled to operate; when the voltage of the second
  • the main controller 10 controls the fan M1 to stop running.
  • the voltage of the second terminal of the thermistor R2 is greater than 1/3 VDD and less than 2/3 VDD, the reverse is indicated. The temperature of the variable unit has increased, but the degree of overheating has not been reached.
  • the main controller 10 controls the operation of the fan M1; when the voltage of the second terminal of the thermistor R2 is greater than 2/3 VDD, the temperature of the inverter unit is too high.
  • the main controller 10 enters the over-temperature protection state and controls the operation of the fan M1 and controls the PWM controller 11 to stop outputting the pulse signal, automatic temperature control is realized.
  • the main controller 10 can make a single chip microcomputer.
  • the thermistor R2 is connected in parallel with a first resistor R1.
  • the fan M1 is connected in parallel with a first diode D4, the cathode of the first diode D4 is connected to the first end of the fan M1, and the anode of the first diode D4 is connected to the second end of the fan M1. .
  • the first diode D4 has an effect of suppressing a reverse current.
  • the inverter unit 2 includes a first MOS transistor Q1, a second MOS transistor Q2, a third MOS transistor Q3, and a fourth MOS transistor Q4.
  • the drain of the first MOS transistor Q1 And the drain of the third MOS transistor Q3 is connected to the DC high potential HV+, the source of the first MOS transistor Q1 is connected to the drain of the second MOS transistor Q2, and the source and the fourth of the third MOS transistor Q3
  • the drain of the MOS transistor Q4 is connected, the source of the second MOS transistor Q2 is connected to the source of the fourth MOS transistor Q4, and then grounded through the current limiting resistor R9, the gate of the first MOS transistor Q1, and the second
  • the gate of the MOS transistor Q2, the gate of the third MOS transistor Q3, and the gate of the fourth MOS transistor Q4 are respectively connected to the PWM controller 11, the source of the first MOS transistor Q1 and the source of the third MOS transistor Q3.
  • the poles constitute an AC signal output terminal AC1, AC2, and the PWM controller 11 is configured to execute a control signal sent by the control unit 1 to drive the first MOS transistor Q1, the second MOS transistor Q2, the third MOS transistor Q3, and the fourth MOS transistor.
  • Q4 inverts the DC voltage to an AC voltage.
  • the light-emitting diode D3 is further included, the cathode of the light-emitting diode D3 is grounded, and the anode of the light-emitting diode D3 is connected to the main controller 10 through the current limiting resistor R10.
  • the controller 10 emits a light cue by controlling the lighting state of the light emitting diode D3.
  • the main controller 10 and the PWM controller 11 can be integrated into one chip, that is, the control unit 1 is presented in the form of an integrated chip BST08A. And has the following characteristics:
  • BST08A can provide 50HZ, 55HZ, 60HZ three frequency output with an accuracy of 1.5%.
  • the working frequency is determined by the 3-pin access mode of the chip. When the 3-pin is grounded, it works at 50HZ. When the 3-pin is floating, it works at 55HZ. When the 3-pin is connected to the 1-pin, it works at 60HZ.
  • the setting of the output voltage The bus voltage will fluctuate greatly depending on the front-end power supply or the type of battery change.
  • the output voltage of the inverter can be relatively stable.
  • Output current protection value setting The output power of the inverter is limited. In order to make the system safe and reliable, it is necessary to limit the output current. When the output current is exceeded, the system automatically reduces the output voltage to avoid overcurrent.
  • the output part of the inverter is a bridge output composed of 4 NMOS tubes.
  • the NMOS tube is used for the high side of the bridge, in order to make the voltage of the GATE stage higher than the SOURSE level, in the circuit structure without another independent power supply, Usually done using a bootstrap circuit.
  • the BST08A integrates a charging diode and a bootstrap driver for the bootstrap capacitor.
  • the external side only needs one capacitor to drive the high-side NMOS transistor.
  • the low-side NMOS transistor is turned on, the power supply voltage enters from the chip 12 and charges C4, C5 through the internal diode.
  • the power device of the inverter system generates heat when it is working.
  • the temperature is detected by a thermistor with a negative temperature coefficient on the periphery of the 9-pin of the BST08A.
  • the thermistor should be in close contact with the device to be detected to reduce the temperature error.
  • the FAN pin When the voltage dividing ratio of the thermistor and the external configuration resistor reaches 2/4 VDD, the FAN pin outputs a high level to drive the external fan to dissipate the temperature and the temperature is low, and when the temperature is reduced to a voltage dividing ratio of 1/4 VDD, the fan automatically stops. If the voltage division ratio reaches 3/4 VDD, it is judged that the temperature is abnormal, and the over temperature protection is entered.
  • the system locks the output and outputs a high level from the STOP pin, and needs to be powered on again to start again.
  • the 4 feet of the BST08A can output up to 20mA of current to drive the external triode to control the operation of the fan.
  • the system integrates other functions such as overvoltage, overcurrent, and short circuit to further improve the reliability of the system.
  • the chip BST08A is packaged in SOP20 form with the following chip pins:
  • VDD Chip supply pin 2 GND Chip power ground 3
  • F-ADJ AC frequency adjustment pin 4
  • FAN Fan output control pin 5 STOP Abnormal indication/abnormal control 6 +VBB-FB Output voltage feedback pin 7 +VBB-OV Bus voltage detection 8 I+ Output current detection 9
  • NTC temperature check 10 OC-REST Overcurrent protection time adjustment 11
