WO2010051704A1 - 资源单元映射方法 - Google Patents

资源单元映射方法 Download PDF

Info

Publication number
WO2010051704A1
WO2010051704A1 PCT/CN2009/072942 CN2009072942W WO2010051704A1 WO 2010051704 A1 WO2010051704 A1 WO 2010051704A1 CN 2009072942 W CN2009072942 W CN 2009072942W WO 2010051704 A1 WO2010051704 A1 WO 2010051704A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
units
resource unit
frequency partition
consecutive
Prior art date
Application number
PCT/CN2009/072942
Other languages
English (en)
French (fr)
Inventor
方惠英
曲红云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2011533517A priority Critical patent/JP2012507890A/ja
Priority to US13/127,989 priority patent/US8711792B2/en
Priority to EP09824359.5A priority patent/EP2352267B1/en
Publication of WO2010051704A1 publication Critical patent/WO2010051704A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0067Allocation algorithms which involve graph matching

Definitions

  • the present invention relates to resource mapping technologies in wireless communications, and in particular, to a method for mapping resource units to frequency partitions in a broadband wireless communication technology.
  • broadband wireless communication technologies such as Worldwide Interoperability for Microwave Access (WiMAX), Ultra Mobile Broadband (UMB), and 3GPP Long Term Evolution (
  • WiMAX Worldwide Interoperability for Microwave Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • the next-generation broadband mobile communication system such as Long Term Evolution (LTE) is a multiple access method using Orthogonal Frequency Division Multiple Access (OFDMA) in the downlink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the mapping of subcarriers in the frequency domain can be divided into a localized mapping method and a distributed mapping method.
  • all subcarriers in the frequency domain are usually used on the same OFDM symbol.
  • One of centralized mapping or distributed mapping The subcarrier resource in the resource block allocated to the user in the centralized subcarrier mapping mode is continuous; the distributed subcarrier mapping mode needs to first replace all subcarriers in the frequency band by the permutation sequence, and therefore, allocate The subcarrier resources in the resource block for the user are discrete.
  • the centralized mapping method can support frequency selective scheduling, and the distributed mapping method can generate frequency diversity.
  • the subcarriers in the frequency domain adopt the resource mapping method of centralized mapping and distributed mapping hybrid mapping.
  • QoS Quality of Service
  • the subcarriers in the frequency domain adopt the resource mapping method of centralized mapping and distributed mapping hybrid mapping.
  • a partial frequency multiplexing technique is adopted, and different frequency partitions respectively occupy a certain sub-carrier resource.
  • the combination of centralized mapping and distributed mapping, and partial frequency multiplexing is the trend of next-generation broadband wireless communication technology.
  • an external mapping based on the entire frequency band subcarrier and a two-level subcarrier mapping method based on the internal mapping of the subcarriers in the frequency partition facilitates the advantages of both centralized mapping and distributed mapping. And can achieve a combination of two mapping methods and partial frequency reuse technology.
  • the external mapping is performed for the subcarrier resources of the entire system band, and the corresponding carrier resources are mapped to the respective frequency partitions; the internal mapping is performed based on the carrier resources in each frequency partition.
  • the present invention has been made in view of the problem of the lack of an external mapping method capable of flexibly implementing external mapping in the two-level subcarrier mapping mode, and the main object of the present invention is to provide a resource unit mapping method. Take at least one of the above questions.
  • a resource unit mapping method is provided.
  • the resource unit mapping method according to the present invention includes: dividing a first physical resource unit set in units of N1 consecutive physical resource units from a physical resource unit set, and placing the remaining physical resource units into the second physical resource unit.
  • the physical resource unit in the second physical resource unit set is replaced by N2 consecutive physical resource units;
  • the physical resource unit in the first physical resource unit set is allocated to each frequency partition in units of N 1 consecutive physical resource units; the physical resource unit in the second physical resource unit set is replaced by a physical resource unit Assign units to each frequency partition.
  • the above division is performed by the base station according to system configuration information.
  • the system configuration information includes: a number of frequency partitions, and a number of sub-bands in units of N1 consecutive physical resource units included in each frequency partition.
  • the system configuration information further includes: a system bandwidth, and a number of physical resource units included in the frequency partition.
  • the first physical resource unit set that is divided into N1 consecutive physical resource units is specifically: determining, according to the system configuration information, that the N1 consecutive physical resource units are separated from the physical resource unit set The number of subbands of the unit L; the set of physical resource units in the system bandwidth Divided into M sub-bands of N1 consecutive physical resource units in units of N1 consecutive physical resource units; and uniformly extracts L units of N1 consecutive physical resource units from M sub-bands The subbands are placed in the first set of physical resource units.
  • the first physical resource unit set that is divided into N1 consecutive physical resource units is specifically: the physical resource unit in the physical resource unit is divided into the same according to the number of physical resource units included in each frequency partition.
  • the physical resource unit in the first physical resource unit set is allocated to each frequency partition as: the number of sub-bands in N1 consecutive physical resource units included in each frequency partition in the system configuration information.
  • a physical resource unit in units of N 1 consecutive physical resource units is allocated to each frequency partition in turn from the first physical resource unit set.
  • the method further comprises: determining, according to the number of physical resource units included in each frequency partition in the system configuration information, and the number of sub-bands in units of N1 consecutive physical resource units included in each frequency partition, determining that the second The number of physical resource units allocated to each frequency partition in the physical resource unit set, and the physical resource unit is allocated to each frequency partition in turn from the second physical resource unit set.
  • the resource unit mapping method provided by the present invention firstly divides, from the physical resource unit, a first physical resource unit set in units of N1 consecutive physical resource units and a second physical unit in N2 consecutive physical resource units.
  • the physical resource units in the first physical resource unit set are sequentially divided into frequency partitions by using N1 consecutive physical resource units, and The physical resource units in the second physical resource unit set are sequentially divided into frequency partitions in units of one physical resource unit.
