WO2017195752A1 - Photocurable resin composition, photocurable coating, and cured product - Google Patents

Photocurable resin composition, photocurable coating, and cured product Download PDF

Info

Publication number
WO2017195752A1
WO2017195752A1 PCT/JP2017/017463 JP2017017463W WO2017195752A1 WO 2017195752 A1 WO2017195752 A1 WO 2017195752A1 JP 2017017463 W JP2017017463 W JP 2017017463W WO 2017195752 A1 WO2017195752 A1 WO 2017195752A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
acrylate
photocurable resin
glass substrate
Prior art date
Application number
PCT/JP2017/017463
Other languages
French (fr)
Japanese (ja)
Inventor
高木 俊輔
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201780025753.XA priority Critical patent/CN109071328A/en
Priority to KR1020187031186A priority patent/KR102420095B1/en
Priority to JP2018517018A priority patent/JP7001051B2/en
Publication of WO2017195752A1 publication Critical patent/WO2017195752A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present disclosure relates to a photocurable resin composition, a photocurable paint, a cured product, a glass substrate, a display device, a portable terminal, a method for producing a cured product, and a method for producing a protected glass substrate.
  • cover glass In mobile terminals such as smartphones and tablets, screens are becoming larger and thinner for lightening. Accordingly, the cover glass used is also becoming thinner. Therefore, high-strength chemically strengthened glass is widely used for the cover glass.
  • the cover glass may crack at the end due to contact or impact during the manufacturing process. In chemically strengthened glass, the strength tends to decrease significantly due to cracks.
  • the present disclosure provides a photocurable resin composition, a photocurable paint, and a cured product having an excellent protective effect.
  • the present disclosure provides a glass substrate having excellent durability, a display element including the glass substrate, and a portable terminal. Furthermore, this indication provides the manufacturing method for manufacturing the said hardened
  • the present invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
  • One embodiment relates to a photocurable resin composition that is used to protect at least a part of an edge of a glass substrate and has a viscosity of 0.4 to 20 Pa ⁇ s.
  • the photocurable resin composition may contain a colorant.
  • Another embodiment relates to a cured product obtained by curing the photocurable resin composition or the photocurable paint.
  • Another embodiment relates to a glass substrate in which at least a part of the end is protected by the cured product.
  • the photocurable resin composition or the photocurable paint is applied to at least a part of an end portion of a glass substrate to form a coating film
  • the present invention relates to a method for producing a protected glass substrate, which includes a step of curing by irradiation to form a protective film.
  • a photocurable resin composition, a photocurable paint, and a cured product having an excellent protective effect are provided.
  • the glass substrate excellent in durability, a display element provided with this, and a portable terminal are provided.
  • cured material and the said glass base material efficiently is provided.
  • FIG. 1A is a schematic plan view illustrating an example of a glass substrate according to an embodiment
  • FIG. 1B is a schematic cross-sectional view illustrating an example of a glass substrate according to an embodiment
  • FIG. 2A is a schematic plan view illustrating an example of a glass substrate according to an embodiment in which a cured product is provided on a side surface
  • FIGS. 2B and 2C are diagrams in which the cured product is provided on a side surface.
  • It is a cross-sectional schematic diagram which shows an example of the glass base material of one embodiment.
  • the present invention is not limited to the following embodiments.
  • the inventor has found that with the reduction in thickness of the glass substrate, the portion where the protective film is provided has become narrower, making it difficult to form a protective film capable of exhibiting a sufficient protective effect, and specific photocuring properties. It has been found that by using the resin composition, a protective film having an excellent protective effect can be formed even in a narrow portion, and the present invention has been completed.
  • the photocurable resin composition is a composition that is used to protect at least a part of the edge of the glass substrate and has a viscosity of 0.4 to 20 Pa ⁇ s.
  • This photocurable resin composition can be preferably used as a material for protecting the glass substrate because it can be easily applied to the end of the glass substrate.
  • a protective film is formed by apply
  • the degree varies depending on the coating method and / or the curing method, in general, in any method, there is a time difference between the end point of the coating step and the start point of the curing step. That is, time elapses from the end of the coating process to the start of the curing process.
  • the shape of the applied liquid photo-curable resin composition cannot be maintained until it is cured, and the protective film may not be formed into a shape that exhibits a sufficient protective effect. Thought that would occur. Therefore, according to one embodiment, the photocurable resin composition is provided as a composition that can be formed in a favorable shape even in a narrow portion such as an end portion of a thinned glass substrate. Is.
  • the photocurable resin composition if the photocurable resin composition has a low viscosity, the photocurable resin composition will flow out between the coating process and the curing process, and the cured product (protective film) cannot be formed in a good shape. , Protection performance will be inferior.
  • the coating process if the photocurable resin composition has a high viscosity, coating becomes difficult, and the protective film cannot be obtained in a good shape.
  • the photocurable resin composition it is possible to form a protective film having an excellent protective effect by setting the liquid viscosity to a specific range. Moreover, workability
  • Examples of the method for applying the photocurable resin composition include a potting method, a dipping method, a spray method, and a roll coating method. You may use dispensers, such as a syringe-type dispenser and a jet-type dispenser, for application
  • ultraviolet rays are preferably used.
  • the light source used is not particularly limited, and examples thereof include LED lamps, mercury lamps (low pressure, high pressure, ultrahigh pressure, etc.), metal halide lamps, excimer lamps, xenon lamps, etc., preferably LED lamps, mercury lamps, Metal halide lamps and the like.
  • This photocurable resin composition has an excellent protective effect in various coating methods and curing methods.
  • the viscosity of the photocurable resin composition is 0.4 to 20 Pa ⁇ s. If it is less than 0.4 Pa, the photocurable resin composition flows out after coating, and the photocurable resin composition cannot maintain a good shape. Moreover, the film thickness of a protective film becomes inadequate. If it exceeds 20 Pa ⁇ s, coating becomes difficult. In addition, pulling, clogging, and the like occur, and workability decreases. From the viewpoint of obtaining a good protective effect, the viscosity of the photocurable resin composition is preferably 0.7 Pa ⁇ s or more, more preferably 1.0 Pa ⁇ s or more, and further preferably 1.3 Pa ⁇ s. Above, especially preferably 1.5 Pa ⁇ s or more.
  • the viscosity of the photocurable resin composition is preferably 10 Pa ⁇ s or less, more preferably 5 Pa ⁇ s or less, and further preferably 3 Pa ⁇ s or less, from the viewpoint of obtaining a good protective effect. Particularly preferably, it is 2.5 Pa ⁇ s or less.
  • the viscosity of the photocurable resin composition can be measured using a single cylindrical rotational viscometer (B-type viscometer).
  • B-type viscometer An example of a single cylindrical rotational viscometer is “TVB-10 type viscometer” manufactured by Toki Sangyo Co., Ltd.
  • the photocurable resin composition preferably contains (A) a monomer having a polymerizable unsaturated group and (B) an acrylic compound.
  • the photocurable resin composition may contain optional components such as (C) a phosphoric acid compound, (D) a photopolymerization initiator, and / or (E) a colorant.
  • the photocurable resin composition may contain only one kind of each of these components, or two or more kinds thereof.
  • a photocurable resin composition may contain a solvent, it does not need to contain a solvent from a viewpoint of obtaining a favorable protective effect.
  • the viscosity of the photocurable resin composition can be adjusted, for example, by changing the content of each component.
  • the content of the monomer (A) should be reduced and the content of the acrylic compound (B) should be increased.
  • the content of the (B) acrylic compound may be reduced and the content of the (A) monomer may be increased.
  • A) As the polymerizable unsaturated group possessed by the monomer for example, vinyl group (ethenyl group), ethynyl group, allyl group, (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group And groups having a carbon-carbon double bond such as
  • the monomer (A) preferably has a (meth) acryloyloxy group or a (meth) acryloylamino group.
  • the monomer has at least one polymerizable unsaturated group in the molecule.
  • Examples of the (A) monomer include a compound having a (meth) acryloyl group, a compound having a (meth) acryloyloxy group, a compound having a (meth) acryloylamino group, and the like. These compounds are preferably used from the viewpoint of enhancing the protective effect.
  • the monomer includes “a compound having a (meth) acryloyl group”, it means that the monomer includes at least one of a compound having an acryloyl group and a compound having a methacryloyl group.
  • (meth) it means that a compound having a (meth) acryloyloxy group and a compound having a (meth) acryloylamino group also include at least one of them.
  • Examples of (A) monomers include (A-1) (meth) acrylic acid ester monomers, (A-2) (meth) acrylamide monomers, and the like.
  • (A) monomer a compound different from (B) acrylic compound and (C) phosphoric acid compound described later is used. Regarding the term “(meth)”, it is meant that (B) the acrylic compound and (C) the phosphoric acid compound also contain at least one.
  • Examples of the monofunctional (meth) acrylic acid ester monomer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, Butoxyethyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate , Undecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate,
  • bifunctional (meth) acrylic acid ester monomer examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate.
  • trifunctional or higher functional (meth) acrylic acid ester monomers examples include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, Ethoxylated propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythrito
  • A-1) Monofunctional (meth) acrylic acid ester-based monomer from the viewpoints of compatibility with other components such as acrylic compounds and colorants, and hardness characteristics during curing Monomers, more preferably monofunctional alicyclic (meth) acrylates, and even more preferably isobornyl (meth) acrylate are used.
  • (Meth) acrylamide monomers include (meth) acrylamide, methyl (meth) acrylamide, dimethyl (meth) acrylamide, ethyl (meth) acrylamide, diethyl (meth) acrylamide, n-propyl (meth) acrylamide, di- n-propyl (meth) acrylamide, isopropyl (meth) acrylamide, diisopropyl (meth) acrylamide, n-butyl (meth) acrylamide, di-n-butyl (meth) acrylamide, isobutyl (meth) acrylamide, diisobutyl (meth) acrylamide, tert-butyl (meth) acrylamide, di-tert-butyl (meth) acrylamide, n-pentyl (meth) acrylamide, di-n-pentyl (meth) acrylamide, n-hexyl (meth) actyl Rua
  • (meth) acryloylmorpholine is preferably used from the viewpoints of compatibility with other components such as an acrylic compound and a colorant, and hardness characteristics upon curing.
  • (A) Monomers can be used singly or in combination of two or more. From the viewpoints of compatibility with other components such as an acrylic compound and a colorant, and hardness characteristics during curing, the monomer (A) is preferably used in combination of two or more types (A-1 ) Monomer and (A-2) monomer are more preferably used in combination. (A-1) Monofunctional (meth) acrylic acid ester monomer and (A-2) It is more preferable to use in combination with a monomer.
  • the content of the monomer is a photocurable resin from the viewpoints of viscosity characteristics, compatibility with other components such as acrylic compounds and colorants, handling properties, productivity, and hardness characteristics during curing. 20 mass% or more is preferable on the basis of the total mass of the composition, 25 mass% or more is more preferable, and 30 mass% or more is still more preferable. Further, from the same viewpoint, the content of the monomer (A) is preferably 50% by mass or less, more preferably 45% by mass or less, and more preferably 40% by mass or less, based on the total mass of the photocurable resin composition. Is more preferable.
  • the ratio (mass ratio) of (A-2) monomer to (A-1) monomer is preferably It is 0.02 or more, more preferably 0.05 or more, still more preferably 0.08 or more.
  • the ratio (mass ratio) of the monomer (A-2) to the monomer (A-1) is preferably 0.3 or less, more preferably 0.2 or less, and still more preferably 0.15 or less. is there.
  • the acrylic compound is a compound having at least one (meth) acryloyl group or (meth) acryloyloxy group.
  • (meth) acrylate compounds having a urethane bond can be exemplified.
  • As the acrylic compound a compound different from the phosphoric acid compound (C) described later is used.
  • a (meth) acrylate compound having a urethane bond is preferably used from the viewpoint of enhancing the protective effect.
  • Examples of (meth) acrylate compounds having a urethane bond include (meth) acrylic acid monomers having an OH group at the ⁇ -position, isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexa.
  • Reaction products with diisocyanate compounds such as methylene diisocyanate, tris ((meth) acryloxytetraethylene glycol isocyanate) hexamethylene isocyanurate, EO-modified urethane di (meth) acrylate, PO-modified urethane di (meth) acrylate, EO and PO-modified urethane di ( Examples include meth) acrylate and carboxyl group-containing urethane (meth) acrylate.
  • a urethane oligomer is also preferably used as the (meth) acrylate compound having a urethane bond.
  • the weight average molecular weight of the acrylic compound is preferably 800 from the viewpoints of viscosity characteristics, compatibility with other components such as monomers and colorants, handling properties, productivity, and hardness characteristics upon curing. Above, more preferably 2,000 or more, still more preferably 4,000 or more.
  • the weight average molecular weight of the (B) acrylic compound is preferably 10,000 or less, more preferably 9,000 or less, and still more preferably 7,000 or less, from the same viewpoint.
  • the weight average molecular weight is measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene is used.
  • Examples of commercially available products include “UA-306H”, “UA-306T”, “UA-306I” manufactured by Kyoeisha Chemical Co., Ltd .; “Art Resin UN-904”, “Art Resin UN-6060S” manufactured by Negami Kogyo Co., Ltd. "Viscoat # 700HV” manufactured by Osaka Organic Chemical Industry Co., Ltd .; “KAYARAD DPHA-40H”, “KAYARAD UX-5000” manufactured by Nippon Kayaku Co., Ltd., and the like.
  • the content of the acrylic compound is a photocurable resin from the viewpoints of viscosity characteristics, compatibility with other components such as monomers and colorants, handling properties, productivity, and hardness characteristics during curing. 35 mass% or more is preferable on the basis of the total mass of a composition, 40 mass% or more is more preferable, and 45 mass% or more is still more preferable. Further, from the same viewpoint, the content of the (B) acrylic compound is preferably 70% by mass or less, more preferably 65% by mass or less, and more preferably 60% by mass or less, based on the total mass of the photocurable resin composition. Is more preferable.
  • the phosphoric acid compound is a compound having at least one selected from a phosphoric acid group and a phosphoric ester group and at least one polymerizable unsaturated group.
  • the polymerizable unsaturated group possessed by the phosphoric acid compound for example, vinyl group (ethenyl group), ethynyl group, allyl group, (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group And groups having a carbon-carbon double bond such as (C)
  • the phosphoric acid compound preferably has a (meth) acryloyloxy group.
  • the phosphoric acid compound is preferably ethylene oxide-modified phosphoric acid di (meth) acrylate and / or propylene oxide-modified phosphoric acid di (meth) acrylate, and is preferably ethylene oxide-modified phosphoric acid di (meth) acrylate. Is more preferable.
  • Examples of phosphoric acid compounds include acid phosphooxyethyl (meth) acrylate, acid phosphooxypropyl (meth) acrylate, acid phosphooxybutyl (meth) acrylate, acid phosphooxypentyl (meth) acrylate, and acid phosphooxypoly Examples include compounds represented by the following formula (1) such as oxyethylene glycol monomethacrylate and acid phosphooxypolyoxypropylene glycol monomethacrylate.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a linear, branched or cyclic alkyl group
  • n represents a number of 1 or more
  • m represents a number of 1 to 3.
  • the number of carbon atoms of the alkyl group is preferably 1 to 12, more preferably 1 to 9, and still more preferably 1 to 6.
  • n is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 to 3.
  • m is preferably 1 to 2.
  • Examples of (C) phosphoric acid compounds include 3-chloro-2-acid phosphooxypropyl (meth) acrylate, phenyl (2- (meth) acryloyloxyethyl) phosphate, diphenyl (2- (meth) acryloyloxyethyl). ) Phosphate, (meth) acryloyloxy-2-hydroxypropyl acid phosphate, (meth) acryloyloxy-3-hydroxypropyl acid phosphate, (meth) acryloyloxy-3-chloro-2-hydroxypropyl acid phosphate, allyl alcohol acid phosphate Etc.
  • the phosphoric acid compound may be a salt such as a monomethanolamine salt or a monoethanolamine salt.
  • the phosphoric acid compound is preferably a compound represented by formula (1), more preferably, in formula (1), R 1 is a methyl group, R 2 is a dimethylene group or a pentamethylene group, and n Is a compound in which m is 1-2, and more preferably, in formula (1), R 1 is a methyl group, R 2 is a dimethylene group, n is 1-2, Is a compound in which is 1-2.
  • (C) Phosphoric acid compounds can be used singly or in combination of two or more.
  • the content of (C) phosphoric acid compound is 0.01 with respect to a total of 100 parts by mass of (A) monomer and (B) acrylic compound from the viewpoint of obtaining good adhesion to the glass substrate. More than mass part is preferable, 0.1 mass part or more is more preferable, and 0.3 mass part or more is still more preferable. Moreover, content of (C) phosphoric acid compound is 10 with respect to a total of 100 mass parts of (A) monomer and (B) acrylic compound from a viewpoint of maintaining stability of a photocurable resin composition. It is preferably no greater than 5 parts by mass, more preferably no greater than 5 parts by mass, and even more preferably no greater than 3 parts by mass.
  • Photopolymerization initiator (D) What is called a sensitizer is also contained in a photoinitiator.
  • the photopolymerization initiator include acridine; an acridine compound having at least one acridinyl group in the molecule; benzophenone; N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler's ketone), etc.
  • 2,4,5-triarylimidazole dimer N-phenylglycine; N-phenylglycine derivative, coumarin compound; onium salt and the like.
  • An aromatic ketone is preferably used from the viewpoint of the balance between the deep curability and the surface curability of the resin composition.
  • photopolymerization initiator can be used alone, or two or more types can be used in combination.
  • the content of the photopolymerization initiator is a total of (A) monomer and (B) acrylic compound from the viewpoint of sufficiently curing the surface of the photocurable resin composition and suppressing tackiness of the cured product. 0.1 mass part or more is preferable with respect to 100 mass parts, 1 mass part or more is more preferable, and 5 mass parts or more is still more preferable.
  • the content of the (D) photopolymerization initiator is based on a total of 100 parts by mass of the (A) monomer and the (B) acrylic compound from the viewpoint of obtaining sufficient curability and adhesion to the deep part. 20 parts by mass or less is preferable, 15 parts by mass or less is more preferable, and 12 parts by mass or less is still more preferable.
  • (E) Colorant a coloring agent with small absorption with respect to the light used for hardening is used.
  • a dye and a pigment are mentioned as a coloring agent, From a viewpoint of obtaining a uniform photocurable resin composition, Preferably a dye is used, More preferably, (A) Dye which melt
  • the dye is dissolved in the monomer (A).
  • a 50 mL beaker 10 mL of monomer (A) (temperature: 25 ° C.) is added, 10 mg of dye (solid mass) is added, and the mixture is stirred for 1 minute using a glass rod.
  • solid matter of the dye cannot be visually confirmed after stirring, it is determined that the dye is dissolved in the monomer (A).
  • the transmittance of the peak wavelength of light irradiated for curing is the average transmittance of visible light (hereinafter referred to as “lighting transmittance”).
  • light transmittance is the average transmittance of visible light (hereinafter referred to as “lighting transmittance”).
  • visible light transmittance More preferably, it is 20% or more, still more preferably 30% or more, and particularly preferably 40% or more.
  • An upper limit is not specifically limited, The one where the difference of both is large is preferable. When it is 10% or more, both the protection of the end portion and the light shielding property can be achieved in a good state.
  • (E) a colorant having an irradiation light transmittance of 60% or more and a visible light transmittance of 50% or less is used as the colorant.
  • the irradiation light transmittance is more preferably 65% or more, and further preferably 70% or more.
  • the visible light transmittance is more preferably 45% or less, still more preferably 40% or less.
  • the peak wavelength of light irradiated for curing refers to the wavelength at which the intensity is maximum for the light irradiated to the photocurable resin composition during curing.
  • the peak wavelength is, for example, 365 nm, 385 nm, or the like.
  • (E) as a colorant a colorant having a light transmittance of 365 nm higher than that of visible light by 10% or more is used. More preferably, it is 20% or more, still more preferably 30% or more, and particularly preferably 40% or more. An upper limit is not specifically limited, The one where the difference of both is large is preferable. When it is 10% or more, both the protection of the end portion and the light shielding property can be achieved in a good state.
  • (E) a colorant having a light transmittance of 60% or more and a visible light transmittance of 50% or less is used as the colorant.
  • the transmittance of light having a wavelength of 365 nm is more preferably 65% or more, and still more preferably 70% or more.
  • the visible light transmittance is more preferably 45% or less, still more preferably 40% or less.
  • the irradiation light transmittance of the colorant can be measured by the following method.
  • the transmittance at the peak wavelength of light irradiated for curing is measured with a visible ultraviolet spectrophotometer (for example, “UV-2400PC” manufactured by Shimadzu Corporation). The resolution wavelength is 1 nm and the measurement is performed in the range of 300 to 780 nm.
  • the transmittance of the colorant having a wavelength of 365 nm can also be measured by the same method as the irradiation light transmittance.
  • the average visible light transmittance refers to the average transmittance of light having a wavelength of 400 to 700 nm.
  • the average visible light transmittance can be measured by the following method. Using the colorant solution prepared in the same manner as described above, the transmittance is measured every 1 nm in the wavelength range of 400 to 700 nm with a spectrocolorimeter (for example, “CM-3700A” manufactured by Konica Minolta, Inc.). The average value of the obtained values is obtained and used as the average transmittance.
  • a spectrocolorimeter for example, “CM-3700A” manufactured by Konica Minolta, Inc.
  • Examples of the colorant include phthalocyanine blue, phthalocyanine green, iodin green, diazo yellow, aniline black, and perylene black.
  • Examples of commercially available products include “elixa Black850” manufactured by Orient Chemical Industries, Ltd. “Elexa Black850” has a transmittance of light of wavelength 365 nm higher than the average transmittance of visible light by 10% or more, a transmittance of light of wavelength 365 nm of 60% or more, and a visible light transmittance of The colorant is 50% or less.
  • the colorant can be used singly or in combination of two or more.
  • the content of the colorant is 0.1 parts by mass or more with respect to 100 parts by mass in total of the (A) monomer and the (B) acrylic compound. Preferably, 0.3 mass part or more is more preferable, and 0.5 mass part or more is still more preferable.
  • the content of (E) the colorant is the sum of (A) the monomer and (B) the acrylic compound from the viewpoint of curability of the photocurable resin composition, particularly from the viewpoint of sufficiently curing the deep part. 10 mass parts or less are preferable with respect to 100 mass parts, 5 mass parts or less are more preferable, and 3 mass parts or less are still more preferable.
  • the photocurable resin composition may contain various additives as necessary.
  • additives include adhesion improvers such as coupling agents, polymerization inhibitors, light stabilizers, antifoaming agents, fillers, antioxidants, chain transfer agents, thixotropy imparting agents, plasticizers, flame retardants, and mold release agents. Agents, surfactants, lubricants, antistatic agents and the like.
  • adhesion improvers such as coupling agents, polymerization inhibitors, light stabilizers, antifoaming agents, fillers, antioxidants, chain transfer agents, thixotropy imparting agents, plasticizers, flame retardants, and mold release agents.
  • Agents, surfactants, lubricants, antistatic agents and the like can be used as these additives.
  • An additive can be used individually by 1 type or in combination of 2 or more types.
  • titanate coupling agents for example, titanate coupling agents, silane coupling agents and the like can be used.
  • a titanate coupling agent a titanate coupling agent having an alkylate group having at least 1 to 60 carbon atoms, a titanate coupling agent having an alkyl phosphite group, a titanate coupling agent having an alkyl phosphate group, an alkyl pyrone Examples thereof include a titanate coupling agent having a phosphate group.
  • Silane coupling agents include amino silane coupling agents, ureido silane coupling agents, vinyl silane coupling agents, methacrylic silane coupling agents, epoxy silane coupling agents, mercapto silane coupling agents, and isocyanates. And silane coupling agents.
  • polymerization inhibitor examples include quinones such as hydroquinone, hydroquinone monomethyl ether, benzoquinone, p-tert-butylcatechol, 2,6-di-tert-butyl-4-methylphenol, and pyrogallol.
  • the antifoaming agent examples include silicone oil, fluorine oil, and polycarboxylic acid polymer.
  • the photocurable resin composition comprises (A) a monomer and (B) an acrylic compound, and optionally (C) a phosphoric acid compound, (D) a photopolymerization initiator, (E) It can manufacture by mixing a coloring agent and / or an additive by stirring. Stirring may be performed by a known method using a stirring bar, a stirring blade, or the like.
  • the temperature at the time of stirring is preferably a temperature at which (E) the colorant can be sufficiently dissolved, and can be, for example, 60 to 90 ° C.
  • the photocurable coating contains at least (A) a monomer and (B) an acrylic compound, and (C) a phosphoric acid compound, (D) a photopolymerization initiator, (E) a colorant, and An additive may be contained.
  • the photocurable coating material may contain a solvent, but may not contain a solvent from the viewpoint of obtaining a good protective effect.
  • the photocurable paint has a light shielding performance, it can be preferably used as a light shielding paint.
  • One embodiment relates to a cured product obtained by curing the cured product of the photocurable resin composition or the photocurable paint.
  • the cured product is obtained by curing the photocurable resin composition or the photocurable paint.
  • cured material is provided in at least one part of the edge part of a glass base material, and can be used as a protective film which protects a glass base material.
  • the cured product can be obtained by a production method including a step of curing the photocurable resin composition or the photocurable paint by light irradiation.
  • the light source described above can be used for light irradiation.
  • ultraviolet rays are preferably used.
  • the wavelength of the ultraviolet light is not particularly limited, but is, for example, 365 nm.
  • Glass base material and manufacturing method thereof One embodiment relates to a glass substrate in which at least a part of the end is protected by the cured product.
  • the material of the glass substrate is not particularly limited. Examples of the glass include alkali-free glass, low alkali glass, alkali glass, and quartz glass. It may be a glass substrate chemically strengthened by an ion exchange method.
  • the size and thickness of the glass substrate are not particularly limited, and can be appropriately determined according to the application.
  • the photocurable resin composition is suitable for a glass substrate having a thickness of 1 mm or less, preferably 0.8 mm or less, more preferably 0.7 mm or less.
  • the said photocurable resin composition is suitable for the glass base material whose thickness is 0.2 mm or more, Preferably it is 0.3 mm or more, More preferably, it is 0.4 mm or more. .
  • the size is about 60 mm ⁇ 120 mm and the thickness is about 0.55 mm.
  • the end portion of the glass substrate refers to a portion including at least the side surface of the glass substrate, and may be a portion including not only the side surface of the glass substrate but also the edge of one or both surfaces of the glass substrate.
  • FIG. 1A shows a schematic plan view of a glass substrate
  • FIG. 1B shows a schematic sectional view of the glass substrate.
  • 1 (a) and 1 (b) 1 represents a glass substrate
  • 2 represents a side surface of the glass substrate
  • 3 represents an end of the glass substrate.
  • FIG. 2 shows a glass substrate provided with a cured product on the side surface.
  • 4 is a cured product.
  • the thickness of the cured product 4 may be uniform or non-uniform, and the maximum thickness t of the cured product 4 is not particularly limited.
  • the photocurable resin composition is suitable for a cured product having a maximum thickness t of 150 ⁇ m or more, preferably 200 ⁇ m or more, more preferably 100 ⁇ m or more.
  • the photocurable resin composition is suitable for a cured product having a maximum thickness t of 600 ⁇ m or less, preferably 500 ⁇ m or less, and more preferably 400 ⁇ m or less.
  • the maximum thickness t of the cured product 4 is 300 to 400 ⁇ m.
  • cured material may be provided in all the edge parts of a glass base material, or may be provided in a part.
  • the protected glass substrate is formed by applying the photocurable resin composition or the photocurable paint to at least a part of the end of the glass substrate to form a coating film, and the coating film, It can be obtained by a production method including a step of curing by light irradiation and forming a protective film.
  • the above-described coating method can be used for coating, and the above-described light source can be used for light irradiation.
  • ⁇ Display device> One embodiment relates to a display device including the glass substrate.
  • a glass base material is used for the display part of a display apparatus.
  • the display device include a flat panel display (FPD). Specifically, a liquid crystal display (LCD), a plasma display panel (PDP), an organic electroluminescence panel (OELP), a field emission display (FED), a cathode ray.
  • FPD flat panel display
  • LCD liquid crystal display
  • PDP plasma display panel
  • OELP organic electroluminescence panel
  • FED field emission display
  • CRT cathode ray
  • electronic paper etc.
  • the present invention relates to a mobile terminal including the glass substrate.
  • a glass base material is used for the display part of a portable terminal.
  • the portable terminal include a mobile phone, a smartphone, a personal computer, an electronic dictionary, a calculator, and a game machine.
  • Embodiments of the present invention will be specifically described with reference to examples. Embodiments of the present invention are not limited to the following examples.
  • Comparative Example 1 18.0 parts by weight of component (A-1), 2.0 parts by weight of component (A-2), 40.0 parts by weight of component (B-1), and 40.0 parts by weight of component (B-2) A photocurable resin composition was obtained in the same manner as in Example 1 except that the composition was changed to the part.
  • the viscosity of the photocurable resin composition was 23.4 Pa ⁇ s (rotor No. 22, rotation speed 3 rpm).
  • Component (A-1) is 52.0 parts by mass
  • Component (A-2) is 6.0 parts by mass
  • Component (B-1) is 20.0 parts by mass
  • Component (B-2) is 20.0 parts by mass.
  • a photocurable resin composition was obtained in the same manner as in Example 1 except that the composition was changed to the part.
  • the viscosity of the photocurable resin composition was 0.2 Pa ⁇ s (rotor No. 21, rotation speed 100 rpm).
  • Viscosity of photocurable resin composition The viscosity was measured using a B-type viscometer (“TVB-10 type viscometer” manufactured by Toki Sangyo Co., Ltd.). The measurement conditions are described below. Temperature: 25 ° C Rotor: No. 21 or No. 22 Number of revolutions: Rotor no. 100 rpm when using 21 Rotor No. 3 or 30 rpm when using 22 The rotor No. When a value of less than 1 Pa ⁇ s was obtained, the rotor no. The value obtained using 21 is adopted. In addition, rotor No. 22 is measured at a rotation speed of 30 rpm, and when a value of 10 Pa ⁇ s or less is obtained, the value obtained by measurement at a rotation speed of 30 rpm is adopted.
  • B-type viscometer (“TVB-10 type viscometer” manufactured by Toki Sangyo Co., Ltd.). The measurement conditions are described below. Temperature: 25 ° C Rotor: No. 21 or No. 22 Number of revolutions
  • (E) Colorant solubility The solubility of (E) colorant was confirmed by the following method. To a 50 mL beaker, (A) 10 mL of monomer (temperature 25 ° C., mass ratio of isobornyl acrylate and acryloylmorpholine 37.8: 4.2) was added, and further 10 mg of black dye (solid content mass) was added, Stir for 1 minute using a glass rod. After stirring, the solid matter of the black dye could not be confirmed visually.
  • A 10 mL of monomer (temperature 25 ° C., mass ratio of isobornyl acrylate and acryloylmorpholine 37.8: 4.2) was added, and further 10 mg of black dye (solid content mass) was added, Stir for 1 minute using a glass rod. After stirring, the solid matter of the black dye could not be confirmed visually.
  • the irradiation light transmittance of the colorant (E) was measured by the following method.
  • a colorant solution was obtained by adding 0.1 parts by weight of a colorant to 100 parts by weight of the solvent.
  • the transmittance was measured with a visible ultraviolet spectrophotometer (“UV-2400PC” manufactured by Shimadzu Corporation).
  • the decomposition wavelength was 1 nm, and the transmittance at a wavelength of 365 nm was measured and found to be 74%.
  • the visible light average transmittance of the (E) colorant was measured by the following method. Using the colorant solution prepared in the same manner as described above, the transmittance was measured every 1 nm in the wavelength range of 400 to 700 nm with a spectrocolorimeter (“CM-3700A” manufactured by Konica Minolta). The arithmetic average value of the obtained values was 38%.
  • the photocurable resin composition was applied to the end surface of the glass substrate and cured to form a protective film on the end portion of the glass substrate.
  • the photocurable resin composition was apply
  • the protective effect was evaluated according to the following criteria in comparison with a glass substrate on which a protective film was formed but not damaged.
  • the unscratched glass substrate has a 4-point bending strength of 600 MPa.
  • Table 2 shows the evaluation results.
  • Example 1 As shown in Table 2, in Example 1, the handling property was good, and it was possible to apply the photocurable resin composition to the glass end face. On the other hand, in Comparative Example 1, since the photocurable resin composition had a high viscosity, application with a dispenser was difficult, and as a result, the resin could not be applied to the glass end face. In Comparative Example 2, a sufficient amount could not be applied to the glass end face because the photocurable resin composition had a low viscosity.
  • Example 1 since the photocurable resin composition was sufficiently applied to the glass end face and cured, the damaged wound did not reach the glass end face, and the 4-point bending strength was maintained. It was. On the other hand, in Comparative Example 2, the photocurable resin composition was not sufficiently applied to the glass end face, and the scratched wound reached the glass end face, so that the four-point bending strength was significantly reduced.

