WO2017197558A1 - 多业务复用的信息传输方法、装置以及时分双工通信系统 - Google Patents

多业务复用的信息传输方法、装置以及时分双工通信系统 Download PDF

Info

Publication number
WO2017197558A1
WO2017197558A1 PCT/CN2016/082197 CN2016082197W WO2017197558A1 WO 2017197558 A1 WO2017197558 A1 WO 2017197558A1 CN 2016082197 W CN2016082197 W CN 2016082197W WO 2017197558 A1 WO2017197558 A1 WO 2017197558A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
information transmission
frame
shared
shared frame
Prior art date
Application number
PCT/CN2016/082197
Other languages
English (en)
French (fr)
Inventor
王昕�
汪巍崴
Original Assignee
富士通株式会社
王昕�
汪巍崴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 王昕�, 汪巍崴 filed Critical 富士通株式会社
Priority to PCT/CN2016/082197 priority Critical patent/WO2017197558A1/zh
Publication of WO2017197558A1 publication Critical patent/WO2017197558A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a multi-service multiplexed information transmission method and apparatus, and a Time Division Duplex (TDD) communication system.
  • TDD Time Division Duplex
  • enhanced mobile broadband eMBB
  • massive machine type communication mMTC
  • ultra-reliable low-latency communication uRLLC, ultra-reliable low latency communication
  • the user equipment can communicate using one of the user scenarios (also referred to as service classes) as above.
  • TDD spectrum will become an important wireless resource.
  • applications that support multiple services on a single contiguous spectrum are a new requirement for 5G.
  • the preferred signal format may be different for each user scenario (or class of service). For example, for mMTC traffic, it is best to use narrow bandwidth or subcarrier spacing and use long symbol lengths, which helps to use low cost and low power sensors. For another example, for uRLLC services, low latency is a factor that needs to be guaranteed first, so it is more desirable to use a short symbol length and a short Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • different service classes preferably use different signal formats, such as symbol length, subcarrier spacing, cyclic prefix (CP), transmission time interval, TTI, and the like.
  • CP cyclic prefix
  • TTI transmission time interval
  • OFDM Frtered Orthogonal Frequency Division Multiplexing
  • New waveforms have been studied in 5G, such as Filter Bank Multi-Carrier (FBMC), Universal Filtered Multi-Carrier (UFMC), Generalized Frequency Division Multiplexing (GFDM). , Generalized Frequency Division Multiplexing), Filtered-OFDM, and the like.
  • FBMC Filter Bank Multi-Carrier
  • UMC Universal Filtered Multi-Carrier
  • GFDM Generalized Frequency Division Multiplexing
  • Filtered-OFDM Filtered-OFDM
  • Various new waveforms have been studied to suppress out-band side lobes, while OFDM or similar OFDM waveforms are used for in-band modulation.
  • Radio resources such as sub-band resources
  • the ratio of downlink and uplink is different for eMBB, mMTC and uRLLC, and even for different cells of a certain user scenario (e.g. eMBB), the ratio of downlink and uplink is different. If multiple services are deployed on the same channel, the use of radio resources will be lower due to the need to maintain uplink and downlink synchronization in the TDD system.
  • Embodiments of the present invention provide a multi-service multiplexed information transmission method and apparatus, and a time division duplex communication system, which improve the utilization rate of wireless resources.
  • a multi-service multiplexed information transmission method which is applied to a time division duplex communication system; and the multi-service multiplexed information transmission method includes:
  • time division duplex configuration of the dedicated frame is predetermined, and resources occupied by one or more services supported by the dedicated frame are pre-configured and remain unchanged for a long time; time division duplex of the shared frame Configuration can be The resources occupied by the one or more services supported by the shared frame can be changed.
  • a multi-service multiplexed information transmission apparatus which is configured in a time division duplex communication system; and the multi-service multiplexed information transmission apparatus includes:
  • a transmission unit that performs information transmission using a superframe structure including one or more dedicated frames and one or more shared frames; wherein a time division duplex configuration of the dedicated frame is predetermined and supported by the dedicated frame
  • the resources occupied by the one or more services are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frame can be changed, and the resources occupied by the one or more services supported by the shared frame Can be changed.
  • a time division duplex communication system includes a base station and a user equipment;
  • the base station and the user equipment perform information transmission using a superframe structure including one or more dedicated frames and one or more shared frames; wherein a time division duplex configuration of the dedicated frame is predetermined, and the dedicated The resources occupied by the one or more services supported by the frame are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frame can be changed, and the one or more services supported by the shared frame The resources occupied can be changed.
  • the beneficial effects of the embodiments of the present invention are: information transmission using a superframe structure; wherein the time division duplex configuration of the dedicated frame is predetermined, and the resources occupied by the one or more services supported by the dedicated frame are pre-configured and long-term The same remains unchanged; the time division duplex configuration of the shared frame can be changed, and the resources occupied by the one or more services supported by the shared frame can be changed.
  • FIG. 1 is a schematic diagram of a multi-service preferred uplink-downlink subframe according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a multi-service multiplexing information transmission method according to Embodiment 1 of the present invention
  • Figure 3 is a schematic diagram of two frame units of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a superframe structure according to Embodiment 1 of the present invention.
  • FIG. 5 is another schematic diagram of a superframe structure according to Embodiment 1 of the present invention.
  • FIG. 6 is another schematic diagram of a multi-service multiplexed information transmission method according to Embodiment 1 of the present invention.
  • FIG. 7 is another schematic diagram of a superframe structure according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of dynamically using a shared frame according to Embodiment 1 of the present invention.
  • Figure 9 is a schematic diagram showing the change of the digital filtering range in the first embodiment of the present invention.
  • Figure 10 is another schematic diagram showing the change of the digital filtering range in the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a multi-service multiplexed information transmission apparatus according to Embodiment 2 of the present invention.
  • FIG. 12 is another schematic diagram of a multi-service multiplexed information transmission apparatus according to Embodiment 2 of the present invention.
  • FIG 13 is a schematic diagram of a TDD communication system according to Embodiment 3 of the present invention.
  • Figure 14 is a schematic diagram of a base station according to Embodiment 3 of the present invention.
  • Figure 15 is a schematic diagram of a user equipment according to Embodiment 3 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a Node B, an evolved Node B (eNB), etc., and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station provides communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • a mobile station or device may be referred to as a "User Equipment” (UE).
  • UE User Equipment
  • UE It may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the UE may be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless telephone, and the like.
  • PDA personal digital assistant
  • each service has its own suitable downlink and uplink ratios.
  • the downlink transmission data is usually more than the uplink transmission data; for mMTC services, the downlink transmission data is usually less than the uplink transmission data.
  • the ratio of downlink to uplink is preferably 1:4;
  • the ratio of downlink to uplink is preferably 4:1.
  • U indicates an uplink subframe
  • D indicates a downlink subframe
  • G indicates a guard interval.
  • the two services are used on the same channel of the same cell, since the downlink and uplink of the TDD system need to be synchronized, only one configuration mode can be adopted. For example, if a ratio of 1:4 is used, the eMBB service cannot be efficiently transmitted, and the usage rate of the radio resources will be low.
  • Embodiments of the present invention provide a multi-service multiplexed information transmission method, which is applied to a TDD communication system.
  • 2 is a schematic diagram of a multi-service multiplexed information transmission method according to an embodiment of the present invention. As shown in FIG. 2, the multi-service multiplexed information transmission method includes:
  • Step 201 Perform information transmission using a superframe structure including one or more dedicated frames and one or more shared frames; wherein, the time division duplex configuration of the dedicated frame is predetermined, and one or more supported by the dedicated frame The resources occupied by the service are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frame can be changed, and the resources occupied by the one or more services supported by the shared frame can be changed.
  • different types of services use different signal formats, and may be separated by using a digital filter; the signal format may include one or more of the following: symbol length, subcarrier spacing, cyclic prefix length, Transmission time interval, etc.; however, the invention is not limited thereto.
  • one superframe structure may include a plurality of frame units, and each frame unit may be a dedicated frame or a shared frame.
  • the dedicated frame may include: an uplink subframe (represented by "U") And a downlink subframe (represented by "D"), and a guard interval between the uplink subframe and the downlink subframe (represented by "G”);
  • the shared frame may include: an uplink subframe and a downlink subframe, and an uplink subframe The guard interval between the downlink subframe and the downlink subframe; or the shared frame may include only the uplink subframe or only the downlink subframe.
  • the TDD configurations of the multiple frame units in the superframe structure may be different, for example, the ratio of the downlink and the uplink of the two frame units of the same superframe structure are different.
  • FIG. 3 is a schematic diagram of two frame units according to an embodiment of the present invention. As shown in FIG. 3, in frame unit 1, the ratio of downlink to uplink is 2:2, and in frame unit 2, the ratio of downlink to uplink is 3. :1.
  • different frame units in the superframe structure may adopt different TDD configurations (for example, the ratios of the downlink and the uplink are different).
  • the guard interval between the uplink subframe and the downlink subframe in the superframe structure will be omitted and further explained by the dedicated frame and the shared frame.
  • FIG. 4 is a schematic diagram of a superframe structure according to an embodiment of the present invention, taking a dedicated frame and a shared frame as an example for description.