  • the frequency selective scheduling gain and the frequency diversity gain of the carrier resources can be flexibly adjusted. Since some traffic types are scheduled to achieve higher frequency diversity gains on discrete resources, The service scheduling that requires a large amount of feedback can obtain the frequency selective scheduling gain on the centralized resources.
  • the method of the present invention facilitates the flexible allocation of resources between the two gains, and can ensure the user needs of different services to the greatest extent, thereby ensuring different Users of the business type can achieve high throughput to meet the needs of next-generation broadband mobile communication systems.
  • the invention proposes a new carrier resource mapping manner, which is more flexible according to the system configuration needs to adjust resource units suitable for frequency selective and frequency non-selective user data transmission requirements to be divided into different frequency partitions.
  • FIG. 1 is a schematic structural diagram of a frame structure adopted by a resource mapping method according to the present invention
  • FIG. 2 is a schematic structural diagram of a physical resource unit (PRU) in a resource mapping according to the present invention
  • PRU physical resource unit
  • FIG. 4 is a schematic diagram of a process for dividing a physical resource unit set 1 by N1 consecutive physical resource units from a physical resource unit according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a physical resource unit set 1 according to the present invention
  • FIG. 6 is a schematic diagram of a process of mapping physical resource units in a physical resource unit set to each frequency partition in the case of direct subcarrier mapping in the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION According to the technical solution provided by the present invention, a first physical resource unit set in units of N1 consecutive physical resource units and a unit in N2 consecutive physical resource units are collectively divided from physical resource units.
  • the dividing the first physical resource unit set and the second physical resource unit set may be divided according to system configuration information.
  • the system configuration information may include: a number of frequency partitions, and a number of sub-bands in units of N1 consecutive physical resource units included in each frequency partition.
  • the above sub-band refers to a collection of consecutive physical resource units.
  • the system configuration information may further include: a system bandwidth, and a number of physical resource units included in each frequency partition.
  • a frame structure includes a plurality of superframes 101, and each superframe 101 is composed of four unit frames 102.
  • the frame control information 103 is located on a number of symbols at the beginning of the superframe.
  • Each unit frame 102 is composed of eight subframe units 104, and each subframe unit 104 includes a downlink subframe unit and an uplink subframe unit, which can be configured according to the specific conditions of the system.
  • Each subframe unit 104 is composed of six OFDM symbols 105.
  • 2 is a schematic structural diagram of a physical resource unit in a resource mapping method according to the present invention.
  • the physical resource unit is composed of 18 orthogonal subcarriers and ⁇ OFDM symbols, where ⁇ is an OFDM symbol included in one subframe.
  • the number of N sym can be 5, 6, or 7 depending on the type of subframe.
  • the vertical direction is the number of subcarriers
  • the horizontal direction is the number of OFDM symbols.
  • the physical resource unit 201 shown in FIG. 2 is composed of 18 orthogonal subcarriers 202 and 6 OFDM symbols 203.
  • FIG. 3 is a schematic flowchart of an implementation process of a resource unit mapping method according to an embodiment of the present invention. The method includes the following steps 301 to 303: Step 301: The base station divides the physical resource unit according to system configuration information.
  • N1 consecutive physical resource units are units of physical resource unit set 1, and the remaining physical resource units are sequentially placed into physical resource unit set 2.
  • the system configuration information may include: a number of frequency partitions, and a number of subbands in units of N1 consecutive physical resource units included in each frequency partition.
  • the system configuration information may further include: a system bandwidth, and a number of physical resource units included in the frequency partition.
  • the system configuration information needs to be broadcast to each terminal under the base station.
  • the processing of the foregoing second method is: dividing the physical resource unit by the number of physical resource units ni included in each frequency partition and the number of sub-bands pi in units of N1 consecutive physical resource units included in each frequency partition.
  • a physical resource unit set 1 in units of N1 consecutive physical resource units, and the above-mentioned sub-bands in units of N1 consecutive physical resource units are used for direct mapping of subcarriers.
  • ni denotes the number of physical resource units of the i-th frequency partition
  • pi denotes the number of sub-bands of the i-th frequency partition in units of N1 consecutive physical resource units. That is, according to the number of physical resource units included in each frequency partition, the physical resource unit in the physical resource unit set is divided into several parts equivalent to the number of frequency partitions; in the physical resource unit part corresponding to each frequency partition, from The starting unit starts to take back (Ni x pi ) physical resources in order The source unit is placed in the physical resource unit set 1.
  • Step 302 Perform permutation (permutation) on the physical resource unit in the physical resource unit set 2 in units of N2 consecutive physical resource units. The value of N2 is smaller than N1.
  • the value of N2 can be different according to the system bandwidth. Specifically, depending on the bandwidth of the system, the value of N2 can be 1 or 2. Take 2 when the system bandwidth is large, and take 1 when the system bandwidth is low. For example: when the system bandwidth is 5M, 10M, N2 takes 1 and when the system bandwidth is 20M, N2 takes 2. Step 303: According to the system configuration information, the physical resource units in the physical resource unit set 1 are sequentially allocated to each frequency partition in units of N1 consecutive physical resource units; after the physical resource unit set 2 is replaced The physical resource units are sequentially allocated to each frequency partition in units of one physical resource unit.
  • N1 consecutive physical resource units are sequentially allocated to each frequency partition from the physical resource unit set 1.
  • the physical resource unit of the unit according to the number of physical resource units included in each frequency partition in the system configuration information, and the number of sub-bands in units of N1 consecutive physical resource units included in each frequency partition, it is determined that the physical resource unit set 2 needs to be
