WO2017195662A1 - 天井材及び天井施工方法 - Google Patents
天井材及び天井施工方法 Download PDFInfo
- Publication number
- WO2017195662A1 WO2017195662A1 PCT/JP2017/016962 JP2017016962W WO2017195662A1 WO 2017195662 A1 WO2017195662 A1 WO 2017195662A1 JP 2017016962 W JP2017016962 W JP 2017016962W WO 2017195662 A1 WO2017195662 A1 WO 2017195662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceiling
- inorganic fiber
- composite layer
- inorganic composite
- fiber board
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/04—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
Definitions
- the present invention relates to a ceiling material and a ceiling construction method.
- Patent Literature 1 discloses a ceiling tile including a peripheral frame.
- Patent Document 2 discloses a mountain-shaped ceiling sound-absorbing panel in which two sound-absorbing plates are bonded to each other with a specific angle.
- the ceiling material as described above is made of a non-combustible material so as to have fireproof performance. Moreover, it is necessary to keep the initial shape not only during construction but also over time. Furthermore, in order to prevent indoor noise from leaking outside and prevent external noise from reaching the room, it is preferable to have sound absorbing performance.
- an object of the present invention is to provide a ceiling material and a ceiling construction method that are excellent in all of smoothness, sound absorption, and incombustibility.
- the present invention is a ceiling material made of an inorganic fiber plate having a rectangular main surface, in which porous inorganic composite layers are formed on side surfaces facing each other, and the porous inorganic composite layer includes inorganic fibers.
- This ceiling material has a density 12 to 35 times that of a board.
- a ceiling inorganic material is formed by providing a porous inorganic composite layer on opposite sides of the inorganic fiber board, and then the density of the porous inorganic composite layer is 12 to 35 times that of the inorganic fiber board.
- the inorganic fiber board preferably has a density of 32 to 64 kg / m 3 .
- the density of the inorganic fiber plate in such a range, smoothness and sound absorption are particularly excellent.
- the above-mentioned density reduces the weight of the ceiling material and prevents the ceiling material from falling in the event of a disaster such as an earthquake, thus improving the safety of the ceiling material during a disaster. .
- the length of the porous inorganic composite layer extending from one of the side surfaces relative to the length of the inorganic fiber plate from one to the other of the side surfaces facing each other is preferably 1/4000 to 1/100.
- the porous inorganic composite layer can reinforce the inorganic fiber board more firmly, so that the ceiling material does not bend and is more excellent in smoothness.
- the ceiling material preferably includes a skin material that covers the main surface.
- the ceiling material is easy to maintain the initial shape when the main surface of the inorganic fiber board is covered with the skin material, so that the ceiling material does not bend and is more excellent in smoothness.
- the design of the skin material can be changed variously, it is possible to construct a ceiling with excellent design properties according to the interior of the building.
- the present invention is a ceiling construction method in which a plurality of ceiling materials are arranged on a pair of rails that are installed at a predetermined distance from the ceiling surface of the structural frame, and the ceiling material is the ceiling material described above.
- This is a ceiling construction method in which a plurality of ceiling materials are arranged by abutting porous inorganic composite layers.
- the method of arranging the ceiling material on the pair of rails as in the present invention, it is possible to arrange the ceiling material with fewer rails compared to the method of arranging the ceiling material on the grid-like rail. . Therefore, it is easy to construct a ceiling even in a narrow space. Further, since the number of rails is reduced as compared with the case where the rails are arranged in a lattice shape, it is possible to reduce the time for rail construction and to shorten the ceiling construction time. As a result, the construction cost can be reduced. Moreover, since the ceiling material of this invention mentioned above is used, the smoothness of the ceiling constructed
- the present invention it is possible to provide a ceiling material and a ceiling construction method that are excellent in all of smoothness, sound absorption, and incombustibility.
- FIG. 2 is a cross-sectional view taken along line II-II of the ceiling material shown in FIG. It is sectional drawing of the ceiling material which concerns on 2nd Embodiment. It is sectional drawing of the ceiling material which concerns on 3rd Embodiment.
- a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- FIG. 1 is a perspective view of a ceiling material according to the first embodiment
- FIG. 2 is a cross-sectional view taken along the line II-II of the ceiling material shown in FIG.
- the ceiling material 100 according to the first embodiment includes an inorganic fiber board 20 having a rectangular principal surface 2 in which a porous inorganic composite layer 10 is formed on the entire side surfaces 1 facing each other. Consists of.
- the inorganic fiber board 20 has the main surface 2 and the back surface opposite to it, and calls the former the 1st main surface 2a and the latter the 2nd main surface 2b.
- the first main surface 2a and the second main surface 2b are both quadrangular.
- FIG. 3 is a cross-sectional view of a ceiling material according to the second embodiment.
- the ceiling material 120 according to the second embodiment is composed of an inorganic fiber plate 20 having a rectangular main surface 2 in which the porous inorganic composite layer 10 is formed on the entire surface of the side surfaces 1 facing each other.
- the first main surface 2 a is covered with the skin material 40.
- the skin material 40 covers only the first main surface 2a, but the porous inorganic composite layer 10 on the first main surface 2a side is also covered with the skin material 40. Also good.
- FIG. 4 is a cross-sectional view of a ceiling material according to the third embodiment.
- the ceiling material 140 according to the third embodiment is composed of an inorganic fiber plate 20 having a main surface 2 with a rectangular shape, on which the porous inorganic composite layer 10 is formed on the entire side surfaces 1 facing each other.
- the first main surface 2 a is covered with the skin material 40, and the skin material 40 wraps the entire inorganic fiber board 20 and the porous inorganic composite layer 10 so as to wrap the second main surface 2 b. It reaches to the side.
- the skin material 40 may coat
- the porous inorganic composite layer 10 is formed only on one pair of side surfaces 1 facing each other, but may be formed on two sets of side surfaces 1, that is, all of the side surfaces 1.
- the porous inorganic composite layer 10 is formed on the entire surface of the opposing side surface 1, but may be formed only on a part of each side surface 1 at a position facing each other. .
- the porous inorganic composite layer 10 is provided on a part of the side surface 1, the end surface of the porous inorganic composite layer 10 on the first main surface 2 a side and the first main surface 2 a of the inorganic fiber board 20 are aligned. It is preferable to adjust the position of the porous inorganic composite layer 10.
- the main surface 2 has a rectangular shape, but the main surface 2 may have another rectangular shape such as a trapezoidal shape or a square shape. Since it is easy to form a ceiling by arranging a plurality of ceiling materials, the main surface 2 is preferably rectangular. In the case of a rectangular shape, the ratio of the long side to the short side is preferably 1.0 to 4.0, and more preferably 1.2 to 2.0.
- the porous inorganic composite layer 10 has a density 12 to 35 times that of the inorganic fiber board 20.
- the porous inorganic composite layer 10 preferably has a density of 12.5 to 25 times or 15 to 25 times that of the inorganic fiber plate 20, and has a density 20 to 25 times that of the inorganic fiber plate 20. It is more preferable.
