WO2017195417A1 - Coal grinding device, device and method for controlling same, and coal-fired power plant - Google Patents

Coal grinding device, device and method for controlling same, and coal-fired power plant Download PDF

Info

Publication number
WO2017195417A1
WO2017195417A1 PCT/JP2017/004430 JP2017004430W WO2017195417A1 WO 2017195417 A1 WO2017195417 A1 WO 2017195417A1 JP 2017004430 W JP2017004430 W JP 2017004430W WO 2017195417 A1 WO2017195417 A1 WO 2017195417A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
command value
parameter
advance signal
signal
Prior art date
Application number
PCT/JP2017/004430
Other languages
French (fr)
Japanese (ja)
Inventor
井上 力夫
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US16/095,823 priority Critical patent/US10758917B2/en
Priority to DE112017001855.2T priority patent/DE112017001855T5/en
Priority to CN201780028136.5A priority patent/CN109153021B/en
Publication of WO2017195417A1 publication Critical patent/WO2017195417A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/001Air flow directing means positioned on the periphery of the horizontally rotating milling surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/007Mills with rollers pressed against a rotary horizontal disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/04Heating fuel prior to delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing

Definitions

  • the present disclosure relates to a coal crushing apparatus for crushing coal, a control device and control method therefor, and a coal-fired power plant.
  • steam is generated by heat exchange with a combustion gas generated by burning pulverized coal pulverized by a coal pulverizer in a furnace, and power generation is performed by driving a turbine using the steam. Is going.
  • the load of the coal-fired thermal power plant is not always constant, and the coal-fired thermal power plant may be operated with a change in load.
  • the load of the coal-fired thermal power plant is not always constant, and the coal-fired thermal power plant may be operated with a change in load.
  • Patent Document 1 discloses that the rotational speed of the table is determined based on the coal feeding amount command value and the parameter relating to the change in the load of the generator in order to eliminate the delayed coal output. There is.
  • Patent Document 2 the amount of coal feeding is increased or decreased according to the increase or decrease of the load of the vertical mill, and the rotation speed of the table is used to compensate for the excess or deficiency of the amount of coal output based on the time delay from coal feeding to There is disclosed a control method of a vertical mill which is adapted to increase or decrease the.
  • a load correction signal is obtained based on the dynamic characteristics of the amount of coal output at the time of output command change when parameters such as coal moisture or hardness, primary air flow rate, and classifier rotation speed change, It is disclosed to control the amount of coal feeding and the classifier rotation speed based on the load correction signal.
  • an output demand signal is input to a first-order lag operator, an output demand signal is subtracted from a signal obtained to generate a correction signal, and processing by a limiter and an integrator is added to the correction signal.
  • a control method of a coal pulverizer is disclosed which generates a rotation number command of a rotary separator (rotational classifier) corresponding to a load state by adding a signal from a constant generator.
  • the constant generator is configured to set the rotation number of the rotary separator (rotational classifier) to a constant value.
  • Patent Document 5 includes a main operation circuit for calculating a command signal related to the amount of coal supply based on detection data from a boiler or a generator, and a standard amount of coal output pattern preset in the coal crushing apparatus.
  • a control method of a coal crushing apparatus including: an additional control unit for calculating a deviation from a current amount pattern of coal output, and adding a calculation result by the additional control unit to a main arithmetic circuit as a correction signal.
  • Patent Document 6 at least one operation of the mill, the primary air conveyance unit, or the coal supply unit based on the amount of decarburization (the amount of coal removal) determined based on the driving state of the mill and the required output of the combustion furnace.
  • a pulverized coal supply system adapted to determine the quantity is disclosed.
  • Patent Document 7 even when the outlet temperature of the pulverized coal machine fluctuates due to the opening control of the transfer air flow rate adjustment damper at the time of load change, the amount of coal output according to the coal output command signal is calculated In order to secure, the output temperature correction signal is obtained based on the deviation between the detection value of the outlet temperature of the pulverized coal machine and the set temperature, and the output temperature correction signal is used to control the opening of the air flow control Is disclosed for use in
  • At least some embodiments of the present invention have been made in view of the above-mentioned problems, and a coal crushing apparatus and its control device and control method, and coal-fired thermal power plant capable of further improving the delayed coal output Intended to be provided.
  • a control device for a coal crusher according to at least some embodiments of the present invention, A table configured rotatably, a roller for grinding coal supplied from the table, a rotary classifier for classifying pulverized coal obtained by crushing the coal in the roller, the pulverized coal
  • a control device for a coal comminution device comprising: an air supply unit for generating an air flow for directing the rotary classifier to the rotary classifier.
  • a first command value generation unit for generating a command value of a first parameter including at least one of a rotation speed of the table, a pressing force of the roller against the table, or an air supply amount in the air supply unit;
  • a second command value generation unit for generating a command value of a second parameter including at least a rotational speed of the rotational classifier; Equipped with The first command value generation unit generates a command value of the first parameter based at least on a first advance signal determined according to load information of a combustion device that burns the pulverized coal from the coal crushing device. Configured to The second command value generation unit is configured to obtain a command value of the second parameter based on at least a second advance signal determined according to the load information.
  • the load information of the combustion apparatus may be information itself related to the load of the combustion apparatus, or a load indirectly indicating the load of the combustion apparatus (for example, generated by a boiler as the combustion apparatus) It may be information related to the load of the steam turbine driven by the stored steam or the load of the generator driven by the steam turbine.
  • Coal (raw coal) is supplied on the table of a coal pulverizer.
  • the coal on the table moves toward the outer periphery of the table and is crushed by the rollers.
  • the pulverized coal particles obtained as a result of the grinding in the roller are entrained by the air flow from the air supply and move towards the rotary classifier.
  • classification of pulverized coal particles is performed, and among the pulverized coal particles, only the fine particles pass through the rotary classifier and flow out of the coal pulverizer. As described above, it is necessary to go through various steps from the supply of raw material coal to the removal of coal in the coal pulverizer.
  • the delayed coal output is due to the response delay in the upstream process from the supply of the raw material coal to the table of the coal crusher to the arrival of the pulverized coal to the inlet of the rotary classifier, and the pulverized coal passing through the rotary classifier. It can be divided into the response delay in the downstream process from the coal pulverizer until the coal is discharged.
  • the first command value generation unit determines the command value of the first parameter based on the first advance signal determined according to the load information of the combustion device.
  • the first parameter including at least one of the rotational speed of the table, the pressing force of the roller, or the air supply amount is changed in advance to supply the raw material coal to the table. It is possible to improve the response delay in the upstream process from the above to the arrival of the pulverized coal to the inlet of the rotary classifier.
  • the second command value generation unit is configured to determine the command value of the second parameter based on the second advance signal determined according to the load information of the combustion device.
  • the second parameter including the rotational speed of the rotary classifier is changed in advance, and the pulverized coal passes through the rotary classifier and is discharged from the coal pulverizer.
  • the response delay in the downstream process can be improved. In this way, it is possible to improve both the response delay in the upstream process and the response delay in the downstream process, and effectively reduce the coal output delay of the entire coal crushing apparatus.
  • the classification accuracy in the rotary classifier may be reduced.
  • advance control since advance control is performed not only for the second parameter but also for the first parameter, the delay in coal output can be suppressed while suppressing the decrease in classification accuracy in the rotary classifier. It can be improved.
  • the first command value generation unit is configured to determine the first advance signal based on a change rate of a command value of the second parameter.
  • the first control signal is determined based on the rate of change of the command value of the second parameter, so that the viewpoint of achieving both classification accuracy and improvement of delayed coaling
  • the first control signal can be set appropriately.
  • the change rate of the command value of the second parameter rotational speed of the rotary classifier
  • the first advance signal is determined to be a relatively large value based on this. It is possible to achieve both classification accuracy and improvement of delayed coal output.
  • the first command value generation unit is configured to set the first advance signal such that a change rate of the first advance signal is equal to or less than a first rate limit determined based on a change rate of the instruction value of the second parameter. Configured to determine
  • the first rate limit that limits the rate of change of the first preceding signal is variable based on the rate of change of the command value of the second parameter (rotational speed of the rotation classifier). Therefore, it is possible to appropriately determine the first leading signal according to the rate of change of the command value of the second parameter (rotational speed of the rotary classifier) that may affect classification accuracy, and secure classification accuracy and extraction of coal. It can be compatible with the improvement of the delay.
  • the second command value generation unit is configured to determine the second advance signal based on a change rate of the command value of the first parameter.
  • the second control signal is determined based on the rate of change of the command value of the first parameter, from the viewpoint of achieving both classification accuracy and improvement of the delay in coal output,
  • the second control signal can be set appropriately. For example, when the improvement of the delayed coal output by the preliminary control of the first parameter is not sufficient, the improvement effect of the delayed coal output can be sufficiently obtained by determining the second preceding signal based on this.
  • the second command value generation unit is configured to set the second lead signal such that a change rate of the second lead signal is equal to or less than a second rate limit determined based on a change rate of the command value of the first parameter. Configured to determine
  • the second rate limit that limits the rate of change of the second preceding signal is variable based on the rate of change of the command value of the first parameter. For this reason, even when the rate of change of the command value of the first parameter is small and the improvement of the coal delay due to the preceding control of the first parameter is not sufficient, the second rate limit can be adjusted appropriately. It is possible to sufficiently suppress the delay in coal output as a whole of the coal crusher by enhancing the effect of delaying the coal delay by the advance control of parameters.
  • the combustion device is a boiler for generating steam to be supplied to a steam turbine for driving a generator
  • the load information of the combustion apparatus includes at least one of a load, a load change rate, or a load change width of the generator.
  • the first preceding signal and the second preceding signal are as described in the above (1) based on the load information of the generator load, load change rate, load change width and the like. It is determined. For this reason, by improving both the response delay in the upstream process and the response delay in the downstream process, the coal output delay is effectively improved, and the coal crusher is appropriately adapted to the load change of the generator. Can be controlled. Moreover, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output in the coal pulverizer while suppressing the reduction in classification accuracy in the rotary classifier.
  • the first command value generation unit is configured to obtain the first advance signal according to the load information and raw material coal property information related to the property of the raw material coal.
  • the improvement effect of the delayed coal output to the operation amount of the first parameter is not the same.
  • the first advance signal is set in consideration of not only the load information but also the raw material carbon property information. Therefore, according to the property of the raw material coal, It is possible to perform advance control of parameters and effectively improve the delayed coaling.
  • the second command value generation unit is configured to obtain the second advance signal according to the load information and raw material coal property information related to the property of the raw material coal.
  • the second advance signal is set in consideration of not only the load information but also the raw material carbon property information. It is possible to perform advance control of parameters and effectively improve the delayed coaling.
  • the raw coal property information includes the moisture content of the raw coal.
  • the moisture content of the raw material coal can greatly affect the improvement effect of the delayed coal output with respect to the operation amount of each parameter.
  • advance control of the first parameter or the second parameter is appropriately performed according to the moisture content of the raw material coal. Can effectively improve the delayed coal output.
  • a coal crusher according to at least some embodiments of the present invention, A table configured to be rotatable, A roller for grinding coal supplied from the table; An actuator for pressing the roller against the table; A rotary classifier for classifying pulverized coal obtained by pulverizing the coal in the roller; An air supply for producing an air flow for directing the pulverized coal towards the rotary classifier;
  • the control device according to any one of the above (1) to (9), configured to control at least one of the table, the actuator, or the air supply unit, and the rotary classifier. Equipped with
  • the preceding control of the first parameter in the first command value generating unit and the preceding control of the second parameter in the second command value generating unit Both the response delay in the upstream process and the response delay in the downstream process can be improved. As a result, it is possible to effectively reduce the delayed coal output of the entire coal crushing apparatus. Furthermore, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing a decrease in classification accuracy in the rotary classifier.
  • a coal-fired thermal power plant according to at least some embodiments of the present invention, A coal pulverizer of the configuration of the above (10), A boiler for burning the pulverized coal from the coal crusher to generate steam; A steam turbine driven by the steam from the boiler; A generator driven by the steam turbine; Equipped with
  • the preceding control of the first parameter in the first command value generation unit and the preceding control of the second parameter in the second command value generation unit Both the response delay in the upstream process and the response delay in the downstream process can be improved. As a result, it is possible to effectively reduce the delay in coal output as the whole of the coal crushing apparatus, and to change the load of the coal-fired thermal power plant quickly. Furthermore, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing a decrease in classification accuracy in the rotary classifier.
  • a control method of a coal crusher according to at least some embodiments of the present invention, A table configured rotatably, a roller for grinding coal supplied from the table, a rotary classifier for classifying pulverized coal obtained by crushing the coal in the roller, the pulverized coal
  • a control system for a coal comminution device comprising: an air supply for producing an air flow which directs the rotary classifier to the rotary classifier.
  • both the response delay in the upstream process and the response delay in the downstream process can be improved by the advance control of the first parameter and the advance control of the second parameter.
  • advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing a decrease in classification accuracy in the rotary classifier.
  • FIG. 1 is a schematic configuration diagram of a coal-fired thermal power plant according to an embodiment.
  • a coal-fired thermal power plant 100 includes a coal crushing apparatus 200, a combustion apparatus (boiler) 300, and a control apparatus 400.
  • the coal crusher 200 includes a crusher 10 for crushing coal (raw carbon), a rotary classifier 20 for classifying fine particles of pulverized coal obtained by crushing in the crusher 10, and a crusher 10 And an air supply unit 30 for generating an air flow for directing pulverized coal toward the rotary classifier 20.
  • the rotary classifier 20 is disposed above the pulverizer 10, and the vertical crushing is provided with the air supply unit 30 around the pulverizer 10. It is a classification device.
  • the upper end portion of the crusher housing 11 of the crusher 10 and the lower end portion of the classifier housing 21 of the rotary classifier 20 are connected to integrally form a housing as the entire coal crusher 200.
  • the coal crushing apparatus 200 includes a supply pipe 50 for supplying coal (raw material coal), and a combustion apparatus described later for pulverized and classified fine particles of coal. And a discharge pipe 51 for emitting coal to the furnace 301 of 300.
  • the supply pipe 50 is provided in the upper part of the coal crushing apparatus 200, and it is comprised so that the raw material coal supplied from the upper direction of the coal crushing apparatus 200 may fall on the below-mentioned table 12 of the grinder 10.
  • the discharge pipe 51 is provided at the upper portion of the coal crushing apparatus 200, and configured to be capable of discharging the pulverized coal particles having passed through the rotary classifier 20 toward the furnace 301.
  • the crusher 10 of the coal crusher 200 includes a table 12 configured to be rotatable, and a roller 13 configured to crush raw material carbon by being pressed against the table 12. ,including.
  • the table 12 is driven by a table drive unit 15 located below the table 12 so as to rotate around a central axis C of the table 12.
  • the table drive unit 15 may include a motor whose rotation number is variably controlled in accordance with a table rotation number command from the control device 400.
  • the roller 13 is configured to roll on the table 12 rotationally driven by the table drive unit 15 while being pressed against the table 12 side by the actuator 16.
  • the actuator 16 may use, for example, a hydraulic cylinder, and the pressing force of the roller 13 against the table 12 may be variably controlled in accordance with a roller pressing force command from the control device 400.
  • a plurality of (for example, three) rollers 13 may be arranged at intervals in the circumferential direction of the table 12 in the outer circumferential area of the table 12.
  • the raw material coal dropped from the supply pipe 50 located above the table 12 to the inner peripheral area of the table 12 moves toward the outer peripheral side of the table 12 by the centrifugal force of the table 12 It is supplied to the gap between the table 12 and the roller 13.
  • the roller 13 is pressed to the side of the table 12 by the actuator 16, so the raw material carbon supplied to the gap between the table 12 and the roller 13 is crushed to obtain pulverized coal.
  • the air supply unit 30 includes an air suction port 31 provided in the crusher housing 11, an air chamber 33 which is an annular space provided below the table 12 so as to communicate with the air suction port 31, and an air suction port 31. And a fan 34 for supplying air to the air chamber 33, and an air outlet 32 configured such that the air flow from the air chamber 33 blows upward.
  • the air outlets 32 may be flow paths formed between a plurality of throat vanes circumferentially arranged at intervals on the outer peripheral side of the table 12.
  • the air supply unit 30 may further include a damper 35 for adjusting the air supply amount from the fan 34. In this case, the damper 35 may be opening-controlled to adjust the air supply amount in the air supply unit 30 in accordance with the air supply amount command from the control device 400.
  • the air taken into the air chamber 33 from the air outlet 32 is blown upward through the air outlet 32.
  • the inside of the housing (11, 21) of the coal crushing apparatus 200 An upward air flow (see arrow a in FIG. 1) is formed at.
  • the large-size particles deviate from the air flow a under the influence of gravity, fall downward, return to the table 12, and are crushed again.
  • the rotary classifier 20 is provided above the crusher 10 and is configured to classify pulverized coal particles to be accompanied by the air flow a formed by the air supply unit 30.
  • the rotary classifier 20 includes an annular rotating portion 22 for classifying pulverized coal particles.
  • the annular rotation portion 22 is rotatably provided around the rotation axis O along the up and down direction in the internal space of the classifier housing 21.
  • the annular rotary portion 22 includes a plurality of rotary fins arranged in the circumferential direction at intervals from each other, and fine particles of pulverized coal can pass through the gap between the adjacent rotary fins.
  • the classification principle of pulverized coal in the annular rotation portion 22 is as follows.
  • the pulverized coal accompanied by the air flow a and directed to the rotary classifier 20 is imparted with swirl by the rotation of the annular rotating portion 22.
  • the centrifugal force directed radially outward due to the centrifugal field formed by the annular rotating portion 22 and the drag due to the velocity component of the air flow directed radially inward works.
  • the particle diameter at which the centrifugal force and the drag balance is the theoretical classification diameter.
  • the coarse particles having a particle diameter larger than the theoretical classification diameter have a centrifugal force larger than the drag force caused by the velocity component of the air flow, and are splashed to the outer peripheral side of the annular rotation portion 22.
  • fine particles having a particle diameter smaller than the theoretical classification diameter are entrained by the air flow and pass through the annular rotation portion 22 because the resistance received from the air flow is larger than the centrifugal force.
  • the pulverized coal particles transported by the air flow are classified into coarse particles and fine particles.
  • the rotational classifier 20 includes a classifier drive 24 for rotating the annular rotation portion 22 about the rotation axis O.
  • the classifier drive unit 24 may include a motor whose rotation number is variably controlled in accordance with a classifier rotation number command from the control device 400.
  • the rotary classifier 20 may be provided with an annular stationary portion 23 provided on the outer peripheral side of the annular rotary portion 22 inside the classifier housing 21 as shown in FIG. 1.
  • the annular stationary portion 23 has a plurality of fixed fins arranged at intervals in the height direction, and the air flow a can pass through the gap between the adjacent fixed fins.
  • the annular stationary portion 23 is configured to rectify the air flow a flowing in from the outer peripheral side.
  • the rotary classifier 20 is located below the annular rotation portion 22 and the hopper 25 for returning coarse particles not passing through the annular rotation portion 22 to the table 12 of the crusher 10 is You may provide further.
  • Pulverized coal produced in the coal crushing apparatus 200 configured as described above is supplied to the combustion apparatus 300.
  • the combustion apparatus (boiler) 300 includes a furnace 301 which burns fine particles of coal discharged from the coal crushing apparatus 200 by the burner 302 to generate a combustion gas.
  • a heat exchanger 303 is installed in the furnace 301. In the heat exchanger 303, steam is generated by heat exchange with the combustion gas in the furnace 301.
  • the steam generated in the combustion device (boiler) 300 is supplied to the steam turbine 310 of the coal-fired power plant 100.
  • the steam turbine 310 is driven by steam supplied from a combustion device (boiler) 300.
  • the shaft of the generator 320 is connected to the rotating shaft of the steam turbine 310, and the generator 320 is driven by the steam turbine 310 to generate electric power.
  • the steam that has flowed out of the steam turbine 310 is condensed in the condenser 330. Then, the condensed water (condensed water) obtained by the condenser 330 is supplied again to the heat exchanger 303 by the feed water pump 340.
  • the control device 400 controls each part of the coal crushing apparatus 200 such as the table drive unit 15, the actuator 16, the damper 35, and the classifier drive unit 24.
  • the coal crushing apparatus 200 is equipped with several measuring devices for knowing the state of the coal crushing apparatus 200.
  • the inlet air flow meter 111, the inlet air thermometer 112, the outlet air thermometer 113, the coal feeding At least one of the meter 114, the coal feeding thermometer 115, the furnace differential pressure gauge 116, and the outlet pressure gauge 117 may be provided.
  • a power meter (not shown) for measuring the output of the generator 320 is provided, and load information (for example, load change width, load change rate, load) of the combustion apparatus 300 (coal-fired thermal power plant 100) Etc.) may be obtained.
  • load information for example, load change width, load change rate, load
  • the measurement results of these various instruments may be sent to the control device 400 and used to control each part of the coal crushing device 200 by the control device 400.
  • FIG. 2 is a block diagram showing a configuration of a control device according to an embodiment.
  • FIG. 3 is a block diagram showing a configuration of first preceding signal calculation unit 520A of control device 400.
  • FIG. 4 is a block diagram showing the configuration of the second advance signal operation unit 620 of the control device 400.
  • the controller 400 sets the command value of the first parameter including at least one of the rotational speed of the table 12, the pressing force of the roller 13 against the table 12, or the air supply amount at the air supply unit 30.
  • a second command value generating unit 600 for generating a command value of a second parameter including at least the rotational speed of the rotation classifier 20.
  • the first command value generation unit 500 has three types of rotation speed of the table 12, pressing force of the roller 13 against the table 12, and air supply amount in the air supply unit 30. A command value is generated for each of the first parameters.
  • the first command value generation unit 500 is configured to generate a command value for only a part of these three types of first parameters.
  • the first command value generation unit 500 generates the basic command value of the first parameter according to the coal feed amount command (coal feed amount command) to the coal crushing apparatus 200.
  • a first advance signal calculation unit 520 (520A to 520C) for calculating a first advance signal determined according to the load information of the combustion apparatus 300.
  • the basic command value calculation unit 510 (510A to 510C) may include a function such that the basic command value of the first parameter increases as the coal feeding amount command increases.
  • the adder 530 in the adder 530 (530A to 530C), the basic command value of the first parameter obtained by the basic command value calculation unit 510 (510A to 510C), and the first advance signal.
  • the sum of the first preceding signals obtained by the operation unit 520 (520A to 520C) is calculated, and the command value of the first parameter is generated based on the output signal from the adder 530.
  • the output signal from the adder 530 (530A) is subjected to limit processing by the first limit (upper limit) 540 and the second limit (lower limit) 550 to obtain the first parameter.
  • the command value may be limited within a desired range.
  • the first limit 540 is the first parameter of the first parameter based on the output signal from the function 542 configured to variably set the upper limit value of the command value of the first parameter according to the moisture content of the raw material coal.
  • the command value may be limited to the upper limit value or less.
  • the moisture content of the raw material coal may be calculated by estimation based on the measurement results of the various instruments (111 to 117) described above.
  • the two limits 550 may limit the command value of the first parameter to the upper limit value or less.
  • the limit process by the first limit 540 and the second limit 550 is performed only for the table rotational speed command, but in the other embodiments, the other first parameter (air supply quantity command or The limit processing by the first limit 540 and the second limit 550 is also performed for the roller pressing force command.
  • a limit 560 for limiting the command value of the first parameter may be provided within a range defined by a certain upper limit value and a certain lower limit value.
  • the limit 560 is configured to limit the command value of the first parameter within a prescribed range by performing limit processing on the output signal from the adder 530 (530B, 530B).
  • the limit processing by the limit 560 is applied only to the air supply amount command and the roller pressing force command, but in the other embodiments, the table rotational speed command is also applied. Instead of the one limit 540 and the second limit 550, limit processing by the limit 560 is performed.
  • the control device 400 is a change rate calculator 580 (580A ⁇ ) for obtaining the change rate (change rate) of the command value of the first parameter generated by the first command value generation unit 500. 580C) may be provided.
  • the change rate of the command value of the first parameter determined by the change rate calculator 580 may be used, for example, to calculate a second advance signal in a second advance signal operation unit 620 described later (a function 880 in FIG. 4). 882, 884 (see input signal).
  • the first advance signal computing unit 520 (520A) of the first command value generating unit 500 performs the first advance signal calculation unit 520 according to the load information of the combustion apparatus 300 (or the coal fired thermal power plant 100 including the same). 1 Configured to determine a prior signal.
  • FIG. 3 shows the configuration of the first advance signal calculation unit 520A for obtaining the first advance signal to be used for calculation of the command value of the table rotational speed, which is an example of the first parameter
  • the first preceding signal (520B, 520C) having the same configuration as the first preceding signal operation unit 520A shown in FIG. It may be calculated.
  • the first advance signal calculation unit 520 calculates a first reference advance signal calculation unit for obtaining a reference value (first reference advance signal) of the first advance signal according to the coal feed amount command value. 700 and an operation coefficient calculation unit 710 (710A) for obtaining an operation coefficient (correction coefficient) to be multiplied by the first reference advance signal according to load information of the combustion apparatus 300 (coal-fired thermal power plant 100) To 710 C).
  • the first reference advance signal calculated by the first reference advance signal calculation unit 700 and the operation coefficient calculated by the operation coefficient calculation unit 710 (710A to 710C) are input to the multiplier 750 and multiplied with each other to perform multiplication.
  • the first preceding signal is determined based on the product obtained by the unit 750.
  • the first reference advance signal calculation unit 700 may include a function such that the first reference advance signal increases with an increase in the coal feeding amount command.
  • the load information considered when the calculation coefficient calculation unit 710 (710A to 710C) calculates the calculation coefficient is at least one of the load of the combustion apparatus 300, the load change rate, or the load change width It is also good.
  • the calculation coefficient calculation unit 710 (710A to 710C) may include a function such that the calculation coefficient increases with an increase in load information such as the load of the combustion apparatus 300, the load change rate, and the load change width.
  • the first advance signal computing unit 520 takes into consideration not only load information but also raw coal property information related to the properties of the raw coal, the first advance signal. It is configured to ask for
  • the first advance signal calculation unit 520 (520A) is a calculation coefficient calculation unit for calculating a calculation coefficient according to the moisture content of the raw material carbon, which is an example of the raw material carbon property information. 740 is further provided, and the operation coefficient obtained by the operation coefficient calculation unit 740 is input to the multiplier 750.
  • the first advance signal is set in consideration of not only the load information but also the raw material coal property information, so that the first parameter advance control can be appropriately performed according to the property of the raw material coal. Delay can be effectively improved.
  • a function (782, 784) is provided which outputs values according to the supply amount command change rate and the roller pressing force command change rate).
  • Adder 786 sums the outputs from each function (780, 782, 784). The calculation result of the adder 786 is multiplied by the gains K 1 and K 2 to obtain threshold values used for limit processing at each rate limit (760, 770).
  • the second command value generation unit 600 includes a basic command value calculation unit 610 for calculating a basic command value of the second parameter according to the coal feed amount command, And a second preceding signal calculation unit 620 for calculating a second preceding signal determined according to the load information of the combustion apparatus 300.
  • the basic command value calculation unit 610 may include a function such that the basic command value of the second parameter increases with the increase of the coal feeding amount command.
  • the adder 630 the basic command value of the second parameter obtained by the basic command value calculation unit 610, and the second advance obtained by the second advance signal operation unit 620. The sum of the signals is calculated, and the command value of the second parameter is generated based on the output signal from the adder 630.
  • a limit 640 for limiting the command value of the second parameter may be provided within a range defined by a certain upper limit value and a certain lower limit value.
  • the limit 640 is configured to limit the command value of the second parameter within a prescribed range by subjecting the output signal from the adder 630 to a limit process.
  • the output signal from the adder 630 is replaced with the limit 640, and a limit similar to the first limit (upper limit) 540 and the second limit (lower limit) 550 as shown in FIG.
  • the command value of the second parameter may be limited within a desired range.
  • the first limit 540 is the second parameter of the second parameter based on the output signal from the function 542 configured to variably set the upper limit value of the command value of the second parameter according to the moisture content of the raw material coal.
  • the command value may be limited to the upper limit value or less.
  • a function 552 configured to variably set the lower limit value of the command value of the second parameter according to the mill differential pressure (the differential pressure between the coal crusher 200 and the differential pressure)
  • the two limits 550 may limit the command value of the second parameter to the upper limit value or less.
  • the control device 400 is provided with a change rate calculator 680 for obtaining the change rate (change rate) of the command value of the second parameter generated by the second command value generation unit 600.
  • a change rate calculator 680 for obtaining the change rate (change rate) of the command value of the second parameter generated by the second command value generation unit 600.
  • the change rate of the command value of the second parameter determined by the change rate calculator 680 may be used, for example, to calculate the first preceding signal in the first preceding signal calculating unit 520 described above (see function 780 in FIG. 3). Input signal)).
  • the second advance signal calculation unit 620 of the second command value generation unit 600 generates a second advance signal according to the load information of the combustion apparatus 300 (or the coal-fired thermal power plant 100 including the same). Configured to determine Specifically, the second advance signal calculation unit 620 calculates a second reference advance signal calculation unit 800 for obtaining a reference value (second reference advance signal) of the second advance signal according to the coal feeding amount command value, Calculation coefficient calculation unit 810 (810A to 810C) for obtaining a calculation coefficient (correction coefficient) to be multiplied by the second reference advance signal according to the load information of the combustion apparatus 300 (coal fired thermal power plant 100) And may be included.
  • a second reference advance signal calculation unit 800 for obtaining a reference value (second reference advance signal) of the second advance signal according to the coal feeding amount command value
  • Calculation coefficient calculation unit 810 (810A to 810C) for obtaining a calculation coefficient (correction coefficient) to be multiplied by the second reference advance signal according to the load information of the combustion apparatus 300 (co
  • the second reference advance signal calculated by the second reference advance signal calculation unit 800 and the operation coefficient calculated by the operation coefficient calculation unit 810 (810A to 810C) are input to the multiplier 850 and multiplied with each other to perform multiplication.
  • the second preceding signal is determined based on the product obtained by the unit 850.
  • the second reference advance signal calculation unit 800 may include a function such that the second reference advance signal increases with an increase in the coal feeding amount command.
  • the load information considered when the calculation coefficient calculation unit 810 (810A to 810C) calculates the calculation coefficient is at least one of the load of the combustion apparatus 300, the load change rate, or the load change width It is also good.
  • the calculation coefficient calculation unit 810A may include a function such that the calculation coefficient decreases as the load change rate of the combustion device 300 increases.
  • the calculation coefficient calculation unit 810 (810B, 810C) is a function that increases the calculation coefficient as the load change rate of the combustion device 300 increases. May be included.
  • the second advance signal computing unit 620 obtains the second advance signal in consideration of not only the load information but also the raw material coal property information related to the property of the raw material coal. Configured In the exemplary embodiment shown in FIG. 4, the second advance signal calculation unit 620 further calculates a calculation coefficient calculation unit 840 for calculating a calculation coefficient according to the moisture content of the raw material coal which is an example of the raw material coal property information. The operation coefficient calculated by the operation coefficient calculation unit 840 is input to the multiplier 850. As a result, the second advance signal is set in consideration of not only the load information but also the raw material coal property information, so that the second parameter advance control can be appropriately performed according to the property of the raw material coal. Delay can be effectively improved.
  • the second lead signal computing unit 620 is configured to determine the second lead signal based on the rate of change of the command value of the first parameter. .
  • the rate of change of the second preceding signal is limited to a certain threshold or less. For this reason, even when the rate of change of the command value of the first parameter is small and the improvement of the coal delay due to the preceding control of the first parameter is not sufficient, the second rate limit can be adjusted appropriately. It is possible to sufficiently suppress the delayed coaling of the coal crusher 200 as a whole by enhancing the effect of improving the delayed coaling by the advance control of the parameters.
  • the function (880, 882, 884) which outputs the value according to is provided.
  • the adder 886 sums the outputs from the functions (880, 882, 884).
  • the calculation result of the adder 886 is multiplied by the gains K 1 and K 2 to obtain a threshold used for limit processing at each rate limit (860, 870).
  • the first advance signal calculation unit 520 (520A to 520C) of the first command value generation unit 500 determines the first advance signal according to the load information of the combustion apparatus 300.
  • the command value of the first parameter is determined based on the first advance signal.
  • the first parameter including at least one of the rotational speed of the table 12, the pressing force of the roller 13, or the air supply amount in the air supply unit 30 is changed in advance.
  • the response delay in the upstream process from the supply of the raw material coal to the table 12 to the arrival of the pulverized coal to the inlet of the rotary classifier 20 can be improved.
  • the second advance signal computing unit 620 of the second command value generation unit 600 determines the command value of the second parameter based on the second advance signal determined according to the load information of the combustion apparatus 300. ing. Thereby, according to the load change of the combustion apparatus 300, the second parameter including the rotational speed of the rotary classifier 20 is changed in advance, and the pulverized coal passes through the rotary classifier 20 and the coal pulverizer 200 is discharged. It is possible to improve the response delay in the downstream process until it is done. In this way, it is possible to improve both the response delay in the upstream process and the response delay in the downstream process, and effectively reduce the coal output delay of the coal crushing apparatus 200 as a whole.
  • FIG. 5 is a graph showing the behavior of various parameters at the time of load change of the coal-fired thermal power plant 100
  • FIG. 5 (a) shows changes in the amount of coal supply and amount of coal output of the coal crushing apparatus 200
  • (B) shows the change of the command value of the first parameter
  • FIG. 5 (c) shows the change of the command value of the second parameter
  • FIG. 5 (d) shows the change of the load of the generator 320.
  • changes over time of various parameters when the preceding control is not performed by the first preceding signal and the second preceding signal are shown on the left side.
  • the time-dependent change of various parameters in the case of performing the advance control by the advance signal is shown at the center, and the time-dependent change of various parameters when the load change width is large is shown on the right.
  • the first preceding signal and the second preceding signal determined according to the load information are basic instructions By being added to the values (900, 950), the command value 910 of the first parameter and the command value 960 of the second parameter are generated.
  • FIG. 5A when the amount of coal feeding to the coal crushing apparatus 200 is increased according to the increase of the load command value of the generator 320, the response delay of the amount of coal output from the coal crushing apparatus 200 The delay in coal output is reduced. And as a result of the response delay being reduced to the amount of coal output from the coal crushing apparatus 200, as shown in FIG. 5 (d), the response delay to the load command value of the load of the generator 320 is also reduced.
  • the command value 940 of the first parameter and the command value 980 of the second parameter are generated.
  • FIG. 5A when the amount of coal feeding to the coal crushing apparatus 200 is increased according to the increase of the load command value of the generator 320, the response delay of the amount of coal output from the coal crushing apparatus 200 The delay in coal output is reduced. And as a result of the response delay being reduced to the amount of coal output from the coal crushing apparatus 200, as shown in FIG. 5 (d), the response delay to the load command value of the load of the generator 320 is also reduced.
  • FIG. 6 is a flowchart of a control method of the coal crushing apparatus 200 according to an embodiment.
  • load information of the combustion apparatus 300 (coal-fired thermal power plant 100) is acquired (step S10).
  • the load information may be at least one of load of the combustion apparatus 300, load change rate, or load change width.
  • a first advance signal used for calculation of the command value of the first parameter is calculated (step S12).
  • the first parameter includes at least one of the rotational speed of the table 12, the pressing force of the roller 13 against the table 12, and the air supply amount in the air supply unit 30.
  • the calculation of the first advance signal may be performed using the first advance signal operation unit 520 shown in FIG.
  • the first reference advance signal calculation unit 700 determines the reference value (first reference advance signal) of the first advance signal according to the coal feed amount command value, and the operation coefficient calculation unit 710 (710A to 710C).
  • the 1st prior signal may be calculated
  • the calculation coefficient calculation unit 740 calculates a calculation coefficient according to the moisture content of the raw material coal which is an example of the raw material coal property information, and the first reference advance signal and the calculation coefficient calculation unit 710 (710A to 710C)
  • the first preceding signal may be determined based on the product of the operation coefficient obtained in the above and the operation coefficient obtained by the operation coefficient calculation unit 740.
  • the change rate of the command value of the second parameter may be taken into consideration.
  • the rate of change of the preceding signal may be limited.
  • the command value of the first parameter is generated based on the first advance signal obtained in step S12 (step S14).
  • the basic command value calculation unit 510 (510A to 510C) calculates the basic command value of the first parameter according to the coal feed amount command (the coal feed amount command) to the coal crushing apparatus 200, The command value of the first parameter is calculated by adding the first advance signal obtained in step S12 to the basic command value.
  • a second advance signal used for calculation of the command value of the second parameter is calculated (step S16).
  • the second parameter includes the rotational speed of the rotary classifier 20 as described above.
  • the calculation of the second advance signal may be performed using the second advance signal operation unit 620 shown in FIG.
  • the second reference advance signal calculation unit 800 determines the reference value (second reference advance signal) of the second advance signal according to the coal feed amount command value, and the calculation coefficient calculation unit 810 (810A to 810C) Determining a calculation coefficient (correction coefficient) determined according to load information of the combustion apparatus 300 (coal-fired thermal power plant 100), and determining a second advance signal based on a product of the second reference advance signal and the calculation coefficient May be
  • the 2nd prior signal may be calculated
  • the calculation coefficient calculation unit 840 calculates a calculation coefficient according to the moisture content of the raw material coal which is an example of the raw material coal property information
  • the second preceding signal may be determined based on the product of the operation coefficient obtained in the above and the operation coefficient obtained by the operation coefficient calculation unit 840.
  • the change rate of the command value of the first parameter may be taken into consideration.
  • the command value of the second parameter is generated based on the second advance signal obtained in step S16 (step S18).
  • the basic command value calculation unit 610 calculates the basic command value of the second parameter according to the coal feed amount command (coal feed amount command) to the coal crushing apparatus 200, and the basic command value is calculated for the basic command value.
  • the command value of the second parameter is calculated by adding the second advance signal obtained in step S16.
  • each part of the coal crushing apparatus 200 is controlled based on the command value of the 1st parameter obtained by step S14, and the command value of the 2nd parameter obtained by step S18 (step S20). Specifically, in accordance with the command value of the first parameter, at least one of the table drive unit 15, the actuator 16, and the damper 35 of the coal crushing apparatus 200 is controlled. Similarly, the classifier drive unit 24 of the coal crushing apparatus 200 is controlled according to the command value of the second parameter.
  • both the response delay in the upstream process and the response delay in the downstream process can be improved by the advance control of the first parameter and the advance control of the second parameter.
  • advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing the reduction in classification accuracy in the rotary classifier 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

This coal grinding device is provided with a table capable of rotating, a roller for grinding coal supplied from the table, a rotating classifier for classifying pulverized coal obtained by the grinding of the coal in the roller, and an air supply unit for generating an air flow that guides the pulverized coal to the rotating classifier. A device for controlling the coal grinding device is provided with: a first command value generator for generating a command value for a first parameter including at least one parameter among the rotational speed of the table, the pressing force of the roller on the table, and the air supply quantity in the air supply unit; and a second command value generator for generating a command value for a second parameter including at least the rotational speed of the rotating classifier. The first and second command value generators are configured so as to determine the command values for the first and second parameters on the basis of at least first and second preceding signals determined according to load information of a burning device that burns the pulverized coal from the coal grinding device.

