WO2017197629A1 - Système d'onduleur de source de courant et dispositif d'onduleur - Google Patents

Système d'onduleur de source de courant et dispositif d'onduleur Download PDF

Info

Publication number
WO2017197629A1
WO2017197629A1 PCT/CN2016/082679 CN2016082679W WO2017197629A1 WO 2017197629 A1 WO2017197629 A1 WO 2017197629A1 CN 2016082679 W CN2016082679 W CN 2016082679W WO 2017197629 A1 WO2017197629 A1 WO 2017197629A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
diode
power switch
switch tube
inductor
Prior art date
Application number
PCT/CN2016/082679
Other languages
English (en)
Chinese (zh)
Inventor
胡炎申
Original Assignee
胡炎申
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胡炎申 filed Critical 胡炎申
Priority to PCT/CN2016/082679 priority Critical patent/WO2017197629A1/fr
Priority to CN201680002733.6A priority patent/CN107005059A/zh
Publication of WO2017197629A1 publication Critical patent/WO2017197629A1/fr

Links

Images

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates to the field of inverters, and in particular, to a current source inverter system and an inverter device.
  • a photovoltaic power generation system a plurality of photovoltaic modules are connected in series to form a photovoltaic string, and then a plurality of photovoltaic groups are connected in series to form a photovoltaic array.
  • the photovoltaic component converts solar light energy into direct current, and increases voltage and increases current through series and parallel connection of photovoltaic components.
  • the electrical connection function is realized by the combiner box and the power distribution cabinet, and the photovoltaic inverter converts the randomly changed direct current into the alternating current with the same frequency, phase and voltage of the public power grid.
  • the PV inverter has the MPPT (maximum power point tracking) function, which can automatically find the maximum power point of the PV string or the PV array through an internal software algorithm.
  • Typical large-scale desert ground and large-roof solar photovoltaic power plants generally use centralized inverters to form a photovoltaic power generation system, which is mainly composed of solar photovoltaic cell modules, combiner boxes, AC and DC power distribution cabinets and photovoltaic inverters, which can easily realize 10kV/ 35kV medium voltage grid connection, the photovoltaic group is connected in series to obtain higher DC voltage and DC power, and then share a centralized inverter to achieve grid-connected power generation.
  • Distributed photovoltaic power plants are generally built in medium and large industrial and commercial plants, and personal home roofs, mainly using string-type photovoltaic inverters, AC power distribution cabinets, without the need for combiner boxes, DC power distribution cabinets.
  • the development of distributed photovoltaic power generation system has promoted photovoltaic power generation close to the load end and reduced transmission and distribution losses.
  • the centralized inverter constitutes a photovoltaic power generation system or a distributed photovoltaic power station
  • a voltage source type inverter is generally used.
  • the voltage source inverter includes a DC boost inside.
  • Two-stage system with inverter circuit as shown in Figure 1; single-stage system can also be used inside the voltage source inverter, that is, the DC boost circuit is not used, but only the inverter function is retained, but in order to be higher
  • the grid voltage is adapted, and the step-up transformer is required on the AC output side of the inverter, as shown in Figure 2.
  • the two-stage system contains a DC boost circuit, and the single-stage system AC output must be equipped with a step-up transformer. Both of these methods increase the size, weight, price, and power consumption of the inverter.
  • the PV string The principle model is a DC current source, and the conventional voltage source inverter needs to convert the current source of the PV string into a voltage source again.
  • photovoltaic grid-connected power generation requires the output to be a current source. This increases the complexity and reliability of the system structure and control strategy after multiple conversions. Therefore, the voltage source inverter does not meet high efficiency and high efficiency when applied to photovoltaic power generation. Technology development trend of work density and low price.
  • embodiments of the present invention provide a current source inverter system and an inverter device, which are configured to reconfigure the system architecture of the inverter to improve the power generation and work efficiency of the photovoltaic power generation system. At the same time reduce system costs.
  • a DC energy storage circuit a DC energy storage circuit, an inverter bridge arm circuit, an AC filter circuit, and a controller, wherein the DC energy storage circuit is electrically connected to the photovoltaic group, and the DC energy storage circuit is electrically connected to the inverter bridge arm circuit.
  • the inverter bridge arm circuit is electrically connected to the AC filter circuit
  • the controller is electrically connected to the inverter bridge arm circuit
  • the controller is configured to control the operation of the inverter bridge arm circuit;
  • the DC energy storage circuit stores and filters a DC current provided by the PV string to form a stable DC current, and inputs the stable DC current to the inverter bridge circuit, the inverse
  • the variable bridge arm circuit converts the stable direct current into an alternating current and outputs the same to the alternating current filter circuit, and the alternating current filter circuit converts the alternating current into a sinusoidal current, and finally merges into an alternating current grid to realize photovoltaic grid connection. Power generation.
  • controller is specifically configured to implement the power switch tube driving signal based on the sinusoidal pulse width modulation to control the inverter bridge arm circuit to convert the stable DC current input by the DC energy storage circuit into AC current output.
  • FIG. 18 is a schematic diagram showing the wiring of the current source inverter system in an interleaved parallel manner when another single photovoltaic string is provided in the sixteenth embodiment of the present invention
  • the inverter bridge arm circuit includes a second power switch tube S2, a third power switch tube S3, and a fourth power Rate switch tube S4, fifth power switch tube S5, sixth power switch tube S6, seventh power switch tube S7, second diode D2, third diode D3, fourth diode D4, fifth two a diode D5, a sixth diode D6, and a seventh diode D7, wherein the third port of the third power switch S3 and the third diode D3 are connected in parallel, and the fifth power switch S5 a first port connected in parallel with the fifth diode D5 and a first port in which the seventh power switch S7 and the seventh diode D7 are connected in parallel, and the connection node is the first of the inverter bridge circuit a second port in which the second power switch S2 is connected in parallel with the second diode D2, a second port in which the fourth power switch S4 and the fourth diode D4 are connected in parallel, and the sixth The power switch tube S6 is connected to the second port connected in parallel with
