WO2017196090A2 - Procédé de communication pour équipement utilisateur dans un système de communication v2x et appareil correspondant - Google Patents

Procédé de communication pour équipement utilisateur dans un système de communication v2x et appareil correspondant Download PDF

Info

Publication number
WO2017196090A2
WO2017196090A2 PCT/KR2017/004867 KR2017004867W WO2017196090A2 WO 2017196090 A2 WO2017196090 A2 WO 2017196090A2 KR 2017004867 W KR2017004867 W KR 2017004867W WO 2017196090 A2 WO2017196090 A2 WO 2017196090A2
Authority
WO
WIPO (PCT)
Prior art keywords
lte
communication
frequency band
signals
network
Prior art date
Application number
PCT/KR2017/004867
Other languages
English (en)
Korean (ko)
Other versions
WO2017196090A3 (fr
Inventor
김영태
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017196090A2 publication Critical patent/WO2017196090A2/fr
Publication of WO2017196090A3 publication Critical patent/WO2017196090A3/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a communication method and a terminal of a terminal in a V2X communication system.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • a communication method of a dedicated Shiort Range Communications (DSRC) -based user equipment (UE) in a vehicle to everything (V2X) communication environment DSRC and LTE Long Term (V2X) Detecting signals repeated in a predetermined unit in a radio resource region on a frequency band in which Evolution Vehicle-to-Everything is enabled; And determining whether the detected signals match a physical pattern defined for the LTE V2X, and determining whether to use the frequency band, wherein the frequency band includes the detected signals being the physical pattern.
  • DSRC Shiort Range Communications
  • UE vehicle to everything
  • V2X LTE Long Term
  • the detected signals may be determined based on whether the measured value according to the correlation with the physical pattern is greater than or equal to a threshold.
  • the frequency band is determined to be used by the LTE V2X Can be.
  • the signals are DMRSs (DeModulation Reference Signals) to which a specific Orthogonal Cover Code (OCC) pattern is applied, and the frequency band is applied to the LTE V2X when detecting signals to which the specific OCC pattern is applied in the predetermined unit. It may be characterized by being used by.
  • the signals may be characterized in that the sidelink synchronization signals (Sidelink Synchronization Signals). Furthermore, the sidelink synchronization signals may be characterized in that two sidelink synchronization signals are repeated in a specific frequency band at one symbol interval.
  • a user equipment (UE) for performing DSRC (Dedicated Shiort Range Communications) based communication in a vehicle to everything (V2X) communication environment includes a radio frequency unit; A processor, wherein the processor detects signals that are repeated in a predetermined unit in a radio resource region on a frequency band in which DSRC and LTE Long Term Evolution Vehicle-to-Everything is enabled; Check whether the signals match the physical pattern defined for the LTE V2X, and determine whether to use the frequency band, the frequency band, if the detected signals match the physical pattern, It may be characterized by being determined to be in use by the LTE V2X.
  • DSRC Dedicated Shiort Range Communications
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • V2X vehicle to everything
  • FIG. 8 is a diagram illustrating a configuration of a wireless device that can be applied to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW / P-GW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • S-GW network node of EPS network performing mobility anchor, packet routing, idle mode packet buffering, triggering MME to page UE, etc. .
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • ProSe communication Means communication through a ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication may mean one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
  • ProSe E-UTRA communication ProSe communication using the ProSe E-UTRA communication path.
  • ProSe-assisted WLAN direct communication ProSe communication using a direct communication path.
  • ProSe communication path As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
  • EPC path (or infrastructure data path): User plane communication path through EPC.
  • ProSe Discovery A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA.
  • ProSe Group Communication One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
  • ProSe UE-to-Network Relay A ProSe-enabled public safety terminal operating as a communication relay between a ProSe-enabled network using E-UTRA and a ProSe-enabled public safety terminal.
  • ProSe UE-to-UE Relay A ProSe-enabled public safety terminal operating as a ProSe communication relay between two or more ProSe-enabled public safety terminals.
  • -Remote UE In the UE-to-Network Relay operation, a ProSe-enabled public safety terminal that is connected to the EPC network through ProSe UE-to-Network Relay without receiving service by E-UTRAN, that is, provides a PDN connection, and is a UE.