Description

石炭粉砕装置及びその制御装置及び制御方法、並びに石炭焚き火力発電プラントCoal grinding device, control device and control method therefor, and coal-fired thermal power plant
 本開示は、石炭を粉砕する石炭粉砕装置及びその制御装置及び制御方法、並びに石炭焚き火力発電プラントに関する。 The present disclosure relates to a coal crushing apparatus for crushing coal, a control device and control method therefor, and a coal-fired power plant.
 例えば、石炭焚き火力発電プラントは、石炭粉砕装置が粉砕した微粉炭を火炉で燃焼させることで生成された燃焼ガスとの熱交換により蒸気を発生させ、該蒸気によりタービンを駆動することで発電を行っている。 For example, in a coal-fired thermal power plant, steam is generated by heat exchange with a combustion gas generated by burning pulverized coal pulverized by a coal pulverizer in a furnace, and power generation is performed by driving a turbine using the steam. Is going.
 ここで、石炭焚き火力発電プラントの負荷は一定とは限らず、負荷変化を伴う石炭焚き火力発電プラントの運用を行うことがある。例えば、石炭焚き火力発電プラントが電力系統に連系されている場合、系統周波数の安定化等の目的で、系統側の要請に応じて石炭焚き火力発電プラントに負荷を迅速に変化させることが望まれる。 Here, the load of the coal-fired thermal power plant is not always constant, and the coal-fired thermal power plant may be operated with a change in load. For example, when a coal-fired thermal power plant is connected to a power grid, it is desirable to quickly change the load on the coal-fired thermal power plant according to the request of the grid side for the purpose of stabilization of grid frequency etc. Be
 しかしながら、石炭焚き火力発電プラントにおいては、石炭粉砕装置への石炭(原料炭)の供給量を変化させても、石炭粉砕装置からの出炭量が変化するまでにタイムラグ(出炭遅れ)が存在する。このため、石炭焚き火力発電プラントに負荷を迅速に変化させることが難しい。 However, in a coal-fired thermal power plant, even if the amount of coal (raw coal) supplied to the coal crusher is changed, there is a time lag (delay in coal output) until the amount of coal output from the coal crusher changes. Do. For this reason, it is difficult to quickly change the load on the coal-fired power plant.
 この点、特許文献1には、出炭遅れを解消するために、給炭量指令値と発電機の負荷の変化に係るパラメータとに基づいて、テーブルの回転速度を決定することが開示されている。 In this respect, Patent Document 1 discloses that the rotational speed of the table is determined based on the coal feeding amount command value and the parameter relating to the change in the load of the generator in order to eliminate the delayed coal output. There is.
 特許文献2には、竪型ミルの負荷の増減に対応させて給炭量を増減させるとともに、給炭から出炭までの時間遅れに基づく出炭量の過不足を補うようにテーブルの回転速度を増減するようにした竪型ミルの制御方法が開示されている。 In Patent Document 2, the amount of coal feeding is increased or decreased according to the increase or decrease of the load of the vertical mill, and the rotation speed of the table is used to compensate for the excess or deficiency of the amount of coal output based on the time delay from coal feeding to There is disclosed a control method of a vertical mill which is adapted to increase or decrease the.
 特許文献3には、石炭の水分又は硬度、一次空気流量、分級器回転数等のパラメータが変化した際における出力指令変化時での出炭量の動特性に基づいて負荷補正信号を求め、該負荷補正信号に基づいて給炭量及び分級器回転数を制御することが開示されている。 In Patent Document 3, a load correction signal is obtained based on the dynamic characteristics of the amount of coal output at the time of output command change when parameters such as coal moisture or hardness, primary air flow rate, and classifier rotation speed change, It is disclosed to control the amount of coal feeding and the classifier rotation speed based on the load correction signal.
 特許文献4には、出力デマンド信号を一次遅れ演算子に入力して得られる信号から出力デマンド信号を減算して補正信号を生成し、該補正信号に対してリミッタ及び積分器による処理を加えるとともに定数発生器からの信号を加算することで、負荷状態に対応するロータリーセパレータ(回転分級器)の回転数指令を生成するようにした石炭粉砕装置の制御方法が開示されている。ここで、定数発生器は、ロータリーセパレータ(回転分級器)の回転数を一定値に設定するように構成されている。 In Patent Document 4, an output demand signal is input to a first-order lag operator, an output demand signal is subtracted from a signal obtained to generate a correction signal, and processing by a limiter and an integrator is added to the correction signal. A control method of a coal pulverizer is disclosed which generates a rotation number command of a rotary separator (rotational classifier) corresponding to a load state by adding a signal from a constant generator. Here, the constant generator is configured to set the rotation number of the rotary separator (rotational classifier) to a constant value.
 特許文献5には、ボイラ又は発電機からの検出データに基づいて給炭量に関連する指令信号を演算するための主演算回路と、石炭粉砕装置に予め設定された標準の出炭量パターンと現在の出炭量パターンとの偏差を算出する追加制御部と、を備え、該追加制御部による算出結果を補正信号として主演算回路に加えるようにした石炭粉砕装置の制御方法が開示されている。 Patent Document 5 includes a main operation circuit for calculating a command signal related to the amount of coal supply based on detection data from a boiler or a generator, and a standard amount of coal output pattern preset in the coal crushing apparatus. There is disclosed a control method of a coal crushing apparatus including: an additional control unit for calculating a deviation from a current amount pattern of coal output, and adding a calculation result by the additional control unit to a main arithmetic circuit as a correction signal. .
 特許文献6には、ミルの駆動状態と燃焼炉で必要な出力とに基づいて決定した排炭量(出炭量)に基づいて、ミル、一次空気搬送部又は石炭供給部の少なくとも一つの操作量を決定するようにした微粉炭供給システムが開示されている。 In Patent Document 6, at least one operation of the mill, the primary air conveyance unit, or the coal supply unit based on the amount of decarburization (the amount of coal removal) determined based on the driving state of the mill and the required output of the combustion furnace. A pulverized coal supply system adapted to determine the quantity is disclosed.
 特許文献7には、負荷変化時における搬送用空気流量調節ダンパの開度制御に起因した微粉炭機の出口温度の変動が発生した場合においても、出炭量指令信号に応じた出炭量を確保するために、微粉炭機の出口温度の検出値と設定温度との偏差に基づいて出炭量温度補正信号を求め、該出炭量温度補正信号を搬送用空気流量調節ダンパの開度制御に用いることが開示されている。 In Patent Document 7, even when the outlet temperature of the pulverized coal machine fluctuates due to the opening control of the transfer air flow rate adjustment damper at the time of load change, the amount of coal output according to the coal output command signal is calculated In order to secure, the output temperature correction signal is obtained based on the deviation between the detection value of the outlet temperature of the pulverized coal machine and the set temperature, and the output temperature correction signal is used to control the opening of the air flow control Is disclosed for use in
特開2015-100740号公報JP, 2015-100740, A 特開昭63-62556号公報Japanese Patent Application Laid-Open No. 63-62556 特開平8-243429号公報JP-A-8-243429 特開平4-334563号公報Unexamined-Japanese-Patent No. 4-334563 特開2010-104939号公報Unexamined-Japanese-Patent No. 2010-104939 特開2012-7811号公報JP, 2012-7811, A 特開平4-93511号公報JP-A-4-93511
 しかしながら、石炭焚き発電プラントに対してより大きな負荷変化率が要求されつつあり、特許文献1~7に記載の石炭粉砕装置では、出炭遅れの改善効果が十分でない場合がある。 However, a larger load change rate is required for the coal-fired power plant, and the coal pulverizers described in Patent Documents 1 to 7 may not have a sufficient improvement effect on the delayed coal output.
 本発明の少なくとも幾つかの実施形態は上述の問題点に鑑みなされたものであり、石炭の出炭遅れをより改善可能な石炭粉砕装置及びその制御装置及び制御方法、並びに石炭焚き火力発電プラントを提供することを目的とする。 SUMMARY OF THE INVENTION At least some embodiments of the present invention have been made in view of the above-mentioned problems, and a coal crushing apparatus and its control device and control method, and coal-fired thermal power plant capable of further improving the delayed coal output Intended to be provided.
(1)本発明の少なくとも幾つかの実施形態に係る石炭粉砕装置用の制御装置は、
 回転可能に構成されたテーブルと、前記テーブルから供給される石炭を粉砕するためのローラと、前記ローラにおける前記石炭の粉砕によって得られた微粉炭を分級するための回転分級器と、前記微粉炭を前記回転分級器に向けて導く空気流を生成するための空気供給部と、を備える石炭粉砕装置のための制御装置であって、
 前記テーブルの回転速度、前記ローラの前記テーブルへの押付け力、または、前記空気供給部における空気供給量の少なくとも一つを含む第1パラメータの指令値を生成するための第1指令値生成部と、
 前記回転分級器の回転速度を少なくとも含む第2パラメータの指令値を生成するための第2指令値生成部と、
を備え、
 前記第1指令値生成部は、少なくとも、前記石炭粉砕装置からの前記微粉炭を燃焼させる燃焼装置の負荷情報に応じて決定される第1先行信号に基づいて、前記第1パラメータの指令値を求めるように構成され、
 前記第2指令値生成部は、少なくとも前記負荷情報に応じて決定される第2先行信号に基づいて、前記第2パラメータの指令値を求めるように構成される。
(1) A control device for a coal crusher according to at least some embodiments of the present invention,
A table configured rotatably, a roller for grinding coal supplied from the table, a rotary classifier for classifying pulverized coal obtained by crushing the coal in the roller, the pulverized coal A control device for a coal comminution device, comprising: an air supply unit for generating an air flow for directing the rotary classifier to the rotary classifier.
A first command value generation unit for generating a command value of a first parameter including at least one of a rotation speed of the table, a pressing force of the roller against the table, or an air supply amount in the air supply unit; ,
A second command value generation unit for generating a command value of a second parameter including at least a rotational speed of the rotational classifier;
Equipped with
The first command value generation unit generates a command value of the first parameter based at least on a first advance signal determined according to load information of a combustion device that burns the pulverized coal from the coal crushing device. Configured to
The second command value generation unit is configured to obtain a command value of the second parameter based on at least a second advance signal determined according to the load information.
 なお、本明細書において、燃焼装置の負荷情報とは、燃焼装置の負荷に係る情報そのものであってもよいし、燃焼装置の負荷を間接的に示す負荷(例えば、燃焼装置としてのボイラで生成された蒸気によって駆動される蒸気タービンの負荷、または、該蒸気タービンによって駆動される発電機の負荷)に係る情報であってもよい。 In the present specification, the load information of the combustion apparatus may be information itself related to the load of the combustion apparatus, or a load indirectly indicating the load of the combustion apparatus (for example, generated by a boiler as the combustion apparatus) It may be information related to the load of the steam turbine driven by the stored steam or the load of the generator driven by the steam turbine.
 石炭(原料炭)は、石炭粉砕装置のテーブル上に供給される。テーブルの回転に伴い、テーブル上の石炭はテーブルの外周側に向かって移動し、ローラによって粉砕される。ローラにおける粉砕の結果得られた微粉炭粒子は、空気供給部からの空気流に随伴されて回転分級器に向かって移動する。回転分級器では、微粉炭粒子の分級が行われて、微粉炭粒子のうち微粒子のみが回転分級器を通過して石炭粉砕装置から流出する。このように、石炭粉砕装置内において、原料炭の供給から出炭までに、種々の工程を経る必要がある。
 そのため、石炭粉砕装置への原料炭の供給量の変化の影響が、石炭粉砕装置からの出炭量の変化として表れるまでにタイムラグ(出炭遅れ)が存在する。
 なお、出炭遅れは、石炭粉砕装置のテーブルへの原料炭の供給から回転分級器の入口への微粉炭の到達までの上流側工程における応答遅れと、回転分級器を微粉炭が通過して石炭粉砕装置から出炭されるまでの下流側工程における応答遅れと、に分けて考えることができる。
Coal (raw coal) is supplied on the table of a coal pulverizer. As the table rotates, the coal on the table moves toward the outer periphery of the table and is crushed by the rollers. The pulverized coal particles obtained as a result of the grinding in the roller are entrained by the air flow from the air supply and move towards the rotary classifier. In the rotary classifier, classification of pulverized coal particles is performed, and among the pulverized coal particles, only the fine particles pass through the rotary classifier and flow out of the coal pulverizer. As described above, it is necessary to go through various steps from the supply of raw material coal to the removal of coal in the coal pulverizer.
Therefore, there is a time lag (laging delay) before the influence of the change in the feed amount of the raw coal to the coal pulverizer appears as the change in the amount of coal output from the coal pulverizer.
Note that the delayed coal output is due to the response delay in the upstream process from the supply of the raw material coal to the table of the coal crusher to the arrival of the pulverized coal to the inlet of the rotary classifier, and the pulverized coal passing through the rotary classifier. It can be divided into the response delay in the downstream process from the coal pulverizer until the coal is discharged.
 上記(1)の構成では、第1指令値生成部において、燃焼装置の負荷情報に応じて決定される第1先行信号に基づいて第1パラメータの指令値を決定するようになっている。
 これにより、燃焼装置の負荷変化に応じて、テーブルの回転速度、ローラの押付け力、または、空気供給量の少なくとも一つを含む第1パラメータを先行して変化させ、テーブルへの原料炭の供給から回転分級器の入口への微粉炭の到達までの上流側工程における応答遅れを改善することができる。
 一方、第2指令値生成部では、燃焼装置の負荷情報に応じて決定される第2先行信号に基づいて第2パラメータの指令値を決定するようになっている。これにより、燃焼装置の負荷変化に応じて、回転分級器の回転速度を含む第2パラメータを先行して変化させ、回転分級器を微粉炭が通過して石炭粉砕装置から出炭されるまでの下流側工程における応答遅れを改善することができる。
 こうして、上流側工程における応答遅れと、下流側工程における応答遅れとの両方を改善し、石炭粉砕装置全体としての出炭遅れを効果的に低減することができる。
In the configuration of the above (1), the first command value generation unit determines the command value of the first parameter based on the first advance signal determined according to the load information of the combustion device.
Thereby, according to the load change of the combustion apparatus, the first parameter including at least one of the rotational speed of the table, the pressing force of the roller, or the air supply amount is changed in advance to supply the raw material coal to the table. It is possible to improve the response delay in the upstream process from the above to the arrival of the pulverized coal to the inlet of the rotary classifier.
On the other hand, the second command value generation unit is configured to determine the command value of the second parameter based on the second advance signal determined according to the load information of the combustion device. Thereby, according to the load change of the combustion device, the second parameter including the rotational speed of the rotary classifier is changed in advance, and the pulverized coal passes through the rotary classifier and is discharged from the coal pulverizer. The response delay in the downstream process can be improved.
In this way, it is possible to improve both the response delay in the upstream process and the response delay in the downstream process, and effectively reduce the coal output delay of the entire coal crushing apparatus.
 また、石炭粉砕装置からの出炭量を迅速に変化させるために、第2パラメータとしての回転分級器の回転速度のみを先行制御で調節すると、回転分級器における分級精度が低下してしまう可能性がある。
 この点、上記(1)の構成によれば、第2パラメータだけでなく、第1パラメータについても先行制御を行うこととしたので、回転分級器における分級精度低下を抑制しながら、出炭遅れを改善することができる。
In addition, if only the rotational speed of the rotary classifier as the second parameter is adjusted by advance control in order to rapidly change the amount of coal output from the coal crushing apparatus, the classification accuracy in the rotary classifier may be reduced. There is.
In this respect, according to the configuration of the above (1), since advance control is performed not only for the second parameter but also for the first parameter, the delay in coal output can be suppressed while suppressing the decrease in classification accuracy in the rotary classifier. It can be improved.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記第1指令値生成部は、前記第2パラメータの指令値の変化率に基づいて、前記第1先行信号を決定するように構成される。
(2) In some embodiments, in the configuration of (1) above,
The first command value generation unit is configured to determine the first advance signal based on a change rate of a command value of the second parameter.
 上記(2)の構成によれば、第2パラメータの指令値の変化率に基づいて、第1制御信号を決定するようにしたので、分級精度の確保と出炭遅れの改善との両立の観点から、第1制御信号を適切に設定することができる。
 例えば、分級精度に影響しかねない第2パラメータ(回転分級器の回転速度)の指令値の変化率が大きい場合、このことを踏まえて第1先行信号を比較的大きい値に決定することで、分級精度の確保と出炭遅れの改善とを両立することができる。
According to the configuration of the above (2), the first control signal is determined based on the rate of change of the command value of the second parameter, so that the viewpoint of achieving both classification accuracy and improvement of delayed coaling Thus, the first control signal can be set appropriately.
For example, when the change rate of the command value of the second parameter (rotational speed of the rotary classifier) that may affect classification accuracy is large, the first advance signal is determined to be a relatively large value based on this. It is possible to achieve both classification accuracy and improvement of delayed coal output.
(3)幾つかの実施形態では、上記(2)の構成において、
 前記第1指令値生成部は、前記第1先行信号の変化率が、前記第2パラメータの指令値の変化率に基づいて決定される第1レートリミット以下となるように、前記第1先行信号を決定するように構成される。
(3) In some embodiments, in the configuration of (2) above,
The first command value generation unit is configured to set the first advance signal such that a change rate of the first advance signal is equal to or less than a first rate limit determined based on a change rate of the instruction value of the second parameter. Configured to determine
 上記(3)の構成によれば、第1先行信号の変化率を制限する第1レートリミットは、第2パラメータ(回転分級器の回転速度)の指令値の変化率に基づいて可変である。このため、分級精度に影響しかねない第2パラメータ(回転分級器の回転速度)の指令値の変化率に応じて適切に第1先行信号を決定することができ、分級精度の確保と出炭遅れの改善とを両立することができる。 According to the configuration of the above (3), the first rate limit that limits the rate of change of the first preceding signal is variable based on the rate of change of the command value of the second parameter (rotational speed of the rotation classifier). Therefore, it is possible to appropriately determine the first leading signal according to the rate of change of the command value of the second parameter (rotational speed of the rotary classifier) that may affect classification accuracy, and secure classification accuracy and extraction of coal. It can be compatible with the improvement of the delay.
(4)幾つかの実施形態では、上記(1)~(3)の何れかの構成において、
 前記第2指令値生成部は、前記第1パラメータの指令値の変化率に基づいて、前記第2先行信号を決定するように構成される。
(4) In some embodiments, in any of the configurations of (1) to (3) above,
The second command value generation unit is configured to determine the second advance signal based on a change rate of the command value of the first parameter.
 上記(4)によれば、第1パラメータの指令値の変化率に基づいて、第2制御信号を決定するようにしたので、分級精度の確保と出炭遅れの改善との両立の観点から、第2制御信号を適切に設定することができる。
 例えば、第1パラメータの先行制御による出炭遅れの改善が十分でない場合、このことを踏まえて第2先行信号を決定することで、出炭遅れの改善効果を十分に得ることができる。
According to the above (4), since the second control signal is determined based on the rate of change of the command value of the first parameter, from the viewpoint of achieving both classification accuracy and improvement of the delay in coal output, The second control signal can be set appropriately.
For example, when the improvement of the delayed coal output by the preliminary control of the first parameter is not sufficient, the improvement effect of the delayed coal output can be sufficiently obtained by determining the second preceding signal based on this.
(5)幾つかの実施形態では、上記(4)の構成において、
 前記第2指令値生成部は、前記第2先行信号の変化率が、前記第1パラメータの指令値の変化率に基づいて決定される第2レートリミット以下となるように、前記第2先行信号を決定するように構成される。
(5) In some embodiments, in the configuration of (4) above,
The second command value generation unit is configured to set the second lead signal such that a change rate of the second lead signal is equal to or less than a second rate limit determined based on a change rate of the command value of the first parameter. Configured to determine
 上記(5)の構成では、第2先行信号の変化率を制限する第2レートリミットは、第1パラメータの指令値の変化率に基づいて可変である。このため、第1パラメータの指令値の変化率が小さくて第1パラメータの先行制御による出炭遅れの改善が十分でない場合であっても、第2レートリミットを適切に調節することで、第2パラメータの先行制御による出炭遅れ改善効果を高めて、石炭粉砕装置全体としての出炭遅れを十分に抑制できる。 In the configuration of the above (5), the second rate limit that limits the rate of change of the second preceding signal is variable based on the rate of change of the command value of the first parameter. For this reason, even when the rate of change of the command value of the first parameter is small and the improvement of the coal delay due to the preceding control of the first parameter is not sufficient, the second rate limit can be adjusted appropriately. It is possible to sufficiently suppress the delay in coal output as a whole of the coal crusher by enhancing the effect of delaying the coal delay by the advance control of parameters.
