WO2017197575A1 - 六维力传感器保护装置和具有保护装置的六维力传感器 - Google Patents

六维力传感器保护装置和具有保护装置的六维力传感器 Download PDF

Info

Publication number
WO2017197575A1
WO2017197575A1 PCT/CN2016/082319 CN2016082319W WO2017197575A1 WO 2017197575 A1 WO2017197575 A1 WO 2017197575A1 CN 2016082319 W CN2016082319 W CN 2016082319W WO 2017197575 A1 WO2017197575 A1 WO 2017197575A1
Authority
WO
WIPO (PCT)
Prior art keywords
force sensor
dimensional force
flange
hole
protection device
Prior art date
Application number
PCT/CN2016/082319
Other languages
English (en)
French (fr)
Inventor
夏泽洋
翁少葵
熊璟
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to CN201680000436.8A priority Critical patent/CN106030268A/zh
Priority to PCT/CN2016/082319 priority patent/WO2017197575A1/zh
Publication of WO2017197575A1 publication Critical patent/WO2017197575A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload

Definitions

  • the present application relates to sensors, and more particularly to a six-dimensional force sensor protection device and a six-dimensional force sensor with a protection device.
  • Six-dimensional force sensors are widely used in intelligent robots, automatic control, aerospace and other research fields because they can simultaneously sense the full force information in three-dimensional space. They play an important role in the development of science and technology, industrial production and national defense. Although the existing six-dimensional force sensor products have the advantages of high precision and compact structure, they have fatal shortcomings that are fragile and unrepairable, and are easily damaged due to misoperation during development and use.
  • the traditional use of six-dimensional force sensors is often combined with the six-dimensional force sensor range to set the emergency stop control on the software level to protect the six-dimensional force sensor, but in the actual debugging process, due to programming errors or some external explosions The accidental touch is still very easy to cause damage to the six-dimensional force sensor.
  • the six-dimensional force sensor acquires the received space force/torque information by detecting the deformation amount of the elastic component of the core component.
  • the range of the six-dimensional force sensor is determined by the deformability of the elastic body, so that the overload protection for the six-dimensional force sensor is Mainly to limit the elastic body within the range of elastic deformation, to avoid damage to the device due to the deformation range beyond the elastic body.
  • the existing six-dimensional force sensor adds an overload protection structure to the elastic body, and the overload protection threshold is limited by the stiffness of the elastic body and the size of the six-dimensional force sensor structure, and the overload protection threshold is small.
  • the application provides a six-dimensional force sensor protection device and a six-dimensional force sensor with a protection device.
  • the present application provides a six-dimensional force sensor protection device including a first flange connected to a fixed end of a six-dimensional force sensor, a second flange connected to a movable end of a six-dimensional force sensor, and protection a pin, one of the first flange and the second flange is provided with a plurality of mounting holes, and the other of the first flange and the second flange is provided with a connection with the mounting hole a hole, the protection pin has an interference fit with the mounting hole and a clearance fit with the through hole, the protection pin cooperates with the number of the mounting holes, the protection pin is disposed through the through hole and the mounting In the hole, the first flange and the second flange enclose a chamber that accommodates a six-dimensional force sensor.
  • the present application provides a six-dimensional force transmission with a protection device
  • the sensor includes a six-dimensional force sensor and the above six-dimensional force sensor protection device.
  • the protection device since the protection device includes a first flange, a second flange, and a protection pin, one of the first flange and the second flange is provided with a plurality of mounting holes, the first flange and the first The other one of the two flanges is provided with a through hole that cooperates with the mounting hole, and the protection pin has an interference fit with the mounting hole and is matched with the through hole, and the protection pin is disposed in the through hole and the mounting hole.