  • GND Drive ground 12 Q2P Q2 drive pulse output 13
  • Q1P Q1 drive pulse output 15 VB-LA L line bootstrap 16
  • VDD 1 pin VDD is the 5V reference voltage generated by the external pin 12V of the chip 20 through the internal LDO regulator, and this reference voltage is supplied to the internal op amp, comparator, MCU, PWM generator and other circuits.
  • the 2-pin GND is the GND of the internal LDO of the chip, and is connected to the negative terminal of the 12V power supply.
  • the 3-pin F-ADJ is directly connected to the sampling port of the internal MCU of the chip. Changing the resistance of the two external resistors between the 3 pin and VDD and GND can generate different voltages.
  • the MCU is input to the MCU inside the chip by the 3-pin. Sampling Port, thus changing the frequency of the PWM.
  • the 4-pin FAN is the fan control signal, and the 4-pin is directly connected to the IO port of the internal MCU of the chip.
  • the MCU When the NTC pin of the chip is sampled to the set voltage value, the MCU will output a level signal to the 4-pin to control the external The fan circuit works on and off.
  • the 5 pin STOP is connected to the IO port of the MCU inside the chip.
  • the MCU When the chip samples the abnormal signal, the MCU will output the VDD voltage signal to the 4 pin through the IO port.
  • the 4 pin external alarm circuit will generate an abnormal alarm signal, and the MCU will stop the PWM. The output of the signal.
  • +VBB-FB The AC output voltage of the inverter is sent to the internal MCU through the sampling circuit, from the chip 6 pin + VBB-FB to the internal op amp and comparator, and the PWM is controlled by the MCU to adjust the output. Voltage.
  • +VBB-OV The bus voltage of the inverter is sent to the internal MCU through the sampling circuit by the 7-pin + VBB-OV of the chip to the internal op amp.
  • the MCU adjusts the PWM width by comparing +VBB-FB to +VBB-OV.
  • the current sampling circuit of the inverter sends the current sampling signal to the internal op amp processing via the 8-pin I+ and then sends it to the internal MCU of the chip.
  • the MCU determines whether to limit or protect the current. If the overcurrent or overload MCU causes the chip STOP pin to output an alarm signal.
  • NTC The external temperature sampling circuit is signaled to the internal MCU's sampling port by the 9-pin NTC first-connected op amp and comparator, and the MCU controls the fan control signal to turn on and off and determine whether the temperature is over-protected. If the over temperature protection will cause the chip STOP pin to output an alarm signal.
  • OC-REST The 10-pin OC-REST external RC circuit is directly connected to the internal MCU's IO port. Changing the RC value can change the MCU overcurrent protection time.
  • GND Pin 11 of the GND is the ground of the internal drive signal of the chip.
  • Q2P 12-pin Q2P
  • the 5V PWM signal generated by the MCU and PWM signal generator inside the chip is level-converted into 12V/100mA driving signal to the lower tube Q2 driving signal of the inverter bridge through the MOS tube inside the chip.
  • LA 13-pin LA
  • the output L-line of the inverter is directly connected to the MOS inside the chip through the 13-pin LA.
  • Q1P 14-pin Q1P
  • the 5V PWM signal generated by the MCU and PWM signal generator inside the chip is level-converted into 12V/100mA driving signal to the upper tube Q1 of the inverter bridge through the internal bootstrap boost circuit of the chip. Drive signal.
  • VB-LA 15-pin VB-LA
  • the output L-line of the inverter is sent to the internal bootstrap boost circuit via pin 15 to provide the bootstrap drive signal for the Q1 tube of the inverter bridge.
  • Q4P 16-pin Q4P
  • the 5V PWM signal generated by the MCU and PWM signal generator inside the chip is level-converted into 12V/100mA driving signal to the lower tube Q4 driving signal of the inverter bridge through the MOS tube inside the chip.
  • the output N line of the inverter is directly connected to the MOS inside the chip through the 17 pin N.
  • Q3P 18-pin Q3P
  • the 5V PWM signal generated by the MCU and PWM signal generator inside the chip is level-converted into 12V/100mA driving signal to the upper tube Q3 of the inverter bridge through the internal bootstrap boost circuit of the chip. Drive signal.
  • VB-N 19-pin VB-N
  • the output L-line of the inverter is sent to the internal bootstrap boost circuit via pin 15 to provide the bootstrap drive signal for the Q3 tube of the inverter bridge.
  • +12V 20 feet + 12V for the chip external power supply pin, the inner part of the two way, one way to the LDO to generate 5V reference voltage supply chip internal circuit, the other 12V supply chip internal drive circuit, the MCU generated 5V drive level conversion It is a 12V drive level signal.
  • the parameters of the chip BST08A are as follows:
  • the photovoltaic inverter integrated system control chip disclosed by the invention has the function of automatically stabilizing output voltage and using output voltage
  • the DC average algorithm can automatically stabilize the output by adjusting the voltage division of the external bus pair VBB-FB.
  • the output voltage (FB external partial pressure ratio + 1) * 1V, by adjusting the external bus to the VBB-FB partial pressure, The overvoltage automatically stops working, and a high level is output from the STOP pin.
  • the protection voltage (OV external partial pressure ratio + 1) * 1V, with voltage hysteresis.
  • the BST08A which integrates the main controller and the PWM controller, is an integrated inverter back-stage control chip. It uses a high-voltage process and a built-in bootstrap circuit to directly drive the bridge inverter output composed of NMOS transistors. Only a few components are needed. Thanks to its flexible circuit structure, it has a constant voltage-constant current output function, various output parameters are adjustable, and it has a series of abnormal protection functions, which makes it highly flexible and highly reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)