Abstract

An embodiment of the present invention relates to a photocurable resin composition that is used to protect at least a portion of an end of a glass substrate and has a viscosity of 0.4 to 20 Pa∙s.

Description

光硬化性樹脂組成物、光硬化性塗料、及び硬化物Photocurable resin composition, photocurable paint, and cured product
 本開示は、光硬化性樹脂組成物、光硬化性塗料、硬化物、ガラス基材、表示装置、携帯端末、硬化物の製造方法、及び保護されたガラス基材の製造方法に関する。 The present disclosure relates to a photocurable resin composition, a photocurable paint, a cured product, a glass substrate, a display device, a portable terminal, a method for producing a cured product, and a method for producing a protected glass substrate.
 スマートフォン、タブレット等の携帯端末では、大画面化と、軽量化を目的とした薄型化とが進んでいる。それに伴い、使用されるカバーガラスも薄型化が進んでいる。そのため、カバーガラスには強度の高い化学強化ガラスが広く採用されている。カバーガラスは、製造工程中の接触又は衝撃により端部にクラックが発生する場合がある。化学強化ガラスでは、クラックにより著しく強度が低下する傾向がある。 In mobile terminals such as smartphones and tablets, screens are becoming larger and thinner for lightening. Accordingly, the cover glass used is also becoming thinner. Therefore, high-strength chemically strengthened glass is widely used for the cover glass. The cover glass may crack at the end due to contact or impact during the manufacturing process. In chemically strengthened glass, the strength tends to decrease significantly due to cracks.
 また、最近では携帯端末の筐体に対し、カバーガラスが浮き出たデザインが流行している。カバーガラスが浮き出ることで端部が直接外部との接触又は外部からの衝撃にさらされるようになり、クラックが発生し易くなる。そこで端部に設けることで接触又は衝撃からカバーガラスを保護し、クラックの発生を防止する保護膜が必要とされている(例えば、特許文献1及び2参照)。保護膜は、例えば、液状の光硬化性塗料をカバーガラスの端部に塗布することによって形成される。 Also, recently, a design with a cover glass raised against the case of mobile terminals has become popular. When the cover glass is raised, the end portion is exposed to direct contact with the outside or an impact from the outside, and cracks are easily generated. Therefore, a protective film that protects the cover glass from contact or impact by being provided at the end and prevents the occurrence of cracks is required (see, for example, Patent Documents 1 and 2). The protective film is formed, for example, by applying a liquid photocurable coating to the end of the cover glass.
特開2012-111688号公報JP 2012-111688 A 特表2012-527399号公報Special table 2012-527399 gazette
 しかしながら、近年、保護膜を設けたカバーガラスであっても、クラックが発生する場合がみられるようになった。そこで、本開示は、優れた保護効果を有する光硬化性樹脂組成物、光硬化性塗料、及び硬化物を提供する。また、本開示は、耐久性に優れたガラス基材、並びにこれを備えた表示素子及び携帯端末を提供する。さらに、本開示は、前記硬化物及び前記ガラス基材を、効率よく製造するための製造方法を提供する。 However, in recent years, even in the case of a cover glass provided with a protective film, there has been a case where cracks are generated. Therefore, the present disclosure provides a photocurable resin composition, a photocurable paint, and a cured product having an excellent protective effect. In addition, the present disclosure provides a glass substrate having excellent durability, a display element including the glass substrate, and a portable terminal. Furthermore, this indication provides the manufacturing method for manufacturing the said hardened | cured material and the said glass base material efficiently.
 本発明には様々な実施形態が含まれる。実施形態の例を以下に列挙する。本発明は以下の実施形態に限定されない。 The present invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
 一実施形態は、ガラス基材の端部の少なくとも一部を保護するために用いられ、粘度が0.4~20Pa・sである、光硬化性樹脂組成物に関する。 One embodiment relates to a photocurable resin composition that is used to protect at least a part of an edge of a glass substrate and has a viscosity of 0.4 to 20 Pa · s.
 前記光硬化性樹脂組成物は、着色剤を含有してもよい。 The photocurable resin composition may contain a colorant.
 また、他の実施形態は、前記光硬化性樹脂組成物を用いた、光硬化性塗料に関する。 Moreover, other embodiment is related with the photocurable coating material using the said photocurable resin composition.
 他の実施形態は、前記光硬化性樹脂組成物又は前記光硬化性塗料を硬化させてなる、硬化物に関する。 Another embodiment relates to a cured product obtained by curing the photocurable resin composition or the photocurable paint.
 他の実施形態は、前記硬化物により端部の少なくとも一部が保護された、ガラス基材に関する。 Another embodiment relates to a glass substrate in which at least a part of the end is protected by the cured product.
 他の実施形態は、前記ガラス基材を備えた、表示装置又は携帯端末に関する。 Other embodiments relate to a display device or a portable terminal provided with the glass substrate.
 さらに、他の実施形態は、前記光硬化性樹脂組成物又は前記光硬化性塗料を、光照射により硬化させる工程を含む、硬化物の製造方法に関する。 Furthermore, other embodiment is related with the manufacturing method of hardened | cured material including the process of hardening the said photocurable resin composition or the said photocurable coating material by light irradiation.
 他の実施形態は、前記光硬化性樹脂組成物又は前記光硬化性塗料を、ガラス基材の端部の少なくとも一部に塗布し、塗布膜を形成する工程、及び、前記塗布膜を、光照射により硬化させ、保護膜を形成する工程を含む、保護されたガラス基材の製造方法に関する。 In another embodiment, the photocurable resin composition or the photocurable paint is applied to at least a part of an end portion of a glass substrate to form a coating film, and The present invention relates to a method for producing a protected glass substrate, which includes a step of curing by irradiation to form a protective film.
 本願の開示は、2016年5月9日に出願された特願2016-093775号に記載の主題と関連しており、その全ての開示内容は引用によりここに援用される。 The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2016-093775 filed on May 9, 2016, the entire disclosure of which is incorporated herein by reference.
 本開示によれば、優れた保護効果を有する光硬化性樹脂組成物、光硬化性塗料、及び硬化物が提供される。また、本開示によれば、耐久性に優れたガラス基材、並びにこれを備えた表示素子及び携帯端末が提供される。さらに、本開示によれば、前記硬化物及び前記ガラス基材を、効率よく製造するための製造方法が提供される。 According to the present disclosure, a photocurable resin composition, a photocurable paint, and a cured product having an excellent protective effect are provided. Moreover, according to this indication, the glass substrate excellent in durability, a display element provided with this, and a portable terminal are provided. Furthermore, according to this indication, the manufacturing method for manufacturing the said hardened | cured material and the said glass base material efficiently is provided.
図1(a)は、一実施形態のガラス基材の一例を示す平面模式図であり、図1(b)は、一実施形態のガラス基材の一例を示す断面模式図である。FIG. 1A is a schematic plan view illustrating an example of a glass substrate according to an embodiment, and FIG. 1B is a schematic cross-sectional view illustrating an example of a glass substrate according to an embodiment. 図2(a)は、側面に硬化物が設けられた一実施形態のガラス基材の一例を示す平面模式図であり、図2(b)及び(c)は、側面に硬化物が設けられた一実施形態のガラス基材の一例を示す断面模式図である。FIG. 2A is a schematic plan view illustrating an example of a glass substrate according to an embodiment in which a cured product is provided on a side surface, and FIGS. 2B and 2C are diagrams in which the cured product is provided on a side surface. It is a cross-sectional schematic diagram which shows an example of the glass base material of one embodiment.
 本発明の実施形態について説明する。本発明は以下の実施形態に限定されない。
 発明者は、ガラス基材の薄型化に伴い、保護膜を設ける部分が狭小化しており、十分な保護効果を発揮できる保護膜の形成が困難になっていること、また、特定の光硬化性樹脂組成物を用いることにより、狭小部であっても優れた保護効果を有する保護膜を形成できることを見出し、本発明を完成させるに至った。
An embodiment of the present invention will be described. The present invention is not limited to the following embodiments.
The inventor has found that with the reduction in thickness of the glass substrate, the portion where the protective film is provided has become narrower, making it difficult to form a protective film capable of exhibiting a sufficient protective effect, and specific photocuring properties. It has been found that by using the resin composition, a protective film having an excellent protective effect can be formed even in a narrow portion, and the present invention has been completed.
<光硬化性樹脂組成物>
 一実施形態によれば、光硬化性樹脂組成物は、ガラス基材の端部の少なくとも一部を保護するために用いられ、粘度が0.4~20Pa・sである組成物である。この光硬化性樹脂組成物は、ガラス基材の端部への適用が容易であることから、ガラス基材を保護するための材料として好ましく用いることができる。
<Photocurable resin composition>
According to one embodiment, the photocurable resin composition is a composition that is used to protect at least a part of the edge of the glass substrate and has a viscosity of 0.4 to 20 Pa · s. This photocurable resin composition can be preferably used as a material for protecting the glass substrate because it can be easily applied to the end of the glass substrate.
 発明者は、従来の光硬化性樹脂組成物によって十分な保護効果が得られない原因の一つが、保護膜の形成不良にあると考えた。通常、保護膜は、ガラス基材の端部に液状の光硬化性樹脂組成物を塗布し、硬化させることによって形成される。塗布方法及び/又は硬化方法に応じて程度は異なるが、一般的には、いずれの方法においても、塗布工程の終了時点と硬化工程の開始時点との間には時間差が生じる。つまり、塗布工程の終了から硬化工程の開始までには時間が経過する。そのため、塗布された液状の光硬化性樹脂組成物の形状を硬化後にまで保つことができず、保護膜が十分な保護効果を奏する形状に形成されないことがあり、その結果、ガラス基材にクラックが発生すると考えた。そこで、一実施形態によれば、光硬化性樹脂組成物は、薄型化したガラス基材の端部等の狭小部に対しても、良好な形状で形成することができる組成物として提供されるものである。 The inventor has considered that one of the causes that a sufficient protective effect cannot be obtained by the conventional photocurable resin composition is a defective formation of the protective film. Usually, a protective film is formed by apply | coating a liquid photocurable resin composition to the edge part of a glass base material, and making it harden | cure. Although the degree varies depending on the coating method and / or the curing method, in general, in any method, there is a time difference between the end point of the coating step and the start point of the curing step. That is, time elapses from the end of the coating process to the start of the curing process. Therefore, the shape of the applied liquid photo-curable resin composition cannot be maintained until it is cured, and the protective film may not be formed into a shape that exhibits a sufficient protective effect. Thought that would occur. Therefore, according to one embodiment, the photocurable resin composition is provided as a composition that can be formed in a favorable shape even in a narrow portion such as an end portion of a thinned glass substrate. Is.
 すなわち、光硬化性樹脂組成物が低粘度であると、塗布工程と硬化工程との間に光硬化性樹脂組成物の流れ出しが発生し、硬化物(保護膜)を良好な形状で形成できず、保護性能が劣ることになる。一方で、塗布工程では、光硬化性樹脂組成物が高粘度であると塗布が困難となり、やはり保護膜を良好な形状で得ることができない。一実施形態によれば、光硬化性樹脂組成物では、液状粘度を特定の範囲にすることによって、優れた保護効果を有する保護膜の形成が可能となる。また、液状粘度を特定の範囲にすることによって、作業性も向上し、ガラス基材の生産性向上に繋がる。 That is, if the photocurable resin composition has a low viscosity, the photocurable resin composition will flow out between the coating process and the curing process, and the cured product (protective film) cannot be formed in a good shape. , Protection performance will be inferior. On the other hand, in the coating process, if the photocurable resin composition has a high viscosity, coating becomes difficult, and the protective film cannot be obtained in a good shape. According to one embodiment, in the photocurable resin composition, it is possible to form a protective film having an excellent protective effect by setting the liquid viscosity to a specific range. Moreover, workability | operativity improves by making liquid viscosity into a specific range, and it leads to the productivity improvement of a glass base material.
 光硬化性樹脂組成物の塗布方法としては、ポッティング法、ディッピング法、スプレー法、ロールコート法等が挙げられる。塗布に、シリンジ式ディスペンサー、ジェット式ディスペンサー等のディスペンサーを用いてもよい。光硬化性樹脂組成物の塗布方法は、ガラス基材に液状の光硬化性樹脂組成物を直接塗布する方法であることが好ましい。ディスペンサーを用いる方法は、効率よくガラス基材を保護できる好ましい方法である。 Examples of the method for applying the photocurable resin composition include a potting method, a dipping method, a spray method, and a roll coating method. You may use dispensers, such as a syringe-type dispenser and a jet-type dispenser, for application | coating. It is preferable that the coating method of a photocurable resin composition is a method of apply | coating a liquid photocurable resin composition directly to a glass base material. The method using a dispenser is a preferred method that can efficiently protect the glass substrate.
 光硬化性樹脂組成物の硬化には、紫外線が好ましく用いられる。使用される光源は、特に限定されず、例えば、LEDランプ、水銀ランプ(低圧、高圧、超高圧等)、メタルハライドランプ、エキシマランプ、キセノンランプ等が挙げられ、好ましくは、LEDランプ、水銀ランプ、メタルハライドランプ等である。 For curing the photocurable resin composition, ultraviolet rays are preferably used. The light source used is not particularly limited, and examples thereof include LED lamps, mercury lamps (low pressure, high pressure, ultrahigh pressure, etc.), metal halide lamps, excimer lamps, xenon lamps, etc., preferably LED lamps, mercury lamps, Metal halide lamps and the like.
 通常は、いずれの塗布方法及び/又は硬化方法を使用する場合であっても、塗布された光硬化性樹脂組成物を硬化工程に投入するまでには時間を要する。この光硬化性樹脂組成物は、様々な塗布方法及び硬化方法において、優れた保護効果を奏する。 Usually, it takes time to put the applied photocurable resin composition into the curing step, regardless of which application method and / or curing method is used. This photocurable resin composition has an excellent protective effect in various coating methods and curing methods.
 光硬化性樹脂組成物の粘度は0.4~20Pa・sである。0.4Pa未満であると、塗布後に光硬化性樹脂組成物の流れ出しが発生し、光硬化性樹脂組成物が良好な形状を保つことができない。また、保護膜の膜厚が不十分となる。20Pa・sを超えると、塗布が困難となる。また、引き、目詰まり等が発生し、作業性が低下する。光硬化性樹脂組成物の粘度は、良好な保護効果を得る観点から、好ましくは0.7Pa・s以上であり、より好ましくは1.0Pa・s以上であり、更に好ましくは1.3Pa・s以上であり、特に好ましくは1.5Pa・s以上である。また、光硬化性樹脂組成物の粘度は、良好な保護効果を得る観点から、好ましくは10Pa・s以下であり、より好ましくは5Pa・s以下であり、更に好ましくは3Pa・s以下であり、特に好ましくは2.5Pa・s以下である。 The viscosity of the photocurable resin composition is 0.4 to 20 Pa · s. If it is less than 0.4 Pa, the photocurable resin composition flows out after coating, and the photocurable resin composition cannot maintain a good shape. Moreover, the film thickness of a protective film becomes inadequate. If it exceeds 20 Pa · s, coating becomes difficult. In addition, pulling, clogging, and the like occur, and workability decreases. From the viewpoint of obtaining a good protective effect, the viscosity of the photocurable resin composition is preferably 0.7 Pa · s or more, more preferably 1.0 Pa · s or more, and further preferably 1.3 Pa · s. Above, especially preferably 1.5 Pa · s or more. The viscosity of the photocurable resin composition is preferably 10 Pa · s or less, more preferably 5 Pa · s or less, and further preferably 3 Pa · s or less, from the viewpoint of obtaining a good protective effect. Particularly preferably, it is 2.5 Pa · s or less.