  • the application is not only simple in structure, but also According to the actual application, the material with appropriate stiffness or the appropriate structural size can be selected to ensure a certain six-dimensional force sensor overload protection capability.
  • This application has strong applicability and can be directly applied to the existing six-dimensional force sensor in the market to realize the sensor overload protection function, reducing the probability of device damage, and aiming at overload contact without damaging the six-dimensional force sensor, only need to replace the damaged overload protection. Structure, which reduces costs.
  • Figure 1 is a schematic view showing the structure of a first flange of the present application in an embodiment
  • FIG. 2 is a schematic structural view of a second flange of the present application in an embodiment
  • FIG. 3 is an exploded view of a six-dimensional force sensor with a protection device in one embodiment of the present application
  • Figure 4 is a cross-sectional view of a six-dimensional force sensor with a protective device of the present application in one embodiment
  • Figure 5 is a schematic illustration of a through hole of the present application in one embodiment.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • one embodiment of the six-dimensional force sensor protection device of the present application may include a first flange 10 , a second flange 20 , and a protection pin 30 .
  • the first flange 10 is connected to the fixed end of the six-dimensional force sensor
  • the second flange 20 is connected to the movable end of the six-dimensional force sensor 40
  • one of the first flange 10 and the second flange 20 is provided with a plurality of mounting holes 11
  • the other one of the first flange 10 and the second flange 20 is provided with a through hole 21, the through hole 21 is engaged with the mounting hole 11, the protection pin 30 is interference-fitted with the mounting hole, and the protection pin 30 is matched with the through hole 21 to protect
  • the pin 30 is mated with the mounting hole 11 and the protective pin 30 is passed through the through hole 21 and the mounting hole 11 such that the first flange 10 and the second flange 20 surround the chamber accommodating the six-dimensional force sensor 40.
  • the mounting hole 11 is disposed on the first flange 10, and the through hole 21 is disposed on the second flange 20, In another embodiment, the mounting hole 11 is disposed in the second flange 20, and the through hole 21 is disposed on the first flange 10.
  • the mounting hole 11 is provided on the first flange 10, and the through hole 21 is provided in the second flange 20 as an example.
  • the first flange 10 of the present application may include a first connecting plate 12 and an annular protrusion 13 , the protrusion 13 may surround the six-dimensional force sensor 40 , the protrusion 13 is provided with an opening 14 , and the protrusion 13 is disposed on the first connecting plate 12 Upper, the mounting holes 11 are uniformly disposed on the bumps 13.
  • the number of the mounting holes 11 may be two, three, four, or more, and when the number of the mounting holes 11 is an even number, the mounting holes 11 are symmetrically disposed.
  • the number of the through holes 21 and the protection pins 30 is the same as the number of the mounting holes 11, and the positions are matched.
  • the first flange 10 may further include a reinforcing block 15 disposed outside the bump 13 and the mounting hole 11 penetrating the reinforcing block 15.
  • the second flange 20 of the present application may include a second connecting plate 22 and a plurality of bosses 23, the bosses 23 are disposed on the second connecting plate 22, and the through holes 21 are disposed on the bosses 23.
  • the second flange 20 may further include an annular circular table 24 sized to fit the six-dimensional force sensor 40, the circular table 24 being disposed on the second connecting plate 22, and the boss 23 being disposed on the circular table 24.
  • the through hole 21 includes a slot.
  • the width L of the through hole 21 is calculated by the following formula:
  • the height H of the through hole is calculated by the following formula:
  • D 0 is the diameter of the protection pin 30
  • x is the multiple of the six-dimensional force sensor 40 uniaxial load allowed overload
  • l is the amount of clearance in the L direction of the six-dimensional force sensor 40 under the single-axis load permission
  • h is the six-dimensional force sensor 40
  • R i is the amount of rotation of the six-dimensional force sensor 40
  • the respective rotational amount R i and the translational momentum P i of the six-dimensional force sensor 40 are calculated by the following formula:
  • F i , T i , K ti and K i are the forces, moments, torsional stiffness and equal dynamic stiffness values of the six-dimensional force sensor 40, respectively, and r is the distribution radius of the through holes.
  • the application can realize the overload protection of the six-dimensional force sensor by limiting the amount of rotation and the amount of translation of the six-dimensional force sensor.
  • the mounting hole 11 includes a blind hole or a through hole.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • an embodiment of the six-dimensional force sensor with a protection device of the present application includes a six-dimensional force sensor and a six-dimensional force sensor protection device in the first embodiment.
  • the six-dimensional force sensor protection device can include a first flange 10, a second flange 20, and a guard pin 30.
  • the first flange 10 is connected to the fixed end of the six-dimensional force sensor
  • the second flange 20 is connected to the movable end of the six-dimensional force sensor 40
  • one of the first flange 10 and the second flange 20 is provided with a plurality of mounting holes 11
  • the other one of the first flange 10 and the second flange 20 is provided with a through hole 21, the through hole 21 is engaged with the mounting hole 11, the protection pin 30 is interference-fitted with the mounting hole, and the protection pin 30 is matched with the through hole 21 to protect
  • the pin 30 is matched with the number of the mounting holes 11, and the protection pin 30 is disposed in the through hole 21 and the mounting hole 11, so that the first flange 10 and the second flange 20 enclose the chamber for accommodating the six-dimensional force sensor 40, six-dimensional A force sensor is disposed in the chamber.
  • the mounting hole 11 is disposed on the first flange 10, and the through hole 21 is disposed in the second flange 20. In another embodiment, the mounting hole 11 is disposed in the second flange 20, The hole 21 is provided on the first flange 10.
  • the mounting hole 11 is provided on the first flange 10, and the through hole 21 is provided in the second flange 20 as an example.
  • the first flange 10 of the present application may include a first connecting plate 12 and an annular protrusion 13 , the protrusion 13 may surround the six-dimensional force sensor 40 , the protrusion 13 is provided with an opening 14 , and the protrusion 13 is disposed on the first connecting plate 12 Upper, the mounting holes 11 are uniformly disposed on the bumps 13.
  • the number of the mounting holes 11 may be two, three, four, or more, and when the number of the mounting holes 11 is an even number, the mounting holes 11 are symmetrically disposed.
  • the number of the through holes 21 and the protection pins 30 is the same as the number of the mounting holes 11, and the positions are matched.
  • the first flange 10 may further include a reinforcing block 15 disposed outside the bump 13 and the mounting hole 11 penetrating the reinforcing block 15.
  • the second flange 20 of the present application may include a second connecting plate 22 and a plurality of bosses 23, the bosses 23 are disposed on the second connecting plate 22, and the through holes 21 are disposed on the bosses 23.
  • the second flange 20 may further include an annular circular table 24, which is matched with a six-dimensional force sensor, and the circular table 24 It is disposed on the second connecting plate 22, and the boss 23 is disposed on the circular table 24.
  • the through hole 21 includes a slot.
  • the width L of the through hole 21 is calculated by the following formula:
  • the height H of the through hole is calculated by the following formula:
  • D 0 is the diameter of the protection pin 30
  • x is the multiple of the six-dimensional force sensor 40 uniaxial load allowed overload
  • l is the amount of clearance in the L direction of the six-dimensional force sensor 40 under the single-axis load permission
  • h is the six-dimensional force sensor 40
  • R i is the amount of rotation of the six-dimensional force sensor 40
  • the respective rotational amount R i and the translational momentum P i of the six-dimensional force sensor 40 are calculated by the following formula:
  • F i , T i , K ti and K i are respectively the force, moment, torsional stiffness and dynamic stiffness value of the sensor, and r is the distribution radius of the through hole.
  • the application can realize the overload protection of the six-dimensional force sensor by limiting the amount of rotation and the amount of translation of the six-dimensional force sensor.
  • the mounting hole 11 includes a blind hole or a through hole