  • a ProSe-enabled public safety terminal In -to-UE Relay operation, a ProSe-enabled public safety terminal that communicates with other ProSe-enabled public safety terminals through a ProSe UE-to-UE Relay.
  • ProSe-enabled Network A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled Network may be referred to simply as a network.
  • ProSe-enabled UE a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
  • Proximity Satisfying proximity criteria defined in discovery and communication, respectively.
  • SLP SULP Location Platform
  • SLP An entity that manages Location Service Management and Position Determination.
  • SLP includes a SPL (SUPL Location Center) function and a SPC (SUPL Positioning Center) function.
  • SPL SUPL Location Center
  • SPC SUPL Positioning Center
  • OMA Open Mobile Alliance
  • the application / service layer includes Temporary Mobile Group Identity (TMGI) for each MBMS service, session start and end time, frequencies, MBMS service area identities (MBMS SAIs) information belonging to the MBMS service area. To put in USD to the terminal. See 3GPP TS 23.246 for details.
  • TMGI Temporary Mobile Group Identity
  • MBMS SAIs MBMS service area identities
  • ISR Interle mode Signaling Reduction
  • Mission Critical Push To Talk Group communication service that provides fast setup time, the ability to handle large groups, powerful security, and priority handling.
  • ANDSF Access Network Discovery and Selection Function: Provides a policy that allows a terminal to discover and select available access on an operator basis as a network entity.
  • ISRP Inter-System Routing Policy
  • IFOM IP Flow Mobility
  • MAPCON Multi Access PDN Connectivity
  • NSWO non-seamless WLAN offload
  • IP Flow Mobility (IFOM) rule This rule prioritizes the access technology / access networks that should be used by the UE when it is able to route traffic that matches a particular IP traffic filter on a particular APN or any APN. It's a list. In addition, this rule may specify for which wireless access the traffic that matches a particular IP traffic filter on a particular APN or any APN is restricted.
  • IOM IP Flow Mobility
  • MAPCON Multi Access PDN Connectivity
  • This rule is a list of prioritized access technologies / access networks that should be used by the UE when it is possible to route PDN connections to a particular APN.
  • this rule may specify to which radio access the PDN connection to a particular APN should be restricted.
  • Non-seamless WLAN offload (NSWO) rule This rule specifies which traffic should be bypassed to the WLAN or not.
  • ISMP Inter-System Mobility Policy: A set of rules defined by an operator to influence intersystem mobility decisions performed by a UE. When the UE can route IP traffic on a single radio access interface, the UE can use ISMP to select the most appropriate access technology type or access network at a given time.
  • RAN rule A rule received from the network, also called Radio Access Network (RAN) support information.
  • the RAN rule is also referred to as WLAN interworking supported by the RAN used without ANDSF ISRP / ISMP.
  • the AS (Access Stratum) layer of the UE carries the move-traffic-to-WLAN indication and WLAN identifier together to the upper layer of the UE.
  • the AS (Access Stratum) layer of the UE delivers the move-traffic-from-WLAN indication and the WLAN identifier together to the upper layer of the UE.
  • TS 23.401 For a detailed description of the RAN rule, refer to 3GPP TS 23.401, TS 23.060, TS 23.402, TS 36.300, TS 36.304, TS 36.331, TS 25.304 and TS 25.331.
  • Local Operating Environment Information This is a set of implementation specific parameters which describe the local environment in which the UE is operating.
  • NBIFOM Network-Based IP Flow Mobility
  • NBIFOM UE-initiated NBIFOM in which the UE initiates IP flow mobility.
  • NBIFOM Network-initiated NBIFOM
  • Multi-access PDN connection PDN connection through which traffic can be routed via 3GPP access or WLAN access or both accesses. However, each IP flow is only routed through one access at a time.
  • Routing filter A set of IP header parameter values / ranges of a packet flow used to identify an IP flow for routing purposes.
  • Routing access type Type of access (3GPP access or WLAN access) that routes the set of IP flows of the PDN connection.
  • Routing Rule A set of information that allows the association of routing filters with routing access types.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • Access to an IP service network eg, IMS.
  • FIG. 1 also shows various reference points (eg, S1-U, S1-MME, etc.).
  • reference points eg, S1-U, S1-MME, etc.
  • Table 1 summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handover).
  • This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • the eNodeB routes resources to the gateway, scheduling and sending paging messages, scheduling and sending broadcast channels (BCHs), and uplink and downlink resources while the Radio Resource Control (RRC) connection is active.