Abstract

一种光伏逆变器集成系统控制芯片,其包括有控制单元(1)和逆变单元(2),控制单元(1)包括有主控制器(10)和PWM控制器(11),PWM控制器(11)执行主控制器(10)的控制信号而输出脉冲信号;逆变单元(2)根据脉冲信号而将直流电压逆变为交流电压;主控制器(10)电连接于一切换开关(S1)的活动端,切换开关(S1)的第一端连接于直流供电端,切换开关(S1)的第二端接地,当切换开关(S1)的活动端与第一端相连时,将逆变单元(2)输出的交流电压频率调整为60HZ;当切换开关(S1)的活动端与第二端相连时将逆变单元(2)输出的交流电压频率调整为50HZ;当切换开关(S1)的活动端悬空时将逆变单元(2)输出的交流电压频率调整为55HZ。上述控制芯片具有良好的集成度,并能够满足多个国家电网频率要求。

Description

光伏逆变器集成系统控制芯片 技术领域
本发明涉及逆变器技术领域,尤其涉及一种光伏逆变器集成系统控制芯片。
背景技术
现有技术中,桥式逆变电路通常由PWM电路驱动,而PWM芯片的外围电路复杂、功能单一,使用时还需与其他电路、芯片达到良好配合,因而集成度和一致性较差,特别是针对不同的国家,由于各地域的电网频率要求不同,使得逆变器无法兼容多个国家的电网电压,导致逆变器及其控制部分在不同国家的应用过程中受到局限,难以进行市场推广。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种结构简单、兼容性好、具有良好的集成度、能够满足多个国家电网频率要求的逆变控制电路。
为解决上述技术问题,本发明采用如下技术方案。
一种光伏逆变器集成系统控制芯片,其包括有控制单元和逆变单元,所述控制单元包括有主控制器和PWM控制器,所述主控制器、PWM控制器和逆变单元依次电性连接,其中:所述主控制器用于发出控制信号;所述PWM控制器用于执行主控制器的控制信号而输出脉冲信号;所述逆变单元用于执行PWM控制器输出的脉冲信号而将直流电压逆变为交流电压;所述主控制器电连接于一切换开关的活动端,所述切换开关的第一端连接于直流供电端,所述切换开关的第二端接地,当所述切换开关的活动端与第一端相连时,所述主控制器通过调节PWM控制器的脉冲信号频率而将逆变单元输出的交流电压频率调整为60HZ;当所述切换开关的活动端与第二端相连时,所述主控制器通过调节PWM控制器的脉冲信号频率而将逆变单元输出的交流电压频率调整为50HZ;当所述切换开关的活动端悬空时,所述主控制器通过调节PWM控制器的脉冲信号频率而将逆变单元输出的交流电压频率调整为55HZ。
优选地,还包括有热敏电阻、风机和NPN管,所述热敏电阻用于采集逆变单元的温度,所述风机的出风口朝向逆变单元,所述热敏电阻的第一端连接于直流供电端,所述热敏电阻的第二端通过分压电阻接地,所述热敏电阻的第二端还连接于主控制器,所述风机的第一端用于接入12V供电电压,所述风机的第二端连接于NPN管的集电极,所述NPN管的发射极接地,所述NPN管的基极连接于主控制器,当所述热敏电阻第二端的电压大于预设值时,所述主控制器控制风机运转,当所述热敏电阻第二端的电压小于预设值时,所述主控 制器控制风机停止运转。
优选地,所述热敏电阻的第二端与主控制器之间设有第一比较器和第二比较器,所述第一比较器的同相端用于接入2/3VDD电压,所述第二比较器的反相端用于接入1/3VDD电压,其中,VDD表示直流供电端的电压值,所述热敏电阻的第二端连接于第一比较器的反相端和第二比较器的同相端,所述第一比较器和第二比较器的输出端连接于主控制器,当所述热敏电阻的第二端电压小于1/3VDD时,所述主控制器控制风机停止运转;当所述热敏电阻的第二端电压大于1/3VDD且小于2/3VDD时,所述主控制器控制风机运转;当所述热敏电阻的第二端电压大于2/3VDD时,所述主控制器进入过温保护状态并控制风机运转以及控制PWM控制器停止输出脉冲信号。
优选地,所述热敏电阻并联有第一电阻。
优选地,所述风机并联有第一二极管,所述第一二极管的阴极连接于风机的第一端,所述第一二极管的阳极连接于风机的第二端。
优选地,所述逆变单元包括有第一MOS管、第二MOS管、第三MOS管和第四MOS管,所述第一MOS管的漏极和第三MOS管的漏极均连接直流高电位,所述第一MOS管的源极与第二MOS管的漏极相连,所述第三MOS管的源极与第四MOS管的漏极相连,所述第二MOS管的源极和第四MOS管的源极相连后再通过限流电阻接地,所述第一MOS管的栅极、第二MOS管的栅极、第三MOS管的栅极和第四MOS管的栅极分别连接于PWM控制器,所述第一MOS管的源极和第三MOS管的源极构成交流信号输出端,所述PWM控制器用于执行控制单元发出的控制信号而驱动第一MOS管、第二MOS管、第三MOS管和第四MOS管将直流电压逆变为交流电压。