 光硬化性樹脂組成物の粘度は、単一円筒型回転粘度計(B型粘度計)を使用して測定できる。単一円筒型回転粘度計として、東機産業株式会社製の「TVB-10形粘度計」が挙げられる。 The viscosity of the photocurable resin composition can be measured using a single cylindrical rotational viscometer (B-type viscometer). An example of a single cylindrical rotational viscometer is “TVB-10 type viscometer” manufactured by Toki Sangyo Co., Ltd.
 一実施形態において、光硬化性樹脂組成物は、好ましくは、(A)重合性不飽和基を有する単量体と、(B)アクリル系化合物とを含有する。光硬化性樹脂組成物は、(C)リン酸化合物、(D)光重合開始剤、及び/又は(E)着色剤等の任意成分を含有してもよい。光硬化性樹脂組成物は、これらの各成分を、それぞれ1種のみ含有しても、又は、2種以上含有してもよい。光硬化性樹脂組成物は、溶媒を含有してもよいが、良好な保護効果を得るという観点から、溶媒を含有しなくてもよい。 In one embodiment, the photocurable resin composition preferably contains (A) a monomer having a polymerizable unsaturated group and (B) an acrylic compound. The photocurable resin composition may contain optional components such as (C) a phosphoric acid compound, (D) a photopolymerization initiator, and / or (E) a colorant. The photocurable resin composition may contain only one kind of each of these components, or two or more kinds thereof. Although a photocurable resin composition may contain a solvent, it does not need to contain a solvent from a viewpoint of obtaining a favorable protective effect.
 光硬化性樹脂組成物の粘度は、例えば、各成分の含有量を変化させることによって調整できる。粘度を高くしたい場合には、(A)単量体の含有量を小さくし、(B)アクリル系化合物の含有量を大きくすればよい。これに対し、粘度を低くしたい場合には、(B)アクリル系化合物の含有量を小さくし、(A)単量体の含有量を大きくすればよい。 The viscosity of the photocurable resin composition can be adjusted, for example, by changing the content of each component. When it is desired to increase the viscosity, the content of the monomer (A) should be reduced and the content of the acrylic compound (B) should be increased. On the other hand, when it is desired to reduce the viscosity, the content of the (B) acrylic compound may be reduced and the content of the (A) monomer may be increased.
 以下、各成分について説明する。
((A)重合性不飽和基を有する単量体)
 (A)単量体が有する重合性不飽和基としては、例えば、ビニル基(エテニル基)、エチニル基、アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基等の炭素-炭素二重結合を有する基が挙げられる。(A)単量体は、好ましくは(メタ)アクリロイルオキシ基又は(メタ)アクリロイルアミノ基を有する。(A)単量体は、分子内に重合性不飽和基を少なくとも1個有する。
Hereinafter, each component will be described.
((A) Monomer having polymerizable unsaturated group)
(A) As the polymerizable unsaturated group possessed by the monomer, for example, vinyl group (ethenyl group), ethynyl group, allyl group, (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group And groups having a carbon-carbon double bond such as The monomer (A) preferably has a (meth) acryloyloxy group or a (meth) acryloylamino group. (A) The monomer has at least one polymerizable unsaturated group in the molecule.
 (A)単量体の例として、(メタ)アクリロイル基を有する化合物、(メタ)アクリロイルオキシ基を有する化合物、(メタ)アクリロイルアミノ基を有する化合物等が挙げられる。これらの化合物は、保護効果を高める観点から好ましく用いられる。(A)単量体が「(メタ)アクリロイル基を有する化合物を含む」という場合、アクリロイル基を有する化合物及びメタクリロイル基を有する化合物の少なくともいずれか一方を含むことを意味する。「(メタ)」の語に関し、(メタ)アクリロイルオキシ基を有する化合物及び(メタ)アクリロイルアミノ基を有する化合物においても、同様に少なくとも一方を含むことを意味する。 Examples of the (A) monomer include a compound having a (meth) acryloyl group, a compound having a (meth) acryloyloxy group, a compound having a (meth) acryloylamino group, and the like. These compounds are preferably used from the viewpoint of enhancing the protective effect. (A) When the monomer includes “a compound having a (meth) acryloyl group”, it means that the monomer includes at least one of a compound having an acryloyl group and a compound having a methacryloyl group. Regarding the term “(meth)”, it means that a compound having a (meth) acryloyloxy group and a compound having a (meth) acryloylamino group also include at least one of them.
 (A)単量体の例として、(A-1)(メタ)アクリル酸エステル系単量体、(A-2)(メタ)アクリルアミド系単量体等が挙げられる。(A)単量体が「(メタ)アクリル酸エステルを含む」という場合、アクリル酸エステル及びメタクリル酸エステルの少なくともいずれか一方を含むことを意味する。「(メタ)アクリルアミド」についても同様である。(A)単量体としては、後述する(B)アクリル系化合物及び(C)リン酸化合物とは異なる化合物が使用される。「(メタ)」の語に関し、(B)アクリル系化合物及び(C)リン酸化合物においても、同様に少なくとも一方を含むことを意味する。 Examples of (A) monomers include (A-1) (meth) acrylic acid ester monomers, (A-2) (meth) acrylamide monomers, and the like. (A) When a monomer says "it contains (meth) acrylic acid ester", it means containing at least any one of acrylic acid ester and methacrylic acid ester. The same applies to “(meth) acrylamide”. As (A) monomer, a compound different from (B) acrylic compound and (C) phosphoric acid compound described later is used. Regarding the term “(meth)”, it is meant that (B) the acrylic compound and (C) the phosphoric acid compound also contain at least one.
 1官能の(メタ)アクリル酸エステル系単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイルオキシエチル)スクシネート、(メタ)アクリル酸とグリシジルエステル(例えば、モメンティブ・パフォーマンス・マテリアルズ社製の「カージュラーE-10」)との反応物等の脂肪族(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2-(メタ)アクリロイルオキシエチル)テトラヒドロフタレート、モノ(2-(メタ)アクリロイルオキシエチル)ヘキサヒドロフタレート等の脂環式(メタ)アクリレートなどが挙げられる。 Examples of the monofunctional (meth) acrylic acid ester monomer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, Butoxyethyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate , Undecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, Thearyl (meth) acrylate, behenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) Acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, mono (2- (meth) acryloyloxyethyl) succinate, (meth) Aliphatic (meth) such as a reaction product of acrylic acid and glycidyl ester (for example, “Cardura E-10” manufactured by Momentive Performance Materials) Chryrate; cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, isobornyl (meth) acrylate, mono (2- (meth) And alicyclic (meth) acrylates such as acryloyloxyethyl) tetrahydrophthalate and mono (2- (meth) acryloyloxyethyl) hexahydrophthalate.
 2官能の(メタ)アクリル酸エステル系単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化シクロヘキサンジメタノール(メタ)アクリレート、プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化シクロヘキサンジメタノール(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化トリシクロデカンジメタノール(メタ)アクリレート、プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化プロポキシ化トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化水添ビスフェノールFジ(メタ)アクリレート、プロポキシ化水添ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールFジ(メタ)アクリレート等の脂環式(メタ)アクリレートなどが挙げられる。 Examples of the bifunctional (meth) acrylic acid ester monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate. , Polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) Acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate , Neopentyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1, 3-propanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecane dimethanol (meth) acrylate , Aliphatic (meth) acrylates such as ethoxylated 2-methyl-1,3-propanediol di (meth) acrylate; cyclohexanedimethanol (meth) acrylate, ethoxylated cyclohexanedimethanol (meth) acrylate, propoxylated cyclohexanedimethanol (Meta) a Relate, ethoxylated propoxylated cyclohexanedimethanol (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, ethoxylated tricyclodecane dimethanol (meth) acrylate, propoxylated tricyclodecane dimethanol (meth) acrylate, ethoxylated Propoxylated tricyclodecane dimethanol (meth) acrylate, ethoxylated hydrogenated bisphenol A di (meth) acrylate, propoxylated hydrogenated bisphenol A di (meth) acrylate, ethoxylated propoxylated hydrogenated bisphenol A di (meth) acrylate, Ethoxylated hydrogenated bisphenol F di (meth) acrylate, propoxylated hydrogenated bisphenol F di (meth) acrylate, ethoxylated propoxylated hydrogenated bisphenol F di (meth) acrylate And alicyclic (meth) acrylates such as relate.
 3官能以上の(メタ)アクリル酸エステル系単量体としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレートなどが挙げられる。 Examples of the trifunctional or higher functional (meth) acrylic acid ester monomers include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, Ethoxylated propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol Tetra (meth) acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) aliphatic acrylates such as (meth) acrylate.
 (A-1)単量体として、アクリル系化合物、着色剤等の他の成分との相溶性、また、硬化時の硬度特性等の観点から、好ましくは1官能の(メタ)アクリル酸エステル系単量体、より好ましくは1官能の脂環式(メタ)アクリレート、更に好ましくはイソボルニル(メタ)アクリレートが用いられる。 (A-1) Monofunctional (meth) acrylic acid ester-based monomer from the viewpoints of compatibility with other components such as acrylic compounds and colorants, and hardness characteristics during curing Monomers, more preferably monofunctional alicyclic (meth) acrylates, and even more preferably isobornyl (meth) acrylate are used.
 (メタ)アクリルアミド系単量体としては、(メタ)アクリルアミド、メチル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、n-プロピル(メタ)アクリルアミド、ジ-n-プロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジイソプロピル(メタ)アクリルアミド、n-ブチル(メタ)アクリルアミド、ジ-n-ブチル(メタ)アクリルアミド、イソブチル(メタ)アクリルアミド、ジイソブチル(メタ)アクリルアミド、tert-ブチル(メタ)アクリルアミド、ジ-tert-ブチル(メタ)アクリルアミド、n-ペンチル(メタ)アクリルアミド、ジ-n-ペンチル(メタ)アクリルアミド、n-へキシル(メタ)アクリルアミド、ジ-n-へキシル(メタ)アクリルアミド、シクロヘキシル(メタ)アクリルアミド、ジシクロヘキシル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等が挙げられる。 (Meth) acrylamide monomers include (meth) acrylamide, methyl (meth) acrylamide, dimethyl (meth) acrylamide, ethyl (meth) acrylamide, diethyl (meth) acrylamide, n-propyl (meth) acrylamide, di- n-propyl (meth) acrylamide, isopropyl (meth) acrylamide, diisopropyl (meth) acrylamide, n-butyl (meth) acrylamide, di-n-butyl (meth) acrylamide, isobutyl (meth) acrylamide, diisobutyl (meth) acrylamide, tert-butyl (meth) acrylamide, di-tert-butyl (meth) acrylamide, n-pentyl (meth) acrylamide, di-n-pentyl (meth) acrylamide, n-hexyl (meth) actyl Ruamido, di -n- hexyl (meth) acrylamide, cyclohexyl (meth) acrylamide, dicyclohexyl (meth) acrylamide, (meth) acryloyl morpholine.
 (A-2)単量体として、アクリル系化合物、着色剤等の他の成分との相溶性、また、硬化時の硬度特性等の観点から、好ましくは(メタ)アクリロイルモルホリンが用いられる。 (A-2) As a monomer, (meth) acryloylmorpholine is preferably used from the viewpoints of compatibility with other components such as an acrylic compound and a colorant, and hardness characteristics upon curing.
 (A)単量体は、1種を単独で又は2種以上を組み合わせて用いることができる。アクリル系化合物、着色剤等の他の成分との相溶性、また、硬化時の硬度特性等の観点から、(A)単量体は2種以上を組み合わせて用いることが好ましく、(A-1)単量体と(A-2)単量体とを組み合わせて用いることがより好ましく、(A-1)単量体として1官能の(メタ)アクリル酸エステル系単量体と(A-2)単量体とを組み合わせて用いることが更に好ましい。 (A) Monomers can be used singly or in combination of two or more. From the viewpoints of compatibility with other components such as an acrylic compound and a colorant, and hardness characteristics during curing, the monomer (A) is preferably used in combination of two or more types (A-1 ) Monomer and (A-2) monomer are more preferably used in combination. (A-1) Monofunctional (meth) acrylic acid ester monomer and (A-2) It is more preferable to use in combination with a monomer.
 (A)単量体の含有量は、粘度特性、アクリル系化合物、着色剤等の他の成分との相溶性、ハンドリング性、生産性、硬化時の硬度特性等の観点から、光硬化性樹脂組成物の全質量を基準として、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上が更に好ましい。また、(A)単量体の含有量は、同様の観点から、光硬化性樹脂組成物の全質量を基準として、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下が更に好ましい。 (A) The content of the monomer is a photocurable resin from the viewpoints of viscosity characteristics, compatibility with other components such as acrylic compounds and colorants, handling properties, productivity, and hardness characteristics during curing. 20 mass% or more is preferable on the basis of the total mass of the composition, 25 mass% or more is more preferable, and 30 mass% or more is still more preferable. Further, from the same viewpoint, the content of the monomer (A) is preferably 50% by mass or less, more preferably 45% by mass or less, and more preferably 40% by mass or less, based on the total mass of the photocurable resin composition. Is more preferable.
 (A-1)単量体と(A-2)単量体とを併用する場合、(A-1)単量体に対する(A-2)単量体の割合(質量比)は、好ましくは0.02以上、より好ましくは0.05以上、更に好ましくは0.08以上である。また、(A-1)単量体に対する(A-2)単量体の割合(質量比)は、好ましくは0.3以下、より好ましくは0.2以下、更に好ましくは0.15以下である。 When (A-1) monomer and (A-2) monomer are used in combination, the ratio (mass ratio) of (A-2) monomer to (A-1) monomer is preferably It is 0.02 or more, more preferably 0.05 or more, still more preferably 0.08 or more. The ratio (mass ratio) of the monomer (A-2) to the monomer (A-1) is preferably 0.3 or less, more preferably 0.2 or less, and still more preferably 0.15 or less. is there.
((B)アクリル系化合物)
 (B)アクリル系化合物は、(メタ)アクリロイル基又は(メタ)アクリロイルオキシ基を少なくとも1個有する化合物である。例えば、ウレタン結合を有する(メタ)アクリレート化合物を例示できる。(B)アクリル系化合物としては、後述する(C)リン酸化合物とは異なる化合物が使用される。ウレタン結合を有する(メタ)アクリレート化合物は、保護効果を高める観点から好ましく用いられる。
((B) Acrylic compound)
(B) The acrylic compound is a compound having at least one (meth) acryloyl group or (meth) acryloyloxy group. For example, (meth) acrylate compounds having a urethane bond can be exemplified. (B) As the acrylic compound, a compound different from the phosphoric acid compound (C) described later is used. A (meth) acrylate compound having a urethane bond is preferably used from the viewpoint of enhancing the protective effect.
 ウレタン結合を有する(メタ)アクリレート化合物として、例えば、β位にOH基を有する(メタ)アクリル酸系モノマーとイソホロンジイソシアネート、2,6-トルエンジイソシアネート、2,4-トルエンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等のジイソシアネート化合物との反応物、トリス((メタ)アクリロキシテトラエチレングリコールイソシアネート)ヘキサメチレンイソシアヌレート、EO変性ウレタンジ(メタ)アクリレート、PO変性ウレタンジ(メタ)アクリレート、EO及びPO変性ウレタンジ(メタ)アクリレート、カルボキシル基含有ウレタン(メタ)アクリレート等が挙げられる。また、ウレタン結合を有する(メタ)アクリレート化合物としてウレタンオリゴマーも好ましく用いられる。 Examples of (meth) acrylate compounds having a urethane bond include (meth) acrylic acid monomers having an OH group at the β-position, isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexa. Reaction products with diisocyanate compounds such as methylene diisocyanate, tris ((meth) acryloxytetraethylene glycol isocyanate) hexamethylene isocyanurate, EO-modified urethane di (meth) acrylate, PO-modified urethane di (meth) acrylate, EO and PO-modified urethane di ( Examples include meth) acrylate and carboxyl group-containing urethane (meth) acrylate. A urethane oligomer is also preferably used as the (meth) acrylate compound having a urethane bond.
