WO2017195344A1 - Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board - Google Patents

Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board Download PDF

Info

Publication number
WO2017195344A1
WO2017195344A1 PCT/JP2016/064253 JP2016064253W WO2017195344A1 WO 2017195344 A1 WO2017195344 A1 WO 2017195344A1 JP 2016064253 W JP2016064253 W JP 2016064253W WO 2017195344 A1 WO2017195344 A1 WO 2017195344A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
resin
component
phase
filler
Prior art date
Application number
PCT/JP2016/064253
Other languages
French (fr)
Japanese (ja)
Inventor
貴代 北嶋
健一 富岡
垣谷 稔
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018516306A priority Critical patent/JP6996500B2/en
Priority to PCT/JP2016/064253 priority patent/WO2017195344A1/en
Publication of WO2017195344A1 publication Critical patent/WO2017195344A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture

Definitions

  • the present invention relates to a prepreg, a prepreg with a metal foil, a laminate, a metal-clad laminate, and a printed circuit board.
  • Densification of the printed circuit board can be achieved more suitably by reducing the thickness of the glass cloth as a base material, for example, by making the thickness to 30 ⁇ m or less.
  • Prepreg has been developed and marketed recently. As a result, although the density of printed circuit boards is increasing, it is possible to ensure sufficient heat resistance, insulation reliability and adhesion between the wiring layer and the insulating layer in the printed circuit board. It has become difficult.
  • the wiring board material used for such a high-performance printed circuit board is required to have heat resistance, electrical insulation, long-term reliability, adhesiveness, and the like.
  • the flexible wiring board material listed as one of these high-performance printed circuit boards is also required to have low elasticity.
  • a resin composition in which a thermosetting resin is blended with a polymer acrylic polymer obtained by copolymerizing a crosslinkable functional group such as an acrylonitrile butadiene resin or a carboxy group-containing acrylonitrile butadiene resin. It has been proposed (see, for example, Patent Documents 1 to 3).
  • Polyacrylate epoxy resin which is a mixture of polymer acrylic polymer copolymerized with crosslinkable functional groups and thermosetting resin, is as if it is connected to each other and regularly dispersed.
  • a phase-separated structure is formed between the sea phase of the polymer acrylic polymer, which is an acrylic polymer, and the island phase of the epoxy resin, the main component of which is a polyacrylate epoxy resin.
  • a resin composition containing a polymer acrylic polymer having a phase-separated structure and a polyacrylate epoxy resin is desired to have the excellent characteristics of both a polymer acrylic polymer and an epoxy resin. None of them had excellent characteristics.
  • the characteristics of the polymer acrylic polymer copolymerized with a crosslinkable functional group are low elasticity, high elongation, and easy insertion of a functional group.
  • the characteristics of the epoxy resin that is a thermosetting resin are high insulation reliability, high heat resistance, high glass transition temperature (Tg), and the like.
  • a polymer acrylic polymer copolymerized with crosslinkable functional groups and an epoxy resin thermosetting resin
  • an epoxy is formed in the network of the polymer acrylic polymer sea phase. Since the resin is dispersed in a nano size, the characteristics of the polymer acrylic polymer are biased, and the high insulation reliability, high heat resistance, and high Tg that the epoxy resin has cannot be sufficiently expressed. Further, the surface area of the polymer acrylic polymer having relatively weak adhesion strength with the metal foil is increased, and the adhesion strength between the insulating layer and the metal foil is lowered.
  • phase separation structure when the ratio of the island phase is high, the characteristics of the island phase of the epoxy resin are biased and the adhesion strength with the metal foil is improved, but the low elasticity and flexibility of the polymer acrylic polymer are sufficient. Cannot be expressed.
  • An object of the present invention is to provide a prepreg, a prepreg with a metal foil, a laminate, a metal-clad laminate, and a printed circuit board that are excellent in low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil. .
  • the present invention relates to each item described below.
  • a first phase containing an acrylic polymer and (B) a second phase as an island phase containing a thermosetting resin form a phase separation structure, and the average domain size of the island phase is 1 ⁇ m to A prepreg that is 10 ⁇ m and (C) impregnated with a resin composition containing a filler.
  • the blending amount of the (A) acrylic polymer is 10 to 70 parts by mass when the total amount of the (A) acrylic polymer and the (B) thermosetting resin is 100 parts by mass.
  • the prepreg as described.
  • a prepreg a metal foil with a resin, and a printed circuit board that are excellent in low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil.