  • the TDD configuration of the dedicated frame (“DDUUD" as shown in FIG. 4) is predetermined, and the TDD configuration remains unchanged for a long time.
  • the resources occupied by one or more services supported by the dedicated frame are pre-configured and remain unchanged for a long time.
  • long-term is relative to, for example, a change in a subframe, for example, the duration is greater than a certain predetermined threshold.
  • Long-term constant can be understood as, for example, remaining unchanged for a preset period of time, or remaining constant for a time greater than a preset threshold, and the like. This will be clear and easy to understand for those skilled in the art.
  • the TDD configuration of the shared frame may be the same as the TDD configuration of the dedicated frame by default, and the TDD configuration of the shared frame can be changed (eg, from "DDUUD” to "DUUUU").
  • the resources occupied by one or more services supported by the shared frame can be dynamically changed; for example, the sub-band resources occupied by a certain service can be dynamically changed.
  • the TDD configuration of the dedicated frame may be the same throughout the network; however, the present invention is not limited thereto, and may be different, for example.
  • FIG. 5 is another schematic diagram of a superframe structure according to an embodiment of the present invention, showing a case of a dedicated frame and a shared frame in a certain frequency range.
  • the TDD configuration of the dedicated frame and the TDD configuration of the shared frame may be different (eg, subcarrier spacing and symbol length are different).
  • the superframe structure may include multiple frame units having different TDD configurations; the TDD configuration of the shared frames may be changed, and the resources occupied by the one or more services supported by the shared frames can be dynamically changed. In this way, not only the requirements of the multi-service scenario in the TDD system but also the utilization rate of the radio resources can be improved.
  • the resources occupied by the service may be one or more of the following: a time domain resource, a frequency domain resource, and an air domain resource.
  • the signal format may include one or more of the following: symbol length, subcarrier spacing, cyclic prefix length, transmission time interval, and the like; however, the present invention is not limited thereto.
  • the service may belong to one of the following service categories: eMBB, mMTC, uRLLC; however, the invention is not limited thereto.
  • the eMBB service can be classified into a first type of eMBB service, a second type of eMBB service, ..., and the like. Therefore, two services with different signal formats can be considered to belong to different service categories.
  • the information may be transmitted between the base station and the user equipment by using the superframe structure.
  • the superframe structure may be used for information transmission between other devices of the network system. Or in some scenarios, even the above superframe structure is used for information transmission between the user equipment and the user equipment.
  • the present embodiment is described by taking an example of information transmission between the base station and the user equipment using the above superframe structure.
  • the base station may be a macro base station (for example, an eNB), and a macro cell (for example, a macro cell) generated by the macro base station may provide a service for the user equipment; or the base station may also be a micro base station, and the micro base station generates a micro area.
  • a macro base station for example, an eNB
  • a macro cell for example, a macro cell
  • the base station may also be a micro base station, and the micro base station generates a micro area.
  • Pico cell or small cell can provide services for user equipment.
  • the present invention is not limited thereto, and a specific scenario can be determined according to actual needs.
  • FIG. 6 is another schematic diagram of a multi-service multiplexed information transmission method according to an embodiment of the present invention. As shown in FIG. 6, the multi-service multiplexed information transmission method includes:
  • Step 601 The base station broadcasts configuration information of the dedicated frame and/or the shared frame.
  • Step 602 The base station and the user equipment use a superframe structure for information transmission.
  • the configuration information of the dedicated frame and/or the shared frame may include: uplink/downlink configuration information, corresponding service information, and time-frequency range information.
  • the uplink/downlink configuration information may include: a configuration of an uplink subframe and a downlink subframe in one frame unit (for example, “DDDUD”), or a ratio of downlink and uplink (for example, “4:1”); corresponding service information.
  • the time-frequency range information may include: a service ID, a range of radio resources in the frequency domain (eg, which sub-bands in the frame unit), and the like.
  • Table 1 exemplarily shows a part of the contents of configuration information of a dedicated frame and/or a shared frame.
  • Business ID Wireless resource Resource allocation 0 (for mMTC) 0 to 10 0 1 (for eMBB) 10 ⁇ 30 1 1 (for eMBB) 30 ⁇ 40 2 2 (for uMTC) 40 ⁇ 50 3
  • radio resources may, for example, indicate corresponding resource blocks (represented using resource block labels).
  • the "resource configuration” indicates, for example, the corresponding subcarrier spacing and symbol length; for example, “0” indicates that the subcarrier spacing is 15 kHz and the symbol length is 66.67 microseconds (us), “1” indicates that the subcarrier spacing is 30 kHz and the symbol length is 66.67. /2 microseconds (us), ....
  • the multi-service multiplexing information transmission method may further include:
  • Step 603 The base station changes a time division duplex configuration of the shared frame
  • Step 604 The base station broadcasts the configuration information after the shared frame is changed.
  • the base station may change the TDD configuration of a certain shared frame from "DDUUD” to "DUUUU". If the shared frame is used to transmit mMTC traffic, the changed TDD configuration may be more appropriate, thereby increasing the utilization of radio resources.
  • the base station may also notify one or more cells (eg, cell 2, . . . ) adjacent to the cell (eg, cell 1) that uses the shared frame. : The TDD configuration of the shared frame is changed; in addition, the changed TDD configuration can be sent to these cells. Inter-cell interference can be re-evaluated so that effective interference coordination and control methods can be used to reduce inter-cell interference.
  • resources occupied by one or more services supported by the dedicated frame are pre-configured and can remain unchanged for a long time; and resources occupied by one or more services supported by the shared frame may be Pre-configured, but can be dynamically changed.
  • FIG. 7 is another schematic diagram of a superframe structure according to an embodiment of the present invention.
  • frequency domain resources may be separated by a digital filter, and different services are allocated with different resources.
  • subband 1 is used for service 1
  • subband 2 is used for service 2
  • subband 3 is used for service 3.
  • FIG. 8 is a schematic diagram of dynamically using a shared frame according to an embodiment of the present invention. As shown in FIG. 8, the method includes:
  • Step 801 When the second service does not use part of resources of the shared frame, the base station controls the first service to occupy the part of the resources of the shared frame.
  • Step 802 The base station broadcasts information that the part of the shared frame is occupied.
  • Step 803 The base station and/or the user equipment update the digital filtering range corresponding to the first service and/or the second service.
  • the user equipment that performs the first service transmission and the user equipment that performs the second service transmission may be different user equipments; for example, UE1 performs transmission of mMTC service, UE2 performs transmission of uRLLC service; or UE1 performs For the transmission of a class of mMTC services, UE2 performs the transmission of a second type of mMTC service.
  • the user equipment that performs the first service transmission and the user equipment that performs the second service transmission may also be the same user equipment; for example, the transmission of the mMTC service and the transmission of the eMBB service are simultaneously performed in the UE1; or simultaneously in the UE1. Transmission of the first type of mMTC service and transmission of the second type of mMTC service.
  • the base station may broadcast information to indicate the "occupied" behavior, and update the filtering range of the corresponding digital filter. For example, in a DL subframe, the transmitting end will use a wider filtering range and use a guard band between the filters.
  • FIG. 9 is a schematic diagram of a digital filtering range change according to an embodiment of the present invention, showing a situation in which a resource occupied by a certain service in a shared frame is dynamically changed in the superframe structure as described in FIG. 7. As shown in FIG. 9, after the service 2 occupies the subband 1 of the shared frame, the digital filtering range corresponding to the service 2 of the shared frame is expanded.
  • the method may further include:
  • Step 804 The base station controls, by the first service, to release the part of resources of the shared frame that is occupied by the first service.
  • Step 805 The base station broadcasts information that the part of the shared frame is released.
  • Step 806 The base station and/or the user equipment update the digital filtering range corresponding to the first service and/or the second service again.
  • the base station may broadcast information to indicate the "release" behavior, and update the filtering range of the corresponding digital filter. For example in In the DL subframe, the transmitter will use a wider filtering range and use the guard band between the filters, thereby improving spectrum utilization.
  • FIG. 10 is another schematic diagram of the digital filtering range change according to the embodiment of the present invention, following the case of the service occupation of FIG. 9.
  • the service 2 can release the occupied resource (subband 1); after the service 2 releases the subband 1 of the occupied shared frame, the sharing is performed.
  • the digital filtering range corresponding to the service 2 of the frame will be reduced.
  • FIG. 8 only schematically illustrates the case of dynamically using resources in a shared frame, but the present invention is not limited thereto; for example, the execution order between the respective steps may be appropriately adjusted, and other additions may be added. Some steps or some of these steps are reduced. Those skilled in the art can appropriately modify the above based on the above contents, and are not limited to the description of the above drawings.
  • the superframe structure is used for information transmission; wherein the time division duplex configuration of the dedicated frame is predetermined, and the resources occupied by the one or more services supported by the dedicated frame are pre-configured and remain unchanged for a long time.