  • the number of physical resource units allocated to each frequency partition is allocated to each frequency partition from the physical resource unit set 2 in sequence.
  • the foregoing resource unit division method is: determining, according to the system configuration information, the number of sub-bands L in units of N1 consecutive physical resource units, which are defined by the physical resource unit, wherein L is system configuration information.
  • the set of physical resource units in the system bandwidth is divided into M units by N1 consecutive physical resource units.
  • the resource elements are sub-bands P0, PT, ... PT*(L-1) of the unit, and are placed in the physical resource unit set 1.
  • the bandwidth of the supporting system is 5 MHz, and N1 is equal to 4.
  • the 5M bandwidth includes a total of 432 available subcarriers, according to the frame shown in FIG.
  • the subframe unit 104 is composed of six OFDM symbols, and the subframe of the 5M bandwidth is divided according to the physical resource unit 201 in FIG. 2, and can be divided into 24 physical resource units 401.
  • the system is configured as three frequency partitions: a first frequency partition, a second frequency partition, and a third frequency partition, and the first frequency partition and the second frequency partition each include one sub-unit of four physical resource units.
  • FIG. 5 is a schematic diagram of a process of mapping physical resource units in a physical resource unit set to respective frequency partitions according to the present invention. In FIG. 5, the bandwidth of 5 ⁇ is still taken as an example.
  • the system is configured as three frequency partitions: a first frequency partition 505, a second frequency partition 506, and a third frequency partition 507, where The first frequency partition 505 and the second frequency partition 506 each include one sub-band in units of 4 physical resource units, the first frequency partition 505 includes 10 physical resource units 501, and the second frequency partition 506 includes 8 physical units.
  • the resource unit 501, the third frequency partition 507 includes six physical resource units 501, and the system configuration information needs to be broadcast by the base station to each terminal.
  • Table 1 Table 1
  • M 6 sub-bands, denoted as P, respectively.
  • P 3 put into the physical resource unit set 502 (ie, physical resource unit set 1), and the remaining physical resource units are sequentially placed in the physical resource unit set 503 (ie, physical resource unit set 2).
  • the physical resource unit in the physical resource unit set 503 is replaced by a permutation matrix in units of one physical resource unit to obtain a replaced physical resource unit set 504.
  • 4 physical resource units are sequentially removed from the set of physical resource units in the sub-system 502 is provided with a number of individual mapped to frequency partitions, taken into a first frequency partition 505 Po, P 3 taken into the second frequency partition 506 . Since the first frequency partition 505, the second frequency partition 506, and the third frequency partition 507 respectively contain 10, 8, and 6 physical resource units 501, the physical resource unit sets 504 are sequentially taken out in units of one physical resource unit. The six physical resource units 501 are mapped to the first frequency partition 505; the four physical resource units 501 are taken out to the second frequency partition 506; and the six physical resource units 501 are taken out to the third frequency partition 507.
  • FIG. 6 is a schematic diagram of a process of mapping physical resource units in a physical resource unit set to each frequency partition in the case of direct subcarrier mapping in the present invention.
  • N1 consecutive physical resource units are divided from the physical resource unit set.
  • the above-mentioned sub-bands in units of N1 consecutive physical resource units are used for direct mapping of subcarriers.
  • 3 ⁇ 4 represents the number of physical resource units of the i-th frequency partition
  • pi represents the number of sub-bands of the i-th frequency partition in units of N1 consecutive physical resource units.
  • the physical resource unit in the physical resource unit set is divided into several parts equivalent to the number of frequency partitions according to the number of physical resource units included in each frequency partition.
  • (Ni x Pi ) physical resource units are sequentially taken out from the start unit and placed in the physical resource unit set 1.
  • the 5M bandwidth is still taken as an example.
  • the four frequency resource units are sub-bands of the unit; the first frequency partition 605 includes 10 physical resource units 601, the second frequency partition 606 includes 8 physical resource units 601, and the third frequency partition 607 includes 6 physical resource units 601.
  • the number of physical resource units 606 of the second frequency and a third frequency partition partition 607 contains the other points 1 J 10, 8, 6, the set of physical resource units are divided into physical resource unit is equivalent to the number of frequency partitions
  • the third frequency partition 605 corresponds to the physical resource unit 1-10
  • the second frequency partition 606 corresponds to the physical resource unit 11-18
  • the third frequency partition 607 corresponds to the physical resource unit 19-24.
  • the four physical resource units 1, 2, 3, 4 starting from the start unit are placed in the physical resource unit set 1; corresponding to the second frequency partition 606
  • the four physical resource units 11, 12, 13, and 14 starting from the start unit are placed in the physical resource unit set 1; the remaining physical resource units are placed in the physical resource unit set 603 (ie, the physical resource unit set) 2 ).
  • the physical resource unit in the physical resource unit set 603 is divided into a physical resource unit by the permutation matrix, and the physical resource unit set 604 is obtained by the permutation matrix, and the four physical resource units are sequentially taken out from the physical resource unit set 602.
  • a frequency partition 605 takes four physical resource units into the second frequency partition 606.
  • the physical resource unit sets 604 are sequentially taken out in units of one physical resource unit.
  • the six physical resource units 601 are mapped to the first frequency partition 605; the four physical resource units 601 are taken out to the second frequency partition 606; then the remaining six physical resource units 601 are mapped to the third frequency partition 607.
  • the unit numbers of the physical resource units 601 included in the first frequency partition 605 are 1, 2, 3, 4, 5, 9, 17, 21, 6, 10 in sequence;
  • the second frequency partition 606 includes The unit numbers of the physical resource unit 601 are sequentially 11, 12, 13, 14, 18, 22, 7, and 15;
  • the serial numbers of the physical resource units 601 included in the third frequency partition 606 are 19, 23, 8, and 16, respectively. 20, 24.
  • a computer readable medium having stored thereon computer executable instructions for causing a computer or processor to perform, for example, when executed by a computer or processor
  • the implementation of the present invention does not modify the system architecture and the current processing flow, is easy to implement, facilitates promotion in the technical field, and has strong industrial applicability.
  • the above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included. Within the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