 (B)アクリル系化合物の重量平均分子量は、粘度特性、単量体、着色剤等の他の成分との相溶性、ハンドリング性、生産性、硬化時の硬度特性等の観点から、好ましくは800以上、より好ましくは2,000以上、更に好ましくは4,000以上である。また、(B)アクリル系化合物の重量平均分子量は、同様の観点から、好ましくは10,000以下、より好ましくは9,000以下、更に好ましくは7,000以下である。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用する。 (B) The weight average molecular weight of the acrylic compound is preferably 800 from the viewpoints of viscosity characteristics, compatibility with other components such as monomers and colorants, handling properties, productivity, and hardness characteristics upon curing. Above, more preferably 2,000 or more, still more preferably 4,000 or more. The weight average molecular weight of the (B) acrylic compound is preferably 10,000 or less, more preferably 9,000 or less, and still more preferably 7,000 or less, from the same viewpoint. The weight average molecular weight is measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene is used.
 市販品として、例えば、共栄社化学株式会社製の「UA-306H」、「UA-306T」、「UA-306I」;根上工業株式会社製の「アートレジン UN-904」、「アートレジン UN-6060S」;大阪有機化学工業株式会社製の「ビスコート#700HV」;日本化薬株式会社製の「KAYARAD DPHA-40H」、「KAYARAD UX-5000」などが挙げられる。 Examples of commercially available products include “UA-306H”, “UA-306T”, “UA-306I” manufactured by Kyoeisha Chemical Co., Ltd .; “Art Resin UN-904”, “Art Resin UN-6060S” manufactured by Negami Kogyo Co., Ltd. "Viscoat # 700HV" manufactured by Osaka Organic Chemical Industry Co., Ltd .; "KAYARAD DPHA-40H", "KAYARAD UX-5000" manufactured by Nippon Kayaku Co., Ltd., and the like.
 (B)アクリル系化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。 (B) One type of acrylic compound can be used alone, or two or more types can be used in combination.
 (B)アクリル系化合物の含有量は、粘度特性、単量体、着色剤等の他の成分との相溶性、ハンドリング性、生産性、硬化時の硬度特性等の観点から、光硬化性樹脂組成物の全質量を基準として、35質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上が更に好ましい。また、(B)アクリル系化合物の含有量は、同様の観点から、光硬化性樹脂組成物の全質量を基準として、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下が更に好ましい。 (B) The content of the acrylic compound is a photocurable resin from the viewpoints of viscosity characteristics, compatibility with other components such as monomers and colorants, handling properties, productivity, and hardness characteristics during curing. 35 mass% or more is preferable on the basis of the total mass of a composition, 40 mass% or more is more preferable, and 45 mass% or more is still more preferable. Further, from the same viewpoint, the content of the (B) acrylic compound is preferably 70% by mass or less, more preferably 65% by mass or less, and more preferably 60% by mass or less, based on the total mass of the photocurable resin composition. Is more preferable.
((C)リン酸化合物)
 (C)リン酸化合物は、リン酸基及びリン酸エステル基から選択されるいずれか少なくとも1種と、少なくとも1種の重合性不飽和基とを有する化合物である。(C)リン酸化合物が有する重合性不飽和基としては、例えば、ビニル基(エテニル基)、エチニル基、アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基等の炭素-炭素二重結合を有する基が挙げられる。(C)リン酸化合物は、好ましくは(メタ)アクリロイルオキシ基を有する。
 (C)リン酸化合物は、エチレンオキサイド変性リン酸ジ(メタ)アクリレート及び/又はプロピレンオキサイド変性リン酸ジ(メタ)アクリレートであることが好ましく、エチレンオキサイド変性リン酸ジ(メタ)アクリレートであることがより好ましい。
((C) Phosphate compound)
(C) The phosphoric acid compound is a compound having at least one selected from a phosphoric acid group and a phosphoric ester group and at least one polymerizable unsaturated group. (C) As the polymerizable unsaturated group possessed by the phosphoric acid compound, for example, vinyl group (ethenyl group), ethynyl group, allyl group, (meth) acryloyl group, (meth) acryloyloxy group, (meth) acryloylamino group And groups having a carbon-carbon double bond such as (C) The phosphoric acid compound preferably has a (meth) acryloyloxy group.
(C) The phosphoric acid compound is preferably ethylene oxide-modified phosphoric acid di (meth) acrylate and / or propylene oxide-modified phosphoric acid di (meth) acrylate, and is preferably ethylene oxide-modified phosphoric acid di (meth) acrylate. Is more preferable.
 (C)リン酸化合物の例として、アシッドホスホオキシエチル(メタ)アクリレート、アシッドホスホオキシプロピル(メタ)アクリレート、アシッドホスホオキシブチル(メタ)アクリレート、アシッドホスホオキシペンチル(メタ)アクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート、アシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート等の下記式(1)で表される化合物が挙げられる。 (C) Examples of phosphoric acid compounds include acid phosphooxyethyl (meth) acrylate, acid phosphooxypropyl (meth) acrylate, acid phosphooxybutyl (meth) acrylate, acid phosphooxypentyl (meth) acrylate, and acid phosphooxypoly Examples include compounds represented by the following formula (1) such as oxyethylene glycol monomethacrylate and acid phosphooxypolyoxypropylene glycol monomethacrylate.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、Rは水素又はメチル基を、Rは直鎖状、分岐状、又は環状のアルキル基を、nは1以上の数を、mは1~3の数を表す。アルキル基の炭素数は、好ましくは1~12、より好ましくは1~9、更に好ましくは1~6である。nは、好ましくは1~12、より好ましくは1~6、更に好ましくは1~3である。mは、好ましくは1~2である。 In the formula, R 1 represents hydrogen or a methyl group, R 2 represents a linear, branched or cyclic alkyl group, n represents a number of 1 or more, and m represents a number of 1 to 3. The number of carbon atoms of the alkyl group is preferably 1 to 12, more preferably 1 to 9, and still more preferably 1 to 6. n is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 to 3. m is preferably 1 to 2.
 また、(C)リン酸化合物の例として、3-クロロ-2-アシッドホスホオキシプロピル(メタ)アクリレート、フェニル(2-(メタ)アクリロイルオキシエチル)ホスフェート、ジフェニル(2-(メタ)アクリロイルオキシエチル)ホスフェート、(メタ)アクリロイルオキシ-2-ヒドロキシプロピルアシッドホスフェート、(メタ)アクリロイルオキシ-3-ヒドロキシプロピルアシッドホスフェート、(メタ)アクリロイルオキシ-3-クロロ-2-ヒドロキシプロピルアシッドホスフェート、アリルアルコールアシッドホスフェート等が挙げられる。 Examples of (C) phosphoric acid compounds include 3-chloro-2-acid phosphooxypropyl (meth) acrylate, phenyl (2- (meth) acryloyloxyethyl) phosphate, diphenyl (2- (meth) acryloyloxyethyl). ) Phosphate, (meth) acryloyloxy-2-hydroxypropyl acid phosphate, (meth) acryloyloxy-3-hydroxypropyl acid phosphate, (meth) acryloyloxy-3-chloro-2-hydroxypropyl acid phosphate, allyl alcohol acid phosphate Etc.
 さらに、(C)リン酸化合物は、これらのモノメタノールアミン塩、モノエタノールアミン塩等の塩であってもよい。 Furthermore, (C) the phosphoric acid compound may be a salt such as a monomethanolamine salt or a monoethanolamine salt.
 (C)リン酸化合物は、好ましくは式(1)で表される化合物であり、より好ましくは式(1)において、Rがメチル基、Rがジメチレン基又はペンタメチレン基であり、nが1~2であり、mが1~2である化合物であり、更に好ましくは式(1)において、Rがメチル基、Rがジメチレン基であり、nが1~2であり、mが1~2である化合物である。 (C) The phosphoric acid compound is preferably a compound represented by formula (1), more preferably, in formula (1), R 1 is a methyl group, R 2 is a dimethylene group or a pentamethylene group, and n Is a compound in which m is 1-2, and more preferably, in formula (1), R 1 is a methyl group, R 2 is a dimethylene group, n is 1-2, Is a compound in which is 1-2.
 (C)リン酸化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。 (C) Phosphoric acid compounds can be used singly or in combination of two or more.
 (C)リン酸化合物の含有量は、ガラス基材への良好な密着性を得る観点から、(A)単量体及び(B)アクリル系化合物の合計100質量部に対して、0.01質量部以上が好ましく、0.1質量部以上がより好ましく、0.3質量部以上が更に好ましい。また、(C)リン酸化合物の含有量は、光硬化性樹脂組成物の安定性を保つ観点から、(A)単量体及び(B)アクリル系化合物の合計100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましく、3質量部以下が更に好ましい。 The content of (C) phosphoric acid compound is 0.01 with respect to a total of 100 parts by mass of (A) monomer and (B) acrylic compound from the viewpoint of obtaining good adhesion to the glass substrate. More than mass part is preferable, 0.1 mass part or more is more preferable, and 0.3 mass part or more is still more preferable. Moreover, content of (C) phosphoric acid compound is 10 with respect to a total of 100 mass parts of (A) monomer and (B) acrylic compound from a viewpoint of maintaining stability of a photocurable resin composition. It is preferably no greater than 5 parts by mass, more preferably no greater than 5 parts by mass, and even more preferably no greater than 3 parts by mass.
((D)光重合開始剤)
 (D)光重合開始剤には、増感剤と呼ばれるものも包含される。(D)光重合開始剤の具体例としては、アクリジン;分子内に少なくとも1つのアクリジニル基を有するアクリジン系化合物;ベンゾフェノン;N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)等のN,N-テトラアルキル-4,4’-ジアミノベンゾフェノン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパノン-1、(1-ヒドロキシシクロヘキシル)フェニルメタノン等の芳香族ケトン;アルキルアントラキノン等のキノン類;ベンゾイルアルキルエーテル等のベンゾインエーテル化合物;ベンゾイン;アルキルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;N-フェニルグリシン;N-フェニルグリシン誘導体、クマリン系化合物;オニウム塩などが挙げられる。樹脂組成物の深部硬化性と表面硬化性のバランスの観点から、芳香族ケトンが好ましく用いられる。
((D) Photopolymerization initiator)
(D) What is called a sensitizer is also contained in a photoinitiator. (D) Specific examples of the photopolymerization initiator include acridine; an acridine compound having at least one acridinyl group in the molecule; benzophenone; N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler's ketone), etc. N, N-tetraalkyl-4,4′-diaminobenzophenone; 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- (4-methylthiophenyl) ) -2-morpholinopropanone-1, aromatic ketones such as (1-hydroxycyclohexyl) phenylmethanone; quinones such as alkyl anthraquinones; benzoin ether compounds such as benzoyl alkyl ether; benzoin; benzoin compounds such as alkyl benzoin; Benzyl such as benzyl dimethyl ketal Conductor; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, etc. 2,4,5-triarylimidazole dimer; N-phenylglycine; N-phenylglycine derivative, coumarin compound; onium salt and the like. An aromatic ketone is preferably used from the viewpoint of the balance between the deep curability and the surface curability of the resin composition.
 (D)光重合開始剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 (D) One type of photopolymerization initiator can be used alone, or two or more types can be used in combination.
 (D)光重合開始剤の含有量は、光硬化性樹脂組成物の表面を十分に硬化させ、硬化物のタックを抑える観点から、(A)単量体及び(B)アクリル系化合物の合計100質量部に対して、0.1質量部以上が好ましく、1質量部以上がより好ましく、5質量部以上が更に好ましい。また、(D)光重合開始剤の含有量は、深部までの十分な硬化性、密着性等を得る観点から、(A)単量体及び(B)アクリル系化合物の合計100質量部に対して、20質量部以下が好ましく、15質量部以下がより好ましく、12質量部以下が更に好ましい。 (D) The content of the photopolymerization initiator is a total of (A) monomer and (B) acrylic compound from the viewpoint of sufficiently curing the surface of the photocurable resin composition and suppressing tackiness of the cured product. 0.1 mass part or more is preferable with respect to 100 mass parts, 1 mass part or more is more preferable, and 5 mass parts or more is still more preferable. In addition, the content of the (D) photopolymerization initiator is based on a total of 100 parts by mass of the (A) monomer and the (B) acrylic compound from the viewpoint of obtaining sufficient curability and adhesion to the deep part. 20 parts by mass or less is preferable, 15 parts by mass or less is more preferable, and 12 parts by mass or less is still more preferable.
((E)着色剤)
 (E)着色剤としては、硬化に用いられる光に対する吸収が小さい着色剤を使用する。(E)着色剤として、染料及び顔料が挙げられるが、均一な光硬化性樹脂組成物を得る観点からは、好ましくは染料が用いられ、より好ましくは、(A)単量体に溶解する染料が用いられる。
((E) Colorant)
(E) As a coloring agent, a coloring agent with small absorption with respect to the light used for hardening is used. (E) Although a dye and a pigment are mentioned as a coloring agent, From a viewpoint of obtaining a uniform photocurable resin composition, Preferably a dye is used, More preferably, (A) Dye which melt | dissolves in a monomer Is used.
 染料が(A)単量体に溶解することは以下の方法により確認できる。
 50mLビーカーに、(A)単量体10mL(温度25℃)を加え、さらに、染料10mg(固形分質量)を加え、ガラス棒を用いて1分間、撹拌する。撹拌後、目視で、染料の固形物が確認できない場合、当該染料は、(A)単量体に溶解するものと判断する。
It can be confirmed by the following method that the dye is dissolved in the monomer (A).
To a 50 mL beaker, 10 mL of monomer (A) (temperature: 25 ° C.) is added, 10 mg of dye (solid mass) is added, and the mixture is stirred for 1 minute using a glass rod. When the solid matter of the dye cannot be visually confirmed after stirring, it is determined that the dye is dissolved in the monomer (A).
 一実施形態において、(E)着色剤として、硬化のために照射される光のピーク波長の透過率(以下、「照射光透過率」ともいう。)が、可視光の平均透過率(以下、「可視光透過率」ともいう。)よりも10%以上高い着色剤を用いる。より好ましくは20%以上であり、更に好ましくは30%以上であり、特に好ましくは40%以上である。上限は特に限定されず、両者の差は大きい方が好ましい。10%以上である場合、端部の保護と遮光性とを良好な状態で両立できる。 In one embodiment, as the colorant (E), the transmittance of the peak wavelength of light irradiated for curing (hereinafter also referred to as “irradiation light transmittance”) is the average transmittance of visible light (hereinafter referred to as “lighting transmittance”). (Also referred to as “visible light transmittance”). More preferably, it is 20% or more, still more preferably 30% or more, and particularly preferably 40% or more. An upper limit is not specifically limited, The one where the difference of both is large is preferable. When it is 10% or more, both the protection of the end portion and the light shielding property can be achieved in a good state.
 また、一実施形態において、(E)着色剤として、照射光透過率が60%以上であり、かつ、可視光透過率が50%以下である着色剤を用いる。照射光透過率は、より好ましくは65%以上であり、更に好ましくは70%以上である。可視光透過率は、より好ましくは45%以下であり、更に好ましくは40%以下である。照射光透過率が60%以上、かつ、可視光透過率が50%以下である場合、端部の保護と遮光性とを良好な状態で両立できる。 In one embodiment, (E) a colorant having an irradiation light transmittance of 60% or more and a visible light transmittance of 50% or less is used as the colorant. The irradiation light transmittance is more preferably 65% or more, and further preferably 70% or more. The visible light transmittance is more preferably 45% or less, still more preferably 40% or less. When the irradiation light transmittance is 60% or more and the visible light transmittance is 50% or less, it is possible to achieve both the protection of the end portion and the light shielding property in a good state.
 硬化のために照射される光のピーク波長とは、硬化時、光硬化性樹脂組成物に照射される光について、強度が最大であるところの波長をいう。光源としてLEDランプを用いる場合、ピーク波長は、例えば、365nm、385nm等である。 The peak wavelength of light irradiated for curing refers to the wavelength at which the intensity is maximum for the light irradiated to the photocurable resin composition during curing. When an LED lamp is used as the light source, the peak wavelength is, for example, 365 nm, 385 nm, or the like.