  • the time division duplex configuration of the shared frame can be changed, and the resources occupied by the one or more services supported by the shared frame can be changed. Therefore, not only the requirements of the multi-service scenario in the TDD system can be satisfied, but also the guard interval between the sub-bands can be effectively utilized, thereby improving the utilization rate of the radio resources.
  • the embodiment of the invention provides a multi-service multiplexed information transmission device, which is configured in a TDD communication system; for example, it can be configured in a base station.
  • the present invention is not limited thereto, and may be configured in other network side devices or entities, or may be configured in the user equipment. The same content of the embodiment as that of the embodiment 1 will not be described again.
  • FIG. 11 is a schematic diagram of a multi-service multiplexed information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 11, the multi-service multiplexed information transmission apparatus 1100 includes:
  • a transmission unit 1101 that performs information transmission using a superframe structure including one or more dedicated frames and one or more shared frames; wherein a time division duplex configuration of the dedicated frame is predetermined, and one or a supported by the dedicated frame
  • the resources occupied by the various services are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frames can be changed, and the resources occupied by the one or more services supported by the shared frames can be changed.
  • different types of services use different signal formats, and may be separated by using a digital filter; the signal format may include one or more of the following: symbol length, subcarrier spacing, cyclic prefix length, Transmission time interval, etc., but the invention is not limited thereto.
  • the dedicated frame may include: an uplink subframe and a downlink subframe, and a guard interval between the uplink subframe and the downlink subframe.
  • the shared frame may include: an uplink subframe and a downlink subframe, and a guard interval between the uplink subframe and the downlink subframe; or the shared frame may include: an uplink subframe or a downlink subframe.
  • the multi-service multiplexed information transmission apparatus 1100 may further include:
  • the broadcasting unit 1102 broadcasts configuration information of the dedicated frame and/or the shared frame.
  • the configuration information of the dedicated frame and/or the shared frame may include: uplink/downlink configuration information, corresponding service information, and time-frequency range information.
  • the multi-service multiplexed information transmission apparatus 1100 may further include:
  • a configuration change unit 1103 that changes the time division duplex configuration of the shared frame.
  • the broadcast unit 1102 can also be configured to broadcast the configuration information after the shared frame is changed.
  • the multi-service multiplexed information transmission apparatus 1100 may further include:
  • the notifying unit 1104 notifies one or more cells adjacent to the cell using the shared frame in a case where the time division duplex configuration of the shared frame is changed.
  • FIG. 12 is another schematic diagram of a multi-service multiplexed information transmission apparatus according to an embodiment of the present invention.
  • the multi-service multiplexed information transmission apparatus 1200 includes: a transmission unit 1101, as described above.
  • the multi-service multiplexed information transmission apparatus 1200 may further include:
  • a resource control unit 1201 configured to control, by the first service, the part of resources of the shared frame if the second service does not use part of resources in the shared frame;
  • a broadcasting unit 1202 that broadcasts information that the part of resources of the shared frame is occupied
  • the updating unit 1203 updates the digital filtering range corresponding to the first service and/or the second service.
  • the resource control unit 1201 is further configured to: release the part of the resources of the shared frame that is occupied by the second service; the broadcast unit 1202 may be further configured to: broadcast the The information that the partial resources are released, and the updating unit 1203 may also be used to: update the digital filtering range corresponding to the first service and/or the second service again.
  • FIG. 11 and FIG. 12 respectively show respective components or modules that change the TDD configuration of the shared frame and change the resources corresponding to the services in the shared frame, but the present invention is not limited thereto.
  • some components or modules in FIG. 11 and FIG. 12 may be disposed in the same device, and specific components or modules may be configured according to actual needs.
  • the superframe structure is used for information transmission; wherein the time division duplex configuration of the dedicated frame is Predetermined, and the resources occupied by one or more services supported by the dedicated frame are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frame can be changed, and one or more supported by the shared frame
  • the resources occupied by the business can be changed. Therefore, not only the requirements of the multi-service scenario in the TDD system can be satisfied, but also the guard interval between the sub-bands can be effectively utilized, thereby improving the utilization rate of the radio resources.
  • the embodiment of the present invention further provides a TDD communication system, and the same content as Embodiment 1 or 2 is not described herein.
  • the TDD communication system 1300 may include a base station 1301 and one or more user equipments 1302.
  • the base station 1301 and the user equipment 1302 perform information transmission using a superframe structure including one or more dedicated frames and one or more shared frames; wherein the time division duplex configuration of the dedicated frame is predetermined, and one of the dedicated frames supports The resources occupied by the multiple services are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frames can be changed, and the resources occupied by the one or more services supported by the shared frames can be changed.
  • the embodiment further provides a base station configured with the information transmission apparatus 1100 or 1200 of the multi-service multiplexing as described in Embodiment 2.
  • FIG. 14 is a schematic diagram showing the structure of a base station according to an embodiment of the present invention.
  • base station 1400 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the multi-service multiplexed information transmission apparatus 1100 or 1200 can implement the multi-service multiplexed information transmission method as described in Embodiment 1.
  • the central processing unit 200 can be configured to implement the functions of the multi-service multiplexed information transmission device 1100 or 1200.
  • central processor 200 can be configured to control for information transmission using a superframe structure including one or more dedicated frames and one or more shared frames; wherein the time division duplex configuration of the dedicated frames is predetermined, And the resources occupied by one or more services supported by the dedicated frame are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frame can be changed, and the one or more services supported by the shared frame are occupied. Resources can be changed.
  • the base station 1400 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It is worth noting that the base station 1400 is not It is necessary to include all of the components shown in FIG. 14; in addition, the base station 1400 may further include components not shown in FIG. 14, and reference may be made to related art.
  • the embodiment further provides a user equipment, which is configured with the information transmission apparatus 1100 or 1200 of the multi-service multiplexing as described in Embodiment 2.
  • FIG. 15 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1500 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functions of the multi-service multiplexed information transmission device 1100 or 1200 may be integrated into the central processing unit 100.
  • the central processing unit 100 may be configured to implement the multi-service multiplexing information transmission method described in Embodiment 1.
  • central processor 100 can be configured to perform control for information transmission using a superframe structure including one or more dedicated frames and one or more shared frames; wherein the time division duplex configuration of the dedicated frames is predetermined And the resources occupied by the one or more services supported by the dedicated frame are pre-configured and remain unchanged for a long time; the time division duplex configuration of the shared frame can be changed, and the one or more services supported by the shared frame are shared. The occupied resources can be changed.
  • the multi-service multiplexed information transmission device 1100 or 1200 may be configured separately from the central processing unit 100, for example, the multi-service multiplexed information transmission device 1100 or 1200 may be configured to be connected to the central processing unit 100.
  • the chip realizes the functions of the multi-service multiplexed information transmission device 1100 or 1200 by the control of the central processing unit 100.
  • the user equipment 1500 may further include: a communication module 110, an input unit 120, an audio processor 130, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1500 does not have to include all the components shown in FIG. 15, and the above components are not required; in addition, the user equipment 1500 may further include components not shown in FIG. There are technologies.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a multi-service multiplexed information transmission device or a base station, the program causes the multi-service multiplexed information transmission device or the The base station performs the multi-service multiplexing information transmission method described in Embodiment 1.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer is The read program causes the multi-service multiplexed information transmission apparatus or base station to execute the multi-service multiplexed information transmission method described in Embodiment 1.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a multi-service multiplexed information transmission device or user equipment, the program causes the multi-service multiplexed information transmission device or The user equipment performs the multi-service multiplexing information transmission method described in Embodiment 1.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a multi-service multiplexed information transmission device or user equipment to perform the multi-service multiplexed information described in Embodiment 1 Transmission method.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the apparatus and/or method described in connection with the embodiments of the invention may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 11 and/or one or more combinations of functional block diagrams may correspond to individual software modules of a computer program flow, or may correspond to For each hardware module.
  • These software modules may correspond to the respective steps shown in FIG. 6, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete Gate or transistor logic, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多业务复用的信息传输方法、装置以及时分双工通信系统;所述多业务复用的信息传输方法包括:使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。由此,不仅可以满足TDD系统中多业务场景的需求,而且可以提高无线资源的使用率。