  • Functions such as dynamic allocation to UE, configuration and provision for measurement of eNodeB, radio bearer control, radio admission control, and connection mobility control may be performed.
  • paging can be generated, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
  • one subframe is composed of a plurality of OFDM symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of OFDM symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channels to map several logical channels to one transport channel. Perform the role of multiplexing.
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter abbreviated as RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and reconfiguration of radio bearers (abbreviated as RB) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • the UE If an RRC connection is established between the RRC of the UE and the RRC layer of the wireless network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. .
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is performed for the UE to obtain UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • V2X vehicle to everything
  • V2X LTE-based vehicle-to-everything
  • IT Informatin Technology
  • V2V vehicle-to-infrastructure
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • the vehicle continuously broadcasts information about its position, speed, direction, and the like.
  • the surrounding vehicle that receives the broadcasted information recognizes the movement of the vehicles around itself and utilizes it for accident prevention.
  • each vehicle similarly to an individual having a terminal having a form of a smart phone or a smart watch, each vehicle also installs a specific type of terminal (or user equipment (UE)).
  • the UE installed in the vehicle refers to a device that receives the actual communication service in the communication network.
  • the UE installed in the vehicle may be connected to the eNB in the E-UTRAN to receive the communication service.
  • V2X communication there are many things to consider when implementing V2X communication in a vehicle. This is because astronomical costs are required for the installation of traffic safety infrastructure such as V2X base stations. That is, to support V2X communication on all roads where the vehicle can move, more than hundreds of thousands of V2X base stations need to be installed. In addition, since each network node is connected to the Internet or a central control server using a wired network as a base for stable communication with a server, the installation maintenance cost of the wired network is also high.
  • RSU Raad Side Unit
  • An entity supporting V2I communication and means an entity capable of transmitting to and receiving from a UE using a V2I application.
  • the RSU may be implemented in an eNB or a UE (especially a stationary UE).
  • An eNB or UE operating as an RSU collects traffic safety related information (e.g., traffic light information, traffic volume information, etc.) and / or information about surrounding vehicle movements, and transmits the information to other UEs subject to V2I communication. Transmit or receive information from another UE.
  • traffic safety related information e.g., traffic light information, traffic volume information, etc.
  • V2I communication In one type of V2X communication, a UE and an RSU using a V2I application become the subject of communication.
  • V2N communication In one type of V2X communication, a UE and a serving entity using a V2N application become a subject of communication, and the UE and the serving entity communicate with each other through an LTE network entity.
  • V2P communication In one type of V2X communication, two UEs using a V2P application become the subject of communication.
  • V2V communication In one type of V2X communication, two UEs using a V2V application become the subject of communication. What is distinguished from V2P communication is that in V2P communication, any one terminal becomes a terminal of a pedestrian, whereas in V2V communication, either terminal becomes a terminal of a vehicle.
  • Uu interface means an interface between a UE and an eNB defined in LTE / LTE-A. In a relay node, this may mean an interface between the relay node and the UE.
  • Un interface means an interface between a relay node and an eNB.
  • MBSFN Multimedia Broadcast / Multicast Services
  • MBSFN Single Frequency Network
  • PC5 interface means an interface used for direct communication between two UEs, and is an interface used for communication between devices supporting ProSE (Proximity Service).
  • ProSE Proximity Service
  • DSRC Dedicated Shiort Range Communications
  • DSRC dedicated short-range communication
  • LTE long term evolution
  • wireless communication #A a wireless device that performs a specific wireless communication
  • wireless communication #B another wireless communication
  • a wireless device performing wireless communication #A needs to be aware of a specific physical pattern of wireless communication #B.