(6)幾つかの実施形態では、上記(1)~(5)の何れかの構成において、
 前記燃焼装置は、発電機を駆動するための蒸気タービンに供給される蒸気を生成するためのボイラであって、
 前記燃焼装置の前記負荷情報は、前記発電機の負荷、負荷変化率または負荷変化幅の少なくとも一つを含む。
(6) In some embodiments, in any of the configurations of (1) to (5) above,
The combustion device is a boiler for generating steam to be supplied to a steam turbine for driving a generator,
The load information of the combustion apparatus includes at least one of a load, a load change rate, or a load change width of the generator.
 上記(6)の構成によれば、発電機の負荷、負荷変化率、負荷変化幅等の負荷情報に基づいて、上記(1)で述べたようにして第1先行信号および第2先行信号が決定される。このため、上流側工程における応答遅れと、下流側工程における応答遅れとの両方を改善することで、出炭遅れを効果的に改善し、発電機の負荷変化に対応して石炭粉砕装置を適切に制御できる。また、第2パラメータだけでなく、第1パラメータについても先行制御が行われるので、回転分級器における分級精度低下を抑制しながら、石炭粉砕装置における出炭遅れを改善することができる。 According to the configuration of the above (6), the first preceding signal and the second preceding signal are as described in the above (1) based on the load information of the generator load, load change rate, load change width and the like. It is determined. For this reason, by improving both the response delay in the upstream process and the response delay in the downstream process, the coal output delay is effectively improved, and the coal crusher is appropriately adapted to the load change of the generator. Can be controlled. Moreover, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output in the coal pulverizer while suppressing the reduction in classification accuracy in the rotary classifier.
(7)幾つかの実施形態では、上記(1)~(6)の構成において、
 前記第1指令値生成部は、前記負荷情報、および、原料炭の性状に関する原料炭性状情報に応じて前記第1先行信号を求めるように構成される。
(7) In some embodiments, in the configurations of (1) to (6) above,
The first command value generation unit is configured to obtain the first advance signal according to the load information and raw material coal property information related to the property of the raw material coal.
 原料炭の性状が異なると、第1パラメータの操作量に対する出炭遅れの改善効果も同一ではない。
 この点、上記(7)の構成によれば、負荷情報だけでなく、原料炭性状情報も考慮して第1先行信号を設定するようにしたので、原料炭の性状に応じて適切に第1パラメータの先行制御を行うことができ、出炭遅れを効果的に改善できる。
When the properties of the raw material coal are different, the improvement effect of the delayed coal output to the operation amount of the first parameter is not the same.
In this respect, according to the configuration of the above (7), the first advance signal is set in consideration of not only the load information but also the raw material carbon property information. Therefore, according to the property of the raw material coal, It is possible to perform advance control of parameters and effectively improve the delayed coaling.
(8)幾つかの実施形態では、上記(1)~(7)の構成において、
 前記第2指令値生成部は、前記負荷情報、および、原料炭の性状に関する原料炭性状情報に応じて前記第2先行信号を求めるように構成される。
(8) In some embodiments, in the configurations of (1) to (7) above,
The second command value generation unit is configured to obtain the second advance signal according to the load information and raw material coal property information related to the property of the raw material coal.
 原料炭の性状が異なると、第2パラメータの操作量に対する出炭遅れの改善効果も同一ではない。
 この点、上記(8)の構成によれば、負荷情報だけでなく、原料炭性状情報も考慮して第2先行信号を設定するようにしたので、原料炭の性状に応じて適切に第2パラメータの先行制御を行うことができ、出炭遅れを効果的に改善できる。
If the properties of the raw material coal are different, the improvement effect of the delayed coal output to the operation amount of the second parameter is not the same.
In this respect, according to the configuration of the above (8), the second advance signal is set in consideration of not only the load information but also the raw material carbon property information. It is possible to perform advance control of parameters and effectively improve the delayed coaling.
(9)幾つかの実施形態では、上記(7)又は(8)の構成において、
 前記原料炭性状情報は、前記原料炭の含水率を含む。
(9) In some embodiments, in the configuration of (7) or (8) above,
The raw coal property information includes the moisture content of the raw coal.
 本発明者らの知見によれば、原料炭の含水率は、各パラメータの操作量に対する出炭遅れの改善効果に大きく影響し得る。
 この点、上記(9)の構成によれば、原料炭性状情報として原料炭の含水率を用いるようにしたので、原料炭の含水率に応じて適切に第1パラメータまたは第2パラメータの先行制御を行うことができ、出炭遅れを効果的に改善できる。
According to the findings of the present inventors, the moisture content of the raw material coal can greatly affect the improvement effect of the delayed coal output with respect to the operation amount of each parameter.
In this respect, according to the configuration of the above (9), since the moisture content of the raw material coal is used as the raw material carbon property information, advance control of the first parameter or the second parameter is appropriately performed according to the moisture content of the raw material coal. Can effectively improve the delayed coal output.
(10)本発明の少なくとも幾つかの実施形態にかかる石炭粉砕装置は、
 回転可能に構成されたテーブルと、
 前記テーブルから供給される石炭を粉砕するためのローラと、
 前記ローラを前記テーブルに押し付けるためのアクチュエータと、
 前記ローラにおける前記石炭の粉砕によって得られた微粉炭を分級するための回転分級器と、
 前記微粉炭を前記回転分級器に向けて導く空気流を生成するための空気供給部と、
 前記テーブル、前記アクチュエータまたは前記空気供給部の少なくとも一つ、および、前記回転分級器を制御するように構成された、上記(1)~(9)の何れかの構成の制御装置と、
を備える。
(10) A coal crusher according to at least some embodiments of the present invention,
A table configured to be rotatable,
A roller for grinding coal supplied from the table;
An actuator for pressing the roller against the table;
A rotary classifier for classifying pulverized coal obtained by pulverizing the coal in the roller;
An air supply for producing an air flow for directing the pulverized coal towards the rotary classifier;
The control device according to any one of the above (1) to (9), configured to control at least one of the table, the actuator, or the air supply unit, and the rotary classifier.
Equipped with
 上記(10)の構成によれば、上記(1)で述べたように、第1指令値生成部における第1パラメータの先行制御と、第2指令値生成部における第2パラメータの先行制御とによって、上流側工程における応答遅れと、下流側工程における応答遅れとの両方を改善できる。これにより、石炭粉砕装置全体としての出炭遅れを効果的に低減することができる。
 さらに、第2パラメータだけでなく、第1パラメータについても先行制御を行うこととしたので、回転分級器における分級精度低下を抑制しながら、出炭遅れを改善することができる。
According to the configuration of the above (10), as described in the above (1), the preceding control of the first parameter in the first command value generating unit and the preceding control of the second parameter in the second command value generating unit Both the response delay in the upstream process and the response delay in the downstream process can be improved. As a result, it is possible to effectively reduce the delayed coal output of the entire coal crushing apparatus.
Furthermore, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing a decrease in classification accuracy in the rotary classifier.
(11)本発明の少なくとも幾つかの実施形態に係る石炭焚き火力発電プラントは、
 上記(10)の構成の石炭粉砕装置と、
 前記石炭粉砕装置からの前記微粉炭を燃焼させて蒸気を生成するためのボイラと、
 前記ボイラからの前記蒸気によって駆動される蒸気タービンと、
 前記蒸気タービンによって駆動される発電機と、
を備える。
(11) A coal-fired thermal power plant according to at least some embodiments of the present invention,
A coal pulverizer of the configuration of the above (10),
A boiler for burning the pulverized coal from the coal crusher to generate steam;
A steam turbine driven by the steam from the boiler;
A generator driven by the steam turbine;
Equipped with
 上記(11)の構成によれば、上記(1)で述べたように、第1指令値生成部における第1パラメータの先行制御と、第2指令値生成部における第2パラメータの先行制御とによって、上流側工程における応答遅れと、下流側工程における応答遅れとの両方を改善できる。これにより、石炭粉砕装置全体としての出炭遅れを効果的に低減し、石炭焚き火力発電プラントの負荷を迅速に変化させることができる。
 さらに、第2パラメータだけでなく、第1パラメータについても先行制御を行うこととしたので、回転分級器における分級精度低下を抑制しながら、出炭遅れを改善することができる。
According to the configuration of the above (11), as described in the above (1), the preceding control of the first parameter in the first command value generation unit and the preceding control of the second parameter in the second command value generation unit Both the response delay in the upstream process and the response delay in the downstream process can be improved. As a result, it is possible to effectively reduce the delay in coal output as the whole of the coal crushing apparatus, and to change the load of the coal-fired thermal power plant quickly.
Furthermore, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing a decrease in classification accuracy in the rotary classifier.
(12)本発明の少なくとも幾つかの実施形態にかかる石炭粉砕装置の制御方法は、
 回転可能に構成されたテーブルと、前記テーブルから供給される石炭を粉砕するためのローラと、前記ローラにおける前記石炭の粉砕によって得られた微粉炭を分級するための回転分級器と、前記微粉炭を前記回転分級器に向けて導く空気流を生成するための空気供給部と、を備える石炭粉砕装置のための制御方法であって、
 前記テーブルの回転速度、前記ローラの前記テーブルへの押付け力、または、前記空気供給部における空気供給量の少なくとも一つを含む第1パラメータの指令値を生成する第1指令値生成ステップと、
 前記回転分級器の回転速度を少なくとも含む第2パラメータの指令値を生成する第2指令値生成ステップと、
を備え、
 前記第1指令値生成ステップでは、少なくとも、前記石炭粉砕装置からの前記微粉炭を燃焼させる燃焼装置の負荷情報に応じて決定される第1先行信号に基づいて、前記第1パラメータの指令値を求め、
 前記第2指令値生成ステップでは、少なくとも前記負荷情報に応じて決定される第2先行信号に基づいて、前記第2パラメータの指令値を求める。
(12) A control method of a coal crusher according to at least some embodiments of the present invention,
A table configured rotatably, a roller for grinding coal supplied from the table, a rotary classifier for classifying pulverized coal obtained by crushing the coal in the roller, the pulverized coal A control system for a coal comminution device, comprising: an air supply for producing an air flow which directs the rotary classifier to the rotary classifier.
A first command value generation step of generating a command value of a first parameter including at least one of a rotation speed of the table, a pressing force of the roller against the table, or an air supply amount in the air supply unit;
A second command value generation step of generating a command value of a second parameter including at least a rotational speed of the rotational classifier;
Equipped with
In the first command value generation step, the command value of the first parameter is set based on a first advance signal determined according to load information of a combustion device for burning the pulverized coal from the coal crushing device at least. Ask for
In the second command value generation step, a command value of the second parameter is determined based on at least a second advance signal determined according to the load information.
 上記(12)の方法によれば、第1パラメータの先行制御と第2パラメータの先行制御とによって、上流側工程における応答遅れと、下流側工程における応答遅れとの両方を改善できる。これにより、石炭粉砕装置全体としての出炭遅れを効果的に低減することができる。
 さらに、第2パラメータだけでなく、第1パラメータについても先行制御を行うこととしたので、回転分級器における分級精度低下を抑制しながら、出炭遅れを改善することができる。
According to the method (12), both the response delay in the upstream process and the response delay in the downstream process can be improved by the advance control of the first parameter and the advance control of the second parameter. As a result, it is possible to effectively reduce the delayed coal output of the entire coal crushing apparatus.
Furthermore, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing a decrease in classification accuracy in the rotary classifier.
 本発明の少なくとも一実施形態によれば、回転分級器における分級精度低下を抑制しながら、石炭粉砕装置における出炭遅れを改善することができる。 According to at least one embodiment of the present invention, it is possible to improve the delayed coal output in the coal pulverizer while suppressing the reduction in classification accuracy in the rotary classifier.
一実施形態に係る石炭焚き火力発電プラントの概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the coal-fired thermal-power-generation plant which concerns on one Embodiment. 一実施形態に係る制御装置の構成を示すブロック図である。It is a block diagram showing composition of a control device concerning one embodiment. 一実施形態に係る第1先行信号演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the 1st prior | preceding signal calculating part which concerns on one Embodiment. 一実施形態に係る第2先行信号演算部の構成を示すブロック図である。It is a block diagram showing composition of the 2nd precedence signal operation part concerning one embodiment. 石炭焚き火力発電プラントの負荷変化時における各種パラメータの挙動を示すグラフであり、(a)は石炭粉砕装置の給炭量および出炭量の変化を示し、(b)は第1パラメータの指令値の変化を示し、(c)は第2パラメータの指令値の変化を示し、(d)は発電機負荷の変化を示している。It is a graph which shows the behavior of various parameters at the time of load change of a coal-fired thermal power plant, (a) shows the change of the amount of coal supply and the amount of coal output of a coal pulverizer, (b) is a command value of the 1st parameter (C) shows the change of the command value of the second parameter, and (d) shows the change of the generator load. 一実施形態に係る石炭粉砕装置の制御方法のフローチャートである。It is a flowchart of the control method of the coal crushing apparatus which concerns on one Embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely illustrative. Absent.
 図1は、一実施形態に係る石炭焚き火力発電プラントの概略構成図である。 FIG. 1 is a schematic configuration diagram of a coal-fired thermal power plant according to an embodiment.
 図1に示すように、一実施形態に係る石炭焚き火力発電プラント100は、石炭粉砕装置200、燃焼装置(ボイラ)300、制御装置400を備える。 As shown in FIG. 1, a coal-fired thermal power plant 100 according to an embodiment includes a coal crushing apparatus 200, a combustion apparatus (boiler) 300, and a control apparatus 400.
 石炭粉砕装置200は、石炭(原料炭)を粉砕するための粉砕機10と、粉砕機10における粉砕によって得られた微粉炭の微粒子を分級するための回転分級器20と、粉砕機10からの微粉炭を回転分級器20に向けて導く空気流を生成するための空気供給部30とを備える。 The coal crusher 200 includes a crusher 10 for crushing coal (raw carbon), a rotary classifier 20 for classifying fine particles of pulverized coal obtained by crushing in the crusher 10, and a crusher 10 And an air supply unit 30 for generating an air flow for directing pulverized coal toward the rotary classifier 20.
 なお、図1に示す例示的な実施形態では、石炭粉砕装置200は、粉砕機10の上方に回転分級器20が配置され、粉砕機10の周囲に空気供給部30が設けられた竪型粉砕分級装置である。この場合、粉砕機10の粉砕機ハウジング11の上端部と回転分級器20の分級器ハウジング21の下端部とが接続されることにより一体的に石炭粉砕装置200全体としてのハウジングが構成される。 Note that, in the exemplary embodiment shown in FIG. 1, in the coal crushing apparatus 200, the rotary classifier 20 is disposed above the pulverizer 10, and the vertical crushing is provided with the air supply unit 30 around the pulverizer 10. It is a classification device. In this case, the upper end portion of the crusher housing 11 of the crusher 10 and the lower end portion of the classifier housing 21 of the rotary classifier 20 are connected to integrally form a housing as the entire coal crusher 200.
 また、幾つかの実施形態では、図1に示すように、石炭粉砕装置200は、石炭(原料炭)を供給するための供給管50と、粉砕及び分級された石炭の微粒子を後述する燃焼装置300の火炉301に出炭するための排出管51とを有している。供給管50は、石炭粉砕装置200の上部に設けられており、石炭粉砕装置200の上方から供給される原料炭が後述の粉砕機10のテーブル12に落下するように構成されている。また、排出管51は、石炭粉砕装置200の上部に設けられ、回転分級器20を通過した微粉炭粒子を火炉301に向けて出炭可能に構成されている。 Further, in some embodiments, as shown in FIG. 1, the coal crushing apparatus 200 includes a supply pipe 50 for supplying coal (raw material coal), and a combustion apparatus described later for pulverized and classified fine particles of coal. And a discharge pipe 51 for emitting coal to the furnace 301 of 300. The supply pipe 50 is provided in the upper part of the coal crushing apparatus 200, and it is comprised so that the raw material coal supplied from the upper direction of the coal crushing apparatus 200 may fall on the below-mentioned table 12 of the grinder 10. In addition, the discharge pipe 51 is provided at the upper portion of the coal crushing apparatus 200, and configured to be capable of discharging the pulverized coal particles having passed through the rotary classifier 20 toward the furnace 301.
 石炭粉砕装置200の粉砕機10は、図1に示すように、回転可能に構成されたテーブル12と、テーブル12に対して押圧されることで原料炭を粉砕するように構成されたローラ13と、を含む。
 テーブル12は、テーブル12の下方に位置するテーブル駆動部15によって駆動されて、テーブル12の中心軸C周りに回転するようになっている。テーブル駆動部15は、制御装置400からのテーブル回転数指令に従って回転数が可変に制御されるモータを含んでいてもよい。
 一方、ローラ13は、アクチュエータ16によってテーブル12側に押し付けられながら、テーブル駆動部15によって回転駆動されるテーブル12上を転動するように構成されている。アクチュエータ16は、例えば油圧シリンダを用いることができ、制御装置400からのローラ押付け力指令に従って、テーブル12に対するローラ13の押付け力が可変に制御されてもよい。なお、ローラ13は、テーブル12の外周側領域において、テーブル12の周方向にて互いに間隔を空けて複数個(例えば3個)配置されていてもよい。
As shown in FIG. 1, the crusher 10 of the coal crusher 200 includes a table 12 configured to be rotatable, and a roller 13 configured to crush raw material carbon by being pressed against the table 12. ,including.
The table 12 is driven by a table drive unit 15 located below the table 12 so as to rotate around a central axis C of the table 12. The table drive unit 15 may include a motor whose rotation number is variably controlled in accordance with a table rotation number command from the control device 400.
On the other hand, the roller 13 is configured to roll on the table 12 rotationally driven by the table drive unit 15 while being pressed against the table 12 side by the actuator 16. The actuator 16 may use, for example, a hydraulic cylinder, and the pressing force of the roller 13 against the table 12 may be variably controlled in accordance with a roller pressing force command from the control device 400. A plurality of (for example, three) rollers 13 may be arranged at intervals in the circumferential direction of the table 12 in the outer circumferential area of the table 12.
 上記構成の粉砕機10では、テーブル12の上方に位置する供給管50からテーブル12の内周側領域に落下した原料炭が、テーブル12の遠心力によってテーブル12の外周側に向かって移動し、テーブル12とローラ13との間の隙間に供給される。ローラ13は、アクチュエータ16によってテーブル12側に押し付けられているから、テーブル12とローラ13との間の隙間に供給された原料炭は粉砕され、微粉炭が得られる。 In the crusher 10 configured as described above, the raw material coal dropped from the supply pipe 50 located above the table 12 to the inner peripheral area of the table 12 moves toward the outer peripheral side of the table 12 by the centrifugal force of the table 12 It is supplied to the gap between the table 12 and the roller 13. The roller 13 is pressed to the side of the table 12 by the actuator 16, so the raw material carbon supplied to the gap between the table 12 and the roller 13 is crushed to obtain pulverized coal.
 空気供給部30は、粉砕機ハウジング11に設けられた空気吸込口31と、空気吸込口31に連通するようにテーブル12の下方に設けられた環状空間である空気室33と、空気吸込口31を介して空気室33に空気を供給するためのファン34と、空気室33からの空気流が上方に向かって吹き出すように構成された空気吹出口32とを備える。
 空気吹出口32は、テーブル12の外周側において互いに間隔を空けて周方向に配列された複数のスロートベーン間に形成される流路であってもよい。
 また、空気供給部30は、ファン34からの空気供給量を調節するためのダンパ35をさらに備えていてもよい。この場合、ダンパ35は、制御装置400からの空気供給量指令に従って、空気供給部30における空気供給量を調節するように開度制御されてもよい。
The air supply unit 30 includes an air suction port 31 provided in the crusher housing 11, an air chamber 33 which is an annular space provided below the table 12 so as to communicate with the air suction port 31, and an air suction port 31. And a fan 34 for supplying air to the air chamber 33, and an air outlet 32 configured such that the air flow from the air chamber 33 blows upward.
The air outlets 32 may be flow paths formed between a plurality of throat vanes circumferentially arranged at intervals on the outer peripheral side of the table 12.
The air supply unit 30 may further include a damper 35 for adjusting the air supply amount from the fan 34. In this case, the damper 35 may be opening-controlled to adjust the air supply amount in the air supply unit 30 in accordance with the air supply amount command from the control device 400.
 上記構成の空気供給部30によれば、空気吹出口32から空気室33に取り込まれた空気が、空気吹出口32を介して上方に吹き出す結果、石炭粉砕装置200のハウジング(11,21)内において上方に向かう空気流(図1の矢印a参照)が形成される。
 この際、粒度の大きい粒子は、重力の影響により空気流aから逸れて、下方へ落下してテーブル12に戻り、再び粉砕される。