Description

多业务复用的信息传输方法、装置以及时分双工通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种多业务复用的信息传输方法、装置以及时分双工(TDD,Time Division Duplex)通信系统。
背景技术
随着通信技术的发展,已经开始对第五代(5G)通信技术进行研究。在5G的研究中,例如如下三种高层次的用户场景被涉及:增强的移动宽带(eMBB,enhanced mobile broadband)、海量机器类通信(mMTC,massive machine type communication)和超可靠低时延通信(uRLLC,ultra-reliable low latency communication)。用户设备可以使用如上的用户场景(也可称为业务类别)中的一种进行通信。
对于5G应用来说,根据目前的频谱划分情况,TDD频谱将成为重要的无线资源。另一方面,从网络部署和维护的经济效益上考虑,在单一连续频谱上支持多种业务的应用是5G的一个新的需求。通常对于每种用户场景(或者业务类别)来说,优选的信号格式可能都是不同的。例如,对于mMTC业务,最好使用窄的带宽或子载波间隔并使用长的符号长度,这有助于使用低成本和低功耗的传感器。再例如,对于uRLLC业务,低时延是需要首先保证的因素,因此更希望使用短的符号长度以及短的传输时间间隔(TTI,Transmission Time Interval)。
为了高效地支持各种用户场景,不同的业务类别最好采用不同的信号格式,例如符号长度、子载波间隔、循环前缀(CP,cycle prefix)长度、传输时间间隔、TTI,等等。但是,传统的正交频分复用(OFDM,Filtered Orthogonal Frequency Division Multiplexing)系统不支持在一个帧中使用不同的信号格式。
目前,新的波形在5G中已经开始研究,例如滤波器组多载波(FBMC,Filter-Bank Multi-Carrier),通用滤波多载波(UFMC,Universal Filtered Multi-Carrier),广义频分复用(GFDM,Generalized Frequency Division Multiplexing),Filtered-OFDM等等。各种新波形被研究来抑制带外旁瓣(out-band side lobe),而OFDM或类似OFDM的波形被用于带内调制。无线资源(例如子带资源)能够通过滤波器实现有效的频谱局部化(well-spectra localized),从而减少非正交带来的子带间干扰;这些技术使得在 同一帧中不同的业务采用不同的信号格式成为可能。
另一方面,对于TDD系统中的一个收发机而言,如果不改变该收发机的射频(RF,Radio Frequency)前端,则不能实现真正的上下行同时传输。此外,在数字域中的子带滤波器也很难滤掉上行对下行的干扰,因此,对于上述不同的用户场景,TDD系统中下行和上行同步是必要的,也就是说不同场景下的业务间上下行切换需要同步进行。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
下面列出了对于理解本发明和常规技术有益的文献,通过引用将它们并入本文中,如同在本文中完全阐明了一样。
[参考文献1]F.Schaich,T.Wild,“Waveform contenders for 5G-OFDM vs.FBMC vs.UFMC”,Proceedings of 6th International Symposium on Communications,Control,and Signal Processing(ISCCSP 2014),Athens,Greece,May 2014.
[参考文献2]Gerhard Wunder,5GNOW:Non-Orthogonal,Asynchronous Waveforms for Future Mobile Applications,IEEE Communications Magazine,February 2014.
发明内容
发明人发现:例如下行和上行的比率对于eMBB、mMTC和uRLLC是不同的,甚至对于某一种用户场景(例如eMBB)的不同小区,下行和上行的比率也是不同的。假如同一信道上部署了多个业务,由于TDD系统中仍然需要保持上下行同步,无线资源的使用率将会较低。
本发明实施例提供一种多业务复用的信息传输方法、装置以及时分双工通信系统,提高无线资源的使用率。
根据本发明实施例的第一个方面,提供一种多业务复用的信息传输方法,应用于时分双工通信系统;所述多业务复用的信息传输方法包括:
使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;
其中,所述专用帧的时分双工配置被预先确定,且所述专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;所述共享帧的时分双工配置能够被 改变,且所述共享帧所支持的一种或多种业务所占用的资源能够被改变。
根据本发明实施例的第二个方面,提供一种多业务复用的信息传输装置,配置于时分双工通信系统中;所述多业务复用的信息传输装置包括:
传输单元,其使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,所述专用帧的时分双工配置被预先确定,且所述专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;所述共享帧的时分双工配置能够被改变,且所述共享帧所支持的一种或多种业务所占用的资源能够被改变。
根据本发明实施例的第三个方面,提供一种时分双工通信系统,所述时分双工通信系统包括基站和用户设备;
所述基站和所述用户设备使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,所述专用帧的时分双工配置被预先确定,且所述专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;所述共享帧的时分双工配置能够被改变,且所述共享帧所支持的一种或多种业务所占用的资源能够被改变。
本发明实施例的有益效果在于:使用超帧结构进行信息传输;其中专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。由此,不仅可以满足TDD系统中多业务场景的需求,而且可以提高无线资源的使用率。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例的多业务优选的上下行子帧的示意图;
图2是本发明实施例1的多业务复用的信息传输方法的一个示意图;
图3是本发明实施例1的两个帧单元的示意图;
图4是本发明实施例1的超帧结构的一个示意图;
图5是本发明实施例1的超帧结构的另一个示意图;
图6是本发明实施例1的多业务复用的信息传输方法的另一个示意图;
图7是本发明实施例1的超帧结构的另一个示意图;
图8是本发明实施例1的动态使用共享帧的示意图;
图9是本发明实施例1的数字滤波范围变更的一个示意图;
图10是本发明实施例1的数字滤波范围变更的另一个示意图;
图11是本发明实施例2的多业务复用的信息传输装置的一个示意图;
图12是本发明实施例2的多业务复用的信息传输装置的另一个示意图;
图13是本发明实施例3的TDD通信系统的示意图;
图14是本发明实施例3的基站的示意图;
图15是本发明实施例3的用户设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、节点B、演进节点B(eNB)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE,User Equipment)。UE 可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话等。
以下对于TDD系统的上下行传输进行简要说明。
由于自身特性不同,每种业务都有自身比较合适的下行和上行的比率。例如,对于eMBB业务,下行传输的数据通常多于上行传输的数据;而对于mMTC业务,下行传输的数据通常少于上行传输的数据。
图1是本发明实施例的多业务优选的上下行子帧的示意图,如图1所示,例如如果要满足mMTC业务的要求,下行和上行的比率最好是1:4;而如果要满足eMBB业务的要求,下行和上行的比率最好是4:1。其中,“U”表示上行子帧,“D”表示下行子帧,“G”表示保护间隔。
因此,假如这两种业务在同一小区的相同信道上被采用,由于TDD系统下行和上行需要同步,只能采用一种配置方式。例如如果采用1:4的比率,则eMBB业务不能被高效地传输,无线资源的使用率将会较低。
以下对本发明进行说明。
实施例1
本发明实施例提供一种多业务复用的信息传输方法,应用于TDD通信系统。图2是本发明实施例的多业务复用的信息传输方法的一个示意图,如图2所示,该多业务复用的信息传输方法包括:
步骤201,使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。
在本实施例中,不同种类的业务使用不同的信号格式,并可以采用数字滤波器进行分离;所述信号格式可以包括如下的一种或多种:符号长度、子载波间隔、循环前缀长度、传输时间间隔,等等;但本发明不限于此。
在本实施例中,一个超帧结构可以包括多个帧单元(frame unit),每个帧单元可以是一个专用帧或者一个共享帧。其中,专用帧可以包括:上行子帧(用“U”表示) 和下行子帧(用“D”表示),以及上行子帧和下行子帧之间的保护间隔(用“G”表示);共享帧可以包括:上行子帧和下行子帧,以及上行子帧和下行子帧之间的保护间隔;或者,共享帧还可以仅包括上行子帧或者仅包括下行子帧。
在本实施例中,超帧结构中多个帧单元的TDD配置可以是不同的,例如同一超帧结构的两个帧单元的下行和上行的比率不同。
图3是本发明实施例的两个帧单元的示意图,如图3所示,在帧单元1中,下行和上行的比率为2:2,在帧单元2中,下行和上行的比率为3:1。
在本实施例中,超帧结构中的不同帧单元可以采用不同的TDD配置(例如下行和上行的比率不同)。以下为简单起见,超帧结构中“上行子帧和下行子帧之间的保护间隔”将被省略,并通过专用帧和共享帧进行进一步说明。
值得注意的是,本实施例中的“专用帧”和“共享帧”以及“超帧结构”这些术语仅是为了便于描述而定义的,但本发明不限于此,例如也可以使用其他的术语,如子帧、时隙、时间间隔、时间单元等。
图4是本发明实施例的超帧结构的一个示意图,以一个专用帧和一个共享帧为例进行说明。如图4所示,专用帧的TDD配置(如图4所示为“DDUUD”)被预先确定,并且该TDD配置长期保持不变。此外,专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变。
其中,“长期”是相对于例如子帧变化而言的,例如持续时间大于某一预设阈值。“长期保持不变”可以理解为例如在预设时间段内保持不变,或者在大于预设阈值的时间内保持不变,等等。这对于本领域技术人员而言是清楚而容易理解的。
而共享帧的TDD配置(图4没有示出)可以缺省地与专用帧的TDD配置相同,并且该共享帧的TDD配置能够被改变(例如从“DDUUD”变为“DUUUU”)。此外,共享帧所支持的一种或多种业务所占用的资源能够被动态地改变;例如某一种业务所占用的子带资源能够动态地改变。
在本实施例中,为了易于网络部署,专用帧的TDD配置在整个网络中可以是相同的;但本发明不限于此,例如也可以是不同的。
图5是本发明实施例的超帧结构的另一个示意图,示出了某个频率范围内专用帧和共享帧的情况。如图5所示,例如在同一子带中,专用帧的TDD配置与共享帧的TDD配置可以是不同的(例如子载波间隔和符号长度不同)。
由此,超帧结构可以包括TDD配置不同的多个帧单元;共享帧的TDD配置是可以改变的,并且共享帧所支持的一种或多种业务所占用的资源能够被动态地改变。这样,不仅可以满足TDD系统中多业务场景的需求,而且可以提高无线资源的使用率。
在本实施例中,业务占用的资源可以是如下的一种或多种:时域资源、频域资源、空域资源。信号格式可以包括如下的一种或多种:符号长度、子载波间隔、循环前缀长度、传输时间间隔,等等;但本发明不限于此。业务可以属于如下业务类别的其中一种:eMBB、mMTC、uRLLC;但本发明不限于此。
例如,对于上述某种业务类别,还可以根据信号格式的不同而再细划分为多个子业务类别。例如eMBB业务可以被划分为第一类eMBB业务、第二类eMBB业务、……,等。因此,信号格式不同的某两个业务就可以被认为属于不同的业务类别。
在本实施例中,可以在基站和用户设备之间使用上述超帧结构进行信息传输,但本发明不限于此,例如还可以在网络系统的其他设备之间使用上述超帧结构进行信息传输;或者在某些场景下,甚至在用户设备和用户设备之间使用上述超帧结构进行信息传输。
为方便表述,本实施例仅以在基站和用户设备之间使用上述超帧结构进行信息传输为例进行说明。
在本实施例中,基站可以为宏基站(例如eNB),该宏基站产生的宏小区(例如Macro cell)可以为用户设备提供服务;或者基站也可以为微基站,该微基站产生的微小区(例如Pico cell或者small cell)可以为用户设备提供服务。本发明不限于此,可以根据实际的需要确定具体的场景。
图6是本发明实施例的多业务复用的信息传输方法的另一示意图,如图6所示,该多业务复用的信息传输方法包括:
步骤601,基站广播专用帧和/或共享帧的配置信息。
步骤602,基站与用户设备使用超帧结构进行信息传输。
在本实施例中,专用帧和/或共享帧的配置信息可以包括:上行/下行配置信息、对应的业务信息以及时频范围信息。其中,上行/下行配置信息可以包括:在一个帧单元中上行子帧和下行子帧的配置(例如“DDDUD”),或者下行和上行的比率(例如“4:1”);对应的业务信息以及时频范围信息可以包括:业务ID,频域上的无线资源范围(例如帧单元中的哪些子带),等等。
表1示例性示出了专用帧和/或共享帧的配置信息的部分内容。
表1
业务ID 无线资源 资源配置
0(用于mMTC) 0~10 0
1(用于eMBB) 10~30 1
1(用于eMBB) 30~40 2
2(用于uMTC) 40~50 3
如表1所示,“无线资源”例如可以指示相应的资源块(使用资源块标示表示)。“资源配置”例如指示相应的子载波间隔和符号长度;例如“0”表示子载波间隔为15KHZ和符号长度为66.67微秒(us),“1”表示子载波间隔为30KHZ和符号长度为66.67/2微秒(us),……。
值得注意的是,以上仅示意性示出了专用帧和/或共享帧的配置信息的部分内容,但本发明不限于此,可以根据实际需要确定具体的内容。
如图6所示,该多业务复用的信息传输方法还可以包括:
步骤603,基站改变所述共享帧的时分双工配置;以及
步骤604,基站广播所述共享帧改变后的配置信息。
在本实施例中,例如,基站可以将某一共享帧的TDD配置从“DDUUD”变为“DUUUU”。如果该共享帧被用于传输mMTC业务,则改变后的TDD配置可能更加合适,由此可以提高无线资源的使用率。
在本实施例中,在共享帧的TDD配置被改变的情况下,基站还可以通知与使用该共享帧的小区(例如cell 1)相邻的一个或多个小区(例如cell 2,……):共享帧的TDD配置被改变;此外还可以将改变后的TDD配置发送给这些小区。由此小区之间的干扰可以被重新评估,从而可以采用有效的干扰协调及控制方法降低小区间的干扰。
在本实施例中,专用帧所支持的一种或多种业务所占用的资源被预先配置,并可以长期保持不变;而共享帧所支持的一种或多种业务所占用的资源可以被预先配置,但是能够被动态地改变。
图7是本发明实施例的超帧结构的另一示意图,如图7所示,例如频域资源可以通过数字滤波器被分离,并且不同的业务被分配不同的资源。例如子带1被用于业务1,子带2被用于业务2,子带3被用于业务3。
以下对于共享帧中某一业务所占用的资源被动态地使用进行说明。为方便表述,仅以第一业务和第二业务为例进行说明;但本发明不限于此,对于多于两个业务的情况可以类似地进行处理。
图8是本发明实施例的动态使用共享帧的示意图,如图8所示,所述方法包括:
步骤801,在第二业务没有使用共享帧的部分资源时,基站控制第一业务占用所述共享帧的所述部分资源;
步骤802,基站广播所述共享帧的所述部分资源被占用的信息,以及
步骤803,基站和/或用户设备更新所述第一业务和/或所述第二业务所对应的数字滤波范围。
在本实施例中,进行第一业务传输的用户设备和进行第二业务传输的用户设备可以是不同的用户设备;例如,UE1进行mMTC业务的传输,UE2进行uRLLC业务的传输;或者UE1进行第一类mMTC业务的传输,UE2进行第二类mMTC业务的传输。或者,进行第一业务传输的用户设备和进行第二业务传输的用户设备也可以是相同的用户设备;例如,在UE1中同时进行mMTC业务的传输和eMBB业务的传输;或者在UE1中同时进行第一类mMTC业务的传输和第二类mMTC业务的传输。此外,还可以有更多的UE进行多业务的传输。
在本实施例中,如果在共享帧中某一业务使用了其他业务的资源,则基站可以广播信息来指示该“占用”行为,并且更新对应的数字滤波器的滤波范围。例如在DL子帧中,发射端将使用更宽的滤波范围并且使用滤波器间的保护频带。
图9是本发明实施例的数字滤波范围变更的一个示意图,示出了如图7所述的超帧结构中,共享帧中某一业务所占用的资源被动态改变的情况。如图9所示,业务2占用共享帧的子带1之后,共享帧的业务2所对应的数字滤波范围将被扩大。
如图8所示,所述方法还可以包括:
步骤804,基站控制第一业务释放占用的所述共享帧的所述部分资源;
步骤805,基站广播所述共享帧的所述部分资源被释放的信息,以及
步骤806,基站和/或用户设备再次更新所述第一业务和/或第二业务所对应的数字滤波范围。