 一実施形態において、(E)着色剤として、波長365nmの光の透過率が、可視光透過率よりも10%以上高い着色剤を用いる。より好ましくは20%以上であり、更に好ましくは30%以上であり、特に好ましくは40%以上である。上限は特に限定されず、両者の差は大きい方が好ましい。10%以上である場合、端部の保護と遮光性とを良好な状態で両立できる。 In one embodiment, (E) as a colorant, a colorant having a light transmittance of 365 nm higher than that of visible light by 10% or more is used. More preferably, it is 20% or more, still more preferably 30% or more, and particularly preferably 40% or more. An upper limit is not specifically limited, The one where the difference of both is large is preferable. When it is 10% or more, both the protection of the end portion and the light shielding property can be achieved in a good state.
 また、一実施形態において、(E)着色剤として、波長365nmの光の透過率が60%以上であり、かつ、可視光透過率が50%以下である着色剤を用いる。波長365nmの光の透過率は、より好ましくは65%以上であり、更に好ましくは70%以上である。可視光透過率は、より好ましくは45%以下であり、更に好ましくは40%以下である。波長365nmの光の透過率が60%以上、かつ、可視光透過率が50%以下である場合、端部の保護と遮光性とを良好な状態で両立できる。 In one embodiment, (E) a colorant having a light transmittance of 60% or more and a visible light transmittance of 50% or less is used as the colorant. The transmittance of light having a wavelength of 365 nm is more preferably 65% or more, and still more preferably 70% or more. The visible light transmittance is more preferably 45% or less, still more preferably 40% or less. When the transmittance of light with a wavelength of 365 nm is 60% or more and the visible light transmittance is 50% or less, both end protection and light-shielding properties can be achieved in a good state.
 (E)着色剤の照射光透過率は、以下の方法により測定できる。
 (E)着色剤が溶解することが確認されている溶媒100質量部に対し、(E)着色剤0.1質量部を添加し、着色剤溶液を得る。得られた着色剤溶液を用い、可視紫外光分光光度計(例えば、株式会社島津製作所製「UV-2400PC」)にて、硬化のために照射される光のピーク波長における透過率を測定する。分解波長は1nmとし、300~780nmの範囲にて測定する。
 (E)着色剤が溶媒に溶解することは、上記の「染料が(A)単量体に溶解すること」と同じ方法によって確認できる。
 (E)着色剤の波長365nmの光の透過率も、照射光透過率と同様の方法により測定できる。
(E) The irradiation light transmittance of the colorant can be measured by the following method.
(E) 0.1 part by mass of the colorant (E) is added to 100 parts by mass of the solvent in which the colorant is confirmed to be dissolved to obtain a colorant solution. Using the obtained colorant solution, the transmittance at the peak wavelength of light irradiated for curing is measured with a visible ultraviolet spectrophotometer (for example, “UV-2400PC” manufactured by Shimadzu Corporation). The resolution wavelength is 1 nm and the measurement is performed in the range of 300 to 780 nm.
(E) It can confirm that a coloring agent melt | dissolves in a solvent by the same method as said "the dye dissolves in (A) monomer".
(E) The transmittance of the colorant having a wavelength of 365 nm can also be measured by the same method as the irradiation light transmittance.
 可視光の平均透過率とは、波長400~700nmの光の平均透過率をいう。可視光の平均透過率は、以下の方法により測定できる。
 前記と同様に調製した着色剤溶液を用い、分光測色計(例えば、株式会社コニカミノルタ製「CM-3700A」)にて400~700nmの波長範囲について1nm毎に透過率を測定する。得られた各値の平均値を求め、平均透過率とする。
The average visible light transmittance refers to the average transmittance of light having a wavelength of 400 to 700 nm. The average visible light transmittance can be measured by the following method.
Using the colorant solution prepared in the same manner as described above, the transmittance is measured every 1 nm in the wavelength range of 400 to 700 nm with a spectrocolorimeter (for example, “CM-3700A” manufactured by Konica Minolta, Inc.). The average value of the obtained values is obtained and used as the average transmittance.
 (E)着色剤の色相に特に制限はない。様々な色相を持つ着色剤を用いることによって、ベゼルの色相に合わせた光硬化性樹脂組成物の調製が可能である。(E)着色剤を含有する光硬化性樹脂組成物によって、デザイン性に優れた表示装置及び携帯端末を製造することができる。例えば、黒色染料等の黒色の着色剤が用いられる。 (E) There is no particular limitation on the hue of the colorant. By using colorants having various hues, it is possible to prepare a photocurable resin composition that matches the hue of the bezel. (E) With the photocurable resin composition containing a colorant, a display device and a portable terminal excellent in design can be produced. For example, a black colorant such as a black dye is used.
 (E)着色剤としては、例えば、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオディン・グリーン、ジアゾイエロー、アニリンブラック、ペリレンブラック等が挙げられる。 (E) Examples of the colorant include phthalocyanine blue, phthalocyanine green, iodin green, diazo yellow, aniline black, and perylene black.
 市販品として、例えば、オリエント化学工業株式会社製「elixa Black850」等が挙げられる。「elixa Black850」は、波長365nmの光の透過率が可視光の平均透過率よりも10%以上高く、また、波長365nmの光の透過率が60%以上であり、かつ、可視光透過率が50%以下である着色剤である。 Examples of commercially available products include “elixa Black850” manufactured by Orient Chemical Industries, Ltd. “Elexa Black850” has a transmittance of light of wavelength 365 nm higher than the average transmittance of visible light by 10% or more, a transmittance of light of wavelength 365 nm of 60% or more, and a visible light transmittance of The colorant is 50% or less.
 (E)着色剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 (E) The colorant can be used singly or in combination of two or more.
 (E)着色剤の含有量は、可視光を遮光する効果を得る観点から、(A)単量体及び(B)アクリル系化合物の合計100質量部に対して、0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上が更に好ましい。また、(E)着色剤の含有量は、光硬化性樹脂組成物の硬化性の観点、特に、深部を十分に硬化させる観点から、(A)単量体及び(B)アクリル系化合物の合計100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましく、3質量部以下が更に好ましい。 (E) From the viewpoint of obtaining the effect of shielding visible light, the content of the colorant is 0.1 parts by mass or more with respect to 100 parts by mass in total of the (A) monomer and the (B) acrylic compound. Preferably, 0.3 mass part or more is more preferable, and 0.5 mass part or more is still more preferable. In addition, the content of (E) the colorant is the sum of (A) the monomer and (B) the acrylic compound from the viewpoint of curability of the photocurable resin composition, particularly from the viewpoint of sufficiently curing the deep part. 10 mass parts or less are preferable with respect to 100 mass parts, 5 mass parts or less are more preferable, and 3 mass parts or less are still more preferable.
(添加剤)
 光硬化性樹脂組成物は、必要に応じて様々な添加剤を含有してもよい。添加剤として、例えば、カップリング剤等の密着性向上剤、重合禁止剤、光安定剤、消泡剤、フィラー、酸化防止剤、連鎖移動剤、チキソトロピー付与剤、可塑剤、難燃剤、離型剤、界面活性剤、滑剤、帯電防止剤などが挙げられる。これらの添加剤として、公知の添加剤を使用できる。添加剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Additive)
The photocurable resin composition may contain various additives as necessary. Examples of additives include adhesion improvers such as coupling agents, polymerization inhibitors, light stabilizers, antifoaming agents, fillers, antioxidants, chain transfer agents, thixotropy imparting agents, plasticizers, flame retardants, and mold release agents. Agents, surfactants, lubricants, antistatic agents and the like. Known additives can be used as these additives. An additive can be used individually by 1 type or in combination of 2 or more types.
 カップリング剤としては、例えば、チタネート系カップリング剤、シラン系カップリング剤等を用いることができる。チタネート系カップリング剤として、少なくとも炭素数1~60のアルキレート基を有するチタネート系カップリング剤、アルキルホスファイト基を有するチタネート系カップリング剤、アルキルホスフェート基を有するチタネート系カップリング剤、アルキルパイロホスフェート基を有するチタネート系カップリング剤等が挙げられる。 As the coupling agent, for example, titanate coupling agents, silane coupling agents and the like can be used. As a titanate coupling agent, a titanate coupling agent having an alkylate group having at least 1 to 60 carbon atoms, a titanate coupling agent having an alkyl phosphite group, a titanate coupling agent having an alkyl phosphate group, an alkyl pyrone Examples thereof include a titanate coupling agent having a phosphate group.
 シラン系カップリング剤として、アミノ系シランカップリング剤、ウレイド系シランカップリング剤、ビニル系シランカップリング剤、メタクリル系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤、イソシアネート系シランカップリング剤等が挙げられる。 Silane coupling agents include amino silane coupling agents, ureido silane coupling agents, vinyl silane coupling agents, methacrylic silane coupling agents, epoxy silane coupling agents, mercapto silane coupling agents, and isocyanates. And silane coupling agents.
 重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、p-tert-ブチルカテコール、2,6-ジ-tert-ブチル-4-メチルフェノール、ピロガロール等のキノン類などが挙げられる。
 消泡剤としては、シリコーン系オイル、フッ素系オイル、ポリカルボン酸系ポリマー等が挙げられる。
Examples of the polymerization inhibitor include quinones such as hydroquinone, hydroquinone monomethyl ether, benzoquinone, p-tert-butylcatechol, 2,6-di-tert-butyl-4-methylphenol, and pyrogallol.
Examples of the antifoaming agent include silicone oil, fluorine oil, and polycarboxylic acid polymer.
(製造方法)
 一実施形態によれば、光硬化性樹脂組成物は、(A)単量体及び(B)アクリル系化合物、並びに、必要に応じて(C)リン酸化合物、(D)光重合開始剤、(E)着色剤、及び/又は添加剤を、撹拌により混合することによって製造できる。撹拌は、撹拌子、撹拌羽根等を用いた公知の方法により行えばよい。撹拌時の温度は、(E)着色剤を十分に溶解させることが可能な温度であることが好ましく、例えば、60~90℃とできる。
(Production method)
According to one embodiment, the photocurable resin composition comprises (A) a monomer and (B) an acrylic compound, and optionally (C) a phosphoric acid compound, (D) a photopolymerization initiator, (E) It can manufacture by mixing a coloring agent and / or an additive by stirring. Stirring may be performed by a known method using a stirring bar, a stirring blade, or the like. The temperature at the time of stirring is preferably a temperature at which (E) the colorant can be sufficiently dissolved, and can be, for example, 60 to 90 ° C.
<光硬化性塗料>
 一実施形態は、前記光硬化性樹脂組成物を用いた光硬化性塗料に関する。光硬化性塗料は、少なくとも(A)単量体及び(B)アクリル系化合物を含有し、必要に応じて(C)リン酸化合物、(D)光重合開始剤、(E)着色剤、及び/又は添加剤を含有してもよい。光硬化性塗料は、溶媒を含有してもよいが、良好な保護効果を得るという観点から、溶媒を含有しなくてもよい。光硬化性塗料が遮光性能を備えている場合は、遮光用塗料として好ましく用いることができる。
<Photocurable paint>
One embodiment relates to a photocurable coating material using the photocurable resin composition. The photocurable coating contains at least (A) a monomer and (B) an acrylic compound, and (C) a phosphoric acid compound, (D) a photopolymerization initiator, (E) a colorant, and An additive may be contained. The photocurable coating material may contain a solvent, but may not contain a solvent from the viewpoint of obtaining a good protective effect. When the photocurable paint has a light shielding performance, it can be preferably used as a light shielding paint.
<硬化物及びその製造方法>
 一実施形態は、前記光硬化性樹脂組成物の硬化物又は前記光硬化性塗料を硬化させてなる硬化物に関する。硬化物は、前記光硬化性樹脂組成物又は前記光硬化性塗料を硬化させて得られる。硬化物は、ガラス基材の端部の少なくとも一部に設けられ、ガラス基材を保護する保護膜として用いることができる。
<Hardened product and production method thereof>
One embodiment relates to a cured product obtained by curing the cured product of the photocurable resin composition or the photocurable paint. The cured product is obtained by curing the photocurable resin composition or the photocurable paint. A hardened | cured material is provided in at least one part of the edge part of a glass base material, and can be used as a protective film which protects a glass base material.
 硬化物は、前記光硬化性樹脂組成物又は前記光硬化性塗料を、光照射により硬化させる工程を含む製造方法によって得ることができる。光照射には、上述の光源を使用できる。光照射には、紫外線が好ましく用いられる。紫外線の波長は特に限定されないが、例えば365nmである。 The cured product can be obtained by a production method including a step of curing the photocurable resin composition or the photocurable paint by light irradiation. The light source described above can be used for light irradiation. For light irradiation, ultraviolet rays are preferably used. The wavelength of the ultraviolet light is not particularly limited, but is, for example, 365 nm.
<ガラス基材及びその製造方法>
 一実施形態は、端部の少なくとも一部が、前記硬化物により保護されたガラス基材に関する。ガラス基材の材質は特に限定されない。ガラスとしては、無アルカリガラス、低アルカリガラス、アルカリガラス、石英ガラスなどが挙げられる。イオン交換法により、化学強化されたガラス基材であってもよい。
<Glass base material and manufacturing method thereof>
One embodiment relates to a glass substrate in which at least a part of the end is protected by the cured product. The material of the glass substrate is not particularly limited. Examples of the glass include alkali-free glass, low alkali glass, alkali glass, and quartz glass. It may be a glass substrate chemically strengthened by an ion exchange method.
 ガラス基材のサイズ及び厚さも特に限定されず、用途に応じて、適宜定めることができる。例えば、前記光硬化性樹脂組成物は、厚さが1mm以下、好ましくは0.8mm以下、より好ましくは0.7mm以下のガラス基材に適している。また、下限は特に限定されないが、例えば、前記光硬化性樹脂組成物は、厚さが0.2mm以上、好ましくは0.3mm以上、より好ましくは0.4mm以上のガラス基材に適している。 The size and thickness of the glass substrate are not particularly limited, and can be appropriately determined according to the application. For example, the photocurable resin composition is suitable for a glass substrate having a thickness of 1 mm or less, preferably 0.8 mm or less, more preferably 0.7 mm or less. Moreover, although a minimum is not specifically limited, For example, the said photocurable resin composition is suitable for the glass base material whose thickness is 0.2 mm or more, Preferably it is 0.3 mm or more, More preferably, it is 0.4 mm or more. .
 一例を挙げると、ガラス基材を携帯電話に用いる場合、サイズは約60mm×120mmであり、厚さは約0.55mmである。 For example, when a glass substrate is used for a mobile phone, the size is about 60 mm × 120 mm and the thickness is about 0.55 mm.
 ガラス基材の端部とは、ガラス基材の少なくとも側面を含む部分をいい、ガラス基材の側面のみならず、ガラス基材の一方又は両方の面の縁を含む部分であってもよい。図1(a)にガラス基材の平面模式図を、図1(b)にガラス基材の断面模式図を示す。図1(a)及び(b)中、1がガラス基材を、2がガラス基材の側面を、3がガラス基材の端部を示す。 The end portion of the glass substrate refers to a portion including at least the side surface of the glass substrate, and may be a portion including not only the side surface of the glass substrate but also the edge of one or both surfaces of the glass substrate. FIG. 1A shows a schematic plan view of a glass substrate, and FIG. 1B shows a schematic sectional view of the glass substrate. 1 (a) and 1 (b), 1 represents a glass substrate, 2 represents a side surface of the glass substrate, and 3 represents an end of the glass substrate.