According to the air supply unit 30 configured as described above, the air taken into the air chamber 33 from the air outlet 32 is blown upward through the air outlet 32. As a result, the inside of the housing (11, 21) of the coal crushing apparatus 200 An upward air flow (see arrow a in FIG. 1) is formed at.
At this time, the large-size particles deviate from the air flow a under the influence of gravity, fall downward, return to the table 12, and are crushed again.
 回転分級器20は、粉砕機10の上方に設けられ、空気供給部30によって形成される空気流aに随伴される微粉炭粒子を分級するように構成される。
 幾つかの実施形態では、図1に示すように、回転分級器20は、微粉炭粒子を分級するための環状回転部22を含む。環状回転部22は、分級器ハウジング21の内部空間において上下方向に沿った回転軸O周りに回転可能に設けられている。環状回転部22は、互いに間隔を空けて周方向に配列された複数の回転フィンを含み、隣り合う回転フィン間の隙間を微粉炭の微粒子が通過可能となっている。
The rotary classifier 20 is provided above the crusher 10 and is configured to classify pulverized coal particles to be accompanied by the air flow a formed by the air supply unit 30.
In some embodiments, as shown in FIG. 1, the rotary classifier 20 includes an annular rotating portion 22 for classifying pulverized coal particles. The annular rotation portion 22 is rotatably provided around the rotation axis O along the up and down direction in the internal space of the classifier housing 21. The annular rotary portion 22 includes a plurality of rotary fins arranged in the circumferential direction at intervals from each other, and fine particles of pulverized coal can pass through the gap between the adjacent rotary fins.
 なお、環状回転部22における微粉炭の分級原理は以下のとおりである。
 空気流aに随伴されて回転分級器20に向かう微粉炭には、環状回転部22の回転によって旋回が付与される。その結果、気流に随伴される微粉炭粒子には、環状回転部22によって形成される遠心場に起因した半径方向外側に向かう遠心力と、半径方向内側に向かう気流の速度成分に起因した抗力とが作用する。これら遠心力と抗力とが釣り合う粒径が理論分級径である。この理論分級径よりも粒径が大きい粗粒子は、該気流の速度成分に起因した抗力よりも遠心力が大きくなり、環状回転部22の外周側にはじき飛ばされる。一方、理論分級径よりも粒径が小さい微粒子は、遠心力よりも気流から受ける抗力が大きくなるため、気流に同伴されて環状回転部22を通過する。このようにして、環状回転部22において、気流によって搬送されてきた微粉炭粒子が粗粒子と微粒子とに分級されるようになっている。
The classification principle of pulverized coal in the annular rotation portion 22 is as follows.
The pulverized coal accompanied by the air flow a and directed to the rotary classifier 20 is imparted with swirl by the rotation of the annular rotating portion 22. As a result, in the pulverized coal particles accompanied by the air flow, the centrifugal force directed radially outward due to the centrifugal field formed by the annular rotating portion 22 and the drag due to the velocity component of the air flow directed radially inward Works. The particle diameter at which the centrifugal force and the drag balance is the theoretical classification diameter. The coarse particles having a particle diameter larger than the theoretical classification diameter have a centrifugal force larger than the drag force caused by the velocity component of the air flow, and are splashed to the outer peripheral side of the annular rotation portion 22. On the other hand, fine particles having a particle diameter smaller than the theoretical classification diameter are entrained by the air flow and pass through the annular rotation portion 22 because the resistance received from the air flow is larger than the centrifugal force. Thus, in the annular rotation portion 22, the pulverized coal particles transported by the air flow are classified into coarse particles and fine particles.
 幾つかの実施形態では、回転分級器20は、環状回転部22を回転軸O周りに回転させるための分級器駆動部24を含む。
 分級器駆動部24は、制御装置400からの分級器回転数指令に従って回転数が可変に制御されるモータを含んでいてもよい。
In some embodiments, the rotational classifier 20 includes a classifier drive 24 for rotating the annular rotation portion 22 about the rotation axis O.
The classifier drive unit 24 may include a motor whose rotation number is variably controlled in accordance with a classifier rotation number command from the control device 400.
 なお、回転分級器20は、図1に示すように、分級器ハウジング21の内部において環状回転部22の外周側に設けられる環状静止部23を備えていてもよい。環状静止部23は、互いに間隔を空けて高さ方向に配列される複数の固定フィンを有し、隣り合う固定フィン間の隙間を空気流aが通過可能となっている。環状静止部23は、外周側から流れ込む空気流aを整流するように構成されている。
 さらに、図1に示すように、回転分級器20は、環状回転部22の下方に位置し、環状回転部22を通過しなかった粗大粒子を粉砕機10のテーブル12に戻すためのホッパ25をさらに備えていてもよい。
The rotary classifier 20 may be provided with an annular stationary portion 23 provided on the outer peripheral side of the annular rotary portion 22 inside the classifier housing 21 as shown in FIG. 1. The annular stationary portion 23 has a plurality of fixed fins arranged at intervals in the height direction, and the air flow a can pass through the gap between the adjacent fixed fins. The annular stationary portion 23 is configured to rectify the air flow a flowing in from the outer peripheral side.
Furthermore, as shown in FIG. 1, the rotary classifier 20 is located below the annular rotation portion 22 and the hopper 25 for returning coarse particles not passing through the annular rotation portion 22 to the table 12 of the crusher 10 is You may provide further.
 上記構成の石炭粉砕装置200において生成された微粉炭は、燃焼装置300に供給される。
 燃焼装置(ボイラ)300は、石炭粉砕装置200から出炭された石炭の微粒子をバーナ302によって燃焼させて燃焼ガスを生成する火炉301を備える。火炉301内には、熱交換器303が設置されており、該熱交換器303において、火炉301内の燃焼ガスとの熱交換によって蒸気が生成される。
Pulverized coal produced in the coal crushing apparatus 200 configured as described above is supplied to the combustion apparatus 300.
The combustion apparatus (boiler) 300 includes a furnace 301 which burns fine particles of coal discharged from the coal crushing apparatus 200 by the burner 302 to generate a combustion gas. A heat exchanger 303 is installed in the furnace 301. In the heat exchanger 303, steam is generated by heat exchange with the combustion gas in the furnace 301.
 燃焼装置(ボイラ)300において生成された蒸気は、石炭焚き火力発電プラント100の蒸気タービン310に供給される。蒸気タービン310は、燃焼装置(ボイラ)300から供給される蒸気によって駆動される。蒸気タービン310の回転シャフトには発電機320の軸が連結されており、蒸気タービン310によって発電機320が駆動されて電力が生成されるようになっている。
 また、蒸気タービン310から流出した蒸気は、復水器330において復水される。そして、給水ポンプ340によって、復水器330で得られた凝縮水(復水)を熱交換器303に再び供給するようになっている。
The steam generated in the combustion device (boiler) 300 is supplied to the steam turbine 310 of the coal-fired power plant 100. The steam turbine 310 is driven by steam supplied from a combustion device (boiler) 300. The shaft of the generator 320 is connected to the rotating shaft of the steam turbine 310, and the generator 320 is driven by the steam turbine 310 to generate electric power.
Also, the steam that has flowed out of the steam turbine 310 is condensed in the condenser 330. Then, the condensed water (condensed water) obtained by the condenser 330 is supplied again to the heat exchanger 303 by the feed water pump 340.
 上述した構成の石炭焚き火力発電プラント100において、制御装置400は、テーブル駆動部15、アクチュエータ16、ダンパ35、分級器駆動部24等の石炭粉砕装置200の各部を制御する。
 なお、石炭粉砕装置200は、石炭粉砕装置200の状態を知るための幾つかの計測器を備えており、例えば、入口空気流量計111、入口空気温度計112、出口空気温度計113、給炭量計114、給炭温度計115、火炉差圧計116、または、出口圧力計117の少なくとも一つを備えていてもよい。さらに、発電機320の出力を計測するための電力計(不図示)が設けられており、燃焼装置300(石炭焚き火力発電プラント100)の負荷情報(例えば、負荷変化幅、負荷変化率、負荷等)を取得可能になっていてもよい。
 この場合、これらの各種計器による計測結果は、制御装置400に送られて、制御装置400による石炭粉砕装置200の各部の制御に用いられてもよい。
In the coal-fired thermal power plant 100 configured as described above, the control device 400 controls each part of the coal crushing apparatus 200 such as the table drive unit 15, the actuator 16, the damper 35, and the classifier drive unit 24.
In addition, the coal crushing apparatus 200 is equipped with several measuring devices for knowing the state of the coal crushing apparatus 200. For example, the inlet air flow meter 111, the inlet air thermometer 112, the outlet air thermometer 113, the coal feeding At least one of the meter 114, the coal feeding thermometer 115, the furnace differential pressure gauge 116, and the outlet pressure gauge 117 may be provided. Furthermore, a power meter (not shown) for measuring the output of the generator 320 is provided, and load information (for example, load change width, load change rate, load) of the combustion apparatus 300 (coal-fired thermal power plant 100) Etc.) may be obtained.
In this case, the measurement results of these various instruments may be sent to the control device 400 and used to control each part of the coal crushing device 200 by the control device 400.
 以下、図2~図4を参照して、制御装置400の詳細について説明する。
 図2は、一実施形態に係る制御装置の構成を示すブロック図である。図3は、制御装置400の第1先行信号演算部520Aの構成を示すブロック図である。図4は、制御装置400の第2先行信号演算部620の構成を示すブロック図である。
The details of the control device 400 will be described below with reference to FIGS. 2 to 4.
FIG. 2 is a block diagram showing a configuration of a control device according to an embodiment. FIG. 3 is a block diagram showing a configuration of first preceding signal calculation unit 520A of control device 400. Referring to FIG. FIG. 4 is a block diagram showing the configuration of the second advance signal operation unit 620 of the control device 400.
 幾つかの実施形態では、制御装置400は、テーブル12の回転速度、ローラ13のテーブル12への押付け力、または、空気供給部30における空気供給量の少なくとも一つを含む第1パラメータの指令値を生成するための第1指令値生成部500と、回転分級器20の回転速度を少なくとも含む第2パラメータの指令値を生成するための第2指令値生成部600と、を備える。
 図2に示す例示的な実施形態では、第1指令値生成部500は、テーブル12の回転速度、ローラ13のテーブル12への押付け力、および、空気供給部30における空気供給量の3種類の第1パラメータの各々について指令値を生成するように構成される。他の実施形態では、第1指令値生成部500は、これら3種類の第1パラメータのうち一部のみについて指令値を生成するように構成される。
In some embodiments, the controller 400 sets the command value of the first parameter including at least one of the rotational speed of the table 12, the pressing force of the roller 13 against the table 12, or the air supply amount at the air supply unit 30. And a second command value generating unit 600 for generating a command value of a second parameter including at least the rotational speed of the rotation classifier 20.
In the exemplary embodiment shown in FIG. 2, the first command value generation unit 500 has three types of rotation speed of the table 12, pressing force of the roller 13 against the table 12, and air supply amount in the air supply unit 30. A command value is generated for each of the first parameters. In another embodiment, the first command value generation unit 500 is configured to generate a command value for only a part of these three types of first parameters.
 幾つかの実施形態では、図2に示すように、第1指令値生成部500は、石炭粉砕装置200への給炭量の指令(給炭量指令)に応じて第1パラメータの基本指令値を算出するための基本指令値算出部510(510A~510C)と、燃焼装置300の負荷情報に応じて決定される第1先行信号を算出するための第1先行信号演算部520(520A~520C)と、を含む。ここで、基本指令値算出部510(510A~510C)は、給炭量指令の増加とともに第1パラメータの基本指令値が増大するような関数を含んでいてもよい。なお、給炭量指令は、燃焼装置300の負荷(=発電機320の負荷)に応じて決定されてもよい。
 図2に示す例示的な実施形態では、加算器530(530A~530C)において、基本指令値算出部510(510A~510C)によって得られた第1パラメータの基本指令値、および、第1先行信号演算部520(520A~520C)によって得られた第1先行信号の和が算出され、加算器530からの出力信号に基づいて第1パラメータの指令値が生成されるようになっている。
In some embodiments, as shown in FIG. 2, the first command value generation unit 500 generates the basic command value of the first parameter according to the coal feed amount command (coal feed amount command) to the coal crushing apparatus 200. And a first advance signal calculation unit 520 (520A to 520C) for calculating a first advance signal determined according to the load information of the combustion apparatus 300. And). Here, the basic command value calculation unit 510 (510A to 510C) may include a function such that the basic command value of the first parameter increases as the coal feeding amount command increases. The coal feed amount command may be determined according to the load of the combustion device 300 (= load of the generator 320).
In the exemplary embodiment shown in FIG. 2, in the adder 530 (530A to 530C), the basic command value of the first parameter obtained by the basic command value calculation unit 510 (510A to 510C), and the first advance signal. The sum of the first preceding signals obtained by the operation unit 520 (520A to 520C) is calculated, and the command value of the first parameter is generated based on the output signal from the adder 530.
 なお、図2に示すように、加算器530(530A)からの出力信号に対して、第1リミット(上限)540及び第2リミット(下限)550によるリミット処理を施すことで、第1パラメータの指令値を所望の範囲内に制限してもよい。
 この場合、原料炭の水分率に応じて、第1パラメータの指令値の上限値を可変に設定するように構成された関数542からの出力信号に基づいて、第1リミット540が第1パラメータの指令値を前記上限値以下に制限するようになっていてもよい。なお、原料炭の水分率は、前述した各種計器(111~117)の計測結果に基づく推定により算出してもよい。
 同様に、ミル差圧(石炭粉砕装置200の前後差圧)に応じて、第1パラメータの指令値の下限値を可変に設定するように構成された関数552からの出力信号に基づいて、第2リミット550が第1パラメータの指令値を前記上限値以下に制限するようになっていてもよい。
 なお、図2に示す例では、第1リミット540及び第2リミット550によるリミット処理をテーブル回転数指令についてのみ行っているが、他の実施形態では、他の第1パラメータ(空気供給量指令またはローラ押付け力指令)についても第1リミット540及び第2リミット550によるリミット処理が行われる。
In addition, as shown in FIG. 2, the output signal from the adder 530 (530A) is subjected to limit processing by the first limit (upper limit) 540 and the second limit (lower limit) 550 to obtain the first parameter. The command value may be limited within a desired range.
In this case, the first limit 540 is the first parameter of the first parameter based on the output signal from the function 542 configured to variably set the upper limit value of the command value of the first parameter according to the moisture content of the raw material coal. The command value may be limited to the upper limit value or less. The moisture content of the raw material coal may be calculated by estimation based on the measurement results of the various instruments (111 to 117) described above.
Similarly, based on an output signal from a function 552 configured to variably set the lower limit value of the command value of the first parameter according to the mill differential pressure (the differential pressure between the coal crusher 200 and the differential pressure), The two limits 550 may limit the command value of the first parameter to the upper limit value or less.
In the example shown in FIG. 2, the limit process by the first limit 540 and the second limit 550 is performed only for the table rotational speed command, but in the other embodiments, the other first parameter (air supply quantity command or The limit processing by the first limit 540 and the second limit 550 is also performed for the roller pressing force command.
 また、図2に示すように、一定の上限値及び一定の下限値によって規定される範囲内に第1パラメータの指令値を制限するためのリミット560を設けてもよい。リミット560は、加算器530(530B,530B)からの出力信号に対してリミット処理を施すことで、第1パラメータの指令値を規定範囲内に制限するように構成される。
 なお、図2に示す例示的な実施形態では、リミット560によるリミット処理を空気供給量指令およびローラ押付け力指令のみに適用しているが、他の実施形態では、テーブル回転数指令についても、第1リミット540及び第2リミット550に替えて、リミット560によるリミット処理が行われる。
Further, as shown in FIG. 2, a limit 560 for limiting the command value of the first parameter may be provided within a range defined by a certain upper limit value and a certain lower limit value. The limit 560 is configured to limit the command value of the first parameter within a prescribed range by performing limit processing on the output signal from the adder 530 (530B, 530B).
In the exemplary embodiment shown in FIG. 2, the limit processing by the limit 560 is applied only to the air supply amount command and the roller pressing force command, but in the other embodiments, the table rotational speed command is also applied. Instead of the one limit 540 and the second limit 550, limit processing by the limit 560 is performed.
 さらに、制御装置400は、図2に示すように、第1指令値生成部500により生成された第1パラメータの指令値の変化率(変化速度)を求めるための変化率演算器580(580A~580C)を備えていてもよい。変化率演算器580により求めた第1パラメータの指令値の変化率は、例えば、後述する第2先行信号演算部620における第2先行信号の算出に用いられてもよい(図4における関数880,882,884への入力信号参照)。 Further, as shown in FIG. 2, the control device 400 is a change rate calculator 580 (580A ̃) for obtaining the change rate (change rate) of the command value of the first parameter generated by the first command value generation unit 500. 580C) may be provided. The change rate of the command value of the first parameter determined by the change rate calculator 580 may be used, for example, to calculate a second advance signal in a second advance signal operation unit 620 described later (a function 880 in FIG. 4). 882, 884 (see input signal).
 第1指令値生成部500の第1先行信号演算部520(520A)は、図3に示すように、燃焼装置300(又はこれを備える石炭焚き火力発電プラント100)の負荷情報に応じて、第1先行信号を決定するように構成される。
 なお、図3には、第1パラメータの一例であるテーブル回転速度の指令値の算出に用いるための第1先行信号を求めるための第1先行信号演算部520Aの構成を示しているが、他の第1パラメータ(空気供給量又はローラ押付け力)についても、図3に示す第1先行信号演算部520Aと同様の構成を有する第1信号演算部(520B,520C)によって、第1先行信号を算出してもよい。
As shown in FIG. 3, the first advance signal computing unit 520 (520A) of the first command value generating unit 500 performs the first advance signal calculation unit 520 according to the load information of the combustion apparatus 300 (or the coal fired thermal power plant 100 including the same). 1 Configured to determine a prior signal.
Although FIG. 3 shows the configuration of the first advance signal calculation unit 520A for obtaining the first advance signal to be used for calculation of the command value of the table rotational speed, which is an example of the first parameter, The first preceding signal (520B, 520C) having the same configuration as the first preceding signal operation unit 520A shown in FIG. It may be calculated.
 具体的には、第1先行信号演算部520(520A)は、給炭量指令値に応じて第1先行信号の基準値(第1基準先行信号)を求めるための第1基準先行信号算出部700と、燃焼装置300(石炭焚き火力発電プラント100)の負荷情報に応じて、第1基準先行信号に対して乗算されるべき演算係数(補正係数)を求めるための演算係数算出部710(710A~710C)と、を含んでいてもよい。
 第1基準先行信号算出部700で算出された第1基準先行信号と、演算係数算出部710(710A~710C)で算出された演算係数とは、乗算器750に入力されて互いに乗算され、乗算器750で求めた積に基づいて第1先行信号が決定されるようになっている。
Specifically, the first advance signal calculation unit 520 (520A) calculates a first reference advance signal calculation unit for obtaining a reference value (first reference advance signal) of the first advance signal according to the coal feed amount command value. 700 and an operation coefficient calculation unit 710 (710A) for obtaining an operation coefficient (correction coefficient) to be multiplied by the first reference advance signal according to load information of the combustion apparatus 300 (coal-fired thermal power plant 100) To 710 C).
The first reference advance signal calculated by the first reference advance signal calculation unit 700 and the operation coefficient calculated by the operation coefficient calculation unit 710 (710A to 710C) are input to the multiplier 750 and multiplied with each other to perform multiplication. The first preceding signal is determined based on the product obtained by the unit 750.
 第1基準先行信号算出部700は、給炭量指令の増加とともに第1基準先行信号が増加するような関数を含んでいてもよい。
 一方、演算係数算出部710(710A~710C)が演算係数を算出する際に考慮する負荷情報は、燃焼装置300の負荷、負荷変化率、または、負荷変化幅の少なくとも一つの負荷情報であってもよい。この場合、演算係数算出部710(710A~710C)は、燃焼装置300の負荷、負荷変化率、負荷変化幅等の負荷情報の増加とともに演算係数が増加するような関数を含んでいてもよい。
The first reference advance signal calculation unit 700 may include a function such that the first reference advance signal increases with an increase in the coal feeding amount command.
On the other hand, the load information considered when the calculation coefficient calculation unit 710 (710A to 710C) calculates the calculation coefficient is at least one of the load of the combustion apparatus 300, the load change rate, or the load change width It is also good. In this case, the calculation coefficient calculation unit 710 (710A to 710C) may include a function such that the calculation coefficient increases with an increase in load information such as the load of the combustion apparatus 300, the load change rate, and the load change width.