在本实施例中,如果在共享帧中某一业务释放了占用其他业务的资源,则基站可以广播信息来指示该“释放”行为,并且更新对应的数字滤波器的滤波范围。例如在 DL子帧中,发射端将使用更宽的滤波范围并且使用滤波器间的保护频带,由此提升频谱利用率。
图10是本发明实施例的数字滤波范围变更的另一个示意图,接续图9的业务占用的情况。如图10所示,在业务1需要使用共享帧的资源的情况下,业务2可以释放掉占用的资源(子带1);在业务2释放掉所占用的共享帧的子带1之后,共享帧的业务2所对应的数字滤波范围将被缩小。
值得注意的是,图8仅示意性地示出了动态地使用共享帧中资源的情况,但本发明不限于此;例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图的记载。
由上述实施例可知,使用超帧结构进行信息传输;其中专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。由此,不仅可以满足TDD系统中多业务场景的需求,还可以有效利用子带间的保护间隔,进而可以提高无线资源的使用率。
实施例2
本发明实施例提供一种多业务复用的信息传输装置,配置于TDD通信系统中;例如可以配置于基站中。但本发明不限于此,例如还可以配置于其他的网络侧设备或者实体中,或者还可以配置于用户设备中。本实施例与实施例1相同的内容不再赘述。
图11是本发明实施例的多业务复用的信息传输装置的一个示意图,如图11所示,多业务复用的信息传输装置1100包括:
传输单元1101,其使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。
在本实施例中,不同种类的业务使用不同的信号格式,并可以采用数字滤波器进行分离;所述信号格式可以包括如下的一种或多种:符号长度、子载波间隔、循环前缀长度、传输时间间隔,等等,但本发明不限于此。
在本实施例中,专用帧可以包括:上行子帧和下行子帧,以及所述上行子帧和下行子帧之间的保护间隔。共享帧可以包括:上行子帧和下行子帧,以及所述上行子帧和下行子帧之间的保护间隔;或者所述共享帧可以包括:上行子帧或者下行子帧。
如图11所示,多业务复用的信息传输装置1100还可以包括:
广播单元1102,广播所述专用帧和/或所述共享帧的配置信息。
其中,专用帧和/或共享帧的配置信息可以包括:上行/下行配置信息、对应的业务信息以及时频范围信息。
如图11所示,多业务复用的信息传输装置1100还可以包括:
配置变更单元1103,其改变所述共享帧的时分双工配置。
广播单元1102还可以用于广播所述共享帧改变后的配置信息。
如图11所示,多业务复用的信息传输装置1100还可以包括:
通知单元1104,其在共享帧的时分双工配置被改变的情况下,通知与使用所述共享帧的小区相邻的一个或多个小区。
图12是本发明实施例的多业务复用的信息传输装置的另一个示意图,如图12所示,多业务复用的信息传输装置1200包括:传输单元1101,如上所述。
如图12所示,多业务复用的信息传输装置1200还可以包括:
资源控制单元1201,其在第二业务没有使用所述共享帧中的部分资源的情况下,控制第一业务占用所述共享帧的所述部分资源;
广播单元1202,其广播所述共享帧的所述部分资源被占用的信息,以及
更新单元1203,其更新所述第一业务和/或所述第二业务所对应的数字滤波范围。
在本实施例中,资源控制单元1201还可以用于:释放被所述第二业务占用的所述共享帧的所述部分资源;广播单元1202还可以用于:广播所述共享帧的所述部分资源被释放的信息,以及更新单元1203还可以用于:再次更新所述第一业务和/或第二业务所对应的数字滤波范围。
值得注意的是,图11和图12分别示出了改变共享帧的TDD配置和改变共享帧中业务对应的资源的各个部件或模块,但本发明不限于此。例如还可以将图11和图12中的部分部件或模块配置在同一装置中,可以根据实际需要配置具体的部件或模块。
由上述实施例可知,使用超帧结构进行信息传输;其中专用帧的时分双工配置被 预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。由此,不仅可以满足TDD系统中多业务场景的需求,还可以有效利用子带间的保护间隔,进而可以提高无线资源的使用率。
实施例3
本发明实施例还提供一种TDD通信系统,与实施例1或者2相同的内容不再赘述。
图13是本发明实施例的TDD通信系统的示意图,如图13所示,TDD通信系统1300可以包括基站1301和一个或多个用户设备1302。
基站1301和用户设备1302使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。
本实施例还提供一种基站,配置有如实施例2所述的多业务复用的信息传输装置1100或1200。
图14是本发明实施例的基站的构成示意图。如图14所示,基站1400可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,多业务复用的信息传输装置1100或1200可以实现如实施例1所述的多业务复用的信息传输方法。中央处理器200可以被配置为实现多业务复用的信息传输装置1100或1200的功能。
例如,中央处理器200可以被配置为进行如下控制:使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。
此外,如图14所示,基站1400还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1400也并不 是必须要包括图14中所示的所有部件;此外,基站1400还可以包括图14中没有示出的部件,可以参考相关技术。
本实施例还提供一种用户设备,配置有如实施例2所述的多业务复用的信息传输装置1100或1200。
图15是本发明实施例的用户设备的示意图。如图15所示,该用户设备1500可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,多业务复用的信息传输装置1100或1200的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为实现实施例1中所述的多业务复用的信息传输方法。
例如,中央处理器100可以被配置为进行如下的控制:使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;其中,专用帧的时分双工配置被预先确定,且专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;共享帧的时分双工配置能够被改变,且共享帧所支持的一种或多种业务所占用的资源能够被改变。
在另一个实施方式中,多业务复用的信息传输装置1100或1200可以与中央处理器100分开配置,例如可以将多业务复用的信息传输装置1100或1200配置为与中央处理器100连接的芯片,通过中央处理器100的控制来实现多业务复用的信息传输装置1100或1200的功能。
如图15所示,该用户设备1500还可以包括:通信模块110、输入单元120、音频处理器130、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1500也并不是必须要包括图15中所示的所有部件,上述部件并不是必需的;此外,用户设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机可读程序,其中当在多业务复用的信息传输装置或者基站中执行所述程序时,所述程序使得所述多业务复用的信息传输装置或者所述基站执行实施例1所述的多业务复用的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得多业务复用的信息传输装置或者基站执行实施例1所述的多业务复用的信息传输方法。
本发明实施例还提供一种计算机可读程序,其中当在多业务复用的信息传输装置或者用户设备中执行所述程序时,所述程序使得所述多业务复用的信息传输装置或者所述用户设备执行实施例1所述的多业务复用的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得多业务复用的信息传输装置或者用户设备执行实施例1所述的多业务复用的信息传输方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的装置和/或方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图11中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,传输单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图6所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立 门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (20)