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种六维力传感器保护装置,包括第一法兰(10)、第二法兰(20)以及保护销(30),第一法兰(10)和第二法兰(20)之一设有多个安装孔(11),第一法兰(10)和第二法兰(20)之另一设有与安装孔(11)配合的通孔(21),保护销(30)与安装孔(11)过盈配合且与通孔(21)间隙配合,保护销(30)穿设在通孔(21)和安装孔(11)中,使第一法兰(10)和第二法兰围出容纳六维力传感器(40)的腔室。还公开了一种具有保护装置的六维力传感器(40)。不仅结构简单,还可根据实际应用场合设计合适的结构尺寸,以确保具备一定的六维力传感器(40)过载保护能力。适用性强,可直接应用于现有六维力传感器(40),实现过载保护功能,降低了器件损坏几率,针对不伤及六维力传感器(40)的过载碰触,只需更换损坏的过载保护结构,因而降低了成本。

Description

六维力传感器保护装置和具有保护装置的六维力传感器 技术领域
本申请涉及传感器,尤其涉及一种六维力传感器保护装置和具有保护装置的六维力传感器。
背景技术
六维力传感器因能同时感知三维空间中的全力信息,而被广泛应用于智能机器人、自动控制、航天航空等多个研究领域,在科学技术发展、工业生产和国防建设中发挥着重要作用。虽然现有六维力传感器产品具备高精准度、结构精巧等优点,但却存在超量程易损且不可修复的致命缺点,在研发及使用过程容易因误操作而导致部件损坏。传统使用六维力传感器往往是通过软件层面上结合六维力传感器量程设置急停控制以起到六维力传感器的保护作用,但在实际调试过程中由于程序编写失误或是外界的一些突发的误碰触,还是很容易造成六维力传感器的损坏。
六维力传感器是通过检测核心部件弹性体的变形量来获取所受空间力/力矩信息,六维力传感器的量程由弹性体的可变形量决定,因此针对于六维力传感器的过载保护,主要是限制弹性体在弹性变形范围内,避免因超出弹性体形变范围而导致器件损坏。现有部分六维力传感器在弹性体中增设过载保护结构,其过载保护阈值受限于弹性体本身刚度与六维力传感器结构尺寸,过载保护阈值较小。
发明内容
本申请提供一种六维力传感器保护装置和具有保护装置的六维力传感器。
根据本申请的第一方面,本申请提供一种六维力传感器保护装置,包括与六维力传感器固定端连接的第一法兰、与六维力传感器活动端连接的第二法兰以及保护销,所述第一法兰和所述第二法兰之一设有多个安装孔,所述第一法兰和所述第二法兰之另一设有与所述安装孔配合的通孔,所述保护销与所述安装孔过盈配合且与所述通孔间隙配合,所述保护销与所述安装孔数量配合,所述保护销穿设在所述通孔和所述安装孔中,使所述第一法兰和所述第二法兰围出容纳六维力传感器的腔室。
根据本申请的第二方面,本申请提供一种具有保护装置的六维力传 感器,包括六维力传感器和上述六维力传感器保护装置。
由于采用了以上技术方案,使本申请具备的有益效果在于:
在本申请的具体实施方式中,由于保护装置包括第一法兰、第二法兰和保护销,第一法兰和第二法兰之一设有多个安装孔,第一法兰和第二法兰之另一设有与安装孔配合的通孔,保护销与安装孔过盈配合且与通孔间隙配合,保护销穿设在通孔和安装孔中,本申请不仅结构简单,还可根据实际应用场合选用合适刚度的材料或设计合适的结构尺寸,以确保具备一定的六维力传感器过载保护能力。本申请适用性强,可直接应用于市场现有六维力传感器,实现传感器过载保护功能,降低了器件损坏几率,针对不伤及六维力传感器的过载碰触,只需更换损坏的过载保护结构,从而降低了成本。
附图说明
图1为本申请的第一法兰在一种实施方式中的结构示意;
图2为本申请的第二法兰在一种实施方式中的结构示意;
图3为本申请的具有保护装置的六维力传感器在一种实施方式中的爆炸图;
图4为本申请的具有保护装置的六维力传感器在一种实施方式中的剖视图;
图5为本申请的通孔在一种实施方式中的示意图。
具体实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。
实施例一:
如图1至图5所示,本申请的六维力传感器保护装置,其一种实施方式,可以包括第一法兰10、第二法兰20和保护销30。第一法兰10与六维力传感器固定端连接,第二法兰20与六维力传感器40活动端连接,第一法兰10和第二法兰20之一设有多个安装孔11,第一法兰10和第二法兰20之另一设有通孔21,通孔21与安装孔11配合,保护销30与安装孔过盈配合,保护销30与通孔21间隙配合,保护销30与安装孔11数量配合,保护销30穿设在通孔21和安装孔11中,使第一法兰10和第二法兰20围出容纳六维力传感器40的腔室。在一种实施方式中,安装孔11设置在第一法兰10上,通孔21设置在第二法兰20,在 另一种实施方式中,安装孔11设置在第二法兰20,通孔21设置在第一法兰10上。以下以安装孔11设置在第一法兰10上,通孔21设置在第二法兰20为例进行说明。