优选地,还包括有发光二极管,所述发光二极管的阴极接地,所述发光二极管的阳极通过限流电阻而连接于主控制器,所述主控制器通过控制发光二极管的点亮状态而发出灯光提示。
本发明公开的光伏逆变器集成系统控制芯片中,由主控制器和PWM控制器构成控制单元,利用控制单元可以对逆变单元进行灵活控制,同时,通过调整切换开关,可以使得逆变单元输出的交流电压频率调整为50HZ、55HZ或60HZ,进而满足多个国家电网标准对电压频率的要求,具有较好的通用性和兼容性,此外,本发明结构简单、易于实现,适合在逆变控制技术领域中推广应用。
附图说明
图1为本发明逆变控制电路的原理图。
图2为控制单元的组成框图。
图3为控制单元封装后的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种光伏逆变器集成系统控制芯片,结合图1和图2所示,其包括有控制单元1和逆变单元2,所述控制单元1包括有主控制器10和PWM控制器11,所述主控制器10、PWM控制器11和逆变单元2依次电性连接,其中:
所述主控制器10用于发出控制信号;
所述PWM控制器11用于执行主控制器10的控制信号而输出脉冲信号;
所述逆变单元2用于执行PWM控制器11输出的脉冲信号而将直流电压逆变为交流电压;
所述主控制器10电连接于一切换开关S1的活动端,所述切换开关S1的第一端连接于直流供电端VDD,所述切换开关S1的第二端接地,当所述切换开关S1的活动端与第一端相连时,所述主控制器10通过调节PWM控制器11的脉冲信号频率而将逆变单元2输出的交流电压频率调整为60HZ;当所述切换开关S1的活动端与第二端相连时,所述主控制器10通过调节PWM控制器11的脉冲信号频率而将逆变单元2输出的交流电压频率调整为50HZ;当所述切换开关S1的活动端悬空时,所述主控制器10通过调节PWM控制器11的脉冲信号频率而将逆变单元2输出的交流电压频率调整为55HZ。
上述逆变控制电路中,通过将主控制器10和PWM控制器11集成而构成控制单元1,利用控制单元1可以对逆变单元2进行灵活控制,同时,通过调整切换开关S1,可以使得逆变单元2输出的交流电压频率调整为50HZ、55HZ或60HZ,进而满足多个国家电网标准对电压频率的要求,具有较好的通用性和兼容性,此外,本发明结构简单、易于实现,适合在逆变控制技术领域中推广应用。
作为一种优选方式,为了实现自动温控,还包括有热敏电阻R2、风机M1和NPN管Q5,所述热敏电阻R2用于采集逆变单元2的温度,所述风机M1的出风口朝向逆变单元2,所述热敏电阻R2的第一端连接于直流供电端VDD,所述热敏电阻R2的第二端通过分压电阻R8接地,所述热敏电阻R2的第二端还连接于主控制器10,所述风机M1的第一端用于接入12V供电电压,所述风机M1的第二端连接于NPN管Q5的集电极,所述NPN管Q5的发射极接地,所述NPN管Q5的基极连接于主控制器10,当所述热敏电阻R2第二端的电压大于预设值时,所述主控制器10控制风机M1运转,当所述热敏电阻R2第二端的电压小于预设值时,所述主控制器10控制风机M1停止运转。
关于温度采集部分,所述热敏电阻R2的第二端与主控制器10之间设有第一比较器U1和第二比较器U2,所述第一比较器U1的同相端用于接入2/3VDD电压,所述第二比较器U2的反相端用于接入1/3VDD电压,其中,VDD表示直流供电端VDD的电压值,所述热敏电阻R2的第二端连接于第一比较器U1的反相端和第二比较器U2的同相端,所述第一比较器U1和第二比较器U2的输出端连接于主控制器10,当所述热敏电阻R2的第二端电压小于1/3VDD时,所述主控制器10控制风机M1停止运转;当所述热敏电阻R2的第二端电压大于1/3VDD且小于2/3VDD时,所述主控制器10控制风机M1运转;当所述热敏电阻R2的第二端电压大于2/3VDD时,所述主控制器10进入过温保护状态并控制风机M1运转以及控制PWM控制器11停止输出脉冲信号。
其中,热敏电阻R2的温度上升时电阻降低且其第二端电压升高,热敏电阻R2的温度下降时电阻升高且其第二端电压降低,当热敏电阻R2的第二端电压小于1/3VDD时,说明逆变单元的温度较低,此时主控制器10控制风机M1停止运转;当热敏电阻R2的第二端电压大于1/3VDD且小于2/3VDD时,说明逆变单元温度有所升高,但未达到过热的程度,此时主控制器10控制风机M1运转;当热敏电阻R2的第二端电压大于2/3VDD时,说明逆变单元的温度过高、过热,主控制器10进入过温保护状态并控制风机M1运转以及控制PWM控制器11停止输出脉冲信号,进而实现了自动温度控制。
本实施例中,主控制器10可以使单片机。所述热敏电阻R2并联有第一电阻R1。所述风机M1并联有第一二极管D4,所述第一二极管D4的阴极连接于风机M1的第一端,所述第一二极管D4的阳极连接于风机M1的第二端。该第一二极管D4具有抑制反向电流的作用。