  1. 一种多业务复用的信息传输方法,应用于时分双工通信系统;所述多业务复用的信息传输方法包括:
    使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;
    其中,所述专用帧的时分双工配置被预先确定,且所述专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;所述共享帧的时分双工配置能够被改变,且所述共享帧所支持的一种或多种业务所占用的资源能够被改变。
  2. 根据权利要求1所述的多业务复用的信息传输方法,其中,不同种类的所述业务使用不同的信号格式并采用数字滤波器进行分离;
    所述信号格式包括如下的一种或多种:符号长度、子载波间隔、循环前缀长度、传输时间间隔。
  3. 根据权利要求1所述的多业务复用的信息传输方法,其中,所述专用帧包括:上行子帧和下行子帧,以及所述上行子帧和下行子帧之间的保护间隔;
    所述共享帧包括:上行子帧和下行子帧,以及所述上行子帧和下行子帧之间的保护间隔;或者所述共享帧包括:上行子帧或者下行子帧。
  4. 根据权利要求1所述的多业务复用的信息传输方法,其中,所述多业务复用的信息传输方法还包括:
    广播所述专用帧和/或所述共享帧的配置信息。
  5. 根据权利要求4所述的多业务复用的信息传输方法,其中,所述专用帧和/或所述共享帧的配置信息包括:上行/下行配置信息、对应的业务信息以及时频范围信息。
  6. 根据权利要求1所述的多业务复用的信息传输方法,其中,所述多业务复用的信息传输方法还包括:
    改变所述共享帧的时分双工配置;以及
    广播所述共享帧改变后的配置信息。
  7. 根据权利要求6所述的多业务复用的信息传输方法,其中,所述多业务复用的信息传输方法还包括:
    在所述共享帧的时分双工配置被改变的情况下,通知与使用所述共享帧的小区相邻的一个或多个小区。
  8. 根据权利要求1所述的多业务复用的信息传输方法,其中,所述多业务复用的信息传输方法还包括:
    在第二业务没有使用所述共享帧的部分资源时,控制第一业务占用所述共享帧的所述部分资源;
    广播所述共享帧的所述部分资源被占用的信息,以及
    更新所述第一业务和/或所述第二业务所对应的数字滤波范围。
  9. 根据权利要求8所述的多业务复用的信息传输方法,其中,所述多业务复用的信息传输方法还包括:
    释放被所述第二业务占用的所述共享帧的所述部分资源;
    广播所述共享帧的所述部分资源被释放的信息,以及
    再次更新所述第一业务和/或第二业务所对应的数字滤波范围。
  10. 根据权利要求1所述的多业务复用的信息传输方法,其中,所述资源是如下的一种或多种:时域资源、频域资源、空域资源。
  11. 一种多业务复用的信息传输装置,配置于时分双工通信系统;所述多业务复用的信息传输装置包括:
    传输单元,其使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;
    其中,所述专用帧的时分双工配置被预先确定,且所述专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;所述共享帧的时分双工配置能够被改变,且所述共享帧所支持的一种或多种业务所占用的资源能够被改变。
  12. 根据权利要求11所述的多业务复用的信息传输装置,其中,不同种类的所述业务使用不同的信号格式并采用数字滤波器进行分离;
    所述信号格式包括如下的一种或多种:符号长度、子载波间隔、循环前缀长度、传输时间间隔。
  13. 根据权利要求11所述的多业务复用的信息传输装置,其中,所述专用帧包括:上行子帧和下行子帧,以及所述上行子帧和下行子帧之间的保护间隔;
    所述共享帧包括:上行子帧和下行子帧,以及所述上行子帧和下行子帧之间的保护间隔;或者所述共享帧包括:上行子帧或者下行子帧。
  14. 根据权利要求11所述的多业务复用的信息传输装置,其中,所述多业务复用的信息传输装置还包括:
    广播单元,广播所述专用帧和/或所述共享帧的配置信息。
  15. 根据权利要求14所述的多业务复用的信息传输装置,其中,所述专用帧和/或所述共享帧的配置信息包括:上行/下行配置信息、对应的业务信息以及时频范围信息。
  16. 根据权利要求11所述的多业务复用的信息传输装置,其中,所述多业务复用的信息传输装置还包括:
    配置变更单元,其改变所述共享帧的时分双工配置;以及
    所述广播单元还用于广播所述共享帧改变后的配置信息。
  17. 根据权利要求16所述的多业务复用的信息传输装置,其中,所述多业务复用的信息传输装置还包括:
    通知单元,其在所述共享帧的时分双工配置被改变的情况下,通知与使用所述共享帧的小区相邻的一个或多个小区。
  18. 根据权利要求11所述的多业务复用的信息传输装置,其中,所述多业务复用的信息传输装置还包括:
    资源控制单元,其在第二业务没有使用所述共享帧中的部分资源的情况下,控制第一业务占用所述共享帧的所述部分资源;
    广播单元,其广播所述共享帧的所述部分资源被占用的信息,以及
    更新单元,其更新所述第一业务和/或所述第二业务所对应的数字滤波范围。
  19. 根据权利要求18所述的多业务复用的信息传输装置,其中,所述资源控制单元还用于:释放被所述第二业务占用的所述共享帧的所述部分资源;
    所述广播单元还用于:广播所述共享帧的所述部分资源被释放的信息,以及
    所述更新单元还用于:再次更新所述第一业务和/或第二业务所对应的数字滤波范围。
  20. 一种时分双工通信系统,所述时分双工通信系统包括基站和用户设备;
    所述基站和所述用户设备使用包括一个或多个专用帧和一个或多个共享帧的超帧结构进行信息传输;
    其中,所述专用帧的时分双工配置被预先确定,且所述专用帧所支持的一种或多种业务所占用的资源被预先配置并长期保持不变;所述共享帧的时分双工配置能够被改变,且所述共享帧所支持的一种或多种业务所占用的资源能够被改变。
PCT/CN2016/082197 2016-05-16 2016-05-16 多业务复用的信息传输方法、装置以及时分双工通信系统 WO2017197558A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082197 WO2017197558A1 (zh) 2016-05-16 2016-05-16 多业务复用的信息传输方法、装置以及时分双工通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082197 WO2017197558A1 (zh) 2016-05-16 2016-05-16 多业务复用的信息传输方法、装置以及时分双工通信系统