 幾つかの実施形態では、図3に示すように、第1先行信号演算部520(520A)は、負荷情報だけでなく、原料炭の性状に関する原料炭性状情報も考慮して、第1先行信号を求めるように構成される。
 図3に示す例示的な実施形態では、第1先行信号演算部520(520A)は、原料炭性状情報の一例である原料炭の水分率に応じた演算係数を算出するための演算係数算出部740をさらに備えており、演算係数算出部740で求めた演算係数を乗算器750に入力するようになっている。これにより、負荷情報だけでなく、原料炭性状情報も考慮して第1先行信号が設定されるので、原料炭の性状に応じて適切に第1パラメータの先行制御を行うことができ、出炭遅れを効果的に改善できる。
In some embodiments, as shown in FIG. 3, the first advance signal computing unit 520 (520A) takes into consideration not only load information but also raw coal property information related to the properties of the raw coal, the first advance signal. It is configured to ask for
In the exemplary embodiment shown in FIG. 3, the first advance signal calculation unit 520 (520A) is a calculation coefficient calculation unit for calculating a calculation coefficient according to the moisture content of the raw material carbon, which is an example of the raw material carbon property information. 740 is further provided, and the operation coefficient obtained by the operation coefficient calculation unit 740 is input to the multiplier 750. Thus, the first advance signal is set in consideration of not only the load information but also the raw material coal property information, so that the first parameter advance control can be appropriately performed according to the property of the raw material coal. Delay can be effectively improved.
 また、幾つかの実施形態では、図3に示すように、第1先行信号演算部520(520A)は、第2パラメータの指令値の変化率に基づいて、第1先行信号を決定するように構成される。
 図3に示す例示的な実施形態では、第1先行信号演算部520(520A)は、第2パラメータの指令値の変化率(=分級器回転数指令変化率)に基づいて決定される閾値(=第1レートリミット)以下に第1先行信号の変化率を制限するためのレートリミット(760,770)を含んでいる。ここで、レートリミット760は、第1先行信号の正の変化率(=増加速度)を閾値以下に制限するためのものである。一方、レートリミット770は、第1先行信号の負の変化率(=減少速度)を閾値以下に制限するためのものである。
 このように、レートリミット(760,770)では、第2パラメータの指令値の変化率(=分級器回転数指令変化率)に応じて可変である閾値以下に第1先行信号の変化率を制限する。そのため、分級精度に影響しかねない第2パラメータ(回転分級器20の回転速度)の指令値の変化率に応じて適切に第1先行信号を決定することができ、分級精度の確保と出炭遅れの改善とを両立することができる。
Also, in some embodiments, as shown in FIG. 3, the first preceding signal computing unit 520 (520A) determines the first preceding signal based on the rate of change of the command value of the second parameter. Configured
In the exemplary embodiment illustrated in FIG. 3, the first preceding signal calculation unit 520 (520A) determines a threshold (based on the change rate of the command value of the second parameter (= classifier rotational speed command change rate)) Below the first rate limit, the rate limit (760, 770) for limiting the rate of change of the first preceding signal is included. Here, the rate limit 760 is for limiting the positive change rate (= increase rate) of the first preceding signal to a threshold or less. On the other hand, the rate limit 770 is for limiting the negative change rate (= reduction rate) of the first preceding signal to a threshold or less.
Thus, in rate limit (760, 770), the rate of change of the first preceding signal is limited to a threshold value or less that is variable according to the rate of change of the command value of the second parameter (= rate of change of classifier speed command). Do. Therefore, it is possible to appropriately determine the first advance signal according to the rate of change of the command value of the second parameter (rotational speed of the rotary classifier 20) that may affect classification accuracy, and secure classification accuracy and extraction of coal. It can be compatible with the improvement of the delay.
 なお、図3に示す例では、第1先行信号演算部520(520A)は、第2パラメータの指令値の変化率(=分級器回転数指令変化率)に応じた値を出力する関数780と、第1先行信号演算部520(520A)における演算対象に係る第1パラメータ(図3の例の場合、テーブル回転速度)以外の他の第1パラメータの変化率(図3の例の場合、空気供給量指令変化率及びローラ押付け力指令変化率)に応じた値を出力する関数(782,784)を備えている。加算器786では、各関数(780,782,784)からの出力の和が求められる。加算器786の演算結果がゲインK,Kと乗算されて、各レートリミット(760,770)におけるリミット処理に用いる閾値が得られるようになっている。 In the example shown in FIG. 3, the first advance signal computing unit 520 (520A) outputs a value corresponding to the change rate of the command value of the second parameter (= classifier rotational speed command change rate) and The change rate (in the case of the example of FIG. 3) of the first parameter other than the first parameter (table rotation speed in the case of the example of FIG. 3) related to the calculation target in the first advance signal calculation unit 520 (520A) A function (782, 784) is provided which outputs values according to the supply amount command change rate and the roller pressing force command change rate). Adder 786 sums the outputs from each function (780, 782, 784). The calculation result of the adder 786 is multiplied by the gains K 1 and K 2 to obtain threshold values used for limit processing at each rate limit (760, 770).
 図2に戻って、第2指令値生成部600について説明する。
 幾つかの実施形態では、図2に示すように、第2指令値生成部600は、給炭量指令に応じて第2パラメータの基本指令値を算出するための基本指令値算出部610と、燃焼装置300の負荷情報に応じて決定される第2先行信号を算出するための第2先行信号演算部620と、を含む。ここで、基本指令値算出部610は、給炭量指令の増加とともに第2パラメータの基本指令値が増大するような関数を含んでいてもよい。
 図2に示す例示的な実施形態では、加算器630において、基本指令値算出部610によって得られた第2パラメータの基本指令値、および、第2先行信号演算部620によって得られた第2先行信号の和が算出され、加算器630からの出力信号に基づいて第2パラメータの指令値が生成されるようになっている。
Referring back to FIG. 2, the second command value generation unit 600 will be described.
In some embodiments, as shown in FIG. 2, the second command value generation unit 600 includes a basic command value calculation unit 610 for calculating a basic command value of the second parameter according to the coal feed amount command, And a second preceding signal calculation unit 620 for calculating a second preceding signal determined according to the load information of the combustion apparatus 300. Here, the basic command value calculation unit 610 may include a function such that the basic command value of the second parameter increases with the increase of the coal feeding amount command.
In the exemplary embodiment shown in FIG. 2, in the adder 630, the basic command value of the second parameter obtained by the basic command value calculation unit 610, and the second advance obtained by the second advance signal operation unit 620. The sum of the signals is calculated, and the command value of the second parameter is generated based on the output signal from the adder 630.
 また、図2に示す例示的な実施形態では、一定の上限値及び一定の下限値によって規定される範囲内に第2パラメータの指令値を制限するためのリミット640を設けてもよい。リミット640は、加算器630からの出力信号に対してリミット処理を施すことで、第2パラメータの指令値を規定範囲内に制限するように構成される。
 他の実施形態では、加算器630からの出力信号に対して、リミット640に替えて、図2に示すような第1リミット(上限)540及び第2リミット(下限)550と同様な構成のリミット処理を施すことで、第2パラメータの指令値を所望の範囲内に制限してもよい。この場合、原料炭の水分率に応じて、第2パラメータの指令値の上限値を可変に設定するように構成された関数542からの出力信号に基づいて、第1リミット540が第2パラメータの指令値を前記上限値以下に制限するようになっていてもよい。同様に、ミル差圧(石炭粉砕装置200の前後差圧)に応じて、第2パラメータの指令値の下限値を可変に設定するように構成された関数552からの出力信号に基づいて、第2リミット550が第2パラメータの指令値を前記上限値以下に制限するようになっていてもよい。
Further, in the exemplary embodiment shown in FIG. 2, a limit 640 for limiting the command value of the second parameter may be provided within a range defined by a certain upper limit value and a certain lower limit value. The limit 640 is configured to limit the command value of the second parameter within a prescribed range by subjecting the output signal from the adder 630 to a limit process.
In another embodiment, the output signal from the adder 630 is replaced with the limit 640, and a limit similar to the first limit (upper limit) 540 and the second limit (lower limit) 550 as shown in FIG. By performing processing, the command value of the second parameter may be limited within a desired range. In this case, the first limit 540 is the second parameter of the second parameter based on the output signal from the function 542 configured to variably set the upper limit value of the command value of the second parameter according to the moisture content of the raw material coal. The command value may be limited to the upper limit value or less. Similarly, based on an output signal from a function 552 configured to variably set the lower limit value of the command value of the second parameter according to the mill differential pressure (the differential pressure between the coal crusher 200 and the differential pressure), The two limits 550 may limit the command value of the second parameter to the upper limit value or less.
 さらに、制御装置400は、図2に示すように、第2指令値生成部600により生成された第2パラメータの指令値の変化率(変化速度)を求めるための変化率演算器680を備えていてもよい。
 変化率演算器680により求めた第2パラメータの指令値の変化率は、例えば、前述した第1先行信号演算部520における第1先行信号の算出に用いられてもよい(図3における関数780への入力信号参照)。
Furthermore, as shown in FIG. 2, the control device 400 is provided with a change rate calculator 680 for obtaining the change rate (change rate) of the command value of the second parameter generated by the second command value generation unit 600. May be
The change rate of the command value of the second parameter determined by the change rate calculator 680 may be used, for example, to calculate the first preceding signal in the first preceding signal calculating unit 520 described above (see function 780 in FIG. 3). Input signal)).
 第2指令値生成部600の第2先行信号演算部620は、図4に示すように、燃焼装置300(又はこれを備える石炭焚き火力発電プラント100)の負荷情報に応じて、第2先行信号を決定するように構成される。
 具体的には、第2先行信号演算部620は、給炭量指令値に応じて第2先行信号の基準値(第2基準先行信号)を求めるための第2基準先行信号算出部800と、燃焼装置300(石炭焚き火力発電プラント100)の負荷情報に応じて、第2基準先行信号に対して乗算されるべき演算係数(補正係数)を求めるための演算係数算出部810(810A~810C)と、を含んでいてもよい。
 第2基準先行信号算出部800で算出された第2基準先行信号と、演算係数算出部810(810A~810C)で算出された演算係数とは、乗算器850に入力されて互いに乗算され、乗算器850で求めた積に基づいて第2先行信号が決定されるようになっている。
As shown in FIG. 4, the second advance signal calculation unit 620 of the second command value generation unit 600 generates a second advance signal according to the load information of the combustion apparatus 300 (or the coal-fired thermal power plant 100 including the same). Configured to determine
Specifically, the second advance signal calculation unit 620 calculates a second reference advance signal calculation unit 800 for obtaining a reference value (second reference advance signal) of the second advance signal according to the coal feeding amount command value, Calculation coefficient calculation unit 810 (810A to 810C) for obtaining a calculation coefficient (correction coefficient) to be multiplied by the second reference advance signal according to the load information of the combustion apparatus 300 (coal fired thermal power plant 100) And may be included.
The second reference advance signal calculated by the second reference advance signal calculation unit 800 and the operation coefficient calculated by the operation coefficient calculation unit 810 (810A to 810C) are input to the multiplier 850 and multiplied with each other to perform multiplication. The second preceding signal is determined based on the product obtained by the unit 850.
 第2基準先行信号算出部800は、給炭量指令の増加とともに第2基準先行信号が増加するような関数を含んでいてもよい。
 一方、演算係数算出部810(810A~810C)が演算係数を算出する際に考慮する負荷情報は、燃焼装置300の負荷、負荷変化率、または、負荷変化幅の少なくとも一つの負荷情報であってもよい。この場合、負荷情報が燃焼装置300の負荷変化率である場合、演算係数算出部810Aは、燃焼装置300の負荷変化率の増加とともに演算係数が減少するような関数を含んでいてもよい。これに対し、負荷情報が燃焼装置300の負荷変化幅又は負荷である場合、演算係数算出部810(810B,810C)は、燃焼装置300の負荷変化率の増加とともに演算係数が増加するような関数を含んでいてもよい。
The second reference advance signal calculation unit 800 may include a function such that the second reference advance signal increases with an increase in the coal feeding amount command.
On the other hand, the load information considered when the calculation coefficient calculation unit 810 (810A to 810C) calculates the calculation coefficient is at least one of the load of the combustion apparatus 300, the load change rate, or the load change width It is also good. In this case, when the load information is the load change rate of the combustion device 300, the calculation coefficient calculation unit 810A may include a function such that the calculation coefficient decreases as the load change rate of the combustion device 300 increases. On the other hand, when the load information is the load change width or load of the combustion device 300, the calculation coefficient calculation unit 810 (810B, 810C) is a function that increases the calculation coefficient as the load change rate of the combustion device 300 increases. May be included.
 幾つかの実施形態では、図4に示すように、第2先行信号演算部620は、負荷情報だけでなく、原料炭の性状に関する原料炭性状情報も考慮して、第2先行信号を求めるように構成される。
 図4に示す例示的な実施形態では、第2先行信号演算部620は、原料炭性状情報の一例である原料炭の水分率に応じた演算係数を算出するための演算係数算出部840をさらに備えており、演算係数算出部840で求めた演算係数を乗算器850に入力するようになっている。これにより、負荷情報だけでなく、原料炭性状情報も考慮して第2先行信号が設定されるので、原料炭の性状に応じて適切に第2パラメータの先行制御を行うことができ、出炭遅れを効果的に改善できる。
In some embodiments, as shown in FIG. 4, the second advance signal computing unit 620 obtains the second advance signal in consideration of not only the load information but also the raw material coal property information related to the property of the raw material coal. Configured
In the exemplary embodiment shown in FIG. 4, the second advance signal calculation unit 620 further calculates a calculation coefficient calculation unit 840 for calculating a calculation coefficient according to the moisture content of the raw material coal which is an example of the raw material coal property information. The operation coefficient calculated by the operation coefficient calculation unit 840 is input to the multiplier 850. As a result, the second advance signal is set in consideration of not only the load information but also the raw material coal property information, so that the second parameter advance control can be appropriately performed according to the property of the raw material coal. Delay can be effectively improved.
 また、幾つかの実施形態では、図4に示すように、第2先行信号演算部620は、第1パラメータの指令値の変化率に基づいて、第2先行信号を決定するように構成される。
 図4に示す例示的な実施形態では、第2先行信号演算部620は、第1パラメータの指令値の変化率(=テーブル回転速度指令変化率、ローラ押付け力指令変化率、空気供給量指令変化率)に基づいて決定される閾値(=第2レートリミット)以下に第2先行信号の変化率を制限するためのレートリミット(860,870)を含んでいる。ここで、レートリミット860は、第2先行信号の正の変化率(=増加速度)を閾値以下に制限するためのものである。一方、レートリミット870は、第2先行信号の負の変化率(=減少速度)を閾値以下に制限するためのものである。
 このように、レートリミット(860,870)では、第1パラメータの指令値の変化率(=テーブル回転速度指令変化率、ローラ押付け力指令変化率、空気供給量指令変化率)に応じて可変である閾値以下に第2先行信号の変化率を制限する。このため、第1パラメータの指令値の変化率が小さくて第1パラメータの先行制御による出炭遅れの改善が十分でない場合であっても、第2レートリミットを適切に調節することで、第2パラメータの先行制御による出炭遅れ改善効果を高めて、石炭粉砕装置200全体としての出炭遅れを十分に抑制できる。
Also, in some embodiments, as shown in FIG. 4, the second lead signal computing unit 620 is configured to determine the second lead signal based on the rate of change of the command value of the first parameter. .
In the exemplary embodiment illustrated in FIG. 4, the second advance signal calculation unit 620 changes the change rate of the command value of the first parameter (= table rotational speed command change rate, roller pressing force command change rate, air supply amount command change). The rate limit (860, 870) for limiting the rate of change of the second preceding signal is included below the threshold (= second rate limit) determined based on the rate). Here, the rate limit 860 is for limiting the positive change rate (= increase rate) of the second preceding signal to a threshold or less. On the other hand, the rate limit 870 is for limiting the negative change rate (= reduction rate) of the second preceding signal to a threshold or less.
As described above, the rate limit (860, 870) is variable according to the change rate of the command value of the first parameter (= table rotational speed command change rate, roller pressing force command change rate, air supply amount command change rate). The rate of change of the second preceding signal is limited to a certain threshold or less. For this reason, even when the rate of change of the command value of the first parameter is small and the improvement of the coal delay due to the preceding control of the first parameter is not sufficient, the second rate limit can be adjusted appropriately. It is possible to sufficiently suppress the delayed coaling of the coal crusher 200 as a whole by enhancing the effect of improving the delayed coaling by the advance control of the parameters.
 なお、図4に示す例では、第2先行信号演算部620は、第1パラメータの指令値の変化率(=テーブル回転速度指令変化率、ローラ押付け力指令変化率、空気供給量指令変化率)に応じた値を出力する関数(880,882,884)を備えている。加算器886では、各関数(880,882,884)からの出力の和が求められる。加算器886の演算結果がゲインK,Kと乗算されて、各レートリミット(860,870)におけるリミット処理に用いる閾値が得られるようになっている。 In the example shown in FIG. 4, the second advance signal calculation unit 620 is configured to calculate the change rate of the command value of the first parameter (= table rotational speed command change rate, roller pressing force command change rate, air supply amount command change rate). The function (880, 882, 884) which outputs the value according to is provided. The adder 886 sums the outputs from the functions (880, 882, 884). The calculation result of the adder 886 is multiplied by the gains K 1 and K 2 to obtain a threshold used for limit processing at each rate limit (860, 870).
 以上述べた幾つかの実施形態によれば、第1指令値生成部500の第1先行信号演算部520(520A~520C)において、燃焼装置300の負荷情報に応じて第1先行信号を決定し、該第1先行信号に基づいて第1パラメータの指令値を決定するようになっている。これにより、燃焼装置300の負荷変化に応じて、テーブル12の回転速度、ローラ13の押付け力、または、空気供給部30における空気供給量の少なくとも一つを含む第1パラメータを先行して変化させ、テーブル12への原料炭の供給から回転分級器20の入口への微粉炭の到達までの上流側工程における応答遅れを改善することができる。
 一方、第2指令値生成部600の第2先行信号演算部620では、燃焼装置300の負荷情報に応じて決定される第2先行信号に基づいて第2パラメータの指令値を決定するようになっている。これにより、燃焼装置300の負荷変化に応じて、回転分級器20の回転速度を含む第2パラメータを先行して変化させ、回転分級器20を微粉炭が通過して石炭粉砕装置200から出炭されるまでの下流側工程における応答遅れを改善することができる。
 こうして、上流側工程における応答遅れと、下流側工程における応答遅れとの両方を改善し、石炭粉砕装置200全体としての出炭遅れを効果的に低減することができる。
According to some embodiments described above, the first advance signal calculation unit 520 (520A to 520C) of the first command value generation unit 500 determines the first advance signal according to the load information of the combustion apparatus 300. The command value of the first parameter is determined based on the first advance signal. Thereby, according to the load change of the combustion apparatus 300, the first parameter including at least one of the rotational speed of the table 12, the pressing force of the roller 13, or the air supply amount in the air supply unit 30 is changed in advance. The response delay in the upstream process from the supply of the raw material coal to the table 12 to the arrival of the pulverized coal to the inlet of the rotary classifier 20 can be improved.
On the other hand, the second advance signal computing unit 620 of the second command value generation unit 600 determines the command value of the second parameter based on the second advance signal determined according to the load information of the combustion apparatus 300. ing. Thereby, according to the load change of the combustion apparatus 300, the second parameter including the rotational speed of the rotary classifier 20 is changed in advance, and the pulverized coal passes through the rotary classifier 20 and the coal pulverizer 200 is discharged. It is possible to improve the response delay in the downstream process until it is done.