本申请的第一法兰10可以包括第一连接板12和环形凸块13,凸块13可环绕六维力传感器40,凸块13设有开口14,凸块13设置在第一连接板12上,安装孔11均匀地设置在凸块13上。在一种实施方式中,安装孔11的数量可以有两个、三个、四个,或者更多,当安装孔11的数量为偶数时,安装孔11对称设置。通孔21和保护销30的数量与安装孔11的数量相同,且位置配合。第一法兰10还可以包括加强块15,加强块15设置在凸块13外部,安装孔11贯穿加强块15。
本申请的第二法兰20可以包括第二连接板22和多个凸台23,凸台23设置在第二连接板22上,通孔21设置在凸台23上。第二法兰20还可以包括环形圆台24,环形圆台24与六维力传感器40大小配合,圆台24设置在第二连接板22上,凸台23设置在圆台24上。
在一种实施方式中,通孔21包括槽孔。通孔21的宽度L通过以下公式进行计算:
L=D0+x·l               (1)
[根据细则91更正 15.06.2017] 
Figure PCTCN2016082319-appb-000001
通孔的高度H通过以下公式进行计算:
H=D0+x·h          (3)
[根据细则91更正 15.06.2017] 
Figure WO-DOC-FIGURE-2
其中,D0为保护销30直径,x为六维力传感器40单轴负载允许超载的倍数,l为六维力传感器40单轴负载许可下L方向上的间隙量,h为六维力传感器40单轴负载许可下H方向上的间隙量,Ri为六维力传感器40的各向可转动量,Pi为六维力传感器40各向平动量,i={x,y,z}。
六维力传感器40的各向可转动量Ri及各向平动量Pi通过以下公式进行计算:
Figure PCTCN2016082319-appb-000003
Figure PCTCN2016082319-appb-000004
其中,Fi、Ti、Kti与Ki分别为六维力传感器40各向的力、力矩、扭转刚度和平动刚度值,r为通孔的分布半径。本申请可通过限制六维力传感器转动量与平动量,实现六维力传感器的过载保护。
在一种实施方式中,安装孔11包括盲孔或通孔。
实施例二:
如图1至图5所示,本申请的具有保护装置的六维力传感器,其一种实施方式,包括六维力传感器和实施例一中的六维力传感器保护装置。六维力传感器保护装置可以包括第一法兰10、第二法兰20和保护销30。第一法兰10与六维力传感器固定端连接,第二法兰20与六维力传感器40活动端连接,第一法兰10和第二法兰20之一设有多个安装孔11,第一法兰10和第二法兰20之另一设有通孔21,通孔21与安装孔11配合,保护销30与安装孔过盈配合,保护销30与通孔21间隙配合,保护销30与安装孔11数量配合,保护销30穿设在通孔21和安装孔11中,使第一法兰10和第二法兰20围出容纳六维力传感器40的腔室,六维力传感器设置在该腔室中。在一种实施方式中,安装孔11设置在第一法兰10上,通孔21设置在第二法兰20,在另一种实施方式中,安装孔11设置在第二法兰20,通孔21设置在第一法兰10上。以下以安装孔11设置在第一法兰10上,通孔21设置在第二法兰20为例进行说明。
本申请的第一法兰10可以包括第一连接板12和环形凸块13,凸块13可环绕六维力传感器40,凸块13设有开口14,凸块13设置在第一连接板12上,安装孔11均匀地设置在凸块13上。在一种实施方式中,安装孔11的数量可以有两个、三个、四个,或者更多,当安装孔11的数量为偶数时,安装孔11对称设置。通孔21和保护销30的数量与安装孔11的数量相同,且位置配合。第一法兰10还可以包括加强块15,加强块15设置在凸块13外部,安装孔11贯穿加强块15。
本申请的第二法兰20可以包括第二连接板22和多个凸台23,凸台23设置在第二连接板22上,通孔21设置在凸台23上。第二法兰20还可以包括环形圆台24,环形圆台24与六维力传感器大小配合,圆台24 设置在第二连接板22上,凸台23设置在圆台24上。
在一种实施方式中,通孔21包括槽孔。通孔21的宽度L通过以下公式进行计算:
L=D0+x·l           (1)
[根据细则91更正 15.06.2017] 
Figure WO-DOC-FIGURE-1
通孔的高度H通过以下公式进行计算:
H=D0+x·h          (3)
[根据细则91更正 15.06.2017] 
Figure WO-DOC-FIGURE-2