 図2に、側面に硬化物が設けられたガラス基材を示す。4が硬化物である。硬化物4の厚さは均一であっても不均一であってもよく、硬化物4の最大厚さtも特に限定されない。例えば、前記光硬化性樹脂組成物は、最大厚さtが150μm以上、好ましくは200μm以上、より好ましくは100μm以上の硬化物に適している。また、例えば、前記光硬化性樹脂組成物は、最大厚さtが600μm以下、好ましくは500μm以下、より好ましくは400μm以下の硬化物に適している。 FIG. 2 shows a glass substrate provided with a cured product on the side surface. 4 is a cured product. The thickness of the cured product 4 may be uniform or non-uniform, and the maximum thickness t of the cured product 4 is not particularly limited. For example, the photocurable resin composition is suitable for a cured product having a maximum thickness t of 150 μm or more, preferably 200 μm or more, more preferably 100 μm or more. For example, the photocurable resin composition is suitable for a cured product having a maximum thickness t of 600 μm or less, preferably 500 μm or less, and more preferably 400 μm or less.
 一例を挙げると、ガラス基材を携帯電話に用いる場合、硬化物4の最大厚さtは、300~400μmである。硬化物は、ガラス基材の端部の全部に設けられても、一部に設けられてもよい。 For example, when a glass substrate is used for a mobile phone, the maximum thickness t of the cured product 4 is 300 to 400 μm. A hardened | cured material may be provided in all the edge parts of a glass base material, or may be provided in a part.
 保護されたガラス基材は、前記光硬化性樹脂組成物又は光硬化性塗料を、ガラス基材の端部の少なくとも一部に塗布し、塗布膜を形成する工程、及び、前記塗布膜を、光照射により硬化させ、保護膜を形成する工程を含む製造方法によって得ることができる。塗布には上述の塗布方法を使用でき、光照射には上述の光源を使用できる。 The protected glass substrate is formed by applying the photocurable resin composition or the photocurable paint to at least a part of the end of the glass substrate to form a coating film, and the coating film, It can be obtained by a production method including a step of curing by light irradiation and forming a protective film. The above-described coating method can be used for coating, and the above-described light source can be used for light irradiation.
<表示装置>
 一実施形態は、前記ガラス基材を備えた表示装置に関する。ガラス基材は、表示装置の表示部に用いられる。表示装置として、例えば、フラットパネルディスプレイ(FPD)が挙げられ、具体的には、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンスパネル(OELP)、フィールドエミッションディスプレイ(FED)、陰極線管(CRT)、電子ペーパー等が挙げられる。
<Display device>
One embodiment relates to a display device including the glass substrate. A glass base material is used for the display part of a display apparatus. Examples of the display device include a flat panel display (FPD). Specifically, a liquid crystal display (LCD), a plasma display panel (PDP), an organic electroluminescence panel (OELP), a field emission display (FED), a cathode ray. A tube (CRT), electronic paper, etc. are mentioned.
<携帯端末>
 一実施形態によれば、前記ガラス基材を備えた携帯端末に関する。ガラス基材は、携帯端末の表示部に用いられる。携帯端末としては、携帯電話機、スマートフォン、パソコン、電子辞書、電卓、ゲーム機等が挙げられる。
<Mobile device>
According to one embodiment, the present invention relates to a mobile terminal including the glass substrate. A glass base material is used for the display part of a portable terminal. Examples of the portable terminal include a mobile phone, a smartphone, a personal computer, an electronic dictionary, a calculator, and a game machine.
 本発明の実施形態について実施例により具体的に説明する。本発明の実施形態は以下の実施例に限定されない。 Embodiments of the present invention will be specifically described with reference to examples. Embodiments of the present invention are not limited to the following examples.
<光硬化性樹脂組成物の調製>
[実施例1]
 (A-1)成分としてイソボルニルアクリレート37.8質量部、(A-2)成分としてアクリロイルモルホリン4.2質量部、(B-1)成分としてウレタンアクリレート系化合物(根上工業株式会社製アートレジン「UN-904」)29.0質量部、(B-2)成分としてウレタンアクリレート系化合物(根上工業株式会社製「UN-6060S」)29.0質量部、(C)成分としてエチレンオキサイド変性リン酸ジメタクリレート0.5質量部、(D)成分として(1-ヒドロキシシクロヘキシル)フェニルメタノン10.0質量部、及び(E)成分として黒色染料(オリエント化学工業株式会社製「elixa Black850」)0.8質量部を、60℃で撹拌し、光硬化性樹脂組成物を得た。B型粘度計(ローターNo.22、回転数30rpm)を使用して光硬化性樹脂組成物の粘度を測定したところ1.8Pa・sであった。
<Preparation of photocurable resin composition>
[Example 1]
As component (A-1), 37.8 parts by mass of isobornyl acrylate, as component (A-2), 4.2 parts by mass of acryloylmorpholine, and as component (B-1), urethane acrylate compound (Art by Negami Kogyo Co., Ltd.) Resin “UN-904”) 29.0 parts by mass, urethane acrylate compound (“UN-6060S” manufactured by Negami Kogyo Co., Ltd.) 29.0 parts by mass as component (B-2), ethylene oxide modified as component (C) 0.5 parts by weight of dimethacrylate phosphate, 10.0 parts by weight of (1-hydroxycyclohexyl) phenylmethanone as component (D), and black dye as component (E) (“elixa Black850” manufactured by Orient Chemical Industries Ltd.) 0.8 parts by mass was stirred at 60 ° C. to obtain a photocurable resin composition. It was 1.8 Pa.s when the viscosity of the photocurable resin composition was measured using a B-type viscometer (rotor No. 22, rotation speed 30 rpm).
[比較例1]
 (A-1)成分を18.0質量部、(A-2)成分を2.0質量部、(B-1)成分を40.0質量部、(B-2)成分を40.0質量部に変更した以外は実施例1と同様にして光硬化性樹脂組成物を得た。光硬化性樹脂組成物の粘度は23.4Pa・sであった(ローターNo.22、回転数3rpm)。
[Comparative Example 1]
18.0 parts by weight of component (A-1), 2.0 parts by weight of component (A-2), 40.0 parts by weight of component (B-1), and 40.0 parts by weight of component (B-2) A photocurable resin composition was obtained in the same manner as in Example 1 except that the composition was changed to the part. The viscosity of the photocurable resin composition was 23.4 Pa · s (rotor No. 22, rotation speed 3 rpm).
[比較例2]
 (A-1)成分を52.0質量部、(A-2)成分を6.0質量部、(B-1)成分を20.0質量部、(B-2)成分を20.0質量部に変更した以外は実施例1と同様にして光硬化性樹脂組成物を得た。光硬化性樹脂組成物の粘度は0.2Pa・sであった(ローターNo.21、回転数100rpm)。
[Comparative Example 2]
Component (A-1) is 52.0 parts by mass, Component (A-2) is 6.0 parts by mass, Component (B-1) is 20.0 parts by mass, and Component (B-2) is 20.0 parts by mass. A photocurable resin composition was obtained in the same manner as in Example 1 except that the composition was changed to the part. The viscosity of the photocurable resin composition was 0.2 Pa · s (rotor No. 21, rotation speed 100 rpm).
[光硬化性樹脂組成物の粘度]
 B型粘度計(東機産業株式会社製「TVB-10形粘度計」)を用いて粘度を測定した。測定条件を以下に記す。
 温度  :25℃
 ローター:No.21又はNo.22
 回転数 :ローターNo.21を使用する場合は100rpm
      ローターNo.22を使用する場合は3rpm又は30rpm
 なお、ローターNo.21を使用して測定し、1Pa・s未満の値が得られた場合は、ローターNo.21を使用して得た当該値を採用する。
 また、ローターNo.22を使用し、回転数30rpmで測定し、10Pa・s以下の値が得られた場合は、回転数30rpmで測定して得た当該値を採用する。
[Viscosity of photocurable resin composition]
The viscosity was measured using a B-type viscometer (“TVB-10 type viscometer” manufactured by Toki Sangyo Co., Ltd.). The measurement conditions are described below.
Temperature: 25 ° C
Rotor: No. 21 or No. 22
Number of revolutions: Rotor no. 100 rpm when using 21
Rotor No. 3 or 30 rpm when using 22
The rotor No. When a value of less than 1 Pa · s was obtained, the rotor no. The value obtained using 21 is adopted.
In addition, rotor No. 22 is measured at a rotation speed of 30 rpm, and when a value of 10 Pa · s or less is obtained, the value obtained by measurement at a rotation speed of 30 rpm is adopted.
[(E)着色剤の溶解性]
 次の方法により、(E)着色剤の溶解性を確認した。
 50mLビーカーに、(A)単量体10mL(温度25℃、イソボルニルアクリレートとアクリロイルモルホリンの質量比37.8:4.2)を加え、更に、黒色染料10mg(固形分質量)を加え、ガラス棒を用いて1分間、撹拌した。撹拌後、目視で、黒色染料の固形物を確認できなかった。
[(E) Colorant solubility]
The solubility of (E) colorant was confirmed by the following method.
To a 50 mL beaker, (A) 10 mL of monomer (temperature 25 ° C., mass ratio of isobornyl acrylate and acryloylmorpholine 37.8: 4.2) was added, and further 10 mg of black dye (solid content mass) was added, Stir for 1 minute using a glass rod. After stirring, the solid matter of the black dye could not be confirmed visually.
[(E)着色剤の透過率]
 次の方法により(E)着色剤の照射光透過率を測定した。
 溶媒100質量部に対し、着色剤0.1質量部を添加し、着色剤溶液を得た。得られた着色剤溶液を用い、可視紫外光分光光度計(島津製作所製「UV-2400PC」)にて透過率を測定した。分解波長は1nmとし、波長365nmの透過率を測定したところ、74%であった。
[(E) Colorant transmittance]
The irradiation light transmittance of the colorant (E) was measured by the following method.
A colorant solution was obtained by adding 0.1 parts by weight of a colorant to 100 parts by weight of the solvent. Using the resulting colorant solution, the transmittance was measured with a visible ultraviolet spectrophotometer (“UV-2400PC” manufactured by Shimadzu Corporation). The decomposition wavelength was 1 nm, and the transmittance at a wavelength of 365 nm was measured and found to be 74%.
 次の方法により(E)着色剤の可視光の平均透過率を測定した。
 前記と同様に調製した着色剤溶液を用い、分光測色計(コニカミノルタ製「CM-3700A」)にて400~700nmの波長範囲について1nm毎に透過率を測定した。得られた各値の算術平均値を求めたところ、38%であった。
The visible light average transmittance of the (E) colorant was measured by the following method.
Using the colorant solution prepared in the same manner as described above, the transmittance was measured every 1 nm in the wavelength range of 400 to 700 nm with a spectrocolorimeter (“CM-3700A” manufactured by Konica Minolta). The arithmetic average value of the obtained values was 38%.
 実施例1並びに比較例1及び2で作製した光硬化性樹脂組成物について、各成分の含有量と、粘度とを表1に示す。
Figure JPOXMLDOC01-appb-T000002
About the photocurable resin composition produced in Example 1 and Comparative Examples 1 and 2, the content of each component and the viscosity are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
<評価>
 光硬化性樹脂組成物をガラス基板の端面に塗布し、硬化させ、ガラス基板の端部に保護膜を形成した。
<Evaluation>
The photocurable resin composition was applied to the end surface of the glass substrate and cured to form a protective film on the end portion of the glass substrate.
[保護膜の形成]
 スマートフォンを模したガラス基板(60mm×120mm、厚み0.55mm)の端面に対し、ディスペンサー装置を用いて光硬化性樹脂組成物を塗布した。塗布後、紫外線照射装置(光源:メタルハライドランプ、1,000mJ/cm)を用いて光硬化性樹脂組成物の硬化を行った。
[Formation of protective film]
The photocurable resin composition was apply | coated using the dispenser apparatus with respect to the end surface of the glass substrate (60 mm x 120 mm, thickness 0.55mm) imitating a smart phone. After application, the photocurable resin composition was cured using an ultraviolet irradiation device (light source: metal halide lamp, 1,000 mJ / cm 2 ).
 保護膜の形成における作業性、塗布後の流れ出し、硬化後の膜厚等について、評価を行った。 The workability in forming the protective film, the flow-out after application, the film thickness after curing, and the like were evaluated.
[作業性]
 上記の塗布工程における作業性を、以下の基準により評価した。
A:引き及び目詰まりが発生することなく、良好に塗布できた。
B:引き又は目詰まりが発生し、良好に塗布できなかった。
[Workability]
Workability in the above coating process was evaluated according to the following criteria.
A: It was able to be applied satisfactorily without causing pulling and clogging.
B: Pulling or clogging occurred and could not be applied satisfactorily.
[流れ出し]
 塗布完了から紫外線照射までの間の流れ出しを、以下の基準により評価した。
A:塗布した光硬化性樹脂組成物が流れ出すことなく、ガラス基材の端部に留まった。
B:塗布した光硬化性樹脂組成物が流れ出した。
[Flow]
Flowing out from the completion of coating to UV irradiation was evaluated according to the following criteria.
A: The applied photocurable resin composition remained at the edge of the glass substrate without flowing out.
B: The applied photocurable resin composition flowed out.
[4点曲げ強度]
 保護膜を形成したガラス基板の端面に対し、外部からの衝突モデルとして、1.65gf/mmの重量をかけた状態でサンドペーパー(320番手)を引きずり加傷した。引きずる距離は10mmとした。加傷したガラス基板を4点曲げ試験機(上部ポンチ間距離10mm、下部ポンチ間距離30mm、押し込み速度5mm/min)に加傷部分が上部ポンチ間に位置するように置き、ガラス基板が割れるまでの破壊強度を測定した。
[4-point bending strength]
The end face of the glass substrate on which the protective film was formed was scratched by dragging sandpaper (320) with a weight of 1.65 gf / mm applied as an external collision model. The drag distance was 10 mm. Place the damaged glass substrate on a 4-point bending tester (distance between upper punches 10 mm, distance between lower punches 30 mm, indentation speed 5 mm / min) so that the damaged part is located between upper punches, until the glass substrate breaks The breaking strength of was measured.
[保護効果]
 保護効果を、保護膜が形成されているが加傷していないガラス基板と比較し、以下の基準により評価した。加傷していないガラス基板の4点曲げ強度は600MPaである。
A:加傷後に、4点曲げ強度が500MPa以上に保たれた。
B:加傷後に、4点曲げ強度が500MPa未満に低下した。
[Protective effect]
The protective effect was evaluated according to the following criteria in comparison with a glass substrate on which a protective film was formed but not damaged. The unscratched glass substrate has a 4-point bending strength of 600 MPa.
A: After scratching, the 4-point bending strength was maintained at 500 MPa or more.
B: After scratching, the 4-point bending strength decreased to less than 500 MPa.
 表2に評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
 表2に示されるように、実施例1ではハンドリング性が良く、ガラス端面に光硬化性樹脂組成物を塗布することが可能であった。これに対し、比較例1では光硬化性樹脂組成物が高粘度のため、ディスペンサーでの塗布が困難となり、結果としてガラス端面に樹脂を塗布することができなかった。また、比較例2では光硬化性樹脂組成物が低粘度のため、ガラス端面に十分な量を塗布することができなかった。 As shown in Table 2, in Example 1, the handling property was good, and it was possible to apply the photocurable resin composition to the glass end face. On the other hand, in Comparative Example 1, since the photocurable resin composition had a high viscosity, application with a dispenser was difficult, and as a result, the resin could not be applied to the glass end face. In Comparative Example 2, a sufficient amount could not be applied to the glass end face because the photocurable resin composition had a low viscosity.
 保護効果に対しては、実施例1ではガラス端面に光硬化性樹脂組成物が十分に塗布され、硬化されているため、加傷した傷がガラス端面に届かず、4点曲げ強度が保持された。これに対し、比較例2ではガラス端面に光硬化性樹脂組成物が十分に塗布されず、加傷した傷がガラス端面まで到達してしまったため、4点曲げ強度が著しく低下した。 For the protective effect, in Example 1, since the photocurable resin composition was sufficiently applied to the glass end face and cured, the damaged wound did not reach the glass end face, and the 4-point bending strength was maintained. It was. On the other hand, in Comparative Example 2, the photocurable resin composition was not sufficiently applied to the glass end face, and the scratched wound reached the glass end face, so that the four-point bending strength was significantly reduced.
 特定の実施形態を示して説明したが、本発明の趣旨及び範囲から逸脱することなく、様々な変更及び置換がなされ得る。したがって、本発明は例示により説明されており、それらには限定されない。 While specific embodiments have been shown and described, various changes and substitutions may be made without departing from the spirit and scope of the invention. Accordingly, the present invention has been described by way of illustration and not limitation.
1  ガラス基材
2  ガラス基材の側面
3  ガラス基材の端部
4  硬化物
t  硬化物の最大厚さ
DESCRIPTION OF SYMBOLS 1 Glass base material 2 Side surface of glass base material 3 End part of glass base material 4 Hardened | cured material t Maximum thickness of hardened | cured material