  • phase-separation structure of a resin composition is a continuous spherical structure. It is a model figure showing the case where the phase-separation structure of a resin composition is a sea-island structure. It is a model figure showing the case where the phase-separation structure of a resin composition is a composite dispersed phase structure. It is a model figure showing the case where the phase-separation structure of a resin composition is a bicontinuous phase structure. It is an electron micrograph showing the cross-sectional structure as an example of the resin composition which has the sea island structure obtained by this invention. It is an electron micrograph showing the cross-sectional structure as an example of the resin composition which has the composite dispersed phase structure obtained by this invention.
  • the prepreg according to the embodiment of the present invention includes a first phase containing (A) an acrylic polymer (hereinafter referred to as “component (A)”), and (B) a thermosetting resin (hereinafter referred to as “(B)”. And the second phase as an island phase containing a component)) forms a phase separation structure, and the average domain size of the island phase is 1 ⁇ m to 10 ⁇ m.
  • component (A) an acrylic polymer
  • component (B) a thermosetting resin
  • the reason why the component (A) forms the sea phase instead of the island phase is that when the phase separation of the component (B) occurs in the component (A) having a large molecular weight and a large amount of entanglement, the component (A) In order to become a phase, it is considered that the entanglement and cross-linking network must be cut, and it is difficult to become an island phase.
  • the component (A) is an acrylic polymer, and is usually a copolymer having a (meth) acrylic acid alkyl ester as a monomer.
  • an acrylic polymer copolymerized with a crosslinkable functional group is preferable.
  • Such a copolymer is generally produced by copolymerizing a (meth) acrylic acid alkyl ester and a copolymerizable monomer having a crosslinkable functional group.
  • the copolymerizable monomer having a crosslinkable functional group is not particularly limited as long as it is a compound copolymerizable with (meth) acrylic acid alkyl ester, and the crosslinkable functional group preferably has an epoxy group, and glycidyl. It is more preferable to have a group.
  • the copolymerizable monomer having a crosslinkable functional group glycidyl (meth) acrylate is preferably used.
  • the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, and the alkyl group may have a substituent.
  • Examples of the substituent of the alkyl group include an alicyclic group, a glycidyl group, an alkyl group having 1 to 6 carbon atoms having a hydroxyl group, and a nitrogen-containing cyclic group.
  • Examples of (meth) acrylic acid alkyl esters include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, ethylene glycol methyl ether acrylate, and acrylic.
  • the epoxy value is preferably 2 equivalent / kg to 18 equivalent / kg, more preferably 2 equivalent / kg to 8 equivalent / kg.
  • the epoxy value is 2 equivalents / kg or more, a decrease in the glass transition temperature of the cured product is suppressed, and the heat resistance of the substrate is sufficiently maintained.
  • the epoxy value is 18 equivalents / kg or less, the storage elastic modulus becomes too large. Without tending, the dimensional stability of the substrate tends to be maintained.
  • the epoxy value of the component (A) can be adjusted by appropriately adjusting the copolymerization ratio when copolymerizing glycidyl (meth) acrylate and another monomer copolymerizable therewith.
  • a polymer having an epoxy value of 2 equivalents / kg to 18 equivalents / kg is obtained by setting the ratio of other monomers to 5 to 15 parts by mass with respect to 100 parts by mass of glycidyl (meth) acrylate.
  • An acrylic polymer is obtained.
  • component (A) having an epoxy group examples include, for example, “HTR-860” (manufactured by Nagase ChemteX Corporation, product name, epoxy value 3.1), “KH-CT-865” (Hitachi Chemical Co., Ltd.) Company name, product name, epoxy value 3.0), “HAN5-M90S” (manufactured by Negami Kogyo Co., Ltd., product name, epoxy value 2.2) are available.
  • the weight average molecular weight of the component (A) is preferably 10,000 to 1,500,000 from the viewpoint of improving elongation and improving low elasticity, and is preferably 50,000 to 1,500,000.
  • the weight average molecular weight of the component (A) is 1,500,000 or less, the component tends to be easily dissolved in a solvent and easy to handle. Moreover, when the weight average molecular weight of the component (A) is 1,500,000 or less, when the component (B) is blended, it tends to be difficult to form a phase separation structure having a relatively large co-continuous phase of the domain. In addition, high insulation reliability, high heat resistance, and high adhesiveness with metal foil tend to be developed. When the weight average molecular weight of the component (A) is 10,000 or more, the low elasticity of the component (A) tends to be easily developed.
  • a component may combine 2 or more types from which a weight average molecular weight differs.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) analysis and means a standard polystyrene equivalent value.
  • GPC analysis can be performed using tetrahydrofuran (THF) as a solution.
  • the component (A) preferably has an alkali metal ion concentration of 500 ppm or less, more preferably, in order to obtain sufficient characteristics in an insulation reliability acceleration test such as a pressure cooker bias test (PCBT). 200 ppm or less, more preferably 100 ppm or less.