Publications (1)

Publication Number Publication Date
WO2017197558A1 true WO2017197558A1 (zh) 2017-11-23

Family

ID=60324593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082197 WO2017197558A1 (zh) 2016-05-16 2016-05-16 多业务复用的信息传输方法、装置以及时分双工通信系统

Country Status (1)

Country Link
WO (1) WO2017197558A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902841A (zh) * 2003-12-19 2007-01-24 高等技术学校 具有一种动态带宽的卫星调制解调器
CN101931871A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 对复用业务位置的指示方法、基站及用户终端
WO2013005970A2 (en) * 2011-07-04 2013-01-10 Pantech Co.,Ltd. Method and apparatus for transmitting and processing control information in time division duplex system using multi-component carrier
CN103037520A (zh) * 2011-03-25 2013-04-10 北京新岸线无线技术有限公司 一种资源调度方法和设备
CN103124433A (zh) * 2011-03-25 2013-05-29 北京新岸线移动多媒体技术有限公司 用于无线通信的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902841A (zh) * 2003-12-19 2007-01-24 高等技术学校 具有一种动态带宽的卫星调制解调器
CN101931871A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 对复用业务位置的指示方法、基站及用户终端
CN103037520A (zh) * 2011-03-25 2013-04-10 北京新岸线无线技术有限公司 一种资源调度方法和设备
CN103124433A (zh) * 2011-03-25 2013-05-29 北京新岸线移动多媒体技术有限公司 用于无线通信的装置
WO2013005970A2 (en) * 2011-07-04 2013-01-10 Pantech Co.,Ltd. Method and apparatus for transmitting and processing control information in time division duplex system using multi-component carrier

Similar Documents

Publication Publication Date Title
US11678367B2 (en) Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
JP7333357B2 (ja) フレキシブルなリソース使用状況のための方法
US20210212064A1 (en) Multi-subcarrier system with multiple numerologies
CN111490958B (zh) 用于在无线网络中发送和接收信号的方法以及通信装置
EP3767907B1 (en) Methods and corresponding devices for ofdm with flexible sub-carrier spacing and symbol duration
US10602392B2 (en) Wireless communication method and wireless communication apparatus
CN113839765B (zh) 无线通信系统中的参考信号生成方法和设备
WO2020063519A1 (zh) 配置旁链路资源的方法和装置
US8638652B2 (en) Signal transmission with fixed subcarrier spacing within OFDMA communication systems
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
CN109547380A (zh) 可展缩的ofdm子载波参数的系统和方案
US10582491B2 (en) Information transmission method and device
US20190268907A1 (en) New radio-unlicensed (nr-u) interlace-based resource allocations
WO2020025040A1 (zh) 资源配置的方法和终端设备
JP2010541301A (ja) Mimoネットワークにおけるアップリンク用ofdmaフレーム構造
TW201824912A (zh) 數據傳輸方法和裝置
WO2017167011A1 (zh) 信息的传输方法及相关装置
TW202008828A (zh) 資源配置的方法和終端設備
CN101730237B (zh) 无线资源映射方法
WO2020025858A1 (en) Uplink scheduling for nr-u
US20220173832A1 (en) Discrete fourier transform-spread (dft-s) based interlace physical uplink control channel (pucch) with user multiplexing
WO2010051704A1 (zh) 资源单元映射方法
WO2017133444A1 (zh) 一种上下行传输资源分配方法及装置
WO2017197558A1 (zh) 多业务复用的信息传输方法、装置以及时分双工通信系统
CN114667782A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901944

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901944

Country of ref document: EP

Kind code of ref document: A1