- the inorganic fiber board 20 preferably has a density of 32 to 64 kg / m 3 , more preferably has a density of 32 to 48 kg / m 3 , More preferably, it has a density of 40 kg / m 3 .
- Y is the length of the inorganic fiber plate 20 from one side to the other of the side surfaces 1 facing each other
- X is the length of the porous inorganic composite layer 10 extending from one side of the side surface 1. (Thickness).
- X that is, X / Y is preferably 1/4000 to 1/100, more preferably 1/4000 to 1/300 or 1/4000 to 1/450, and preferably 1/4000 to 1/800. More preferably, it is more preferably 1/4000 to 1/900.
- the porous inorganic composite layers 10 formed on the side surfaces 1 facing each other may have the same X length or different lengths.
- the side surface 1 which mutually opposes is not parallel, the length of Y of the inorganic fiber board 20 changes with places.
- the above X / Y is calculated with the minimum values of X and Y.
- the porous inorganic composite layer 10 applied to the first to third embodiments is preferably formed of a porous base material impregnated with an inorganic material.
- the porous inorganic composite layer 10 can be formed, for example, by impregnating a base material with water in which an inorganic material is dispersed and curing it.
- a hydraulic inorganic material can be used.
- a hydraulic inorganic material what contains a cementitious raw material, a siliceous raw material, etc. as a main component is mentioned, for example.
- the cementitious raw material may be Portland cement, fly ash cement and alumina cement.
- the siliceous raw material include those containing magnesium silicate, magnesium calcium silicate, calcium silicate, aluminum calcium silicate and the like.
- the raw material containing magnesium silicate may be sepiolite, attapulgite, talc, forsterite, humite, enstatite, clinoenstatite, chrysotile, etc.
- the raw material containing calcium silicate may be wollastonite and tobermorite, and the raw material containing aluminum calcium silicate may be grossular, zoisite, clinozoicite, lawsonite, galenite, playnite, Anorsite, scolesite, epistibite, raumonite, meionite and the like may be used.
- the porous substrate may be a porous sheet.
- the sheet is preferably formed of organic fibers and inorganic fibers, and is more preferably formed of organic fibers because of excellent flexibility.
- organic fibers include cellulose fibers, rayon fibers, acrylic fibers, polyester fibers, and the like, and cellulose fibers are preferred because they are excellent in flexibility.
- the inorganic fiber include glass fiber, basalt fiber, and silica fiber.
- the glass fiber is preferably E glass fiber.
- the sheet may be formed of one of the organic fibers and inorganic fibers listed above, or may be formed of two or more.
- the basis weight is preferably 20 to 300 g / m 2 and the basis weight is 20 to 100 g / m 2. Is more preferable, and the basis weight is more preferably 20 to 50 g / m 2 .
- the thickness X of the porous inorganic composite layer 10 extending from the side surface 1 of the inorganic fiber board 20 can be set to 0.25 to 4.0 mm.
- the inorganic fiber plate 20 applied to the first to third embodiments may be formed of an inorganic fiber and a cured product of a thermosetting binder that fixes (holds) the inorganic fiber. That is, as the inorganic fiber board 20, what shape
- inorganic fibers examples include glass wool and rock wool.
- a fiberizing method for forming inorganic fibers for example, various methods such as a flame method, a blow-off method, and a centrifugal method (also referred to as a rotary method) can be used.
- the fiberizing method is preferably a centrifugal method.
- the thermosetting binder may be a thermosetting composition that is cured by at least one reaction of an amidation reaction, an imidation reaction, an esterification reaction, and an ester exchange reaction.
- the thermosetting binder is cured by the above reaction method.
- the thermosetting resin include aldehyde condensable resins such as phenol resins, amino resins, and furan resins.
- the aqueous binder include a composition containing a polycarboxylic acid, a polyol, starch, and a decomposition product of starch.
- the polycarboxylic acid is preferably one having an ethylenically unsaturated monomer having a carboxy group as a monomer unit, that is, one obtained by polymerizing an ethylenically unsaturated monomer having a carboxy group.
- the ethylenically unsaturated monomer which has a carboxy group may use 1 type (s) or 2 or more types.
- the monomer unit constituting the polycarboxylic acid is composed of an ethylenically unsaturated monomer having a carboxy group, an ethylenically unsaturated monomer having a carboxy group, and a copolymer monomer having no carboxy group.
- the content of the ethylenically unsaturated monomer having a carboxy group is preferably 90% by mass or more, and more preferably 95% by mass or more, based on the total amount of monomers.
- Examples of the ethylenically unsaturated monomer having a carboxy group include (meth) acrylic acid, crotonic acid, fumaric acid, maleic acid, 2-methylmaleic acid, itaconic acid, 2-methylitaconic acid, ⁇ - ⁇ -methyleneglutar Acid, monoalkyl maleate, monoalkyl fumarate, maleic anhydride, acrylic anhydride, ⁇ - (meth) acryloyloxyethylene hydrodiene phthalate, ⁇ - (meth) acryloyloxyethylene hydrogen maleate, ⁇ - (meth) Examples thereof include acryloyloxyethylene hydrogen succinate and the like, and (meth) acrylic acid is more preferable and acrylic acid is more preferable because the molecular weight of the polycarboxylic acid is easily controlled.
- the acid value of the polycarboxylic acid may be 500 to 900 mgKOH / g, and the weight average molecular weight of the polycarboxylic acid may be 1000 to 20000.
- polyol examples include aliphatic polyols, alkanolamines, sugar alcohols, polyester polyols, polyethylene glycol, polypropylene glycol, and acrylic resin-based polyols.
- Aliphatic polyols are 1,2-ethanediol (ethylene glycol) and its dimer or trimer, 1,2-propanediol (propylene glycol) and its dimer or trimer, 1,3-propane Diol, 2,2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-2 4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedi
- the alkanolamine may be diethanolamine, triethanolamine, triisopropanolamine and the like.
- the sugar alcohol may be a C 3-8 sugar alcohol, specifically, glycerol, erythritol, pentaerythritol, threitol, arabinitol, xylitol, ribitol, iditol, galactitol, sorbitol, mannitol, borreitol, and Perseitol may be used.
- the polyester polyol may be a polyol comprising the above polyol and an organic acid such as phthalic acid, adipic acid or azelaic acid.
- the polyol may be one of the above and may be a mixture of two or more.
- the inorganic fiber board 20 applied to the first to third embodiments can be manufactured as follows, for example. That is, first, the molten inorganic raw material is fiberized with a fiberizing apparatus, and immediately after that, a thermosetting binder is applied to the inorganic fiber. Next, inorganic fibers to which a thermosetting binder has been applied are deposited on a perforated conveyor to form a bulky inorganic fiber intermediate, and a pair of upper and lower perforated conveyors and the like that are spaced to have a desired thickness. The inorganic fiber board 20 is formed by curing the thermosetting binder by feeding and heating while narrowing. If necessary, the inorganic fiber board 20 is cut to a desired width and length.