关于逆变单元的具体结构,所述逆变单元2包括有第一MOS管Q1、第二MOS管Q2、第三MOS管Q3和第四MOS管Q4,所述第一MOS管Q1的漏极和第三MOS管Q3的漏极均连接直流高电位HV+,所述第一MOS管Q1的源极与第二MOS管Q2的漏极相连,所述第三MOS管Q3的源极与第四MOS管Q4的漏极相连,所述第二MOS管Q2的源极和第四MOS管Q4的源极相连后再通过限流电阻R9接地,所述第一MOS管Q1的栅极、第二MOS管Q2的栅极、第三MOS管Q3的栅极和第四MOS管Q4的栅极分别连接于PWM控制器11,所述第一MOS管Q1的源极和第三MOS管Q3的源极构成交流信号输出端AC1、AC2,所述PWM控制器11用于执行控制单元1发出的控制信号而驱动第一MOS管Q1、第二MOS管Q2、第三MOS管Q3和第四MOS管Q4将直流电压逆变为交流电压。
本实施例中,为了实现灯光提示功能,还包括有发光二极管D3,所述发光二极管D3的阴极接地,所述发光二极管D3的阳极通过限流电阻R10而连接于主控制器10,所述主控制器10通过控制发光二极管D3的点亮状态而发出灯光提示。
实际应用中,结合图1至图3所示,主控制器10和PWM控制器11可以集成在一块芯片之内,即控制单元1以集成芯片BST08A的形式呈现。并具有如下特点:
1、工作电源的获得。在BST08A在20脚与1脚之间,内置有一个5V的LDO,通过把20脚输入的12V直流电压变为5V直流电压从1脚输出,电容C1为电源输入滤波电容,电容C2为电源输出滤波电容,除PWM部分外的供电均使用5V电压,由于系统使用稳压后的电源,使工作的可靠性和稳定性提高,并且省略了外部的降压电路
2、逆变输出频率的选择。由于世界电网工作频率的不同,销往不同的国家的产品必须与当地电网的频率相同。BST08A能提供50HZ,55HZ,60HZ三种频率输出,精度达到1.5%。通过芯片的3脚的接入方式决定工作频率,3脚接地时工作于50HZ,3脚悬空时工作于55HZ,3脚接1脚时时工作于60HZ。
3、输出电压的设置。母线电压会随前端供电或者电池变换类型的因素会有较大的波动,为使母线电压波动时,逆变器输出电压能相对比较稳定,系统对母线电压进行PWM调制,使输出电压的直流平均值相对稳定值。母线HV+的电压分压后进入芯片6脚,在任意时候,都会控制输出电压的PWM占空比,使输出电压为设定值。输出电压=(FB外部分压比+1)*1V。
4、输出电流保护值设置。逆变器的输出功率是有限的,为使系统安全可靠,需要限制输出电流,当超过输出电流时,系统自动降低输出电压,从而避免过流。BST08A的第8脚是设定电流值引脚,该引脚电压超过0.5V时,进入过流保护状态,输出电压会降低。输出平均电流I=0.5V*分压比/Rcs。
5、PWM自举和驱动。逆变器输出部分都是使用4只NMOS管组成的桥式输出,对于桥式高侧使用NMOS管时,为了使GATE级的电压高于SOURSE级,在没有另外的独立电源的电路结构下,通常使用自举电路完成。BST08A内部集成了自举电容的充电二极管和自举驱动,外围只需要一只电容就可以完成高侧NMOS管的驱动。当低侧的NMOS管导通时,电源电压从芯片12脚进入,通过内部的二极管对C4,C5充电。当高侧MOS管驱动信号来临时,由于C4或C5的负端接在NMOS管的SOURSE级,所以在GATE可以利用C4,C5正端的高电压进行驱动,使高侧的NMOS管得到导通。为了防止高侧和低侧的MOS管同时导通,BST08A内部设置了死区时间,典型值为5uS,防止引起同时导通短路电 源烧坏MOS管
6、过热自动降温功能。逆变系统的功率器件在工作时会产生发热现象,利用BST08A的9脚的外围具有负温度系数的热敏电阻侦测温度,热敏电阻应紧贴需要侦测的器件,以降低温度误差。当热敏电阻与外部配置电阻的分压比达到2/4VDD时,通过FAN脚输出高电平驱动外部风机散热温低温度,温度降低到分压比为1/4VDD时,风机自动停止。若分压比达到3/4VDD,则判别为温度异常,进入过温保护,保护后系统锁定输出,并从STOP引脚输出一个高电平,需要重新上电才能再次启动。BST08A的4脚能输出最大20mA的电流驱动外部三极管去控制风机的工作与否。
7、其它保护功能。系统集成了其他的比如过压、过流、短路等功能,使系统的可靠性得以进一步提高。
该芯片BST08A以SOP20形式封装,芯片引脚如下:
引脚序号 功能 描述
1 VDD 芯片供电引脚
2 GND 芯片电源地
3 F-ADJ AC频率调节引脚
4 FAN 风扇输出控制脚
5 STOP 异常指示/异常控制
6 +VBB-FB 输出电压反馈脚
7 +VBB-OV 母线电压检测
8 I+ 输出电流检测
9 NTC 温度检测
10 OC-REST 过流保护时间调节
11 GND 驱动地
12 Q2P Q2驱动脉冲输出
13 LA 输出L线
14 Q1P Q1驱动脉冲输出
15 VB-LA L线自举
16 Q4P Q4驱动脉冲输出
17 N 输出N线
18 Q3P Q3驱动脉冲输出
19 VB-N N线自举