Claims (9)

  1.  ガラス基材の端部の少なくとも一部を保護するために用いられ、粘度が0.4~20Pa・sである、光硬化性樹脂組成物。 A photo-curable resin composition that is used to protect at least part of the edge of the glass substrate and has a viscosity of 0.4 to 20 Pa · s.
  2.  着色剤を含有する、請求項1に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, comprising a colorant.
  3.  請求項1又は2に記載の光硬化性樹脂組成物を用いた、光硬化性塗料。 A photocurable paint using the photocurable resin composition according to claim 1.
  4.  請求項1又は2に記載の光硬化性樹脂組成物又は請求項3に記載の光硬化性塗料を硬化させてなる、硬化物。 A cured product obtained by curing the photocurable resin composition according to claim 1 or 2 or the photocurable paint according to claim 3.
  5.  請求項4に記載の硬化物により端部の少なくとも一部が保護された、ガラス基材。 A glass substrate in which at least a part of the end is protected by the cured product according to claim 4.
  6.  請求項5に記載のガラス基材を備えた、表示装置。 A display device comprising the glass substrate according to claim 5.
  7.  請求項5に記載のガラス基材を備えた、携帯端末。 A portable terminal comprising the glass substrate according to claim 5.
  8.  請求項1又は2に記載の光硬化性樹脂組成物又は請求項3に記載の光硬化性塗料を、光照射により硬化させる工程を含む、硬化物の製造方法。 A method for producing a cured product, comprising a step of curing the photocurable resin composition according to claim 1 or 2 or the photocurable paint according to claim 3 by light irradiation.
  9.  請求項1又は2に記載の光硬化性樹脂組成物又は請求項3に記載の光硬化性塗料を、ガラス基材の端部の少なくとも一部に塗布し、塗布膜を形成する工程、及び、前記塗布膜を、光照射により硬化させ、保護膜を形成する工程を含む、保護されたガラス基材の製造方法。 Applying the photocurable resin composition according to claim 1 or 2 or the photocurable paint according to claim 3 to at least a part of an end of the glass substrate to form a coating film; and The manufacturing method of the protected glass base material including the process of hardening the said coating film by light irradiation and forming a protective film.
PCT/JP2017/017463 2016-05-09 2017-05-09 Photocurable resin composition, photocurable coating, and cured product WO2017195752A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780025753.XA CN109071328A (en) 2016-05-09 2017-05-09 Photocurable resin composition, photo-curable coating and solidfied material
KR1020187031186A KR102420095B1 (en) 2016-05-09 2017-05-09 Photocurable resin composition, photocurable paint and cured product
JP2018517018A JP7001051B2 (en) 2016-05-09 2017-05-09 Photocurable resin compositions, photocurable paints, and cured products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093775 2016-05-09
JP2016-093775 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195752A1 true WO2017195752A1 (en) 2017-11-16