- the timing for applying the thermosetting binder to the inorganic fiber may be after fiberization, and since the thermosetting binder can be efficiently applied, it is preferably immediately after fiberization.
- thermosetting binder examples include a method of applying or spraying with a spray device or the like.
- the method for adjusting the application amount of the thermosetting binder may be the same method as that for a conventional binder not containing a water repellent.
- the application amount of the thermosetting binder is preferably 0.5 to 15% by mass in terms of solid content, based on the total mass of the inorganic fiber board 20 to which the thermosetting binder is applied, and is preferably 0.5 to 9%. More preferably, it is mass%.
- the inorganic fiber to which the thermosetting binder is applied is deposited on the perforated conveyor and becomes a bulky inorganic fiber intermediate.
- thermosetting binder heating with a hot air oven may be mentioned.
- the heating temperature in the hot air oven may be 200 to 350 ° C., for example.
- the heat curing time may be appropriately adjusted between 30 seconds and 10 minutes depending on the density and thickness of the inorganic fiber board 20.
- the skin material 40 applied to the second to third embodiments may be formed of any one of glass fiber woven fabric, glass fiber paper, glass fiber nonwoven fabric, and paper containing an inorganic material.
- the skin material 40 preferably has a basis weight of 30 to 150 g / m 2 and more preferably a basis weight of 40 to 50 g / m 2 because it can easily maintain the smoothness of the appearance as a cosmetic material.
- the basis weight is 30 g / m 2 or more, the skin material 40 tends to be excellent in appearance smoothness as a cosmetic material, and when the basis weight is 150 g / m 2 or less, the skin material 40 is excellent in flexibility and the inorganic fiber board 20. Since the skin material 40 can be disposed along the entire adhesive surface, the skin material 40 tends to be excellent in suppressing shrinkage, loosening, and peeling due to heating or aging.
- the skin material 40 preferably has a thickness of 0.05 to 1.0 mm, and more preferably has a thickness of 0.1 to 0.5 mm.
- the skin material 40 is excellent in flexibility, and the skin material 40 can be disposed along the entire bonding surface with the inorganic fiber board 20.
- the skin material 40 tends to be excellent in suppressing shrinkage, loosening, and peeling due to use over time.
- the ceiling materials 100, 120, 140 according to the first to third embodiments are manufactured by, for example, the following method.
- the porous inorganic composite layer 10 is formed on the entire surface of the side surfaces 1 facing each other by bonding the side surface 1 of the inorganic fiber board 20 and the porous inorganic composite layer 10 with an adhesive.
- the skin material 40 and the inorganic fiber board 20 are bonded with an adhesive.
- the ceiling material 140 according to the third embodiment covers the porous inorganic composite layer 10 with the skin material 40 without bonding the side surface 1 of the inorganic fiber board 20 and the porous inorganic composite layer 10 with an adhesive, It can also be manufactured by bonding the skin material 40 and the inorganic fiber board 20 with an adhesive.
- the adhesive include a hot melt adhesive, for example, a hot melt adhesive made of an ethylene vinyl acetate copolymer.
- At least a pair of rails are arranged at a predetermined distance from the ceiling surface of the structural frame (framework of the building).
- the pair of rails are arranged so as to match the shape of the ceiling material, and may be arranged suspended from the ceiling surface of the structural frame, or may be arranged fixed to the wall.
- the ceiling material may be any one of the above-described ceiling materials 100, 120, and 140, and a plurality of the ceiling materials are arranged by abutting the porous inorganic composite layers 10 of the ceiling materials arranged adjacent to each other.
- the number of rails arranged at a predetermined distance from the ceiling surface of the structural housing may be two or more.
- the ceiling material is arranged on the pair of rails, but may be fastened to the channel steel, joist steel or etch steel, which is the structural material of the ceiling, by anchor pins or conical screws, It may be fastened to a ceiling made of concrete with a screw-type pin at the tip.
- Example 1 A glass wool is provided with a two-component binder consisting of polyacrylic acid and alkanolamine (diethanolamine) that is thermally cured by an esterification reaction and an amidation reaction, and the binder is thermally cured to form an inorganic fiber board. Obtained.
- the density of the inorganic fiber board was 32 kg / m 3 , and the amount of the binder applied was 6% by mass based on the total amount of the inorganic fiber board to which the binder was applied.
- the length of the side of the main surface of the inorganic fiber board was 1800 mm on the long side and 900 mm on the short side, and the thickness of the inorganic fiber board was 25 mm.
- the porous inorganic composite base material was obtained by making the paper which consists of a cellulose fiber impregnate the slurry of a sepiolite containing magnesium silicate, and making it water-harden.
- the density of the porous inorganic composite base material was 800 kg / m 3
- the side length of the porous inorganic composite base material was 1800 mm on the long side and 25 mm on the short side.
- the thickness of the porous inorganic composite substrate was 1 mm.
- a porous inorganic composite layer is formed by pasting the porous inorganic composite base material with a hot-melt adhesive on the entire opposite side surface of the long side of the inorganic fiber board, and a ceiling material as shown in FIGS. (A) was obtained.
- the density of the porous inorganic composite layer was 25 times that of the inorganic fiber plate, and X / Y in FIGS. 1 and 2 was 1/900.
- the mass per unit area of the ceiling material (A) was 842.5 g / m 2 .
- the hot melt adhesive was made of an ethylene vinyl acetate copolymer, and was applied at 50 g / m 2 .
- Example 2 The density of the inorganic fiber board is 64 kg / m 3 , the amount of the binder applied is 8% by mass based on the total amount of the inorganic fiber board provided with the binder, and the thickness of the inorganic fiber board is 15 mm. Except for the above, an inorganic fiber board was obtained in the same manner as in Example 1. Further, the porous inorganic composite layer was formed in the same manner as in Example 1 except that the length of the short side of the porous inorganic composite layer was 15 mm and the thickness of the porous inorganic composite layer was 3 mm. I got the material. Using these, a ceiling material (B) as shown in FIGS. 1 and 2 was obtained in the same manner as in Example 1.
- the density of the porous inorganic composite layer was 12.5 times the density of the inorganic fiber board, and X / Y in FIGS. 1 and 2 was 1/300. Moreover, the mass per unit area of the ceiling material (B) was 1033.5 g / m 2 .
- Example 3 The porous inorganic composite substrate obtained in Example 1 is arranged without using an adhesive on the side surface of the long side of the inorganic fiber board obtained in Example 1, and is made of a glass nonwoven fabric having a basis weight of 50 g / m 2.
- a covering material (C) as shown in FIG. 4 was obtained by covering with a skin material so as to be wound from the first main surface side to the second main surface side. The skin material is coated from the edge of the long side of the second main surface to the position of 100 mm inward, and the ethylene vinyl acetate copolymer is placed at a position of 10 mm from the end of the skin material covering the second main surface.
- a hot-melt adhesive made of coalescence was applied at 50 g / m 2 and the skin material was attached to the second main surface of the inorganic fiber board.