20 +12V 驱动供电
关于芯片BST08A引脚的具体功能:
VDD:1脚VDD是由芯片20脚外接12V供电通过芯片内部的LDO稳压后产生的5V基准电压,并且此基准电压供给芯片内部的运放、比较器、MCU、PWM发生器等电路。
GND:2脚GND是芯片内部LDO的GND,接到芯片12V供电的负极。
F-ADJ:3脚F-ADJ直接与芯片内部MCU的采样端口连接,改变3脚与VDD和GND之间的两个外接电阻的阻值可以产生不同的电压由3脚输入到芯片内部的MCU采样 端口,从而改变PWM的频率。
FAN:4脚FAN为风扇控制信号,4脚直接与芯片内部MCU的IO口相连,当芯片的NTC引脚采样到设定的电压值时MCU会输出一个电平信号给4脚,去控制外部风扇电路工作的开通与关断。
STOP:5脚STOP接芯片内部的MCU的IO口,当芯片采样到异常信号是MCU会通过IO口输出VDD电压信号给4脚,4脚外接报警电路从而产生异常报警信号,同时MCU会停止PWM信号的输出。
+VBB-FB:逆变器的AC输出电压通过采样电路,从芯片6脚+VBB-FB送给芯片内部的运放与比较器再送给内部的MCU,通过MCU来控制PWM的宽度来调节输出电压。
+VBB-OV:逆变器的母线电压通过采样电路由芯片的7脚+VBB-OV送给芯内部的运放,经运放再送给内部MCU。MCU通过+VBB-FB与+VBB-OV比较来调节PWM的宽度。
I+:逆变器的电流采样电路将电流采样信号经由8脚I+送给芯片内部的运放处理后再送给芯片内部MCU,由MCU来确定是否限流或保护。如果过流或过载MCU让芯片STOP脚输出报警信号。
NTC:外部温度采样电路通过9脚NTC先接芯片内部的运放与比较器进行信号处理再送给内部MCU的采样端口,由MCU来控制风扇控制信号的开通与关断及判定是否过温保护。如果过温保护会让芯片STOP脚输出报警信号。
OC-REST:10脚OC-REST外接RC电路直接与内部MCU的IO口相连,改变RC的值可以改变MCU过流保护的时间。
GND:11脚GND为芯片内部驱动信号的接地端。
Q2P:12脚Q2P,由芯片内部的MCU与PWM信号发生器产生的5V PWM信号再经芯片内部的MOS管进行电平转换为12V/100mA驱动信号给逆变桥的下管Q2驱动信号。
LA:13脚LA,逆变器的输出L线直接通过13脚LA与芯片内部的MOS相接。
Q1P:14脚Q1P,由芯片内部的MCU与PWM信号发生器产生的5V PWM信号再经芯片内部自举升压电路的进行电平转换为12V/100mA的驱动信号给逆变桥的上管Q1驱动信号。
VB-LA:15脚VB-LA,逆变器的输出L线经15脚送到芯片内部的自举升压电路为逆变桥的Q1管提供自举驱动信号。
Q4P:16脚Q4P,由芯片内部的MCU与PWM信号发生器产生的5V PWM信号再经芯片内部的MOS管进行电平转换为12V/100mA的驱动信号给逆变桥的下管Q4驱动信号。
N:17脚N,逆变器的输出N线直接通过17脚N与芯片内部的MOS相接。
Q3P:18脚Q3P,由芯片内部的MCU与PWM信号发生器产生的5V PWM信号再经芯片内部自举升压电路的进行电平转换为12V/100mA的驱动信号给逆变桥的上管Q3驱动信号。
VB-N:19脚VB-N,逆变器的输出L线经15脚送到芯片内部的自举升压电路为逆变桥的Q3管提供自举驱动信号。
+12V:20脚+12V为芯片外接总供电脚,内部分两路,一路给LDO产生5V基准电压供给芯片内部电路,另一路12V供给芯片内部的驱动电路,将MCU产生的5V驱动电平转换为12V驱动电平信号。
该芯片BST08A的参数如下:
Figure PCTCN2016103684-appb-000001
本发明公开的光伏逆变器集成系统控制芯片,其具有自动稳定输出电压作用,输出电压使用 直流平均值算法,通过调节外部母线对VBB-FB的分压,能自动稳定输出,输出电压=(FB外部分压比+1)*1V,通过调节外部母线对VBB-FB的分压,能实现过压自动停止工作,并且从STOP引脚输出一个高电平,保护电压=(OV外部分压比+1)*1V,具有电压回滞功能。输出电流调节及恒流输出方面,本发明能够对输出电流进行采样,采样算法使用直流平均值算法,平均电流I=0.5V*分压比/Rcs,超过电流设定值的110%时,进入降低输出电压的模式,维持电流不超过设定值,当输出电流瞬间超过设定值时,进入过流保护,恢复时间由外部电容决定,进入保护状态。将主控制器和PWM控制器集成后的BST08A是一款集成功能的逆变器后级控制芯片,采用高压工艺和内置自举电路,能直接驱动NMOS管组成的桥式逆变输出,而外围只需要极少的元件。由于采用了灵活的电路结构,使之具有恒压-恒流输出功能,各种输出参数可调,并具有一系列的异常保护功能,使之具有高灵活性,高可靠性。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (7)