  • the AC filter circuit includes a second capacitor Ca, a third capacitor Cb, a fourth capacitor Cc, a second inductor La, a third inductor Lb, and a fourth inductor Lc, wherein the first port of the second capacitor Ca is a first port of the second inductor La is connected, the connection node is a first port of the AC filter circuit; a first port of the third capacitor Cb is connected to a first port of the third inductor Lb, and the connection node is a second port of the AC filter circuit; a first port of the fourth capacitor Cc is connected to a first port of the fourth inductor Lc, and a connection node is a third port of the AC filter circuit;
  • the second port of the inductor La, the second port of the third inductor Lb, and the second port of the fourth inductor Lc are respectively incorporated into a corresponding AC grid.
  • the current source inverter in the embodiment of the present invention is a single-stage three-phase current source inverter with a DC voltage source input, a DC voltage source input provided by a PV string PV or other DC power source, After the capacitor Cin is filtered, the DC voltage source is converted into a DC current source by the inductor Ld of the filtering and energy storage function, and then input to the three-phase inverter bridge composed of the two-level H bridge with a stable DC current, three
  • the phase bridge arm is composed of S2, S3, S4, S5, S6, and S7 power switch tubes, and each bridge arm switch tube does not need a series power diode, which reduces the conduction loss of the inverter.
  • the DC energy storage circuit includes a first capacitor Cin and a first inductor Ld, wherein an input port of the first capacitor Cin is connected to a first port of the PV string PV, and an output port of the first capacitor Cin Connected to the second port of the PV string PV, the first port of the first inductor Ld is connected to the second port of the PV string PV, and the second port of the first inductor Ld is a first port of the inverter bridge arm circuit is connected, and a first port of the PV string PV is connected to a second port of the inverter bridge circuit;
  • FIG. 8 is a schematic diagram of wiring of a current source inverter system according to a sixth embodiment of the present invention.
  • the PV string PV includes N series photovoltaic modules;
  • the DC energy storage circuit includes a first diode Db, a first inductor Lb, an eighth diode Dm, and a switch tube Sb, wherein an input port of the first diode Db and the PV string PV a first port, a first port of the switch Sb, an output port of the first diode Db and a second port of the first inductor Lb, a second port of the switch Sb, An input port of the eighth diode Dm is connected, a first port of the first inductor Lb is connected to a second port of the photovoltaic string PV, and an output port of the eighth diode Dm is a first port of the inverter bridge arm circuit is connected, and a first port of the PV string PV is connected to a second port of the inverter bridge circuit;
  • the DC energy storage circuit includes a first capacitor, a first inductor Lb, a switch transistor, a first diode Db, and an eighth diode Dm, wherein the input port of the first capacitor and the PV string PV The first port is connected, the output port of the first capacitor is connected to the second port of the PV string PV, and the first port of the first inductor Lb is connected to the second port of the PV string PV a second port of the first inductor Lb and a second port of the switch tube, and the first diode Db
  • An output port of the eighth diode Dm is connected to the output port, and an output port of the eighth diode Dm is connected to the first port of the inverter bridge circuit, and the first port of the switch tube Connected to the input port of the first diode Db, the first port of the PV string PV, and the first port of the PV string PV is connected to the second port of the inverter bridge circuit;
  • the inverter bridge arm circuit includes a second power switch tube S2, a third power switch tube S3, a fourth power switch tube S4, a fifth power switch tube S5, a sixth power switch tube S6, and a seventh power switch tube S7.
  • FIG. 16 is a schematic diagram showing the interleaving and parallel connection of a current source inverter system in another single photovoltaic string according to the fourteenth embodiment of the present invention.
  • a single photovoltaic string current source is shown.
  • the input three-phase current source photovoltaic grid-connected inverter is composed of n single-stage three-phase current source inverter circuits, and uses the same set of total AC filter circuit, MCU software control and phase shift modulation strategy to complete the photovoltaic Grid-connected power generation and interleaved parallel function.
  • This interleaved parallel mode reduces input and output current ripple, and also enables multi-level operation of the output, thereby further reducing magnetic device losses and improving system efficiency.
  • the current source input can be changed to a voltage source input, and the three-phase inverter can also be changed to a single-phase inverter with similar system functions and performance.
  • FIG. 17 is a schematic diagram showing the interleaving and parallel connection of a current source inverter system according to another fifteenth embodiment of the present invention, as shown in FIG. 17, a single photovoltaic string current source.
  • the input three-phase current source photovoltaic grid-connected inverter is composed of n two-stage three-phase current source inverter and corresponding AC filter circuit, and the two-stage three-phase current source inverter is composed of DC Boost boost converter. It is composed of DC/AC inverter circuit and adopts the same MCU software control and phase shift modulation strategy. Thereby completing photovoltaic grid-connected power generation and staggered parallel function.
  • FIG. 18 is a schematic diagram of the staggered parallel connection of the current source inverter system in the case of another single photovoltaic string according to the sixteenth embodiment of the present invention.
  • a single photovoltaic string current source is shown.
  • the input three-phase current source photovoltaic grid-connected inverter is composed of n DC Boost boost converters, and the same set of single-stage three-phase current source inverter and AC filter circuit, and uses the same set of MCU software to control and shift. Phase modulation strategy to complete photovoltaic grid-connected power generation and interleaved parallel function.
  • This staggered parallel approach reduces input current ripple, which reduces magnetic device losses and increases system efficiency.
  • the current source input can be changed to a voltage source input, and the three-phase inverter can also be changed to a single-phase inverter with similar system functions and performance.
  • FIG. 19 is a schematic diagram of the wiring structure of the coupled inductor structure of the current source inverter system according to the seventeenth embodiment of the present invention.
  • a single photovoltaic string current source is input when the three-phase current source is photovoltaic.
  • the network inverter is composed of n single-stage three-phase current source inverters and corresponding AC filter circuits, and adopts the same MCU software control and phase shift modulation strategy, and at the same time, n DC energy storage inductors and AC filter inductors.
  • the coupled inductor structure is used to complete photovoltaic grid-connected power generation and interleaved parallel and coupled inductor functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