其中,D0为保护销30直径,x为六维力传感器40单轴负载允许超载的倍数,l为六维力传感器40单轴负载许可下L方向上的间隙量,h为六维力传感器40单轴负载许可下H方向上的间隙量,Ri为六维力传感器40的各向可转动量,Pi为六维力传感器40各向平动量,i={x,y,z}。
六维力传感器40的各向可转动量Ri及各向平动量Pi通过以下公式进行计算:
Figure PCTCN2016082319-appb-000007
Figure PCTCN2016082319-appb-000008
其中,Fi、Ti、Kti与Ki分别为传感器各向的力、力矩、扭转刚度和平动刚度值,r为通孔的分布半径。本申请可通过限制六维力传感器转动量与平动量,实现六维力传感器的过载保护。
在一种实施方式中,安装孔11包括盲孔或通孔
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种六维力传感器保护装置,其特征在于,包括与六维力传感器固定端连接的第一法兰、与六维力传感器活动端连接的第二法兰以及保护销,所述第一法兰和所述第二法兰之一设有多个安装孔,所述第一法兰和所述第二法兰之另一设有与所述安装孔配合的通孔,所述保护销与所述安装孔过盈配合且与所述通孔间隙配合,所述保护销与所述安装孔数量配合,所述保护销穿设在所述通孔和所述安装孔中,使所述第一法兰和所述第二法兰围出容纳六维力传感器的腔室。
  2. 如权利要求1所述的六维力传感器保护装置,其特征在于,所述第一法兰包括第一连接板和设有开口的环形凸块,所述凸块设置在所述第一连接板上,所述安装孔均匀地设置在所述凸块上。
  3. 如权利要求2所述的六维力传感器保护装置,其特征在于,所述第一法兰还包括加强块,所述加强块设置在所述凸块外部,所述安装孔贯穿所述加强块。
  4. 如权利要求2所述的六维力传感器保护装置,其特征在于,所述第二法兰包括第二连接板和多个凸台,所述凸台设置在所述第二连接板上,所述通孔设置在所述凸台上。
  5. 如权利要求4所述的六维力传感器保护装置,其特征在于,所述第二法兰还包括与六维力传感器大小配合的环形圆台,所述圆台设置在所述第二连接板上,所述凸台设置在所述圆台上。
  6. 如权利要求1至4中任一项所述的六维力传感器保护装置,其特征在于,所述通孔包括槽孔。
  7. 如权利要求6所述的六维力传感器保护装置,其特征在于,所述通孔的宽度L通过以下公式进行计算:
    L=D0+x·l   (1)
    Figure PCTCN2016082319-appb-100001
    所述通孔的高度H通过以下公式进行计算:
    H=D0+x·h   (3)
    Figure PCTCN2016082319-appb-100002
    其中,D0为保护销直径,x为六维力传感器单轴负载允许超载的倍数,l为六维力传感器单轴负载许可下L方向上的间隙量,h为六维力传感器单轴负载许可下H方向上的间隙量,Ri为六维力传感器的各向可转动量,Pi为六维力传感器各向平动量,i={x,y,z}。
  8. 如权利要求7所述的六维力传感器保护装置,其特征在于,所述六维力传感器的各向可转动量Ri及各向平动量Pi通过以下公式进行计算:
    Figure PCTCN2016082319-appb-100003
    Figure PCTCN2016082319-appb-100004
    其中,Fi、Ti、Kti与Ki分别为传感器各向的力、力矩、扭转刚度和平动刚度值,r为所述通孔的分布半径。
  9. 如权利要求5所述的六维力传感器保护装置,其特征在于,所述安装孔包括盲孔或通孔。
  10. 一种具有保护装置的六维力传感器,其特征在于,包括六维力传感器和如权利要求1至9中任一项所述的六维力传感器保护装置。
PCT/CN2016/082319 2016-05-17 2016-05-17 六维力传感器保护装置和具有保护装置的六维力传感器 WO2017197575A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680000436.8A CN106030268A (zh) 2016-05-17 2016-05-17 六维力传感器保护装置和具有保护装置的六维力传感器
PCT/CN2016/082319 WO2017197575A1 (zh) 2016-05-17 2016-05-17 六维力传感器保护装置和具有保护装置的六维力传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082319 WO2017197575A1 (zh) 2016-05-17 2016-05-17 六维力传感器保护装置和具有保护装置的六维力传感器