资源单元映射方法
技术领域 本发明涉及无线通信中的资源映射技术,尤其涉及一种宽带无线通信技 术中资源单元映射到频率分区的方法。 背景技术 随着宽带无线通信技术的不断发展, 诸如移动 波接入全球互通 ( Worldwide Interoperability for Microwave Access , 筒称为 WiMAX )、 超移 动宽带( Ultra Mobile Broadband, 筒称为 UMB ) 以及 3GPP长期演进 ( Long Term Evolution, 筒称为 LTE )等下一代宽带移动通信系统在下行链路均采用 正交频分复用多址 ( Orthogonal Frequency Division Multiple Access, 筒称为 OFDMA ) 的多址接入方式。 在给定的系统带宽下, 从频域的角度上看, 不 同的用户通过占用一定数量的正交子载波资源来实现多址接入的目的。 频域上子载波的映射方式可分为集中式 (localized ) 映射方式、 分布式 ( distributed ) 映射方式, 在最初的 OFDMA系统中, 在同一个 OFDM符号 上, 频域上所有的子载波通常采用集中式映射方式或分布式映射方式中的一 种。 其中, 集中式的子载波映射方式分配给用户的资源块中的子载波资源是 连续的; 分布式的子载波映射方式需要先通过置换序列将频带范围内的所有 子载波进行置换, 因此, 分配给用户的资源块中的子载波资源是离散的。 从 功能上看, 集中式映射方式能支持频率选择性调度, 而分布式映射方式能产 生频率分集, 因此, 在下一代宽带无线接入系统中, 为了同时满足不同用户 不同业务的月 务质量( Quality of Service,筒称为 QoS )要求,在同一个 OFDM 符号上, 频域上的子载波采用集中式映射和分布式映射混合映射的资源映射 方式。 在 OFDMA 多址接入系统的演进中, 为了降氐小区间的同频干 4尤, 采 用了部分频率复用的技术, 不同的频率分区分别占用一定的子载波资源。 在 采用部分频率复用的 OFDMA系统下行链路中,将集中式映射和分布式映射、 以及部分频率复用技术相结合, 是下一代宽带无线通信技术发展的趋势。 采 用基于整个频带子载波的外部映射、 以及基于频率分区内子载波的内部映射 的两级子载波映射方式, 有利于同时发挥集中式映射和分布式映射的优势, 并能实现两种映射方式和部分频率复用技术的结合。 其中, 外部映射针对整 个系统频带的子载波资源进行, 将相应的载波资源映射到各频率分区; 内部 映射基于各频率分区内的载波资源进行。 但是, 目前在两级子载波映射方式 下尚无有效的能够才艮据系统配置灵活地将子载波资源划分至各频率分区中的 外部映射方式。 发明内容 针对相关技术中存在的在两级子载波映射方式下缺乏能够灵活实现外 部映射的外部映射方式的问题而提出本发明, 为此, 本发明的主要目的在于 提供一种资源单元映射方法 , 以上述问题至少之一。 为了实现上述目的 , 才艮据本发明的一个方面, 提供了一种资源单元映射 方法。 才艮据本发明的资源单元映射方法包括: 从物理资源单元集中划分出以 N1个连续的物理资源单元为单位的第一 物理资源单元集合 , 并将其余物理资源单元放入第二物理资源单元集合; 对第二物理资源单元集合中的物理资源单元, 以 N2个连续的物理资源 单元为单位进行置换;
^!夺第一物理资源单元集合中的物理资源单元以 N 1个连续的物理资源单 元为单位分配到各频率分区中; 将第二物理资源单元集合中经过置换后的物 理资源单元以一个物理资源单元为单位分配到各频率分区中。 优选地, 上述划分由基站根据系统配置信息进行划分。 优选地, 系统配置信息包括: 频率分区数、 各频率分区中包含的以 N1 个连续的物理资源单元为单位的子带 ( Sub-band ) 数。 优选地, 系统配置信息还包括: 系统带宽、 频率分区包含的物理资源单 元数目。 ύ选地, 划分出以 N1个连续的物理资源单元为单位的第一物理资源单 元集合具体为: 才艮据系统配置信息确定从物理资源单元集中划分出的以 N1 个连续的物理资源单元为单位的子带数 L; 将系统带宽中的物理资源单元集 以 Nl个连续的物理资源单元为单位, 划分成 M个以 N1个连续的物理资源 单元为单位的子带; 从 M个子带中均匀地抽取出 L个以 N1个连续的物理资 源单元为单位的子带, 放入第一物理资源单元集合。 ύ选地, 划分出以 N1个连续的物理资源单元为单位的第一物理资源单 元集合具体为: 按照各频率分区包含的物理资源单元数目, 将物理资源单元 集中的物理资源单元分为等同于频率分区数的部分; 在各频率分区所对应的 物理资源单元部分, 从起始单元开始向后依次取出 (Ni x pi ) 个连续的物理 资源单元, 放入第一物理资源单元集合, 其中, 表示第 i个频率分区以 N1 个连续的物理资源单元为单位的子带数。 优选地, N2的取值 居系统带宽不同而不同。 优选地, N2的取值为 1或 2。 优选地,将第一物理资源单元集合中的物理资源单元分配到各频率分区 中为: 才艮据系统配置信息中各频率分区中包含的以 N1 个连续的物理资源单 元为单位的子带数 ,从第一物理资源单元集合中依次给各频率分区分配以 N 1 个连续的物理资源单元为单位的物理资源单元。 优选地, 该方法进一步包括: 根据系统配置信息中各频率分区包含的物 理资源单元数目信息和各频率分区中包含的以 N1 个连续的物理资源单元为 单位的子带数, 确定需要从第二物理资源单元集合中给各频率分区分配的物 理资源单元个数 , 从第二物理资源单元集合中依次给各频率分区分配物理资 源单元。 本发明所提供的资源单元映射方法, 先从物理资源单元集中划分出以 N1个连续的物理资源单元为单位的第一物理资源单元集合和以 N2个连续的 物理资源单元为单位的第二物理资源单元集合 , 将第二物理资源单元集合中 的资源进行置换后, 再将第一物理资源单元集合中的物理资源单元以 N1 个 连续的物理资源单元为单位依次分到各频率分区中, 将第二物理资源单元集 合中的物理资源单元以一个物理资源单元为单位依次分到各频率分区中。 如 此, 不仅能实现集中式映射和分布式映射结合部分频率复用中两级子载波映 射方式下的外部映射 , 还能灵活调整载波资源的频率选择性调度增益和频率 分集增益。 由于一些业务类型调度在离散的资源上能获得更高的频率分集增益,而 一些需要大量反馈的业务调度在集中的资源上能获得频率选择性调度增益, 本发明的方法有利于两种增益之间资源的灵活调配 , 能最大程度地保证不同 业务的用户需要, 进而保证不同业务类型的用户均能获得高的吞吐量, 满足 下一代宽带移动通信系统的需求。 