  • the specific physical pattern may be a kind of repeated signal. Accordingly, the present invention specifically describes a method of using a repetitive signal of another type of wireless communication in order to measure the frequency band use degree of another type of wireless communication using the same frequency band to perform a specific type of wireless communication. .
  • the wireless device for a specific wireless communication determines whether a signal of a frequency band exists at a time or frequency interval according to a specific physical pattern, and then The degree to which the wireless communication (wireless communication #B) uses the corresponding frequency band can be measured. For example, when a correlation between signals existing at specific time or frequency intervals is measured and the measured value is greater than or equal to a predetermined threshold, the wireless device to perform wireless communication #A may use wireless communication # It may be determined that a signal related to B uses resources of a corresponding frequency band.
  • LTE V2X LTE vehicle-to-everything
  • ITS Intelligent Transport Systems
  • DMOS DeModulation
  • Reference Signal can be applied to the present invention.
  • DMRS is transmitted in one subframe using four symbols, and a temporal interval is constant.
  • a DMRS using four symbols may have a physical pattern in which DMRSs of each symbol are repeated in one subframe.
  • DMRS of LTE V2X is divided into base sequence, cyclic shift (CS), and orthogonal cover code (OCC), and each symbol uses the same base sequence and CS.
  • OCC orthogonal cover code
  • a wireless device using DSRC knows a fixed OCC pattern even without knowing a specific LTE V2X sequence, it is determined that a specific pattern is repeated by determining that a signal is multiplied by 1 or -1 at specific time intervals. It can make you aware.
  • DSRC is calculated by repeating the signal according to the OCC pattern, using the signal's time correlation (that is, the sum of the product of the signal a and the conjugate signal b after a specific time interval). The wireless device to be used can determine whether the LTE V2X uses the corresponding resource.
  • the LTE V2X DMRS uses the fixed OCC ⁇ 1, 1, 1, 1 ⁇ ,
  • the pattern in which the OCC value (for example, ⁇ 1, -1, 1, -1 ⁇ ) changes for each DMRS symbol can be fixedly used.
  • the DSRC can perform the operation of judging whether LTE V2X is used without knowing the existence of OCC itself, and each ⁇ 1, -1, 1, -1 ⁇ Using a pattern in which the OCC value changes for each DMRS symbol correlates the signal only at specific time intervals because it knows that the DMRS signal placed at a specific time interval is minus at a specific time interval, even though it is not known as the number of DMRS signals. (correlaiton) may be measured. However, if a pattern such as ⁇ 1, -1, -1, 1 ⁇ is used, it becomes unclear whether or not a minus relation exists at a specific time interval, which may result in complex implementation.
  • DMRS mapping in the form of a comb may be used for each DMRS in LTE V2X.
  • several signals are repeated in one subframe, and the time interval is constant. Since the signal is repeated regardless of the basic sequence of the DMRS sequence, CS, and OCC, it is possible to determine whether the resource of the LTE V2X is used even by correlation of the signal in which the DSRC is repeated.
  • data of LTE V2X may be transmitted in a comb form.
  • the time interval is constant, and more patterns than DMRS appear.
  • DSRC can also determine whether to use the resource of the LTE V2X by using the correlation (correlation) of the repeated signal.
  • SSSS Secondary Sidelink Synchronization Signal
  • PSSS Primary Sidelink Synchronization Signal
  • DMRS Downlink Synchronization Signal
  • SLSS SideLink Synchronization Signal
  • DMRS Downlink Synchronization Signal
  • SLSS SideLink Synchronization Signal
  • DMRS since four DMRSs are repeated at regular time intervals in one subframe, there are one or more pairs of repeated DMRS sequences. Accordingly, a wireless device using DSRC can add more correlations of repeated pairs of signals to enable more reliable measurement.
  • different thresholds may be set depending on how many pairs of signals (DMRS or SSSS or PSSS or data or a combination thereof) are to be correlated.
  • the wireless device that intends to use the DSRC determines that the LTE V2X is transmitting using a resource of a specific frequency band. Furthermore, this threshold can be predefined for a particular signal.
  • FIG. 8 is a diagram illustrating a configuration of a wireless device according to an exemplary embodiment.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. Alternatively, the transceiver 110 may be implemented by being separated into a transmitter and a receiver.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the transceiver 210 may be implemented by being separated into a transmitter and a receiver.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the V2X communication method as described above can be applied to various wireless communication systems including not only 3GPP systems but also IEEE 802.16x and 802.11x systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