La présente invention concerne un système d'onduleur de source de courant (100) et un dispositif d'onduleur comprenant le système. Le système d'onduleur de source de courant (100) comprend : un circuit de stockage d'énergie à courant continu (110), un circuit de bras de pont d'onduleur (120), un circuit de filtrage de courant alternatif (130) et un dispositif de commande (140) ; le circuit de stockage d'énergie à courant continu (110) est électriquement connecté à des modules photovoltaïques en série ; le circuit de stockage d'énergie à courant continu (110) est électriquement connecté au circuit de bras de pont d'onduleur (120) ; le circuit de bras de pont inverseur (120) est électriquement connecté au circuit de filtrage de courant alternatif (130) ; le dispositif de commande (140) est électriquement connecté au circuit de bras de pont inverseur (120) ; le dispositif de commande (140) est spécifiquement utilisé pour commander un système d'onduleur de source de courant triphasé (100) de sorte que, à tout moment, seul un bras de pont monophasé fonctionne à une fréquence élevée tandis que les autres bras de pont diphasés fonctionnent à une fréquence faible, de façon à convertir un courant continu stable entré par le circuit de stockage d'énergie à courant continu (110) en courant alternatif en sortie. Par reconstruction de l'architecture de système pour un onduleur photovoltaïque dans une technologie de génération d'énergie photovoltaïque, le système d'onduleur de source de courant (100) améliore la quantité de génération d'énergie et l'efficacité de fonctionnement du système de génération d'énergie photovoltaïque tout en réduisant les coûts du système.
PCT/CN2016/082679 2016-05-19 2016-05-19 Système d'onduleur de source de courant et dispositif d'onduleur WO2017197629A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/082679 WO2017197629A1 (fr) 2016-05-19 2016-05-19 Système d'onduleur de source de courant et dispositif d'onduleur
CN201680002733.6A CN107005059A (zh) 2016-05-19 2016-05-19 一种电流源逆变器系统及逆变装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082679 WO2017197629A1 (fr) 2016-05-19 2016-05-19 Système d'onduleur de source de courant et dispositif d'onduleur