本发明提出了一种新的载波资源映射方式 ,将根据系统配置需要调整适 用于频率选择性和频率非选择性用户数据传输要求的资源单元划分至不同的 频率分区, 更具灵活性。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 此处所说明的附图用来提供对本发明的进一步理解 ,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为本发明资源映射方法采用的一种帧结构的组成示意图; 图 2为本发明资源映射中物理资源单元 (PRU ) 的组成结构示意图; 图 3为才艮据本发明实施例资源单元映射方法的实现流程示意图; 图 4为本发明从物理资源单元集中划分出以 N1个连续的物理资源单元 为单位的物理资源单元集合 1的过程示意图; 图 5 为本发明将物理资源单元集中的物理资源单元映射至各频率分区 的过程示意图; 图 6为本发明中子载波直接映射情况下,将物理资源单元集中的物理资 源单元映射至各频率分区的过程示意图。 具体实施方式 根据本发明所提供的技术方案, 从物理资源单元集中划分出以 N1个连 续的物理资源单元为单位的第一物理资源单元集合、 和以 N2个连续的物理 资源单元为单位的第二物理资源单元集合, 将第二物理资源单元集合中的资 源进行置换后, 将第一物理资源单元集合中的物理资源单元以 N1 个连续的 物理资源单元为单位依次分到各频率分区中 , 并将第二物理资源单元集合中 的物理资源单元以一个物理资源单元为单位依次分到各频率分区中。 其中,划分第一物理资源单元集合和第二物理资源单元集合可才艮据系统 配置信息划分。 系统配置信息可包括: 频率分区数、 各频率分区中包含的以 N1个连续的物理资源单元为单位的子带( Sub-band )数。 上述子带指连续的 物理资源单元的集合。 系统配置信息还可以包括: 系统带宽、 各频率分区包 含的物理资源单元数目。 图 1 为本发明资源映射方法所采用的一种帧结构的组成示意图,如图 1 所示, 一种帧结构包括若干个超帧 101 , 每个超帧 101由四个单位帧 102组 成, 超帧控制信息 103位于超帧开始处的若干个符号上。 每个单位帧 102由 八个子帧单元 104组成, 每个子帧单元 104包括下行子帧单元和上行子帧单 元, 可根据系统的具体情况进行配置。 每个子帧单元 104由六个 OFDM符号 105构成。 图 2为本发明资源映射方法中物理资源单元的组成结构示意图,物理资 源单元由 18个正交子载波和 ^^^个 OFDM符号组成, 其中, ^^^为一个子 帧中包含的 OFDM符号的个数, 根据子帧类型的不同, Nsym可取值为 5、 6、 或 7。 图 2中, 纵向是子载波数, 横向是 OFDM符号数, 图 2所示物理资源 单元 201由 18个正交子载波 202和 6个 OFDM符号 203组成。 方法实施例 图 3为才艮据本发明实施例的资源单元映射方法的实现流程示意图,该方 法包括以下步骤 301至步骤 303: 步骤 301 : 基站根据系统配置信息从物理资源单元集中, 划分出以 N1 个连续的物理资源单元为单位的物理资源单元集合 1 , 其余物理资源单元依 次放入物理资源单元集合 2。 这里, 系统配置信息可包括: 频率分区数、 各频率分区中包含的以 N1 个连续的物理资源单元为单位的子带数。 上述系统配置信息还可以包括: 系 统带宽、 频率分区包含的物理资源单元数目。 其中, 系统配置信息需要广播给基站下的各终端。 从物理资源单元集中划分出以 N1个连续的物理资源单元为单位的物理 资源单元集合 1有两种实现方法: 第一种方法适用于以 N1个连续的物理资 源单元为单位的子带不进行直接映射的情况; 第二种方法适用于以 N1 个连 续的物理资源单元为单位的子带进行直接映射的情况。 具体的, 上述第一种方法的处理过程是: 首先, 根据系统配置信息确定从物理资源单元集中划分出的以 N1个连 续的物理资源单元为单位的子带数 L, 其中, L为系统配置信息中各频率分 区中包含的以 N1个连续的物理资源单元为单位的子带数之和; 然后, 将系统带宽中的物理资源单元集以 N1个连续的物理资源单元为 单位,划分成 M个以 N1个连续的物理资源单元为单位的子带 Ρο, Ρ^ ... ΡΜ-Ι , M=[N/ j , 其中, N为物理资源单元集中总的子带数, L」表示下取整; 从
M个子带 P0, Pi , ... PM-I中均匀地抽取出 L个以 N1个连续的物理资源单元 为单位的子带 Ρ。, Ρχ, ... PT*(L-i), 放入物理资源单元集合 1 , 其中, 抽取间 隔为 Τ=[Μ/ 」。 上述第二种方法的处理过程是: 根据各频率分区包含的物理资源单元数目 ni以及各频率分区中包含的 以 N1 个连续的物理资源单元为单位的子带数 pi, 从物理资源单元集中划分 出以 N1个连续的物理资源单元为单位的物理资源单元集合 1 , 上述以 N1个 连续的物理资源单元为单位的子带用于子载波的直接映射。 其中, ni表示第 i个频率分区的物理资源单元数目 , pi表示第 i个频率分区以 N1个连续的物 理资源单元为单位的子带数。 也就是说, 按照各频率分区包含的物理资源单元数目 , 将物理资源单元 集中的物理资源单元分为等同于频率分区数的几个部分; 在各频率分区所对 应的物理资源单元部分, 从起始单元开始向后依次取出 (Ni x pi ) 个物理资 源单元, 放入物理资源单元集合 1。 步骤 302: 对物理资源单元集合 2中的物理资源单元, 以 N2个连续的 物理资源单元为单位进行置换 ( permutation )。 其中, N2的取值小于 N1 , 根据系统带宽的不同, N2的取值可以不同。 具体来说, 才艮据系统带宽的不同, N2的取值可为 1或 2。 在系统带宽大时取 2 , 在系统带宽小时取为 1 , 例如: 系统带宽为 5M、 10M时 N2取 1 , 系统 带宽为 20M时 N2取 2。 步骤 303 : 才艮据系统配置信息, 将物理资源单元集合 1中的物理资源单 元, 以 N1 个连续的物理资源单元为单位依次分配到各频率分区中; 将物理 资源单元集合 2中经过置换后的物理资源单元, 以一个物理资源单元为单位 依次分配到各频率分区中。 这里, 根据系统配置信息中各频率分区中包含的以 N1个连续的物理资 源单元为单位的子带数, 从物理资源单元集合 1中依次给各频率分区分配以 N1个连续的物理资源单元为单位的物理资源单元。 进一步的 ,根据系统配置信息中各频率分区包含的物理资源单元数目信 息、 和各频率分区中包含的以 N1 个连续的物理资源单元为单位的子带数, 确定需要从物理资源单元集合 2中给各频率分区分配的物理资源单元个数, 从物理资源单元集合 2中依次给各频率分区分配物理资源单元。 