- the density of the porous inorganic composite layer was 25 times that of the inorganic fiber board, and X / Y in FIG. 4 was 1/900.
- the mass per unit area of the ceiling material (C) was 908.5 g / m 2 .
- Example 1 It implemented like Example 1 except having stuck the porous inorganic composite layer on the side of the inorganic fiber board, and having obtained the ceiling material (D) which consists only of an inorganic fiber board.
- Example 2 The same procedure as in Example 2 was performed, except that the porous inorganic composite layer was not attached to the side surface of the inorganic fiber board, and a ceiling material (E) made of only the inorganic fiber board was obtained.
- Example 3 It implemented like Example 3 except having obtained the ceiling material (F) which consists only of an inorganic fiber board and a skin material, without using a porous inorganic composite layer.
- the ceiling material is placed on the support table by supporting the two regions 200 mm away from the center line on the short side with the support table as a center line on the main surface of the ceiling material. Arranged. The bending (mm) at both ends in the long side direction of the ceiling material was measured with the center of the long side of the ceiling material being zero. The results are shown in Table 1. In addition, the dimension of the support stand was 300 mm x 10 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
Abstract
互いに対向する側面1に多孔性無機複合層10が形成されている、主面2が四角形状の無機繊維板20からなる天井材100であって、前記多孔性無機複合層10は、前記無機繊維板20の12~35倍の密度を有する、天井材100。
Description
本発明は、天井材及び天井施工方法に関する。
建造物の室内に天井を設けるに当たり、所定形状の天井材を複数敷き詰める方法が採用される場合がある。このような目的に使用できる天井材として、例えば、特許文献1には、周辺フレームを備える天井タイルが開示されている。また、特許文献2には、特定の角度を持って2枚の吸音板を突合せて接着した山型状の天井用吸音パネルが開示されている。
上記のような天井材は、不燃性の素材で作製して防火性能を有するようにすることが好ましい。また、施工時はもちろんのこと経時的にも初期形状を保つ必要がある。さらに、室内のノイズを外部に漏らさず、外部の騒音が室内に届かないようにするため、吸音性能を有していることが好ましい。
そこで、本発明は、平滑性、吸音性及び不燃性の全てにおいて優れる天井材、及び天井施工方法を提供することを目的とする。
本発明は、一態様において、互いに対向する側面に多孔性無機複合層が形成されている、主面が四角形状の無機繊維板からなる天井材であって、多孔性無機複合層は、無機繊維板の12~35倍の密度を有する、天井材である。
本発明においては、無機繊維板の互いに対向する側面に多孔性無機複合層を設けて天井材を構成し、その上で、多孔性無機複合層の密度を無機繊維板の12~35倍にすることにより、撓みがなく、高い平滑性、優れた吸音性、高水準の不燃性の全てが達成可能となるという意外な効果が見いだされた。すなわち、本発明の天井材は、上記構成を有することから、平滑性、吸音性及び不燃性の全てが優れるようになる。
無機繊維板は、32~64kg/m3の密度を有することが好ましい。無機繊維板の密度をこのような範囲とすることにより、平滑性及び吸音性が特に優れるようになる。また上記のような密度にすることで、天井材が軽量化され、地震発生時等の災害の際に天井材が落下するのが防止されるため、天井材の災害時の安全性が向上する。
互いに対向する側面の一方から他方までの無機繊維板の長さに対する、側面の一方から延在する多孔性無機複合層の長さは、1/4000~1/100であることが好ましい。長さの比をこのような範囲にすることにより、多孔性無機複合層が無機繊維板をより強固に補強することができるため、天井材は、撓みが生じず、より平滑性に優れる。
天井材は、主面を被覆する表皮材を備えることが好ましい。天井材は、無機繊維板の主面が表皮材で被覆されることにより、初期形状を保ちやすくなるため、撓みが生じず、平滑性により一層優れる。また、表皮材のデザインを種々変更できることから、建造物の内装に合わせて意匠性の優れた天井を施工できる。
本発明は、一態様において、構造躯体の天井面から所定の距離離れて設置された一対のレール上に、天井材を複数配置する天井施工方法であって、天井材は、上記天井材であり、多孔性無機複合層を突き合わせて、天井材を複数配置する、天井施工方法である。
本発明のように、一対のレール上に天井材を配置する方法を採用することで、格子状のレール上に天井材を配置する方法に比べて、少ないレールで天井材を配置することができる。そのため、狭い空間においても天井を施工することが容易である。また、格子状にレールを配置させる場合に比べて、レール数が少なくなるため、レールの施工のための時間を削減でき、天井の施工を短時間化することができるようになる。その結果、施工コストの低減が可能となる。また、上述した本発明の天井材を使用することから、施工される天井の平滑性が優れ、吸音性も高く、不燃性を発揮するようになる。
本発明によれば、平滑性、吸音性及び不燃性の全てにおいて優れる天井材、及び天井施工方法を提供することができる。
以下、必要に応じて図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。
本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
図1は第1実施形態に係る天井材の斜視図であり、図2は図1に示す天井材のII-II線に沿った断面図である。図1及び2に示すように、第1実施形態に係る天井材100は、互いに対向する側面1の全面に多孔性無機複合層10が形成された、主面2が四角形状の無機繊維板20からなる。なお、無機繊維板20は、主面2とそれに対向する裏面を有しており、前者を第一の主面2a、後者を第二の主面2bと呼ぶ。なお、第1実施形態においては、第一の主面2aと第二の主面2bは共に四角形状である。
図3は、第2実施形態に係る天井材の断面図である。第2実施形態に係る天井材120は、互いに対向する側面1の全面に多孔性無機複合層10が形成された、主面2が四角形状の無機繊維板20からなる。天井材120においては、第一の主面2aは表皮材40で被覆されている。