In this way, it is possible to improve both the response delay in the upstream process and the response delay in the downstream process, and effectively reduce the coal output delay of the coal crushing apparatus 200 as a whole.
 また、石炭粉砕装置200からの出炭量を迅速に変化させるために、第2パラメータとしての回転分級器20の回転速度のみを先行制御で調節すると、回転分級器20における分級精度が低下してしまう可能性がある。
 この点、上述の実施形態によれば、第2パラメータだけでなく、第1パラメータについても先行制御を行うこととしたので、回転分級器20における分級精度低下を抑制しながら、出炭遅れを改善することができる。
In addition, if only the rotational speed of the rotary classifier 20 as the second parameter is adjusted by advance control in order to rapidly change the amount of coal output from the coal crushing apparatus 200, the classification accuracy in the rotary classifier 20 decreases. There is a possibility of
In this respect, according to the above-described embodiment, since advance control is performed not only for the second parameter but also for the first parameter, the delay in coal output is improved while suppressing the reduction in classification accuracy in the rotary classifier 20. can do.
 図5は、石炭焚き火力発電プラント100の負荷変化時における各種パラメータの挙動を示すグラフであり、図5(a)は石炭粉砕装置200の給炭量および出炭量の変化を示し、図5(b)は第1パラメータの指令値の変化を示し、図5(c)は第2パラメータの指令値の変化を示し、図5(d)は発電機320の負荷の変化を示している。
 なお、図5(a)~図5(d)の各々について、第1先行信号および第2先行信号による先行制御を行わない場合の各種パラメータの経時変化を左側に示し、第1先行信号および第2先行信号による先行制御を行う場合の各種パラメータの経時変化を中央に示し、負荷変化幅が大きい場合における各種パラメータの経時変化を右側に示している。
FIG. 5 is a graph showing the behavior of various parameters at the time of load change of the coal-fired thermal power plant 100, and FIG. 5 (a) shows changes in the amount of coal supply and amount of coal output of the coal crushing apparatus 200, (B) shows the change of the command value of the first parameter, FIG. 5 (c) shows the change of the command value of the second parameter, and FIG. 5 (d) shows the change of the load of the generator 320.
With respect to each of FIGS. 5 (a) to 5 (d), changes over time of various parameters when the preceding control is not performed by the first preceding signal and the second preceding signal are shown on the left side. (2) The time-dependent change of various parameters in the case of performing the advance control by the advance signal is shown at the center, and the time-dependent change of various parameters when the load change width is large is shown on the right.
 図5(b)及び図5(c)に示すように、第1先行信号および第2先行信号による先行制御を行わない場合、第1パラメータおよび第2パラメータの指令値は、それぞれ、図2に示す基本指令値算出部(510,610)において給炭量指令に応じて算出される基本指令値(900,950)そのものである。
 このため、図5(a)に示すように、発電機320の負荷指令値の増加に従って石炭粉砕装置200への給炭量を増加させても、石炭粉砕装置200からの出炭量は緩やかにしか増加しない。これは、給炭量の増加に応じて、第1パラメータの指令値(=テーブル回転速度指令、ローラ押付け力指令、空気供給量指令)および第2パラメータの指令値(=分級器回転速度指令)を変化させても、出炭遅れのために、石炭粉砕装置200からの出炭量が即座には追従しないためである。そして、石炭粉砕装置200からの出炭量に応答遅れが生じてしまう結果、図5(d)に示すように、発電機320の負荷も負荷指令値に対して応答遅れが発生してしまう。
As shown in FIGS. 5 (b) and 5 (c), when the preceding control by the first preceding signal and the second preceding signal is not performed, the command values of the first parameter and the second parameter are respectively shown in FIG. It is the basic command value (900, 950) itself calculated according to the coal feeding amount command in the basic command value calculation unit (510, 610) shown.
Therefore, as shown in FIG. 5A, even if the amount of coal feeding to the coal crushing apparatus 200 is increased according to the increase of the load command value of the generator 320, the amount of coal output from the coal crushing apparatus 200 is moderate. It only increases. This corresponds to the increase in the amount of coal supply, the command value of the first parameter (= table rotation speed command, roller pressing force command, air supply amount command) and the command value of the second parameter (= classifier rotation speed command) The reason is that the amount of coal output from the coal crusher 200 does not immediately follow because of the delay in coal output, even if. Then, as a result of the response delay occurring in the amount of coal output from the coal crushing apparatus 200, as shown in FIG. 5D, the load of the generator 320 also causes a response delay with respect to the load command value.
 これに対し、上述の実施形態で述べたように、第1先行信号および第2先行信号による先行制御を行う場合、負荷情報に応じて決定される第1先行信号および第2先行信号が基本指令値(900,950)に加算されることで、第1パラメータの指令値910および第2パラメータの指令値960が生成される。
 このため、図5(a)に示すように、発電機320の負荷指令値の増加に従って石炭粉砕装置200への給炭量を増加させたとき、石炭粉砕装置200からの出炭量の応答遅れ(出炭遅れ)は低減される。そして、石炭粉砕装置200からの出炭量に応答遅れが低減される結果、図5(d)に示すように、発電機320の負荷の負荷指令値に対する応答遅れも低減される。
On the other hand, as described in the above-mentioned embodiment, when performing the preceding control by the first preceding signal and the second preceding signal, the first preceding signal and the second preceding signal determined according to the load information are basic instructions By being added to the values (900, 950), the command value 910 of the first parameter and the command value 960 of the second parameter are generated.
For this reason, as shown in FIG. 5A, when the amount of coal feeding to the coal crushing apparatus 200 is increased according to the increase of the load command value of the generator 320, the response delay of the amount of coal output from the coal crushing apparatus 200 The delay in coal output is reduced. And as a result of the response delay being reduced to the amount of coal output from the coal crushing apparatus 200, as shown in FIG. 5 (d), the response delay to the load command value of the load of the generator 320 is also reduced.
 同様に、負荷変化幅が大きい場合においても、第1先行信号および第2先行信号による先行制御を行う場合、負荷情報に応じて決定される第1先行信号および第2先行信号が基本指令値(930,970)に加算されることで、第1パラメータの指令値940および第2パラメータの指令値980が生成される。
 このため、図5(a)に示すように、発電機320の負荷指令値の増加に従って石炭粉砕装置200への給炭量を増加させたとき、石炭粉砕装置200からの出炭量の応答遅れ(出炭遅れ)は低減される。そして、石炭粉砕装置200からの出炭量に応答遅れが低減される結果、図5(d)に示すように、発電機320の負荷の負荷指令値に対する応答遅れも低減される。
Similarly, even when the load change width is large, when performing lead control with the first lead signal and the second lead signal, the first lead signal and the second lead signal determined according to the load information have basic command values By being added to 930 and 970), the command value 940 of the first parameter and the command value 980 of the second parameter are generated.
For this reason, as shown in FIG. 5A, when the amount of coal feeding to the coal crushing apparatus 200 is increased according to the increase of the load command value of the generator 320, the response delay of the amount of coal output from the coal crushing apparatus 200 The delay in coal output is reduced. And as a result of the response delay being reduced to the amount of coal output from the coal crushing apparatus 200, as shown in FIG. 5 (d), the response delay to the load command value of the load of the generator 320 is also reduced.
 続いて、図6を参照して、幾つかの実施形態に係る石炭粉砕装置200の制御方法について説明する。図6は、一実施形態に係る石炭粉砕装置200の制御方法のフローチャートである。 Then, with reference to FIG. 6, the control method of the coal crushing apparatus 200 which concerns on some embodiment is demonstrated. FIG. 6 is a flowchart of a control method of the coal crushing apparatus 200 according to an embodiment.
 図6に示すように、最初に、燃焼装置300(石炭焚き火力発電プラント100)の負荷情報を取得する(ステップS10)。負荷情報は、燃焼装置300の負荷、負荷変化率、または、負荷変化幅の少なくとも一つの負荷情報であってもよい。 As shown in FIG. 6, first, load information of the combustion apparatus 300 (coal-fired thermal power plant 100) is acquired (step S10). The load information may be at least one of load of the combustion apparatus 300, load change rate, or load change width.
 そして、ステップS10で取得した燃焼装置300の負荷情報に応じて、第1パラメータの指令値の算出に用いる第1先行信号を算出する(ステップS12)。ここで、第1パラメータは、上述のとおり、テーブル12の回転速度、ローラ13のテーブル12への押付け力、または、空気供給部30における空気供給量の少なくとも一つを含む。
 第1先行信号の算出は、図3に示した第1先行信号演算部520を用いて行ってもよい。この場合、第1基準先行信号算出部700により、給炭量指令値に応じて第1先行信号の基準値(第1基準先行信号)を求めるとともに、演算係数算出部710(710A~710C)により、燃焼装置300(石炭焚き火力発電プラント100)の負荷情報に応じて求めた演算係数(補正係数)を求め、第1基準先行信号と演算係数との積に基づいて第1先行信号を決定してもよい。この際、燃焼装置300の負荷情報に加えて、原料炭の性状に関する原料炭性状情報も考慮して、第1先行信号を求めてもよい。具体的には、原料炭性状情報の一例である原料炭の水分率に応じた演算係数を演算係数算出部740により算出し、第1基準先行信号と、演算係数算出部710(710A~710C)で求めた演算係数と、演算係数算出部740で求めた演算係数との積に基づいて第1先行信号を決定してもよい。さらに、第1先行信号演算部520において第1先行信号を決定する際、第2パラメータの指令値の変化率を考慮してもよい。具体的には、レートリミット(760,770)により、第2パラメータの指令値の変化率(=分級器回転数指令変化率)に基づいて決定される閾値(=第1レートリミット)以下に第1先行信号の変化率を制限してもよい。
Then, in accordance with the load information of the combustion apparatus 300 acquired in step S10, a first advance signal used for calculation of the command value of the first parameter is calculated (step S12). Here, as described above, the first parameter includes at least one of the rotational speed of the table 12, the pressing force of the roller 13 against the table 12, and the air supply amount in the air supply unit 30.
The calculation of the first advance signal may be performed using the first advance signal operation unit 520 shown in FIG. In this case, the first reference advance signal calculation unit 700 determines the reference value (first reference advance signal) of the first advance signal according to the coal feed amount command value, and the operation coefficient calculation unit 710 (710A to 710C). Determining a calculation coefficient (correction coefficient) determined according to load information of the combustion apparatus 300 (coal-fired thermal power plant 100), and determining a first advance signal based on a product of the first reference advance signal and the calculation coefficient May be Under the present circumstances, in addition to the load information of the combustion apparatus 300, the 1st prior signal may be calculated | required in consideration of the raw material coal property information regarding the property of raw material coal. Specifically, the calculation coefficient calculation unit 740 calculates a calculation coefficient according to the moisture content of the raw material coal which is an example of the raw material coal property information, and the first reference advance signal and the calculation coefficient calculation unit 710 (710A to 710C) The first preceding signal may be determined based on the product of the operation coefficient obtained in the above and the operation coefficient obtained by the operation coefficient calculation unit 740. Furthermore, when determining the first preceding signal in the first preceding signal calculation unit 520, the change rate of the command value of the second parameter may be taken into consideration. Specifically, the rate limit (760, 770) is used to set the first parameter limit below the threshold (= first rate limit) determined based on the rate of change of the command value of the second parameter (= rate of change of classifier speed command). The rate of change of the preceding signal may be limited.
 続いて、ステップS12で求めた第1先行信号に基づいて、第1パラメータの指令値を生成する(ステップS14)。
 具体的には、基本指令値算出部510(510A~510C)により、石炭粉砕装置200への給炭量の指令(給炭量指令)に応じて第1パラメータの基本指令値を算出し、該基本指令値に対して、ステップS12で求めた第1先行信号を加算することで、第1パラメータの指令値を算出する。
Subsequently, the command value of the first parameter is generated based on the first advance signal obtained in step S12 (step S14).
Specifically, the basic command value calculation unit 510 (510A to 510C) calculates the basic command value of the first parameter according to the coal feed amount command (the coal feed amount command) to the coal crushing apparatus 200, The command value of the first parameter is calculated by adding the first advance signal obtained in step S12 to the basic command value.
 また、ステップS10で取得した燃焼装置300の負荷情報に応じて、第2パラメータの指令値の算出に用いる第2先行信号を算出する(ステップS16)。ここで、第2パラメータは、上述のとおり、回転分級器20の回転速度を含む。
 第2先行信号の算出は、図4に示した第2先行信号演算部620を用いて行ってもよい。この場合、第2基準先行信号算出部800により、給炭量指令値に応じて第2先行信号の基準値(第2基準先行信号)を求めるとともに、演算係数算出部810(810A~810C)により、燃焼装置300(石炭焚き火力発電プラント100)の負荷情報に応じて求めた演算係数(補正係数)を求め、第2基準先行信号と演算係数との積に基づいて第2先行信号を決定してもよい。この際、燃焼装置300の負荷情報に加えて、原料炭の性状に関する原料炭性状情報も考慮して、第2先行信号を求めてもよい。具体的には、原料炭性状情報の一例である原料炭の水分率に応じた演算係数を演算係数算出部840により算出し、第2基準先行信号と、演算係数算出部810(810A~810C)で求めた演算係数と、演算係数算出部840で求めた演算係数との積に基づいて第2先行信号を決定してもよい。さらに、第2先行信号演算部620において第2先行信号を決定する際、第1パラメータの指令値の変化率を考慮してもよい。具体的には、レートリミット(860,870)により、第1パラメータの指令値の変化率(=テーブル回転速度指令変化率、ローラ押付け力指令変化率、空気供給量指令変化率)に基づいて決定される閾値(=第2レートリミット)以下に第2先行信号の変化率を制限してもよい。
Further, in accordance with the load information of the combustion device 300 acquired in step S10, a second advance signal used for calculation of the command value of the second parameter is calculated (step S16). Here, the second parameter includes the rotational speed of the rotary classifier 20 as described above.
The calculation of the second advance signal may be performed using the second advance signal operation unit 620 shown in FIG. In this case, the second reference advance signal calculation unit 800 determines the reference value (second reference advance signal) of the second advance signal according to the coal feed amount command value, and the calculation coefficient calculation unit 810 (810A to 810C) Determining a calculation coefficient (correction coefficient) determined according to load information of the combustion apparatus 300 (coal-fired thermal power plant 100), and determining a second advance signal based on a product of the second reference advance signal and the calculation coefficient May be Under the present circumstances, in addition to the load information of the combustion apparatus 300, the 2nd prior signal may be calculated | required in consideration of the raw material coal property information regarding the property of raw material coal. Specifically, the calculation coefficient calculation unit 840 calculates a calculation coefficient according to the moisture content of the raw material coal which is an example of the raw material coal property information, and the second reference advance signal and the calculation coefficient calculation unit 810 (810A to 810C) The second preceding signal may be determined based on the product of the operation coefficient obtained in the above and the operation coefficient obtained by the operation coefficient calculation unit 840. Furthermore, when determining the second advance signal in the second advance signal operation unit 620, the change rate of the command value of the first parameter may be taken into consideration. Specifically, the rate limit (860, 870) is determined based on the change rate of the command value of the first parameter (= table rotational speed command change rate, roller pressing force command change rate, air supply amount command change rate). The rate of change of the second preceding signal may be limited to a threshold (= second rate limit) to be calculated.
 続いて、ステップS16で求めた第2先行信号に基づいて、第2パラメータの指令値を生成する(ステップS18)。
 具体的には、基本指令値算出部610により、石炭粉砕装置200への給炭量の指令(給炭量指令)に応じて第2パラメータの基本指令値を算出し、該基本指令値に対して、ステップS16で求めた第2先行信号を加算することで、第2パラメータの指令値を算出する。
Subsequently, the command value of the second parameter is generated based on the second advance signal obtained in step S16 (step S18).
Specifically, the basic command value calculation unit 610 calculates the basic command value of the second parameter according to the coal feed amount command (coal feed amount command) to the coal crushing apparatus 200, and the basic command value is calculated for the basic command value. The command value of the second parameter is calculated by adding the second advance signal obtained in step S16.
 そして、ステップS14で得られた第1パラメータの指令値と、ステップS18で得られた第2パラメータの指令値と、に基づいて、石炭粉砕装置200の各部を制御する(ステップS20)。
 具体的には、第1パラメータの指令値に従って、石炭粉砕装置200のテーブル駆動部15、アクチュエータ16、または、ダンパ35の少なくとも一つを制御する。同様に、第2パラメータの指令値に従って、石炭粉砕装置200の分級器駆動部24を制御する。
And each part of the coal crushing apparatus 200 is controlled based on the command value of the 1st parameter obtained by step S14, and the command value of the 2nd parameter obtained by step S18 (step S20).
Specifically, in accordance with the command value of the first parameter, at least one of the table drive unit 15, the actuator 16, and the damper 35 of the coal crushing apparatus 200 is controlled. Similarly, the classifier drive unit 24 of the coal crushing apparatus 200 is controlled according to the command value of the second parameter.
 図6に示した方法によれば、第1パラメータの先行制御と第2パラメータの先行制御とによって、上流側工程における応答遅れと、下流側工程における応答遅れとの両方を改善できる。これにより、石炭粉砕装置200全体としての出炭遅れを効果的に低減することができる。
 さらに、第2パラメータだけでなく、第1パラメータについても先行制御を行うこととしたので、回転分級器20における分級精度低下を抑制しながら、出炭遅れを改善することができる。
According to the method shown in FIG. 6, both the response delay in the upstream process and the response delay in the downstream process can be improved by the advance control of the first parameter and the advance control of the second parameter. As a result, it is possible to effectively reduce the delayed coal output of the coal crushing apparatus 200 as a whole.
Furthermore, since advance control is performed not only for the second parameter but also for the first parameter, it is possible to improve the delay in coal output while suppressing the reduction in classification accuracy in the rotary classifier 20.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, The form which added deformation | transformation to embodiment mentioned above, and the form which combined these forms suitably are also included.
10 粉砕機
11 粉砕機ハウジング
12 テーブル
13 ローラ
15 テーブル駆動部
16 アクチュエータ
20 回転分級器
21 分級器ハウジング
22 環状回転部
23 環状静止部
24 分級器駆動部
25 ホッパ
30 空気供給部
31 空気吸込口
32 空気吹出口
33 空気室
34 ファン
35 ダンパ
50 供給管
51 排出管
100 石炭焚き火力発電プラント
111 入口空気流量計
112 入口空気温度計
113 出口空気温度計
114 給炭量計
115 給炭温度計
116 火炉差圧計
117 出口圧力計
200 石炭粉砕装置
300 燃焼装置
301 火炉
302 バーナ
303 熱交換器
310 蒸気タービン
320 発電機
330 復水器
340 給水ポンプ
400 制御装置
500 第1指令値生成部
510 基本指令値算出部
520 第1先行信号演算部
600 第2指令値生成部
610 基本指令値算出部
620 第2先行信号演算部
700 第1基準先行信号算出部
710(710A~710C) 演算係数算出部
800 第2基準先行信号算出部
810(810A~810C) 演算係数算出部
DESCRIPTION OF SYMBOLS 10 Crusher 11 Crusher housing 12 Table 13 Roller 15 Table drive part 16 Actuator 20 Rotation classifier 21 Classifier housing 22 Annular rotation part 23 Annular stationary part 24 Classifier drive part 25 Hopper 30 Air supply part 31 Air suction port 32 Air Air outlet 33 Air chamber 34 Fan 35 Damper 50 Supply pipe 51 Exhaust pipe 100 Coal-fired thermal power plant 111 Inlet air flow meter 112 Inlet air temperature meter 113 Outlet air temperature meter 114 Coal feed amount meter 115 Coal feed temperature gauge 116 Fire furnace differential pressure gauge 117 outlet pressure gauge 200 coal crushing apparatus 300 combustion apparatus 301 furnace 302 burner 303 heat exchanger 310 steam turbine 320 generator 330 condenser 340 water supply pump 400 control apparatus 500 first command value generation unit 510 basic command value calculation unit 520 1 Advance signal operation unit 600 second Command value generation unit 610 Basic command value calculation unit 620 Second advance signal calculation unit 700 First reference advance signal calculation unit 710 (710A to 710C) Calculation coefficient calculation unit 800 Second reference advance signal calculation unit 810 (810A to 810C) Operation Coefficient calculation unit