下面以宽带蜂窝无线通信系统为例,结合附图和具体实施例对本发明所 述资源单元映射方法作进一步详细描述。 图 4为本发明从物理资源单元集中划分出以 N1个连续的物理资源单元 为单位的物理资源单元集合 1的过程示意图。 如图 4所示, 上述资源单元划 分方法为: 才艮据系统配置信息确定从物理资源单元集中划分的以 N1个连续的物理 资源单元为单位的子带数 L , 其中, L为系统配置信息中各频率分区中包含 的以 N1 个连续的物理资源单元为单位的子带数之和; ^)夺系统带宽中的物理 资源单元集以 N1个连续的物理资源单元为单位, 划分成 M个以 N1个连续 的物理资源单元为单位的子带 P。, Pi , ... PM-I , M=[N/ j , 其中, L」表示 下取整; 从 M个子带 P0, Pi , ... PM-1中均匀地抽取出 L个以 N1个连续的物 理资源单元为单位的子带 P0 , PT, ... PT*(L-1) , 放入物理资源单元集合 1。 如图 4所示, 支设系统带宽为 5MHz, N1等于 4, 在采用 OFDMA多 址接入方式的宽带无线接入系统中, 5M带宽共包含 432个可用子载波, 按 照图 1所示的帧结构, 子帧单元 104由六个 OFDM符号组成, 则 5M带宽的 子帧按照图 2中的物理资源单元 201进行划分, 可划分成 24个物理资源单 元 401。
^^定系统配置为三个频率分区: 第一频率分区、 第二频率分区、 第三频 率分区, 第一频率分区和第二频率分区中各包含 1个以 4个物理资源单元为 单位的子带, 则确定从物理资源单元集中划分的以 4个物理资源单元为单位 的子带数为 2。 具体地: 首先, 夺 24个物理资源单元 401以 4个物理资源单 元为单位划分成 M=6个子带 402, 分别表示为 P。、 Pi , P2、 P3、 P4和 P5; 以 T= 3个子带为间隔, 均匀抽取出两个以 4个物理资源单元为单位的子带 Ρ0 和 Ρ3, 放入物理资源单元集合 403 (即, 物理资源单元集合 1 ), 则物理资源 单元集合 403包含的物理资源单元依次为 1、 2、 3、 4、 12、 13、 14、 15。 图 5 为本发明将物理资源单元集中的物理资源单元映射至各频率分区 的过程示意图。 图 5中仍然以 5Μ带宽为例, 5Μ带宽中共有 24个物理资源 单元 501 , 系统配置为三个频率分区: 第一频率分区 505, 第二频率分区 506、 和第三频率分区 507, 其中, 第一频率分区 505和第二频率分区 506中各包 含 1个以 4个物理资源单元为单位的子带, 第一频率分区 505包含 10个物 理资源单元 501 , 第二频率分区 506包含 8个物理资源单元 501 , 第三频率 分区 507包含 6个物理资源单元 501 , 需要由基站将系统配置信息广播给各 个终端, 所述系统配置信息的组成如表 1所示: 表 1
Figure imgf000010_0001
在外部映射时, 将 24个物理资源单元以 4个物理资源单元为单位划分 成 M=6个子带, 分别表示为 P。、 Pi , P2、 P3、 P4和 P5 , 以 T= 3个子带为间 隔均匀抽取出 2个以 4个物理资源单元为单位的子带 P。和 P3 ,放入物理资源 单元集合 502 (即, 物理资源单元集合 1 ), 其余的物理资源单元依次放入物 理资源单元集合 503 (即 , 物理资源单元集合 2 ) 中。 对物理资源单元集合 503 中的物理资源单元以一个物理资源单元为单 位通过置换矩阵进行行列置换, 得到置换后的物理资源单元集合 504。 从物 理资源单元集合 502中以 4个物理资源单元为单位依次取出系统设置个数的 子带映射至各个频率分区, 取出 Po放入第一频率分区 505 , 取出 P3放入第二 频率分区 506。 由于第一频率分区 505、 第二频率分区 506、 第三频率分区 507分别包 含 10、 8、 6个物理资源单元 501 , 因此, 再以一个物理资源单元为单位依次 从物理资源单元集合 504中取出 6个物理资源单元 501映射至第一频率分区 505; 取出 4个物理资源单元 501映射至第二频率分区 506; 取出 6个物理资 源单元 501映射至第三频率分区 507。 那么, 资源映射后, 第一频率分区 505 所包含的物理资源单元 501的单元序号依次为 1、 2、 3、 4、 5、 9、 17、 21、 6、 10; 第二频率分区 506所包含的物理资源单元 501的单元序号依次为 13、 14、 15、 16、 18、 22、 7、 11; 第三频率分区 506所包含的物理资源单元 501 的序号依次为 19、 23、 8、 12、 20、 24。 图 6为本发明中子载波直接映射情况下,将物理资源单元集中的物理资 源单元映射至各频率分区的过程示意图。 才艮据各频率分区包含的物理资源单 元数目 以及各频率分区中包含的以 N1个连续的物理资源单元为单位的子 带数 Pi, 从物理资源单元集中划分出以 N1 个连续的物理资源单元为单位的 物理资源单元集合 1 ,上述以 N1个连续的物理资源单元为单位的子带用于子 载波的直接映射。 其中, ¾表示第 i个频率分区的物理资源单元数目, pi表示 第 i个频率分区以 N1 个连续的物理资源单元为单位的子带数。 按照各频率 分区包含的物理资源单元数目 , 将物理资源单元集中的物理资源单元分为等 同于频率分区数的几个部分。 在各频率分区所对应的物理资源单元部分, 从 起始单元开始向后依次取出 (Ni x Pi ) 个物理资源单元, 放入物理资源单元 集合 1。 图 6中仍然以 5M带宽为例, 5M带宽中共有 24个物理资源单元 601 , 系统配置为三个频率分区: 第一频率分区 605、 第二频率分区 606和第三频 率分区 607, 其中, 第一频率分区 605和第二频率分区 606中各包含 1个以 4个物理资源单元为单位的子带; 第一频率分区 605包含 10个物理资源单元 601 , 第二频率分区 606包含 8个物理资源单元 601 , 第三频率分区 607包含 6个物理资源单元 601。 按照第一频率分区 605、 第二频率分区 606和第三频率分区 607分另1 J包 含的物理资源单元数目 10、 8、 6, 将物理资源单元集中的物理资源单元分为 等同于频率分区数的三部分, 第一频率分区 605对应于物理资源单元 1-10, 第二频率分区 606对应于物理资源单元 11-18 , 第三频率分区 607对应于物 理资源单元 19~24。 