La présente invention concerne un procédé et un appareil de communication pour un équipement utilisateur (UE) basé sur une communications à courte portée spécialisée (DSRC) dans un environnement de communication véhicule-vers-tout (V2X). Spécifiquement, la présente invention comprend les étapes consistant à : détecter des signaux qui sont répétés dans des unités prédéfinies dans une région de ressource radio sur une bande de fréquence conçue pour une DSRC disponible et une évolution à long terme (LTE) V2X; et vérifier si les signaux détectés correspondent à un modèle physique défini pour le système LTE V2X, de manière à déterminer si la bande de fréquence est utilisée, dans lequel, lorsque les signaux détectés correspondent au modèle physique, on détermine que la bande de fréquence est utilisée par le système LTE V2X.
PCT/KR2017/004867 2016-05-11 2017-05-11 Procédé de communication pour équipement utilisateur dans un système de communication v2x et appareil correspondant WO2017196090A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662335059P 2016-05-11 2016-05-11
US62/335,059 2016-05-11

Publications (2)

Publication Number Publication Date
WO2017196090A2 true WO2017196090A2 (fr) 2017-11-16
WO2017196090A3 WO2017196090A3 (fr) 2018-08-09

Family

ID=60267232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004867 WO2017196090A2 (fr) 2016-05-11 2017-05-11 Procédé de communication pour équipement utilisateur dans un système de communication v2x et appareil correspondant

Country Status (1)

Country Link
WO (1) WO2017196090A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756545A (zh) * 2018-01-23 2019-05-14 启迪云控(北京)科技有限公司 用于智能网联云控系统中的智能网联车载系统
WO2019235868A1 (fr) * 2018-06-08 2019-12-12 주식회사 아이티엘 Procédé d'indication d'informations relatives à un dmrs de v2x dans un système nr et dispositif correspondant
CN110599770A (zh) * 2019-09-16 2019-12-20 江苏天安智联科技股份有限公司 一种基于v2x技术的智能驾驶辅助系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098931A (ja) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd 車車間通信方法及び車載用通信装置
US8274405B2 (en) * 2008-09-03 2012-09-25 GM Global Technology Operations LLC System and method for device management on a dedicated short-range communication network
US20140378054A1 (en) * 2013-06-19 2014-12-25 Qualcomm Incorporated Opportunistic use of the dsrc spectrum
WO2015130337A1 (fr) * 2014-02-28 2015-09-03 Shahrnaz Azizi Station d'utilisateur supportant une sélection de canal dynamique et procédé pour fonctionnement sur bande dsrc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756545A (zh) * 2018-01-23 2019-05-14 启迪云控(北京)科技有限公司 用于智能网联云控系统中的智能网联车载系统
WO2019235868A1 (fr) * 2018-06-08 2019-12-12 주식회사 아이티엘 Procédé d'indication d'informations relatives à un dmrs de v2x dans un système nr et dispositif correspondant
CN110599770A (zh) * 2019-09-16 2019-12-20 江苏天安智联科技股份有限公司 一种基于v2x技术的智能驾驶辅助系统