第2実施形態では、表皮材40は、第一の主面2aのみを被覆しているが、第一の主面2a側の、多孔性無機複合層10上も表皮材40で被覆されていてもよい。
図4は、第3実施形態に係る天井材の断面図である。第3実施形態に係る天井材140は、互いに対向する側面1の全面に多孔性無機複合層10が形成されている、主面2が四角形状の無機繊維板20からなる。天井材140においては、第一の主面2aは表皮材40で被覆されており、表皮材40は、無機繊維板20及び多孔性無機複合層10全体を包み込むように、第二の主面2b側まで達している。
なお、表皮材40は、無機繊維板20及び多孔性無機複合層10全体を完全に覆うように、全体を被覆していてもよい。すなわち、表皮材40は、第一の主面2a、第二の主面2b、多孔性無機複合層10の表面、の全てを被覆していてもよい。
第1~3実施形態では、多孔性無機複合層10は、対向する1組の側面1にのみ形成されているが、2組の側面1、すなわち側面1の全てに形成されていてもよい。また、第1~3実施形態では、多孔性無機複合層10は、対向する側面1の全面に形成されているが、互いに対向する位置で各側面1の一部にのみ形成されていてもよい。側面1の一部に多孔性無機複合層10を設ける場合、第一の主面2a側の多孔性無機複合層10の端面と、無機繊維板20の第一の主面2aとが揃うように、多孔性無機複合層10の位置を調整することが好ましい。
第1~3実施形態では、主面2は長方形状であるが、主面2は、台形状、正方形状等他の四角形状であってもよい。天井材を複数配列させて天井を形成することが容易であることから、主面2は長方形状であることが好ましい。長方形状の場合、短辺に対する長辺の比率は、1.0~4.0であることが好ましく、1.2~2.0であることがより好ましい。
第1~3実施形態において、多孔性無機複合層10は無機繊維板20の12~35倍の密度を有している。多孔性無機複合層10は無機繊維板20の12.5~25倍又は15~25倍の密度を有していることが好ましく、無機繊維板20の20~25倍の密度を有していることがより好ましい。
第1~3実施形態において、無機繊維板20は32~64kg/m3の密度を有していることが好ましく、32~48kg/m3の密度を有していることがより好ましく、32~40kg/m3の密度を有していることが更に好ましい。
図1~4における、Yは、互いに対向する側面1の一方から他方までの無機繊維板20の長さであり、Xは、側面1の一方から延在する多孔性無機複合層10の長さ(厚さ)を表す。第1~3実施形態において、互いに対向する側面1の一方から他方までの無機繊維板20の長さYに対する、側面1の一方から延在する多孔性無機複合層10の長さ(厚さ)X、すなわちX/Yは、1/4000~1/100であることが好ましく、1/4000~1/300又は1/4000~1/450であることがより好ましく、1/4000~1/800であることが更に好ましく、1/4000~1/900であることが更により好ましい。なお、互いに対向する側面1に形成された多孔性無機複合層10は、それぞれ同じXの長さを有していてもよく、異なる長さを有していてもよい。また、互いに対向する側面1が並行でない場合、無機繊維板20のYの長さは場所により異なることになる。このように、XやYの長さが場所により一定しない場合は、X及びYの最小値をもって上記X/Yを算出する。
第1~3実施形態に適用される多孔性無機複合層10は、無機材料を含浸した多孔性の基材で形成されていることが好ましい。多孔性無機複合層10は、例えば、無機材料を分散させた水を、基材に含浸させて硬化することで形成できる。
無機材料としては、水硬性無機材料を用いることができる。水硬性無機材料としては、例えば、セメント質原料、珪酸質原料等を主成分として含有するものが挙げられる。セメント質原料は、ポルトランドセメント、フライアッシュセメント及びアルミナセメントであってよい。珪酸質原料としては、珪酸マグネシウム、珪酸マグネシウムカルシウム、珪酸カルシウム、珪酸アルミニウムカルシウム等を含有するものが挙げられる。珪酸マグネシウムを含有する原料は、セピオライト、アタパルジャイト、タルク、フォルステライト、ヒューマイト、エンスタタイト、クリノエンスタタイト、クリソタイル等であってよく、珪酸マグネシウムカルシウムを含有する原料は、オルルマナイト、マグネシアアクシナイト、ディオプサイト、トレモライト等であってよく、珪酸カルシウムを含有する原料は、ウォラストナイト及びトバモライトであってよく、珪酸アルミニウムカルシウムを含有する原料は、グロッシュラー、ゾイサイト、クリノゾイサイト、ローソナイト、ゲーレナイト、プレーナイト、アノーサイト、スコレサイト、エピスティバイト、ラウモナイト、メイオナイト等であってよい。
多孔性の基材は、多孔性のシートであってよい。シートは、有機繊維及び無機繊維で形成されることが好ましく、柔軟性に優れることから、有機繊維で形成されることがより好ましい。有機繊維としては、セルロース繊維、レーヨン繊維、アクリル繊維、ポリエステル繊維等が挙げられ、柔軟性に優れることから、セルロース繊維であることが好ましい。無機繊維としては、ガラス繊維、バサルト繊維、シリカ繊維等が挙げられる。ガラス繊維は、Eガラス繊維であることが好ましい。シートは、上記に挙げた有機繊維及び無機繊維の1種で形成されていても、2種以上で形成されていてもよい。
第1~3実施形態に適用される多孔性無機複合層10は、吸音性に優れることから、目付が20~300g/m2であることが好ましく、目付が20~100g/m2であることがより好ましく、目付が20~50g/m2であることが更に好ましい。
第1~3実施形態において、無機繊維板20の側面1から延在する多孔性無機複合層10の厚さXは、0.25~4.0mmとすることができる。
第1~3実施形態に適用される無機繊維板20は、無機繊維と、無機繊維を固着(保持)する熱硬化性バインダーの硬化物とから形成されてよい。すなわち、無機繊維板20としては、熱硬化性バインダーを無機繊維に付与し、熱硬化性バインダーを加熱硬化させて成形したものを利用できる。
無機繊維としては、グラスウール、ロックウール等が挙げられる。無機繊維にするための繊維化方法としては、例えば、火焔法、吹き飛ばし法、遠心法(ロータリー法ともいう)の各種方法を用いることができる。無機繊維がグラスウールの場合、繊維化方法は、遠心法であることが好ましい。
熱硬化性バインダーは、アミド化反応、イミド化反応、エステル化反応、及びエステル交換反応の少なくとも一つの反応で硬化する熱硬化性組成物であってよく、例えば、上記反応方式で硬化する熱硬化性樹脂組成物、又は水性バインダーであってよい。熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂及びフラン樹脂等のアルデヒド縮合性樹脂が挙げられる。水性バインダーとしては、ポリカルボン酸とポリオール、でんぷん、及びでんぷんの分解物とを含有する組成物が挙げられる。
ポリカルボン酸は、カルボキシ基を有するエチレン性不飽和単量体をモノマー単位として有するもの、すなわち、カルボキシ基を有するエチレン性不飽和単量体を重合して得られるものであることが好ましい。なお、カルボキシ基を有するエチレン性不飽和単量体は1種又は2種以上を用いてよい。ポリカルボン酸を構成するモノマー単位は、カルボキシ基を有するエチレン性不飽和単量体のみからなる場合と、カルボキシ基を有するエチレン性不飽和単量体と、カルボキシ基を有しない共重合モノマーとからなる場合がある。後者の場合、カルボキシ基を有するエチレン性不飽和単量体の含有量は、モノマー全量を基準として、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