在第一频率分区 605所对应的物理资源单元部分, 将起 始单元开始的 4个物理资源单元 1、 2、 3、 4, 放入物理资源单元集合 1 ; 在 第二频率分区 606所对应的物理资源单元部分, 将起始单元开始的 4个物理 资源单元 11、 12、 13、 14, 放入物理资源单元集合 1 ; 其余物理资源单元放 入物理资源单元集合 603 (即 , 物理资源单元集合 2 )。 对物理资源单元集合 603 中的物理资源单元以一个物理资源单元为单 位, 通过置换矩阵进行行列置换后得到物理资源单元集合 604, 从物理资源 单元集合 602 中依次取出 4个物理资源单元放入第一频率分区 605, 取出 4 个物理资源单元放入第二频率分区 606。 由于第一频率分区 605、 第二频率分区 606、 第三频率分区 607分别包 含 10、 8、 6个物理资源单元 601 , 因此, 再以一个物理资源单元为单位依次 从物理资源单元集合 604中取出 6个物理资源单元 601映射至第一频率分区 605; 取出 4个物理资源单元 601映射至第二频率分区 606; 然后夺其余 6个 物理资源单元 601映射至第三频率分区 607。 那么, 资源映射后, 第一频率 分区 605所包含的物理资源单元 601的单元序号依次为 1、 2、 3、 4、 5、 9、 17、 21、 6、 10; 第二频率分区 606所包含的物理资源单元 601 的单元序号 依次为 11、 12、 13、 14、 18、 22、 7、 15; 第三频率分区 606所包含的物理 资源单元 601的序号依次为 19、 23、 8、 16、 20、 24。 从以上的描述中, 可以看出, 本发明能够实现集中式映射和分布式映射 结合部分频率复用中两级子载波映射方式下的外部映射。 才艮据本发明实施例, 还提供了一种计算机可读介质, 该计算机可读介质 上存储有计算机可执行的指令, 当该指令被计算机或处理器执行时, 使得计 算机或处理器执行如图 3所示的步骤 S301至步骤 S303的处理, 优选地, 可 以执行上述的各实施例。 另外 ,本发明的实现没有对系统架构和目前的处理流程修改,易于实现, 便于在技术领域中进行推广, 具有较强的工业适用性。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书 一种资源单元映射方法, 其特征在于, 该方法包括:
从物理资源单元集中划分出以 N1个连续的物理资源单元为单位 的第一物理资源单元集合 , 并将其余物理资源单元放入第二物理资源 单元集合;
对第二物理资源单元集合中的物理资源单元, 以 N2个连续的物 理资源单元为单位进行置换;
4夺第一物理资源单元集合中的物理资源单元以 N1个连续的物理 资源单元为单位分配到各频率分区中; 将第二物理资源单元集合中经 过置换后的物理资源单元以一个物理资源单元为单位分配到各频率分 区中。 才艮据权利要求 1所述的资源单元映射方法, 其特征在于, 所述划分由 基站才艮据系统配置信息进行划分。 根据权利要求 2所述的资源单元映射方法, 其特征在于, 所述系统配 置信息包括: 频率分区数、 各频率分区中包含的以 N1 个连续的物理 资源单元为单位的子带 Sub-band数。 才艮据权利要求 3所述的资源单元映射方法, 其特征在于, 所述系统配 置信息还包括: 系统带宽、 频率分区包含的物理资源单元数目。 根据权利要求 2、 3或 4所述的资源单元映射方法, 其特征在于, 所述 划分出以 N1 个连续的物理资源单元为单位的第一物理资源单元集合 具体为:
才艮据系统配置信息确定从物理资源单元集中划分出的以 N1个连 续的物理资源单元为单位的子带数 L;
将系统带宽中的物理资源单元集以 N1个连续的物理资源单元为 单位, 划分成 M个以 N1个连续的物理资源单元为单位的子带; 从 M个子带中均匀地抽取出 L个以 N1个连续的物理资源单元为 单位的子带, 放入第一物理资源单元集合。
6. 根据权利要求 2、 3或 4所述的资源单元映射方法, 其特征在于, 所述 划分出以 N1 个连续的物理资源单元为单位的第一物理资源单元集合 具体为:
按照各频率分区包含的物理资源单元数目 , 将物理资源单元集中 的物理资源单元分为等同于频率分区数的部分; 在各频率分区所对应 的物理资源单元部分, 从起始单元开始向后依次取出 (Ni x pi ) 个连 续的物理资源单元, 放入第一物理资源单元集合, 其中, pi表示第 i 个频率分区以 N1个连续的物理资源单元为单位的子带数。
7. 根据权利要求 1 所述的资源单元映射方法, 其特征在于, 所述 N2的 取值才艮据系统带宽不同而不同。
8. 根据权利要求 7所述的资源单元映射方法, 其特征在于, 所述 N2的 取值为 1或 2。
9. 才艮据权利要求 2所述的资源单元映射方法, 其特征在于, 所述将第一 物理资源单元集合中的物理资源单元分配到各频率分区中为:
才艮据系统配置信息中各频率分区中包含的以 N1个连续的物理资 源单元为单位的子带数, 从第一物理资源单元集合中依次给各频率分 区分配以 N1个连续的物理资源单元为单位的物理资源单元。
10. 才艮据权利要求 9所述的资源单元映射方法, 其特征在于, 该方法进一 步包括:
根据系统配置信息中各频率分区包含的物理资源单元数目信息 和各频率分区中包含的以 N1个连续的物理资源单元为单位的子带数, 确定需要从第二物理资源单元集合中给各频率分区分配的物理资源单 元个数 , 从第二物理资源单元集合中依次给各频率分区分配物理资源 单元。
PCT/CN2009/072942 2008-11-06 2009-07-28 资源单元映射方法 WO2010051704A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011533517A JP2012507890A (ja) 2008-11-06 2009-07-28 リソースユニットのマッピング方法
US13/127,989 US8711792B2 (en) 2008-11-06 2009-07-28 Method for mapping resource units
EP09824359.5A EP2352267B1 (en) 2008-11-06 2009-07-28 Method for mapping resource cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810225917.6 2008-11-06
CN2008102259176A CN101742668B (zh) 2008-11-06 2008-11-06 一种资源单元映射方法