  • PCBT pressure cooker bias test
  • the component (A) is generally obtained by radical polymerization of a monomer using a radical polymerization initiator that generates radicals.
  • radical polymerization initiators include persulfates such as azobisisobutyronitrile (AIBN), tert-butyl perbenzoate, benzoyl peroxide, lauroyl peroxide, potassium persulfate, cumene hydroperoxide, t-butyl hydroperoxide Dicumyl peroxide, di-t-butyl peroxide, 2,2′-azobis-2,4-dimethylvaleronitrile, t-butyl perisobutyrate, t-butyl perpivalate, hydrogen peroxide / ferrous salt, Examples thereof include persulfate / sodium acid sulfite, cumene hydroperoxide / ferrous salt, benzoyl peroxide / dimethylaniline, and the like.
  • the radical polymerization initiator these may be used alone or in combination
  • the amount of the component (A) is preferably 10 to 70 parts by mass when the total amount of the components (A) and (B) is 100 parts by mass.
  • the amount is less than 10 parts by mass, low elasticity, which is an excellent feature of the component (A), tends not to be effectively expressed.
  • the compounding quantity of (A) component in the total amount of 100 mass parts of (A) component and (B) component is 15 mass parts or more from a viewpoint made especially low elasticity, and is 20 mass parts or more.
  • the blending amount of the component (A) in the total amount of 100 parts by mass of the component (A) and the component (B) is preferably 60 parts by mass or less.
  • the amount is more preferably 50 parts by mass or less, and further preferably 40 parts by mass or less.
  • Thermosetting resin component (B)
  • the component (B) used in the present invention one having a phase separation structure when cured in combination with the component (A) is appropriately selected.
  • the component (B) is not particularly limited.
  • examples include isocyanurate resins, triallyl cyanurate resins, and vinyl group-containing polyolefin compounds.
  • an epoxy resin or a cyanate resin is preferable in consideration of a balance of performance such as heat resistance and insulation.
  • the component (B) capable of forming a resin composite having a phase separation structure has (B-1) two or more epoxy groups in one molecule.
  • Epoxy resin hereinafter referred to as “component (B-1)”
  • component (B-2) a phenol resin having two or more hydroxyl groups in one molecule
  • the component (B) preferably contains the component (B-1).
  • the weight average molecular weight of the component (B-1) is preferably 200 to 1,000, and more preferably 300 to 900. When the weight average molecular weight is 200 or more, there is a tendency to form a phase separation structure with the component (A), and when it is 1,000 or less, a phase separation structure having a second phase having a relatively small domain tends to be formed. There is a tendency to exhibit low elasticity.
  • the epoxy equivalent of the component (B-1) is preferably 150 to 500, more preferably 150 to 450, and more preferably 150 to 300. When the epoxy equivalent of the epoxy resin is within the above range, the average domain size of the second phase tends not to be too large.
  • component (B-1) known components can be used.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol Novolac type epoxy resin, bisphenol A novolac type epoxy resin, phosphorus containing epoxy resin, naphthalene skeleton containing epoxy resin, aralkylene skeleton containing epoxy resin, phenol biphenyl aralkyl type epoxy resin, phenol salicylaldehyde novolak type epoxy resin, lower alkyl group substituted phenol salicyl Aldehyde novolac type epoxy resin, dicyclopentadiene skeleton-containing epoxy resin, polyfunctional glycidylamine type epoxy resin, polyfunctional alicyclic epoxy resin, Love Romo bisphenol A type epoxy resins.
  • component (B-1) Commercially available products of component (B-1) include, for example, “N770” which is a phenol novolac type epoxy resin (trade name, manufactured by DIC Corporation), and “EPICLON 153” which is a tetrabromobisphenol A type epoxy resin (DIC stock).
  • NC-3000H product name
  • Epicoat 1001 product manufactured by Mitsubishi Chemical Corporation, product
  • ZX-1548 trade name, manufactured by Toto Kasei Co., Ltd.
  • EPICLON N-660 trade name, manufactured by DIC Corporation
  • cresol novolac type epoxy resin and the like. It is done.
  • the component (B) preferably contains the component (B-2) from the viewpoint of ensuring adhesion strength with the metal foil.
  • component (B-2) known components can be used.
  • an aralkyl type phenol resin a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a copolymer of a benzaldehyde type phenol resin and an aralkyl type phenol resin.
  • Type resin and novolac type phenol resin These 1 type (s) or 2 or more types can be used.
  • polyhydric phenols such as phenol novolac are preferably used from the viewpoint of low water absorption.
  • phenol novolac resin for example, “KA-1165” (trade name, manufactured by DIC Corporation) which is a cresol novolac resin, and “MEH-7851” (Maywa Kasei Co., Ltd.) which is a biphenyl novolac resin.