Claims (12)

  1.  回転可能に構成されたテーブルと、前記テーブルから供給される石炭を粉砕するためのローラと、前記ローラにおける前記石炭の粉砕によって得られた微粉炭を分級するための回転分級器と、前記微粉炭を前記回転分級器に向けて導く空気流を生成するための空気供給部と、を備える石炭粉砕装置のための制御装置であって、
     前記テーブルの回転速度、前記ローラの前記テーブルへの押付け力、または、前記空気供給部における空気供給量の少なくとも一つを含む第1パラメータの指令値を生成するための第1指令値生成部と、
     前記回転分級器の回転速度を少なくとも含む第2パラメータの指令値を生成するための第2指令値生成部と、
    を備え、
     前記第1指令値生成部は、少なくとも、前記石炭粉砕装置からの前記微粉炭を燃焼させる燃焼装置の負荷情報に応じて決定される第1先行信号に基づいて、前記第1パラメータの指令値を求めるように構成され、
     前記第2指令値生成部は、少なくとも前記負荷情報に応じて決定される第2先行信号に基づいて、前記第2パラメータの指令値を求めるように構成されたことを特徴とする石炭粉砕装置の制御装置。
    A table configured rotatably, a roller for grinding coal supplied from the table, a rotary classifier for classifying pulverized coal obtained by crushing the coal in the roller, the pulverized coal A control device for a coal comminution device, comprising: an air supply unit for generating an air flow for directing the rotary classifier to the rotary classifier.
    A first command value generation unit for generating a command value of a first parameter including at least one of a rotation speed of the table, a pressing force of the roller against the table, or an air supply amount in the air supply unit; ,
    A second command value generation unit for generating a command value of a second parameter including at least a rotational speed of the rotational classifier;
    Equipped with
    The first command value generation unit generates a command value of the first parameter based at least on a first advance signal determined according to load information of a combustion device that burns the pulverized coal from the coal crushing device. Configured to
    In the coal crushing apparatus, the second command value generation unit is configured to obtain a command value of the second parameter based on at least a second advance signal determined according to the load information. Control device.
  2.  前記第1指令値生成部は、前記第2パラメータの指令値の変化率に基づいて、前記第1先行信号を決定するように構成されたことを特徴とする請求項1に記載の石炭粉砕装置の制御装置。 The coal shredding device according to claim 1, wherein the first command value generation unit is configured to determine the first advance signal based on a change rate of the command value of the second parameter. Control device.
  3.  前記第1指令値生成部は、前記第1先行信号の変化率が、前記第2パラメータの指令値の変化率に基づいて決定される第1レートリミット以下となるように、前記第1先行信号を決定するように構成されたことを特徴とする請求項2に記載の石炭粉砕装置の制御装置。 The first command value generation unit is configured to set the first advance signal such that a change rate of the first advance signal is equal to or less than a first rate limit determined based on a change rate of the instruction value of the second parameter. The control device of a coal crushing apparatus according to claim 2, wherein the control device is configured to determine.
  4.  前記第2指令値生成部は、前記第1パラメータの指令値の変化率に基づいて、前記第2先行信号を決定するように構成されたことを特徴とする請求項1乃至3の何れか一項に記載の石炭粉砕装置の制御装置。 4. The apparatus according to any one of claims 1 to 3, wherein the second command value generation unit is configured to determine the second advance signal based on a change rate of a command value of the first parameter. The control apparatus of the coal crushing apparatus as described in a term.
  5.  前記第2指令値生成部は、前記第2先行信号の変化率が、前記第1パラメータの指令値の変化率に基づいて決定される第2レートリミット以下となるように、前記第2先行信号を決定するように構成されたことを特徴とする請求項4に記載の石炭粉砕装置の制御装置。 The second command value generation unit is configured to set the second lead signal such that a change rate of the second lead signal is equal to or less than a second rate limit determined based on a change rate of the command value of the first parameter. 5. A control system according to claim 4, characterized in that it is configured to determine.
  6.  前記燃焼装置は、発電機を駆動するための蒸気タービンに供給される蒸気を生成するためのボイラであって、
     前記燃焼装置の前記負荷情報は、前記発電機の負荷、負荷変化率または負荷変化幅の少なくとも一つを含むことを特徴とする請求項1乃至5の何れか一項に記載の石炭粉砕装置の制御装置。
    The combustion device is a boiler for generating steam to be supplied to a steam turbine for driving a generator,
    The coal crushing apparatus according to any one of claims 1 to 5, wherein the load information of the combustion apparatus includes at least one of a load, a load change rate, or a load change range of the generator. Control device.
  7.  前記第1指令値生成部は、前記負荷情報、および、原料炭の性状に関する原料炭性状情報に応じて前記第1先行信号を求めるように構成されたことを特徴とする請求項1乃至6の何れか一項に記載の石炭粉砕装置の制御装置。 The first command value generation unit is configured to obtain the first advance signal according to the load information and raw material coal property information related to the property of raw material coal. The control apparatus of the coal crushing apparatus as described in any one.
  8.  前記第2指令値生成部は、前記負荷情報、および、原料炭の性状に関する原料炭性状情報に応じて前記第2先行信号を求めるように構成されたことを特徴とする請求項1乃至7の何れか一項に記載の石炭粉砕装置の制御装置。 The second command value generation unit is configured to obtain the second advance signal according to the load information and raw material coal property information related to the property of the raw material coal. The control apparatus of the coal crushing apparatus as described in any one.
  9.  前記原料炭性状情報は、前記原料炭の含水率を含むことを特徴とする請求項7又は8に記載の石炭粉砕装置の制御装置。 The control device of a coal crushing apparatus according to claim 7 or 8, wherein the raw material coal property information includes a moisture content of the raw material coal.
  10.  回転可能に構成されたテーブルと、
     前記テーブルから供給される石炭を粉砕するためのローラと、
     前記ローラを前記テーブルに押し付けるためのアクチュエータと、
     前記ローラにおける前記石炭の粉砕によって得られた微粉炭を分級するための回転分級器と、
     前記微粉炭を前記回転分級器に向けて導く空気流を生成するための空気供給部と、
     前記テーブル、前記アクチュエータまたは前記空気供給部の少なくとも一つ、および、前記回転分級器を制御するように構成された、請求項1乃至9の何れか一項に記載の制御装置と、
    を備えることを特徴とする石炭粉砕装置。
    A table configured to be rotatable,
    A roller for grinding coal supplied from the table;
    An actuator for pressing the roller against the table;
    A rotary classifier for classifying pulverized coal obtained by pulverizing the coal in the roller;
    An air supply for producing an air flow for directing the pulverized coal towards the rotary classifier;
    The control device according to any one of claims 1 to 9, configured to control the table, at least one of the actuator or the air supply unit, and the rotation classifier.
    A coal crusher characterized by comprising:
  11.  請求項10に記載の石炭粉砕装置と、
     前記石炭粉砕装置からの前記微粉炭を燃焼させて蒸気を生成するためのボイラと、
     前記ボイラからの前記蒸気によって駆動される蒸気タービンと、
     前記蒸気タービンによって駆動される発電機と、
    を備えることを特徴とする石炭焚き火力発電プラント。
    The coal crushing apparatus according to claim 10,
    A boiler for burning the pulverized coal from the coal crusher to generate steam;
    A steam turbine driven by the steam from the boiler;
    A generator driven by the steam turbine;
    Coal-fired thermal power plant characterized by having.
  12.  回転可能に構成されたテーブルと、前記テーブルから供給される石炭を粉砕するためのローラと、前記ローラにおける前記石炭の粉砕によって得られた微粉炭を分級するための回転分級器と、前記微粉炭を前記回転分級器に向けて導く空気流を生成するための空気供給部と、を備える石炭粉砕装置のための制御方法であって、
     前記テーブルの回転速度、前記ローラの前記テーブルへの押付け力、または、前記空気供給部における空気供給量の少なくとも一つを含む第1パラメータの指令値を生成する第1指令値生成ステップと、
     前記回転分級器の回転速度を少なくとも含む第2パラメータの指令値を生成する第2指令値生成ステップと、
    を備え、
     前記第1指令値生成ステップでは、少なくとも、前記石炭粉砕装置からの前記微粉炭を燃焼させる燃焼装置の負荷情報に応じて決定される第1先行信号に基づいて、前記第1パラメータの指令値を求め、
     前記第2指令値生成ステップでは、少なくとも前記負荷情報に応じて決定される第2先行信号に基づいて、前記第2パラメータの指令値を求めることを特徴とする石炭粉砕装置の制御方法。
    A table configured rotatably, a roller for grinding coal supplied from the table, a rotary classifier for classifying pulverized coal obtained by crushing the coal in the roller, the pulverized coal A control system for a coal comminution device, comprising: an air supply for producing an air flow which directs the rotary classifier to the rotary classifier.
    A first command value generation step of generating a command value of a first parameter including at least one of a rotation speed of the table, a pressing force of the roller against the table, or an air supply amount in the air supply unit;
    A second command value generation step of generating a command value of a second parameter including at least a rotational speed of the rotational classifier;
    Equipped with
    In the first command value generation step, the command value of the first parameter is set based on a first advance signal determined according to load information of a combustion device for burning the pulverized coal from the coal crushing device at least. Ask for
    A control method of a coal crushing apparatus, wherein in the second command value generation step, a command value of the second parameter is obtained based on at least a second advance signal determined according to the load information.
PCT/JP2017/004430 2016-05-13 2017-02-07 Coal grinding device, device and method for controlling same, and coal-fired power plant WO2017195417A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/095,823 US10758917B2 (en) 2016-05-13 2017-02-07 Coal pulverizing apparatus, control device and control method for same, and coal-fired power plant
DE112017001855.2T DE112017001855T5 (en) 2016-05-13 2017-02-07 Coal pulverizer, control system and control method thereof, and coal-fired power plant
CN201780028136.5A CN109153021B (en) 2016-05-13 2017-02-07 Coal pulverizer, control device and control method thereof, and coal-fired thermal power generation complete plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016097131A JP6225217B1 (en) 2016-05-13 2016-05-13 Coal crusher, control device and control method thereof, and coal-fired thermal power plant
JP2016-097131 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017195417A1 true WO2017195417A1 (en) 2017-11-16