Publications (1)

Publication Number Publication Date
WO2017197575A1 true WO2017197575A1 (zh) 2017-11-23

Family

ID=57128031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082319 WO2017197575A1 (zh) 2016-05-17 2016-05-17 六维力传感器保护装置和具有保护装置的六维力传感器

Country Status (2)

Country Link
CN (1) CN106030268A (zh)
WO (1) WO2017197575A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708787A (zh) * 2019-03-07 2019-05-03 合肥工业大学 一种无耦合的多维力传感器过载保护方法及装置
CN110608824A (zh) * 2019-07-17 2019-12-24 台州中清科技有限公司 一种六维力传感器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307567B (zh) * 2018-10-25 2020-12-11 中国科学院合肥物质科学研究院 一种全方位过载保护机构及设计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2110392A (en) * 1981-11-24 1983-06-15 Berkel Patent Nv Overload protection device
JPS62274230A (ja) * 1986-05-22 1987-11-28 ロ−ド・コ−ポレイシヨン 過負荷保護付き力/トルクセンサ−
JPH01189532A (ja) * 1988-01-23 1989-07-28 Nitta Ind Corp 力センサの過負荷保護装置
JPH10293070A (ja) * 1997-04-18 1998-11-04 Fanuc Ltd 力センサの過負荷防護機構
US20020178841A1 (en) * 2001-05-31 2002-12-05 Teac Corporation Load cell
CN2624200Y (zh) * 2003-04-17 2004-07-07 合肥工业大学 多轴力传感器过载保护装置
CN1538156A (zh) * 2003-04-17 2004-10-20 合肥工业大学 多轴力传感器过载保护装置
CN101118194A (zh) * 2007-09-14 2008-02-06 哈尔滨工业大学 提供转矩和弯矩过载保护的关节力矩传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2110392A (en) * 1981-11-24 1983-06-15 Berkel Patent Nv Overload protection device
JPS62274230A (ja) * 1986-05-22 1987-11-28 ロ−ド・コ−ポレイシヨン 過負荷保護付き力/トルクセンサ−
JPH01189532A (ja) * 1988-01-23 1989-07-28 Nitta Ind Corp 力センサの過負荷保護装置
JPH10293070A (ja) * 1997-04-18 1998-11-04 Fanuc Ltd 力センサの過負荷防護機構
US20020178841A1 (en) * 2001-05-31 2002-12-05 Teac Corporation Load cell
CN2624200Y (zh) * 2003-04-17 2004-07-07 合肥工业大学 多轴力传感器过载保护装置
CN1538156A (zh) * 2003-04-17 2004-10-20 合肥工业大学 多轴力传感器过载保护装置
CN101118194A (zh) * 2007-09-14 2008-02-06 哈尔滨工业大学 提供转矩和弯矩过载保护的关节力矩传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708787A (zh) * 2019-03-07 2019-05-03 合肥工业大学 一种无耦合的多维力传感器过载保护方法及装置
CN109708787B (zh) * 2019-03-07 2024-01-26 合肥工业大学 一种无耦合的多维力传感器过载保护方法及装置
CN110608824A (zh) * 2019-07-17 2019-12-24 台州中清科技有限公司 一种六维力传感器

Also Published As

Publication number Publication date
CN106030268A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2017197575A1 (zh) 六维力传感器保护装置和具有保护装置的六维力传感器
CN105651446B (zh) 六维力传感器
CN104048791B (zh) 一种低维间耦合的双十字梁型六维力和力矩传感器
Yang et al. A new piezo-driven microgripper based on the double-rocker mechanism
US9261422B2 (en) Multi-component force and moment sensor
WO2015008393A1 (ja) 力覚センサ
EP2720017B1 (en) Force sensor with mechanical over-force transfer mechanism
CN205449351U (zh) 一种小型三维力传感器
CN102353487B (zh) 多维力传感器的贴片及组桥方法
WO2009044670A1 (ja) 入力装置及びこれを搭載した電子機器
US20200001472A1 (en) Axial force sensor, robot gripper, and robot having the same
US20140144252A1 (en) Torque sensor
US10976208B2 (en) Force sensor
CN107683405B (zh) 分量传感器和使用该分量传感器的多分量传感器和该多分量传感器的应用
US8474326B2 (en) Load pin with increased performance
CN212585892U (zh) 一种防过载的轴头式张力传感器
Lee et al. Development of magnet connection of modular units for soft robotics
JP2014161916A (ja) 柔軟アクチュエータ
JP6459581B2 (ja) 力検出装置およびロボット
CN209689651U (zh) 一种多维力传感器及适用于多维力传感器的保护组件
CN106932123B (zh) 一种手腕传感器
CN109387310A (zh) 一种高精度多轴力传感器保护装置
JP2014117756A5 (zh)
CN216433359U (zh) 一种扩散硅高静压微差压传感器
EP3318951B1 (en) Rotational input device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901961

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901961

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16901961

Country of ref document: EP

Kind code of ref document: A1