Also Published As

Publication number Publication date
WO2017196090A3 (fr) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2016144147A1 (fr) Procédé de communication d'équipement d'utilisateur installé dans un véhicule dans un système de communication v2x et équipement d'utilisateur
WO2016200184A1 (fr) Procédé de communication destiné à un équipement utilisateur dans un système de communication v2x, et équipement utilisateur
WO2016190670A1 (fr) Procédé et terminal de transmission de trafic de données dans un système de communication sans fil
WO2017030348A1 (fr) Procédé d'émission et de réception de message véhicule à tout (v2x) dans un système de communication sans fil, et appareil associé
WO2016024773A1 (fr) Procédé et dispositif de sélection de relais dans un système de communication sans fil
WO2017003230A1 (fr) Terminal et son procédé de communication v2x dans un système de communication v2x
WO2017164641A2 (fr) Procédé et équipement d'utilisateur pour transmettre une unité de données, et procédé et équipement d'utilisateur pour recevoir une unité de données
WO2017007104A1 (fr) Procédé de communication d'un terminal dans un système de communication v2x, et terminal
WO2017126948A1 (fr) Procédé d'émission et de réception de message véhicule à tout (v2x) dans un réseau local au sein d'un système de communication sans fil et appareil associé
WO2017171427A1 (fr) Procédé de transmission d'informations système et station de base, et procédé de réception d'informations système et équipement d'utilisateur
WO2016148399A1 (fr) Procédé de communication pour un terminal dans un système de communication v2x et terminal
WO2017052335A1 (fr) Procédé de réalisation d'une communication directe de dispositif à dispositif dans un système de communication sans fil et dispositif associé
WO2017069430A1 (fr) Procédé pour une communication directe entre des terminaux dans un système de communication sans fil et appareil pour le procédé
WO2016144009A1 (fr) Procédé et terminal de régulation de trafic réseau dans un système de communication sans fil
WO2017191973A1 (fr) Procédé pour réaliser un enregistrement de localisation par l'intermédiaire d'un ue à distance dans un système de communication sans fil, et appareil associé
WO2017026872A1 (fr) Procédé de transmission et de réception de signal par ue à distance dans un système de communication sans fil et dispositif associé
WO2015174702A1 (fr) Procédé et appareil pour une émission et une réception de signal de hss/mme dans un système de communication sans fil
WO2016186414A1 (fr) Procédé de fourniture d'un service de diffusion dans un système de communications sans fil, et appareil associé
WO2017086618A1 (fr) Procédé de communication directe de dispositif à dispositif dans un système de communication sans fil et dispositif correspondant
WO2016126092A1 (fr) Procédé de sélection du réseau mobile terrestre public par un terminal dans un système de communication sans fil et appareil associé
WO2017171514A1 (fr) Procédé de gestion de connexion d'ue pour l'émission et la réception d'un message v2x dans un système de communication sans fil, et appareil associé
WO2016153327A2 (fr) Procédé de réception et de transmission d'un signal lié à un psm sans tau dans un système de communication sans fil, et appareil associé
WO2016163635A1 (fr) Procédé de sélection d'un plmn d'un terminal dans un système de communication sans fil, et appareil associé
WO2018008922A2 (fr) Procédé permettant de prendre en charge une signalisation nas par une station de base dans un système de communication sans fil, et appareil s'y rapportant
WO2016056815A1 (fr) Procédé d'émission/réception d'un signal relatif à une mobilité nbifom dans un système de communication sans fil, et appareil associé

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796390

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17796390

Country of ref document: EP

Kind code of ref document: A2