Family

ID=60213934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004430 WO2017195417A1 (en) 2016-05-13 2017-02-07 Coal grinding device, device and method for controlling same, and coal-fired power plant

Country Status (6)

Country Link
US (1) US10758917B2 (en)
JP (1) JP6225217B1 (en)
CN (1) CN109153021B (en)
DE (1) DE112017001855T5 (en)
TW (1) TWI632325B (en)
WO (1) WO2017195417A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170225172A1 (en) * 2014-08-07 2017-08-10 Emerson Electric (Us) Holding Corporation (Chile) Limitada Monitor and Control of Tumbling Mill Using Measurements of Vibration, Electrical Power Input and Mechanical Power
JP6973321B2 (en) * 2018-08-06 2021-11-24 Jfeスチール株式会社 Manufacturing method of pulverized coal for blast furnace blowing and its manufacturing equipment
JP7282540B2 (en) * 2019-02-13 2023-05-29 三菱重工業株式会社 Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
JP7317631B2 (en) * 2019-08-19 2023-07-31 三菱重工業株式会社 Solid fuel crusher, power plant, and solid fuel crusher control method
CN112058408B (en) * 2020-07-30 2022-06-03 河南黎明重工科技股份有限公司 Pressure balancing device for vertical roller mill
CN114100833B (en) * 2021-10-30 2022-11-22 国家能源集团华北电力有限公司廊坊热电厂 Control system for adjusting air volume of coal mill under variable working conditions, computer and readable storage medium
CN114669389B (en) * 2022-03-01 2024-01-02 苏州西热节能环保技术有限公司 Primary air pressure control method and device for coal mill, storage medium and electronic equipment
CN114849890B (en) * 2022-04-28 2023-07-07 安徽立卓智能电网科技有限公司 Method for reducing station power consumption based on optimized coal mill station start

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164820A (en) * 1983-03-09 1984-09-18 Hitachi Ltd Fuel system control of coal-fired power plant
JPS6020021A (en) * 1983-07-15 1985-02-01 Hitachi Ltd Fuel device for power plant with combustion of coal
JPS6362556A (en) * 1986-09-01 1988-03-18 石川島播磨重工業株式会社 Method of controlling coal output in case of load change of vertical mill
JPH02157053A (en) * 1988-07-29 1990-06-15 Babcock Hitachi Kk Vertical mill control apparatus
JPH03102243U (en) * 1990-02-09 1991-10-24
JPH04145957A (en) * 1990-10-09 1992-05-19 Babcock Hitachi Kk Coal pulverizer
JPH08243429A (en) * 1995-03-10 1996-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling coal output amount of mill and device therefor
JP2001117606A (en) * 1999-10-19 2001-04-27 Kawasaki Heavy Ind Ltd Adaptive control method and apparatus for thermal power plant
JP2012007811A (en) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd Pulverized coal supply system
JP2015100740A (en) * 2013-11-25 2015-06-04 三菱日立パワーシステムズ株式会社 Control device, coal roller mill, control method, and program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203058A (en) * 1988-02-09 1989-08-15 Babcock Hitachi Kk Vertical mill
JP2869166B2 (en) 1990-08-08 1999-03-10 北海道電力株式会社 Coal output control device for pulverized coal machine
JPH04334563A (en) 1991-05-13 1992-11-20 Mitsubishi Heavy Ind Ltd Control device for coal feed amount from coal mill
JP3124111B2 (en) * 1992-06-25 2001-01-15 三菱重工業株式会社 Coal mill control equipment
US5875977A (en) 1998-05-13 1999-03-02 Combustion Engineering, Inc. Technique for improving the response time of pulverized coal boilers
JP3556616B2 (en) * 2001-06-07 2004-08-18 川崎重工業株式会社 Adaptive control method and apparatus in pulverized coal mill
JP3785088B2 (en) * 2001-12-05 2006-06-14 三菱重工業株式会社 Mill adaptive controller in coal pulverizer
JP4299350B2 (en) * 2007-03-29 2009-07-22 株式会社日立製作所 Thermal power plant control device and thermal power plant control method
EP2251599B1 (en) * 2008-03-06 2014-12-24 IHI Corporation Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
JP5086966B2 (en) * 2008-10-31 2012-11-28 三菱重工業株式会社 Coal crusher control device
JP2011245357A (en) 2010-05-21 2011-12-08 Mitsubishi Heavy Ind Ltd Biomass pulverizing device and biomass/coal co-combustion system
JP5732803B2 (en) 2010-10-07 2015-06-10 株式会社Ihi Operation method of pulverized coal mill and pulverized coal mill
JP2014117657A (en) * 2012-12-17 2014-06-30 Mitsubishi Heavy Ind Ltd Control device of coal crusher, and control method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164820A (en) * 1983-03-09 1984-09-18 Hitachi Ltd Fuel system control of coal-fired power plant
JPS6020021A (en) * 1983-07-15 1985-02-01 Hitachi Ltd Fuel device for power plant with combustion of coal
JPS6362556A (en) * 1986-09-01 1988-03-18 石川島播磨重工業株式会社 Method of controlling coal output in case of load change of vertical mill
JPH02157053A (en) * 1988-07-29 1990-06-15 Babcock Hitachi Kk Vertical mill control apparatus
JPH03102243U (en) * 1990-02-09 1991-10-24
JPH04145957A (en) * 1990-10-09 1992-05-19 Babcock Hitachi Kk Coal pulverizer
JPH08243429A (en) * 1995-03-10 1996-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling coal output amount of mill and device therefor
JP2001117606A (en) * 1999-10-19 2001-04-27 Kawasaki Heavy Ind Ltd Adaptive control method and apparatus for thermal power plant
JP2012007811A (en) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd Pulverized coal supply system
JP2015100740A (en) * 2013-11-25 2015-06-04 三菱日立パワーシステムズ株式会社 Control device, coal roller mill, control method, and program

Also Published As

Publication number Publication date
CN109153021A (en) 2019-01-04
JP6225217B1 (en) 2017-11-01
US10758917B2 (en) 2020-09-01
JP2017202472A (en) 2017-11-16
TW201743016A (en) 2017-12-16
TWI632325B (en) 2018-08-11
US20190168234A1 (en) 2019-06-06
CN109153021B (en) 2020-10-30
DE112017001855T5 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2017195417A1 (en) Coal grinding device, device and method for controlling same, and coal-fired power plant
CN109622148B (en) Solid fuel pulverizer and method for controlling solid fuel pulverizer
JP6599259B2 (en) Solid fuel pulverizer and control method thereof
JP2014117657A (en) Control device of coal crusher, and control method thereof
CN111515009A (en) Full frequency conversion type pulverizing system without minimum coal quantity limit and debugging method
JP6218448B2 (en) Vertical crushing and classifying equipment
JP6718852B2 (en) Coal pulverizer, control device and control method thereof, and coal-fired thermal power plant
JP6999349B2 (en) Control method of solid fuel crushing system, solid fuel crushing device and solid fuel crushing system
JP2744019B2 (en) Vertical mill control device
JP3292496B2 (en) Crushing mill for coal-fired boiler
JP6195512B2 (en) Solid fuel pulverization apparatus and solid fuel pulverization method
JP6497079B2 (en) Vertical crusher
JP6415298B2 (en) Rotary classifier and vertical mill
JP5004558B2 (en) Grinding equipment, control device therefor, and raw material supply method in grinding equipment
JP6248718B2 (en) Vertical crusher
JP2010131532A (en) Vertical grinder
JP2020116537A5 (en)
RU2683386C1 (en) Fan mill
JP6492690B2 (en) How to operate the vertical crusher
JP6104791B2 (en) Solid fuel pulverizer and control method of solid fuel pulverizer
JP7151512B2 (en) Vertical pulverizer and its operation method
JPH1110025A (en) Method for controlling mill coal delivery rate and apparatus therefor
JP7080970B2 (en) Crushing device and control method of crushing device
JP2006110456A (en) Vertical type mill and charcoal burning boiler facility provided with the same
JP2007007593A (en) Operating method of vertical pulverizer and vertical pulverizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795778

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795778

Country of ref document: EP

Kind code of ref document: A1