カルボキシ基を有するエチレン性不飽和単量体としては、(メタ)アクリル酸、クロトン酸、フマル酸、マレイン酸、2‐メチルマレイン酸、イタコン酸、2‐メチルイタコン酸、α‐β‐メチレングルタル酸、マレイン酸モノアルキル、フマル酸モノアルキル、無水マレイン酸、無水アクリル酸、β‐(メタ)アクリロイルオキシエチレンハイドロジエンフタレート、β‐(メタ)アクリロイルオキシエチレンハイドロジエンマレエート、β‐(メタ)アクリロイルオキシエチレンハイドロジエンサクシネート等を挙げることができ、ポリカルボン酸の分子量が制御しやすいことから、(メタ)アクリル酸がより好ましく、アクリル酸が更に好ましい。
ポリカルボン酸の酸価は500~900mgKOH/gであってよく、ポリカルボン酸の重量平均分子量は1000~20000であってよい。
ポリオールとしては、脂肪族ポリオール、アルカノールアミン、糖アルコール、ポリエステルポリオール、ポリエチレングリコール、ポリプロピレングリコール及びアクリル樹脂系ポリオールが挙げられる。脂肪族ポリオールは、1,2‐エタンジオール(エチレングリコール)及びその二量体又は三量体、1,2‐プロパンジオール(プロピレングリコール)及びその二量体又は三量体、1,3‐プロパンジオール、2,2‐メチル‐1,3‐プロパンジオール、2‐ブチル‐2‐エチル‐1,3‐プロパンジオール、1,3‐ブタンジオール、1,4‐ブタンジオール、2‐メチル‐2,4‐ブタンジオール、1,5‐ペンタンジオール、3‐メチル‐1,5‐ペンタンジオール、2‐メチル‐2,4‐ペンタンジオール、1,6‐ヘキサンジオール、1,4‐シクロヘキサンジオール、2‐エチル‐1,3‐ヘキサンジオール、2‐ヒドロキシメチル‐2‐メチル‐1,3‐プロパンジオール、2‐エチル‐2‐ヒドロキシメチル‐2‐メチル‐1,3‐プロパンジオール、1,2,6‐ヘキサントリオール、及び2,2‐ビス(ヒドロキシメチル)‐2,3‐プロパンジオール等であってよい。アルカノールアミンは、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミン等であってよい。糖アルコールは、炭素数3~8の糖アルコールであってよく、具体的には、グリセロール、エリスリトール、ペンタエリスリトール、トレイトール、アラビニトール、キシリトール、リビトール、イジトール、ガラクチトール、ソルビトール、マンニトール、ボレミトール、及びペルセイトール等であってよい。ポリエステルポリオールは、上記ポリオールと、フタル酸、アジピン酸又はアゼライン酸等の有機酸とからなるポリオールであってよい。ポリオールは、上記の1種であってよく、2種以上の混合物であってもよい。
第1~3実施形態に適用される無機繊維板20は、例えば、以下のように製造することができる。すなわち、まず、溶融した無機質原料を繊維化装置で繊維化し、その直後に熱硬化性バインダーを無機繊維に付与する。次いで熱硬化性バインダーが付与された無機繊維を有孔コンベア上に堆積して嵩高い無機繊維中間体を形成し、所望の厚さになるように間隔を設けた上下一対の有孔コンベア等に送り込んで狭圧しつつ加熱し、熱硬化性バインダーを硬化させて無機繊維板20を形成する。必要に応じて、無機繊維板20を所望とする幅、長さに切断する。
無機繊維に熱硬化性バインダーを付与する時期は、繊維化後であればよく、熱硬化性バインダーを効率的に付与できることから、繊維化直後であることが好ましい。
無機繊維に熱硬化性バインダーを付与する方法としては、スプレー装置等により塗布又は噴霧する方法が挙げられる。熱硬化性バインダーの付与量の調整方法は、従来の撥水剤を含まないバインダーと同様の方法であってよい。熱硬化性バインダーの付与量は、熱硬化性バインダーを付与した無機繊維板20の全質量を基準として、固形分換算で、0.5~15質量%であることが好ましく、0.5~9質量%であることがより好ましい。
熱硬化性バインダーが付与された無機繊維は、有孔コンベア上に堆積され、嵩高い無機繊維中間体となる。ここで有孔コンベア上に堆積する時に、無機繊維が堆積される有孔コンベアの反対側から吸引装置により吸引することが好ましい。
熱硬化性バインダーの加熱方法としては、熱風オーブンによる加熱が挙げられる。熱風オーブン内の加熱温度は、例えば、200~350℃であってよい。加熱硬化時間は、無機繊維板20の密度及び厚さにより、30秒~10分の間で適宜調整してよい。
第2~3実施形態に適用される表皮材40は、ガラス繊維織物、ガラス繊維紙、ガラス繊維不織布、無機材料を含有した紙のいずれか1つで形成されていてよい。
表皮材40は、化粧材としての外観の平滑性を維持しやすいことから、目付が30~150g/m2であることが好ましく、目付が40~50g/m2であることがより好ましい。表皮材40は、目付が30g/m2以上であると、化粧材としての外観の平滑性に優れる傾向にあり、目付が150g/m2以下であると、柔軟性に優れ、無機繊維板20との接着面全体に沿わして表皮材40を配置することができるため、加熱あるいは経年使用等による表皮材40の収縮や弛み、剥離の抑制に優れる傾向にある。
表皮材40は、0.05~1.0mmの厚さを有していることが好ましく、0.1~0.5mmの厚さを有していることがより好ましい。表皮材40は、0.05mm以上の厚さを有していると、柔軟性に優れ、無機繊維板20との接着面全体に沿わして表皮材40を配置することができるため、加熱あるいは経年使用等による表皮材40の収縮や弛み、剥離の抑制に優れる傾向にある。
第1~3実施形態に係る天井材100,120,140は、例えば、以下の方法により製造される。まず、無機繊維板20の側面1と、多孔性無機複合層10とを接着剤で結合させることで、互いに対向する側面1の全面に多孔性無機複合層10を形成する。第2~3実施形態に係る天井材120,140は、上記のように多孔性無機複合層を形成した後、表皮材40と無機繊維板20とを接着剤で結合させる。第3実施形態に係る天井材140は、無機繊維板20の側面1と多孔性無機複合層10とを接着剤で結合させることなく、表皮材40で多孔性無機複合層10を被覆しつつ、表皮材40と無機繊維板20とを接着剤で結合させることにより製造することもできる。接着剤としては、ホットメルト接着剤が挙げられ、例えば、エチレン酢酸ビニル共重合体からなるホットメルト接着剤が挙げられる。
実施形態に係る天井施工方法では、構造躯体(建築物の骨組み)の天井面から所定の距離離れて、少なくとも一対のレールを配置する。一対のレールは、天井材の形状に合うように配置されており、構造躯体の天井面から吊り下げられて配置されてもよく、壁に固定されて配置されてもよい。天井材は、上記いずれかの天井材100,120,140であってよく、隣接して配置する天井材の多孔性無機複合層10同士を突き合わせて、複数配置される。なお、構造躯体の天井面から所定の距離離れて配置されるレールは、2またはそれ以上の数であってもよい。
上記天井施工方法では、一対のレール上に天井材を配置しているが、アンカーピンあるいは錐付きビスにより、天井の構造材であるチャンネル鋼、ジョイスト鋼又はエッチ鋼に留付けられてもよく、先端ねじ込み式ピンによりコンクリートで形成された天井に留め付けられてもよい。
以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例1)
グラスウールに、ポリアクリル酸とアルカノールアミン(ジエタノールアミン)からなる、エステル化反応及びアミド化反応により熱硬化する二液性のバインダーを付与し、バインダーを熱硬化させて成形することにより、無機繊維板を得た。無機繊維板の密度は32kg/m3であり、バインダーの付与量は、バインダーを付与した無機繊維板全量を基準として6質量%であった。無機繊維板の主面の辺の長さは、長辺側が1800mm、短辺側が900mmであり、無機繊維板の厚さは25mmであった。
また、珪酸マグネシウムを含有するセピオライトのスラリーをセルロース繊維からなる紙に含浸させて水硬化させることで、多孔性無機複合基材を得た。多孔性無機複合基材の密度は800kg/m3であり、多孔性無機複合基材の辺の長さは、長辺側が1800mm、短辺側が25mmであった。多孔性無機複合基材の厚さは1mmであった。