Publications (1)

Publication Number Publication Date
WO2010051704A1 true WO2010051704A1 (zh) 2010-05-14

Family

ID=42152472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072942 WO2010051704A1 (zh) 2008-11-06 2009-07-28 资源单元映射方法

Country Status (6)

Country Link
US (1) US8711792B2 (zh)
EP (1) EP2352267B1 (zh)
JP (1) JP2012507890A (zh)
KR (1) KR101602494B1 (zh)
CN (1) CN101742668B (zh)
WO (1) WO2010051704A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255841A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 广播控制信道、数据信道资源映射方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730237B (zh) 2008-10-28 2012-06-06 中兴通讯股份有限公司 无线资源映射方法
CN104811946B (zh) * 2014-01-29 2020-03-20 北京三星通信技术研究有限公司 处理干扰信号的方法及设备
CN106162906B (zh) 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
CN114079554A (zh) * 2020-08-21 2022-02-22 深圳市中兴微电子技术有限公司 数据传输方法、装置、通信节点及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005341A (zh) * 2006-01-20 2007-07-25 中兴通讯股份有限公司 一种正交频分复用通信系统的数据复用方法
CN101043492A (zh) * 2006-03-20 2007-09-26 华为技术有限公司 正交频分复用物理信道资源分配方法及装置
CN101043495A (zh) * 2006-03-20 2007-09-26 北京三星通信技术研究有限公司 无线通信系统划分资源块的设备和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049385A2 (en) * 2000-12-15 2002-06-20 Broadstorm Telecommunications, Inc. Multi-carrier communications with adaptive cluster configuration and switching
WO2007082754A1 (en) * 2006-01-18 2007-07-26 Telefonaktiebolaget L M Ericsson (Publ) Localized and distributed transmission
KR100894142B1 (ko) * 2006-02-15 2009-04-22 삼성전자주식회사 직교 주파수 분할 다중 접속 방식 시스템에서 무선리소스를 할당하는 방법 및 장치
CN101064706A (zh) * 2006-04-28 2007-10-31 华为技术有限公司 时频资源的分配方法及其装置和无线通信系统
RU2437217C2 (ru) * 2006-04-28 2011-12-20 Панасоник Корпорейшн Устройство базовой станции радиосвязи и способ радиосвязи, используемые для связи с множеством несущих
JP4786467B2 (ja) * 2006-08-22 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ 送信装置
CN101611594A (zh) * 2006-12-28 2009-12-23 诺基亚公司 长期演进中的资源受限分配
EP1965536A1 (en) * 2007-02-06 2008-09-03 Mitsubishi Electric Information Technology Centre Europe B.V. Method of data transmission in a multi-carrier based transmission system and device implementing the method
KR20090097077A (ko) * 2008-03-10 2009-09-15 삼성전자주식회사 무선통신시스템에서 다이버시티 부채널 구성 장치 및 방법
WO2010047510A2 (en) * 2008-10-20 2010-04-29 Lg Electronics Inc. Method and apparatus for transmitting signal in a wireless communication system
KR20100044696A (ko) * 2008-10-22 2010-04-30 엘지전자 주식회사 무선통신 시스템에서 자원유닛 맵핑방법
WO2010047537A2 (en) * 2008-10-22 2010-04-29 Lg Electronics Inc. Method and apparatus of subchannelization in wireless communication system
CN101730237B (zh) * 2008-10-28 2012-06-06 中兴通讯股份有限公司 无线资源映射方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005341A (zh) * 2006-01-20 2007-07-25 中兴通讯股份有限公司 一种正交频分复用通信系统的数据复用方法
CN101043492A (zh) * 2006-03-20 2007-09-26 华为技术有限公司 正交频分复用物理信道资源分配方法及装置
CN101043495A (zh) * 2006-03-20 2007-09-26 北京三星通信技术研究有限公司 无线通信系统划分资源块的设备和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255841A (zh) * 2010-05-17 2011-11-23 中兴通讯股份有限公司 广播控制信道、数据信道资源映射方法及装置
WO2011143904A1 (zh) * 2010-05-17 2011-11-24 中兴通讯股份有限公司 广播控制信道、数据信道资源映射方法及装置
CN102255841B (zh) * 2010-05-17 2016-03-30 中兴通讯股份有限公司 广播控制信道、数据信道资源映射方法及装置

Also Published As

Publication number Publication date
EP2352267A1 (en) 2011-08-03
CN101742668A (zh) 2010-06-16
KR20110091650A (ko) 2011-08-12
CN101742668B (zh) 2012-01-25
US8711792B2 (en) 2014-04-29
JP2012507890A (ja) 2012-03-29
EP2352267A4 (en) 2014-02-12
US20110211589A1 (en) 2011-09-01
KR101602494B1 (ko) 2016-03-10
EP2352267B1 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
CN116388943B (zh) 资源单元指示方法、装置及存储介质
CN111555999B (zh) 具有灵活子载波间隔和符号持续时间的ofdm的通信设备和方法
CN106455081B (zh) 资源配置方法及资源配置装置
CN104054295B (zh) 用于机器型通信的电信系统和方法
EP2384041B1 (en) System information transmission method
CN111432349B (zh) 一种通信方法及装置
US8848682B2 (en) Method for sub-channelization and resource mapping of wireless resources
KR102047573B1 (ko) 복수의 서브프레임에서 자원을 할당하기 위한 시스템, 방법 및 기지국
JP7126317B2 (ja) 狭帯域用の物理的に分離されたチャンネル、低複雑な受信機
US20110268070A1 (en) Resource Mapping Methods for Control Channels
CN107113829B (zh) 在wlan中根据资源分配设置来分配无线资源的方法和设备
CN107295652B (zh) 信息的传输方法及设备
WO2017167011A1 (zh) 信息的传输方法及相关装置
KR100977454B1 (ko) 광대역 무선통신 시스템에서 하향링크 버스트 할당 장치 및방법
CN105471791A (zh) 循环前缀类型的配置方法及装置
WO2010051704A1 (zh) 资源单元映射方法
US9277593B2 (en) Downlink transmission/reception method and apparatus for mobile communication system
CN106412876B (zh) 一种传输方法、设备、终端和系统
WO2015135780A1 (en) Communication device for lte communication within unused gsm channels
KR20110080162A (ko) 무선 자원 맵핑방법
WO2017016284A1 (zh) 资源配置信息的指示方法及装置
WO2010111859A1 (zh) 资源映射指示信息的配置方法
CN101516136A (zh) 一种大带宽下的控制信道分配及控制信息发送方法
WO2017197558A1 (zh) 多业务复用的信息传输方法、装置以及时分双工通信系统
JP2020188499A (ja) データ送信方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117008439

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011533517

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13127989

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009824359

Country of ref document: EP