Publications (1)

Publication Number Publication Date
WO2017197629A1 true WO2017197629A1 (fr) 2017-11-23

Family

ID=59431636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082679 WO2017197629A1 (fr) 2016-05-19 2016-05-19 Système d'onduleur de source de courant et dispositif d'onduleur

Country Status (2)

Country Link
CN (1) CN107005059A (fr)
WO (1) WO2017197629A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600833A (zh) * 2019-09-06 2019-12-20 上海伊控动力系统有限公司 一种电动汽车车载电池包自加热系统
CN111512532A (zh) * 2017-12-21 2020-08-07 艾思玛太阳能技术股份公司 三个电桥支路的至少一个转换器模块的变换器,用于运行这种变换器的方法和这种变换器的应用
CN113364314A (zh) * 2021-04-26 2021-09-07 湖南大学 单级式三相3mppt型光伏逆变器及其控制策略
CN114725544A (zh) * 2022-03-28 2022-07-08 华为数字能源技术有限公司 电池管理系统及电池系统
CN115459620A (zh) * 2022-09-28 2022-12-09 杭州铂科电子有限公司 一种新型功率变换器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769604B (zh) * 2017-09-11 2024-04-19 廊坊英博电气有限公司 一种逆变器
CN107749720A (zh) * 2017-10-23 2018-03-02 胡炎申 一种混合开关三相逆变器
CN107947617A (zh) * 2017-10-23 2018-04-20 胡炎申 一种混合开关单相逆变器
CN110011294B (zh) * 2019-05-05 2024-05-24 珠海格力电器股份有限公司 电压补偿电路及其控制方法和空调驱动系统
EP4346078A1 (fr) * 2021-06-30 2024-04-03 Huawei Digital Power Technologies Co., Ltd. Système photovoltaïque, procédé d'arrêt rapide et onduleur photovoltaïque
CN115134189A (zh) * 2022-07-16 2022-09-30 超同步股份有限公司 一种总线切换电路、方法以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266038A (ja) * 1995-03-24 1996-10-11 Nippon Electric Ind Co Ltd 昇圧チョッパ回路
JP2002010497A (ja) * 2000-06-15 2002-01-11 Sharp Corp 系統連系インバータ装置
CN101615899A (zh) * 2009-07-16 2009-12-30 福州大学 单相电流源并网逆变器的非线性脉宽调制控制装置
CN102158107A (zh) * 2011-03-09 2011-08-17 福州大学 单级单相大升压比电流型逆变器
CN202616801U (zh) * 2012-03-29 2012-12-19 东南大学 一种基于电流逆变器的光伏/蓄电池混合型分布式发电系统
CN103684030A (zh) * 2013-12-30 2014-03-26 广东三祝科技有限公司 一种新型高性能并网光伏逆变器
CN103997238A (zh) * 2014-05-05 2014-08-20 南京航空航天大学 一种双Boost逆变器的半周期调制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266038A (ja) * 1995-03-24 1996-10-11 Nippon Electric Ind Co Ltd 昇圧チョッパ回路
JP2002010497A (ja) * 2000-06-15 2002-01-11 Sharp Corp 系統連系インバータ装置
CN101615899A (zh) * 2009-07-16 2009-12-30 福州大学 单相电流源并网逆变器的非线性脉宽调制控制装置
CN102158107A (zh) * 2011-03-09 2011-08-17 福州大学 单级单相大升压比电流型逆变器
CN202616801U (zh) * 2012-03-29 2012-12-19 东南大学 一种基于电流逆变器的光伏/蓄电池混合型分布式发电系统
CN103684030A (zh) * 2013-12-30 2014-03-26 广东三祝科技有限公司 一种新型高性能并网光伏逆变器
CN103997238A (zh) * 2014-05-05 2014-08-20 南京航空航天大学 一种双Boost逆变器的半周期调制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512532A (zh) * 2017-12-21 2020-08-07 艾思玛太阳能技术股份公司 三个电桥支路的至少一个转换器模块的变换器,用于运行这种变换器的方法和这种变换器的应用
CN110600833A (zh) * 2019-09-06 2019-12-20 上海伊控动力系统有限公司 一种电动汽车车载电池包自加热系统
CN113364314A (zh) * 2021-04-26 2021-09-07 湖南大学 单级式三相3mppt型光伏逆变器及其控制策略
CN114725544A (zh) * 2022-03-28 2022-07-08 华为数字能源技术有限公司 电池管理系统及电池系统
CN115459620A (zh) * 2022-09-28 2022-12-09 杭州铂科电子有限公司 一种新型功率变换器
CN115459620B (zh) * 2022-09-28 2024-05-07 杭州铂科电子有限公司 一种新型功率变换器