  1. 一种光伏逆变器集成系统控制芯片,其特征在于,包括有控制单元和逆变单元,所述控制单元包括有主控制器和PWM控制器,所述主控制器、PWM控制器和逆变单元依次电性连接,其中:
    所述主控制器用于发出控制信号;
    所述PWM控制器用于执行主控制器的控制信号而输出脉冲信号;
    所述逆变单元用于执行PWM控制器输出的脉冲信号而将直流电压逆变为交流电压;
    所述主控制器电连接于一切换开关的活动端,所述切换开关的第一端连接于直流供电端,所述切换开关的第二端接地,当所述切换开关的活动端与第一端相连时,所述主控制器通过调节PWM控制器的脉冲信号频率而将逆变单元输出的交流电压频率调整为60HZ;当所述切换开关的活动端与第二端相连时,所述主控制器通过调节PWM控制器的脉冲信号频率而将逆变单元输出的交流电压频率调整为50HZ;当所述切换开关的活动端悬空时,所述主控制器通过调节PWM控制器的脉冲信号频率而将逆变单元输出的交流电压频率调整为55HZ。
  2. 如权利要求1所述的光伏逆变器集成系统控制芯片,其特征在于,还包括有热敏电阻、风机和NPN管,所述热敏电阻用于采集逆变单元的温度,所述风机的出风口朝向逆变单元,所述热敏电阻的第一端连接于直流供电端,所述热敏电阻的第二端通过分压电阻接地,所述热敏电阻的第二端还连接于主控制器,所述风机的第一端用于接入12V供电电压,所述风机的第二端连接于NPN管的集电极,所述NPN管的发射极接地,所述NPN管的基极连接于主控制器,当所述热敏电阻第二端的电压大于预设值时,所述主控制器控制风机运转,当所述热敏电阻第二端的电压小于预设值时,所述主控制器控制风机停止运转。
  3. 如权利要求2所述的光伏逆变器集成系统控制芯片,其特征在于,所述热敏电阻的第二端与主控制器之间设有第一比较器和第二比较器,所述第一比较器的同相端用于接入2/3VDD电压,所述第二比较器的反相端用于接入1/3VDD电压,其中,VDD表示直流供电端的电压值,所述热敏电阻的第二端连接于第一比较器的反相端和第二比较器的同相端,所述第一比较器和第二比较器的输出端连接于主控制器,当所述热敏电阻的第二端电压小于1/3VDD时,所述主控制器控制风机停止运转;当所述热敏电阻的第二端电压大于1/3VDD且小于2/3VDD时,所述 主控制器控制风机运转;当所述热敏电阻的第二端电压大于2/3VDD时,所述主控制器进入过温保护状态并控制风机运转以及控制PWM控制器停止输出脉冲信号。
  4. 如权利要求2所述的光伏逆变器集成系统控制芯片,其特征在于,所述热敏电阻并联有第一电阻。
  5. 如权利要求2所述的光伏逆变器集成系统控制芯片,其特征在于,所述风机并联有第一二极管,所述第一二极管的阴极连接于风机的第一端,所述第一二极管的阳极连接于风机的第二端。
  6. 如权利要求1所述的光伏逆变器集成系统控制芯片,其特征在于,所述逆变单元包括有第一MOS管、第二MOS管、第三MOS管和第四MOS管,所述第一MOS管的漏极和第三MOS管的漏极均连接直流高电位,所述第一MOS管的源极与第二MOS管的漏极相连,所述第三MOS管的源极与第四MOS管的漏极相连,所述第二MOS管的源极和第四MOS管的源极相连后再通过限流电阻接地,所述第一MOS管的栅极、第二MOS管的栅极、第三MOS管的栅极和第四MOS管的栅极分别连接于PWM控制器,所述第一MOS管的源极和第三MOS管的源极构成交流信号输出端,所述PWM控制器用于执行控制单元发出的控制信号而驱动第一MOS管、第二MOS管、第三MOS管和第四MOS管将直流电压逆变为交流电压。
  7. 如权利要求1所述的光伏逆变器集成系统控制芯片,其特征在于,还包括有发光二极管,所述发光二极管的阴极接地,所述发光二极管的阳极通过限流电阻而连接于主控制器,所述主控制器通过控制发光二极管的点亮状态而发出灯光提示。
PCT/CN2016/103684 2016-05-20 2016-10-28 光伏逆变器集成系统控制芯片 WO2017197844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610341802.8 2016-05-20
CN201610341802.8A CN106026745A (zh) 2016-05-20 2016-05-20 光伏逆变器集成系统控制芯片