Family

ID=60267323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017463 WO2017195752A1 (en) 2016-05-09 2017-05-09 Photocurable resin composition, photocurable coating, and cured product

Country Status (5)

Country Link
JP (1) JP7001051B2 (en)
KR (1) KR102420095B1 (en)
CN (1) CN109071328A (en)
TW (1) TWI744324B (en)
WO (1) WO2017195752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022540376A (en) * 2019-07-03 2022-09-15 華為技術有限公司 Flexible display cover, flexible display module, and flexible display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988884B2 (en) * 2017-03-31 2022-01-05 昭和電工マテリアルズ株式会社 Curable resin composition, glass member, display device and mobile terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112608A (en) * 1986-10-31 1988-05-17 Denki Kagaku Kogyo Kk Ultraviolet-curable composition
JPH1095636A (en) * 1996-09-17 1998-04-14 Nippon Sheet Glass Co Ltd Impact resistant glass
JP2015129074A (en) * 2014-01-09 2015-07-16 昭和電工株式会社 Composition for reinforcing glass end face, glass plate material, and method of producing glass plate material
JP2015202429A (en) * 2014-04-11 2015-11-16 Jsr株式会社 Forming method for substrate edge protection layer
JP2016003160A (en) * 2014-06-17 2016-01-12 日産化学工業株式会社 Glass protection film forming composition and glass protection film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264658A (en) * 1978-07-10 1981-04-28 Owens-Illinois, Inc. Three-component polymeric coating for glass substrate
JP5401824B2 (en) * 2007-04-09 2014-01-29 デクセリアルズ株式会社 Image display device
KR101631347B1 (en) * 2009-05-21 2016-06-16 코닝 인코포레이티드 Thin substrates having mechanically durable edges
CN102478727B (en) 2010-11-28 2016-04-06 宸鸿科技(厦门)有限公司 The manufacture method of touch control display apparatus and display device, touch control display apparatus
KR20130110701A (en) * 2012-03-30 2013-10-10 삼성디스플레이 주식회사 Glass substrate for a display device and method of manufacturing the same
JPWO2013154034A1 (en) * 2012-04-10 2015-12-17 旭硝子株式会社 Tempered glass article and touch sensor integrated cover glass
US9187364B2 (en) * 2013-02-28 2015-11-17 Corning Incorporated Method of glass edge coating
TW201500186A (en) * 2013-06-14 2015-01-01 康寧公司 Method of manufacturing laminated glass articles with improved edge condition
TWI515620B (en) * 2013-10-15 2016-01-01 恆顥科技股份有限公司 Method of increasing strength of a panel edge
JP2015214444A (en) * 2014-05-09 2015-12-03 凸版印刷株式会社 Glass substrate, touch panel sensor substrate, and image display device having coordinate detection function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112608A (en) * 1986-10-31 1988-05-17 Denki Kagaku Kogyo Kk Ultraviolet-curable composition
JPH1095636A (en) * 1996-09-17 1998-04-14 Nippon Sheet Glass Co Ltd Impact resistant glass
JP2015129074A (en) * 2014-01-09 2015-07-16 昭和電工株式会社 Composition for reinforcing glass end face, glass plate material, and method of producing glass plate material
JP2015202429A (en) * 2014-04-11 2015-11-16 Jsr株式会社 Forming method for substrate edge protection layer
JP2016003160A (en) * 2014-06-17 2016-01-12 日産化学工業株式会社 Glass protection film forming composition and glass protection film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022540376A (en) * 2019-07-03 2022-09-15 華為技術有限公司 Flexible display cover, flexible display module, and flexible display device
JP7323654B2 (en) 2019-07-03 2023-08-08 華為技術有限公司 Flexible display cover, flexible display module, and flexible display device

Also Published As

Publication number Publication date
KR102420095B1 (en) 2022-07-11
TW201740200A (en) 2017-11-16
JPWO2017195752A1 (en) 2019-03-07
CN109071328A (en) 2018-12-21
KR20190005845A (en) 2019-01-16
JP7001051B2 (en) 2022-01-19
TWI744324B (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP4457960B2 (en) Active energy ray-curable composition for optical members
JP6822515B2 (en) A photocurable resin composition, a photocurable light-shielding paint using the same, a light leakage prevention material, a liquid crystal display panel and a liquid crystal display device, and a photocuring method.
JP5556766B2 (en) Active energy ray-curable optical material composition
TW201726876A (en) Photocurable resin composition and method for producing picture display device
WO2017195752A1 (en) Photocurable resin composition, photocurable coating, and cured product
JP2017031309A (en) Resin composition and manufacturing method of laminate using the same
JP6930425B2 (en) Photocurable resin composition, light-shielding paint, and cured product
JP6833211B2 (en) Photocurable resin composition for imprint molding
JP6523167B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP6988884B2 (en) Curable resin composition, glass member, display device and mobile terminal
JP5212368B2 (en) Active energy ray-curable composition and optical material
JP2016050231A (en) Photocurable composition and photocurable light-shielding coating material, liquid crystal display panel and liquid crystal display device using the same
JP6833210B2 (en) Photocurable resin composition for imprint molding
JP6835160B2 (en) Glass plate protection resin
JP2018173486A (en) Joint body, method for manufacturing joint body, liquid crystal display, and image display device
KR20200026785A (en) Sealing agent, liquid crystal display element, and liquid crystal display element for liquid crystal display elements
JP6113578B2 (en) Photo-curable ink jet printing composition for resin lens of liquid crystal display device
JP2016117870A (en) Photocurable resin composition and glass sheet protective resin using the same
JP2023553373A (en) Photopolymerizable composition, optical member and display device formed therefrom
CN116897315A (en) Sealing agent for liquid crystal display element and liquid crystal display element
JPS59115317A (en) Photocurable composition
TW202313921A (en) Sealing agent for liquid crystal display elements and liquid crystal display element
JP2018009073A (en) Photocurable moisture-proof insulation coating and method for producing electronic component

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517018

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187031186

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796113

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796113

Country of ref document: EP

Kind code of ref document: A1