Also Published As

Publication number Publication date
CN107005059A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2017197629A1 (fr) Système d'onduleur de source de courant et dispositif d'onduleur
Song et al. Cascaded multilevel inverter employing three-phase transformers and single DC input
CN101316074B (zh) 风力发电系统的背靠背三电平中点箝位变流器
CN102185514B (zh) 一种单相三电平逆变器
WO2017185223A1 (fr) Système multiplexé de production d'énergie photovoltaïque du type en cascade, et appareil de production d'énergie photovoltaïque
CN204103797U (zh) 一种准z源三电平t型逆变器
CN101345423B (zh) 用于风力发电系统的五电平h桥级联背靠背变流器
CN108111045A (zh) 外置并联分时选择开关电压型单级多输入低频环节逆变器
CN100486075C (zh) 兆瓦级风力发电用三电平中压变流器
CN101980436B (zh) 一种光伏并网逆变器装置及提高其转换效率的控制方法
CN101291071A (zh) 一种风力发电直接并网电力变换装置
Vilathgamuwa et al. Rectifier systems for variable speed wind generation-a review
CN103036397B (zh) 单级单相大升压比级联电压型准阻抗源变换器
Marzouki et al. A review of PWM voltage source converters based industrial applications
CN102412734A (zh) 一种电励磁同步发电机用全功率风电变流器
Sandhu et al. Multilevel inverters: literature survey–topologies, control techniques & applications of renewable energy sources-grid integration
CN104638971A (zh) 一种光伏并网逆变器及其控制方法
CN205195587U (zh) 光伏并网变换器、光伏供电系统和电器
Guo et al. A programmable single-phase multilevel current source inverter
WO2017206020A1 (fr) Système de génération de puissance photovoltaïque et dispositif de génération de puissance photovoltaïque sur la base d'un égaliseur photovoltaïque
CN201025674Y (zh) 兆瓦级风力发电用三电平中压变流器
Tashiwa et al. Review of multilevel inverters and their control techniques
Bayhan et al. A five-level neutral-point-clamped/H-bridge quasi-impedance source inverter for grid connected PV system
CN105337520A (zh) 光伏并网变换器、光伏供电系统和电器
CN202405797U (zh) 电励磁同步发电机用全功率风电变流器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902014

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902014

Country of ref document: EP

Kind code of ref document: A1