無機繊維板の長辺側の対向する側面の全面に、上記多孔性無機複合基材をホットメルト接着剤で張り付けて、多孔性無機複合層を形成し、図1及び2に示すような天井材(A)を得た。無機繊維板の密度に対して多孔性無機複合層の密度は25倍であり、図1及び2におけるX/Yは、1/900であった。天井材(A)の単位面積当たりの質量は842.5g/m2であった。なお、ホットメルト接着剤は、エチレン酢酸ビニル共重合体からなり、50g/m2になるように塗布した。
グラスウールに、ポリアクリル酸とアルカノールアミン(ジエタノールアミン)からなる、エステル化反応及びアミド化反応により熱硬化する二液性のバインダーを付与し、バインダーを熱硬化させて成形することにより、無機繊維板を得た。無機繊維板の密度は32kg/m3であり、バインダーの付与量は、バインダーを付与した無機繊維板全量を基準として6質量%であった。無機繊維板の主面の辺の長さは、長辺側が1800mm、短辺側が900mmであり、無機繊維板の厚さは25mmであった。
また、珪酸マグネシウムを含有するセピオライトのスラリーをセルロース繊維からなる紙に含浸させて水硬化させることで、多孔性無機複合基材を得た。多孔性無機複合基材の密度は800kg/m3であり、多孔性無機複合基材の辺の長さは、長辺側が1800mm、短辺側が25mmであった。多孔性無機複合基材の厚さは1mmであった。
無機繊維板の長辺側の対向する側面の全面に、上記多孔性無機複合基材をホットメルト接着剤で張り付けて、多孔性無機複合層を形成し、図1及び2に示すような天井材(A)を得た。無機繊維板の密度に対して多孔性無機複合層の密度は25倍であり、図1及び2におけるX/Yは、1/900であった。天井材(A)の単位面積当たりの質量は842.5g/m2であった。なお、ホットメルト接着剤は、エチレン酢酸ビニル共重合体からなり、50g/m2になるように塗布した。
(実施例2)
無機繊維板の密度が64kg/m3であること、バインダーの付与量が、バインダーを付与した無機繊維板全量を基準として8質量%であること、及び無機繊維板の厚さが15mmであること以外は、実施例1と同様にして、無機繊維板を得た。また、多孔性無機複合層の短辺側の辺の長さが15mmであること、多孔性無機複合層の厚さが3mmであること以外は、実施例1と同様にして、多孔性無機複合材を得た。
これらを用いて、実施例1と同様にして図1及び2に示すような天井材(B)を得た。無機繊維板の密度に対して多孔性無機複合層の密度は12.5倍であり、図1及び2におけるX/Yは1/300であった。また、天井材(B)の単位面積当たりの質量は1033.5g/m2であった。
無機繊維板の密度が64kg/m3であること、バインダーの付与量が、バインダーを付与した無機繊維板全量を基準として8質量%であること、及び無機繊維板の厚さが15mmであること以外は、実施例1と同様にして、無機繊維板を得た。また、多孔性無機複合層の短辺側の辺の長さが15mmであること、多孔性無機複合層の厚さが3mmであること以外は、実施例1と同様にして、多孔性無機複合材を得た。
これらを用いて、実施例1と同様にして図1及び2に示すような天井材(B)を得た。無機繊維板の密度に対して多孔性無機複合層の密度は12.5倍であり、図1及び2におけるX/Yは1/300であった。また、天井材(B)の単位面積当たりの質量は1033.5g/m2であった。
(実施例3)
実施例1で得た無機繊維板の長辺側の側面に、実施例1で得た多孔性無機複合基材を接着剤を介さずに配置し、目付が50g/m2のガラス不織布からなる表皮材で、第一の主面側から第二の主面側にわたって巻き込むように被覆して、図4に示すような天井材(C)を得た。表皮材は、第二の主面の長辺側の縁から内側方向に100mmの位置まで被覆し、第二の主面を被覆する表皮材の端部から10mmの位置に、エチレン酢酸ビニル共重合体からなるホットメルト接着剤を50g/m2になるように塗布して、表皮材を無機繊維板の第二の主面に張り付けた。無機繊維板の密度に対して多孔性無機複合層の密度は25倍であり、図4におけるX/Yは1/900であった。天井材(C)の単位面積当たりの質量は908.5g/m2であった。
実施例1で得た無機繊維板の長辺側の側面に、実施例1で得た多孔性無機複合基材を接着剤を介さずに配置し、目付が50g/m2のガラス不織布からなる表皮材で、第一の主面側から第二の主面側にわたって巻き込むように被覆して、図4に示すような天井材(C)を得た。表皮材は、第二の主面の長辺側の縁から内側方向に100mmの位置まで被覆し、第二の主面を被覆する表皮材の端部から10mmの位置に、エチレン酢酸ビニル共重合体からなるホットメルト接着剤を50g/m2になるように塗布して、表皮材を無機繊維板の第二の主面に張り付けた。無機繊維板の密度に対して多孔性無機複合層の密度は25倍であり、図4におけるX/Yは1/900であった。天井材(C)の単位面積当たりの質量は908.5g/m2であった。
(比較例1)
無機繊維板の側面に多孔性無機複合層を貼り付けず、無機繊維板のみからなる天井材(D)を得たこと以外は、実施例1と同様に実施した。
無機繊維板の側面に多孔性無機複合層を貼り付けず、無機繊維板のみからなる天井材(D)を得たこと以外は、実施例1と同様に実施した。
(比較例2)
無機繊維板の側面に多孔性無機複合層を貼り付けず、無機繊維板のみからなる天井材(E)を得たこと以外は、実施例2と同様に実施した。
無機繊維板の側面に多孔性無機複合層を貼り付けず、無機繊維板のみからなる天井材(E)を得たこと以外は、実施例2と同様に実施した。
(比較例3)
多孔性無機複合層を使用せず、無機繊維板と表皮材のみからなる天井材(F)を得たこと以外は、実施例3と同様に実施した。
多孔性無機複合層を使用せず、無機繊維板と表皮材のみからなる天井材(F)を得たこと以外は、実施例3と同様に実施した。
[撓み評価]
天井材の主面において長辺を2等分する線を中心線とし、中心線から各短辺側に200mm離れた2つの領域を支持台で支持することにより、天井材を支持台の上に配置した。天井材の長辺方向の両端の撓み(mm)を、天井材の長辺の中央をゼロとして測定した。結果を表1に示す。なお、支持台の寸法は、300mm×10mmであった。
天井材の主面において長辺を2等分する線を中心線とし、中心線から各短辺側に200mm離れた2つの領域を支持台で支持することにより、天井材を支持台の上に配置した。天井材の長辺方向の両端の撓み(mm)を、天井材の長辺の中央をゼロとして測定した。結果を表1に示す。なお、支持台の寸法は、300mm×10mmであった。
[不燃性の評価]
実施例1~3、比較例1~3で得られた天井材から、100mm×100mmの試験片を切り出し、ISO5660-1に準拠して、コーンカロリーメーターを使用して、加熱時間20分にて総発熱量(MJ/m2)を測定した。総発熱量が8MJ/m2未満を不燃とした。結果を表1に示す。
実施例1~3、比較例1~3で得られた天井材から、100mm×100mmの試験片を切り出し、ISO5660-1に準拠して、コーンカロリーメーターを使用して、加熱時間20分にて総発熱量(MJ/m2)を測定した。総発熱量が8MJ/m2未満を不燃とした。結果を表1に示す。
[吸音性の評価]
JIS A6301に準拠して、垂直入射法にて周波数630Hzでの吸音率を測定した。結果を表1に示す。
JIS A6301に準拠して、垂直入射法にて周波数630Hzでの吸音率を測定した。結果を表1に示す。
100…第1実施形態に係る天井材、120…第2実施形態に係る天井材、140…第3実施形態に係る天井材、1…側面、2…主面、10…多孔性無機複合層、20…無機繊維板。
Claims (5)
- 互いに対向する側面に多孔性無機複合層が形成されている、主面が四角形状の無機繊維板からなる天井材であって、
前記多孔性無機複合層は、前記無機繊維板の12~35倍の密度を有する、天井材。 - 前記無機繊維板は、32~64kg/m3の密度を有する、請求項1に記載の天井材。
- 互いに対向する前記側面の一方から他方までの前記無機繊維板の長さに対する、前記側面の一方から延在する前記多孔性無機複合層の長さは、1/4000~1/100である、請求項1又は2に記載の天井材。
- 前記主面を被覆する表皮材を備える、請求項1~3のいずれか一項に記載の天井材。