Publications (1)

Publication Number Publication Date
WO2017197844A1 true WO2017197844A1 (zh) 2017-11-23

Family

ID=57097005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103684 WO2017197844A1 (zh) 2016-05-20 2016-10-28 光伏逆变器集成系统控制芯片

Country Status (2)

Country Link
CN (1) CN106026745A (zh)
WO (1) WO2017197844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416608A (zh) * 2020-03-31 2020-07-14 西安微电子技术研究所 一种使能开关控制电路
CN113519489A (zh) * 2021-07-28 2021-10-22 山东理工大学 一种pwm电控精量喷雾系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026745A (zh) * 2016-05-20 2016-10-12 广东百事泰电子商务股份有限公司 光伏逆变器集成系统控制芯片
CN108668415B (zh) * 2017-03-28 2020-06-16 杭州海康威视数字技术股份有限公司 智能照明设备的模式切换方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702526A (zh) * 2009-10-16 2010-05-05 东华理工大学 铀矿资源勘查智能供电控制装置
CN102638054A (zh) * 2012-03-31 2012-08-15 东莞市盛扬实业有限公司 小功率光伏并网逆变器控制系统及其控制方法
CN204290948U (zh) * 2014-12-26 2015-04-22 Tcl通力电子(惠州)有限公司 防收音干扰电路和收音设备
CN106026745A (zh) * 2016-05-20 2016-10-12 广东百事泰电子商务股份有限公司 光伏逆变器集成系统控制芯片
CN205647289U (zh) * 2016-05-20 2016-10-12 广东百事泰电子商务股份有限公司 光伏逆变器集成系统控制芯片

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139817A (en) * 1981-02-20 1982-08-30 Matsushita Electric Ind Co Ltd Controller
CN103337981B (zh) * 2013-06-03 2015-08-05 宁波高新区日新科技有限公司 利用mcu之eeprom进行双频率逆变器过载点设定方法
CN204119077U (zh) * 2014-09-13 2015-01-21 浙江诸暨奇创电子科技有限公司 一种推挽正激pwm驱动电路
CN204349436U (zh) * 2014-11-18 2015-05-20 珠海万力达电气自动化有限公司 一种用于statcom的igbt温度检测与保护电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702526A (zh) * 2009-10-16 2010-05-05 东华理工大学 铀矿资源勘查智能供电控制装置
CN201563071U (zh) * 2009-10-16 2010-08-25 东华理工大学 铀矿资源勘查智能供电控制装置
CN102638054A (zh) * 2012-03-31 2012-08-15 东莞市盛扬实业有限公司 小功率光伏并网逆变器控制系统及其控制方法
CN204290948U (zh) * 2014-12-26 2015-04-22 Tcl通力电子(惠州)有限公司 防收音干扰电路和收音设备
CN106026745A (zh) * 2016-05-20 2016-10-12 广东百事泰电子商务股份有限公司 光伏逆变器集成系统控制芯片
CN205647289U (zh) * 2016-05-20 2016-10-12 广东百事泰电子商务股份有限公司 光伏逆变器集成系统控制芯片

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416608A (zh) * 2020-03-31 2020-07-14 西安微电子技术研究所 一种使能开关控制电路
CN111416608B (zh) * 2020-03-31 2023-03-28 西安微电子技术研究所 一种使能开关控制电路
CN113519489A (zh) * 2021-07-28 2021-10-22 山东理工大学 一种pwm电控精量喷雾系统

Also Published As

Publication number Publication date
CN106026745A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2017197844A1 (zh) 光伏逆变器集成系统控制芯片
CN102306903B (zh) 一种数字式大功率半导体激光电源
CN103835978A (zh) 风扇控制电路
CN204003548U (zh) 一种温控调速的风扇控制电路
CN117311457A (zh) 一种显卡超频电路
CN111121304B (zh) 热水器及其控制方法
CN208244959U (zh) 一种空气净化器智能控制装置
CN217518881U (zh) 逆变器散热风扇低噪音智能调速电路
CN205811977U (zh) 一种pwm控制信号产生电路
CN205811887U (zh) 一种具有最小占空比设定的pwm控制信号产生电路
CN109185212A (zh) 一种直流风机调速电路
CN205647289U (zh) 光伏逆变器集成系统控制芯片
CN209640840U (zh) 一种计算机多风扇智能温控报警系统
CN106793277A (zh) 用于led恒流控制的线电压补偿系统
CN113691130A (zh) 一种前后沿切相自动切换调压开关电路
CN204145324U (zh) 一种转换宽范围交直流输入电压为直流低压的电路
CN111416418A (zh) 一种数字化快充电路
CN209909845U (zh) 一种新型直流风扇控制电路
CN218780524U (zh) 一种适用于三线风扇的调速自检装置
CN216290746U (zh) 交流电机无极调速电路、模块及电器设备
CN216486181U (zh) 用于交流供电电路的输出控制装置
CN217510686U (zh) 一种医用冷风机及其功率控制电路
CN213634231U (zh) 一种电加热台装置的控制系统
CN211701826U (zh) 一种宽范围高温电源电路系统
CN216008986U (zh) 风扇控制电路及电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902223

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902223

Country of ref document: EP

Kind code of ref document: A1