- 構造躯体の天井面から所定の距離離れて設置された一対のレール上に、天井材を複数配置する天井施工方法であって、
前記天井材は、請求項1~4のいずれか一項に記載の天井材であり、
前記多孔性無機複合層を突き合わせて、前記天井材を複数配置する、天井施工方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018516966A JPWO2017195662A1 (ja) | 2016-05-10 | 2017-04-28 | 天井材及び天井施工方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-094549 | 2016-05-10 | ||
JP2016094549 | 2016-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017195662A1 true WO2017195662A1 (ja) | 2017-11-16 |
Family
ID=60267175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016962 WO2017195662A1 (ja) | 2016-05-10 | 2017-04-28 | 天井材及び天井施工方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017195662A1 (ja) |
WO (1) | WO2017195662A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220341070A1 (en) * | 2019-09-27 | 2022-10-27 | Yoshino Gypsum Co., Ltd. | Heat-insulating sound-absorbing material, and partition wall |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4960070U (ja) * | 1972-09-09 | 1974-05-27 | ||
JPS5420257Y2 (ja) * | 1975-11-26 | 1979-07-23 | ||
JPH06229054A (ja) * | 1993-02-09 | 1994-08-16 | Hitsuritsu Kyo | 天井構造 |
JPH09175850A (ja) * | 1995-12-22 | 1997-07-08 | Keihan Koji Kk | 機能強化セメント、コンクリート及び各種成形された 造形物の製造方法。 |
-
2017
- 2017-04-28 JP JP2018516966A patent/JPWO2017195662A1/ja active Pending
- 2017-04-28 WO PCT/JP2017/016962 patent/WO2017195662A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4960070U (ja) * | 1972-09-09 | 1974-05-27 | ||
JPS5420257Y2 (ja) * | 1975-11-26 | 1979-07-23 | ||
JPH06229054A (ja) * | 1993-02-09 | 1994-08-16 | Hitsuritsu Kyo | 天井構造 |
JPH09175850A (ja) * | 1995-12-22 | 1997-07-08 | Keihan Koji Kk | 機能強化セメント、コンクリート及び各種成形された 造形物の製造方法。 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220341070A1 (en) * | 2019-09-27 | 2022-10-27 | Yoshino Gypsum Co., Ltd. | Heat-insulating sound-absorbing material, and partition wall |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017195662A1 (ja) | 2019-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101372021B1 (ko) | 흡음 특성이 우수한 석고 패널 및 그 제조방법 | |
EP2516766B1 (en) | Use of porous nonwoven scrims in acoustical panels and method of manufacture | |
JP6227804B2 (ja) | 多層天井タイル | |
US6443257B1 (en) | Acoustical panel having a calendered, flame-retardant paper backing and method of making the same | |
CN102272381B (zh) | 耐火及抗下垂的消音板 | |
RU2528802C1 (ru) | Звукопоглощающий элемент | |
CN110198834B (zh) | 灰泥板及其制备方法 | |
CN116145882A (zh) | 矿物纤维类吊顶板 | |
JP2016516146A (ja) | 防音発泡体を含む建築用ボード | |
JPH1187978A (ja) | 不燃性電波吸収体 | |
WO2017195662A1 (ja) | 天井材及び天井施工方法 | |
US3022607A (en) | Sound deadening tile | |
KR101974039B1 (ko) | 층간소음 방지용 유무기 하이브리드 소재 및 그 제조방법 | |
US20230076832A1 (en) | Acoustical building panel and surface covering systems utilizing the same | |
EP3683373B1 (en) | Utilization of porous building materials in sound absorption | |
KR20140113068A (ko) | 점탄성 폴리머 쉬트를 이용한 복합 방음 패널 및 그 제조 방법 | |
RU2550604C2 (ru) | Звукопоглощающий элемент для акустических экранов, штучных звукопоглотителей, перегородок | |
WO1993016245A1 (en) | Plate for sound absorption and method for manufacturing such a plate | |
WO2020064496A1 (en) | Acoustic ceiling panel | |
KR20090003243U (ko) | 반사형 단열판 | |
KR102228816B1 (ko) | 흡음 및 방음용 보드 | |
KR200493072Y1 (ko) | 표면 마감재를 가지는 복합 단열재 | |
CN217352994U (zh) | 一种建筑板材 | |
JP2006519942A (ja) | 吸音性断熱パネル | |
KR101151285B1 (ko) | 장식판넬 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018516966 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17796023 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17796023 Country of ref document: EP Kind code of ref document: A1 |