  • product name for example, product name
  • the blending ratio of the component is usually determined so that the glass transition temperature becomes high.
  • the amount is preferably 0.5 to 1.5 equivalents relative to the epoxy group of the component (B-1).
  • the amount is 0.5 to 1.5 equivalents relative to the epoxy group, it is possible to prevent a decrease in adhesiveness with the outer layer copper and to prevent a decrease in glass transition temperature (Tg) and insulation.
  • the resin composition of the present invention may contain a curing agent as component (B).
  • a curing agent as component (B).
  • a well-known thing can be used as a hardening
  • amine curing agents such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone
  • acid anhydride curing agents such as pyromellitic anhydride, trimellitic anhydride, and benzophenonetetracarboxylic acid, or a mixture thereof.
  • Various combinations of the component (B) and its curing agent in the present invention
  • the phase structure of the cured resin is determined by a competitive reaction between the phase separation rate and the crosslinking reaction rate.
  • a competitive reaction between the phase separation rate and the crosslinking reaction rate Taking an epoxy resin as an example, a sea-island structure that has a phase separation structure with an average domain size of about 1 ⁇ m to 10 ⁇ m by mixing and curing epoxy resins with different characteristics while controlling the catalyst type and skeleton structure, etc. Can be formed.
  • the resin composition according to the embodiment of the present invention preferably contains one or more types of silica as the component (C).
  • component (C) a filler subjected to a coupling treatment
  • (C-1) component a filler subjected to a coupling treatment
  • (C-2) a filler not subjected to coupling treatment
  • (C-2) component is used as the (C) component. It is preferable to contain 1 or more types.
  • the component (C) used in the present invention preferably contains one or more components (C-1) and one or more components (C-2).
  • the average particle size of the component (C-1) is preferably 0.1 ⁇ m to 1.5 ⁇ m, more preferably 0.2 ⁇ m to 1.2 ⁇ m, and preferably 0.3 ⁇ m to 1.0 ⁇ m. Further preferred.
  • the average particle diameter of the component (C-2) is preferably 1.0 ⁇ m to 3.5 ⁇ m, more preferably 1.2 ⁇ m to 3.2 ⁇ m, and preferably 1.4 ⁇ m to 3.0 ⁇ m. Further preferred.
  • the average particle diameter of the component (C-2) is 1.0 ⁇ m or more, the fillers tend to disperse and tend not to agglomerate, and when it is 3.5 ⁇ m or less, the component (C) There is a tendency that sedimentation hardly occurs.
  • the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve according to the particle diameter is obtained with the total volume of the particles being 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
  • (C) component used for this invention A well-known thing can be used for (C) component used for this invention. It is preferable to add an inorganic filler for the purpose of lowering the coefficient of thermal expansion and ensuring the flame retardancy.
  • inorganic fillers silica, alumina, titanium oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, calcium oxide, magnesium oxide, aluminum nitride, aluminum borate whisker, boron nitride, silicon carbide, etc.
  • silica is more preferable because of its low dielectric constant and low linear expansion coefficient.
  • various synthetic silicas synthesized by a wet method or a dry method, crushed silica obtained by crushing silica stone, fused silica once melted, and the like can be used.
  • the blending ratio of component (C) is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 35% by mass, and more preferably 15% by mass, based on the solid content of the total resin composition. More preferably, the content is from 30% by mass to 30% by mass.
  • the blending ratio of the component (C) is 40% by mass or less, so that the insulating resin does not become brittle and the low-elasticity and flexibility of the polymer acrylic polymer copolymerized with the crosslinkable functional group of the component (A) There is a tendency that sufficient sex is obtained.
  • the compounding ratio of the component (C) is 5% by mass or more, the linear expansion coefficient tends to be low and sufficient heat resistance tends to be obtained.
  • the “solid content” is a non-volatile content excluding a volatile substance such as a solvent, and indicates a component that remains without volatilization when the resin composition is dried. Also includes liquid, syrupy and waxy.
  • room temperature in this specification indicates 25 ° C.
  • the resin composition may contain a curing accelerator.
  • a hardening accelerator Amines or imidazoles are preferable.
  • amines include dicyandiamide, diaminodiphenylethane, guanylurea and the like.
  • Imidazoles include 2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, A benzimidazole etc. can be illustrated.
  • the blending amount of the curing accelerator can be determined, for example, according to the total amount of oxirane rings in the resin composition, but is generally 0.01 to 10 parts by mass in 100 parts by mass of the resin solid content of the resin composition.
  • the mass is preferably 0.02 parts by mass to 9.0 parts by mass, and more preferably 0.03 parts by mass to 8.0 parts by mass.
  • the resin composition according to the present invention includes, for example, a crosslinking agent, a flame retardant, a flow regulator, conductive particles, a coupling agent, a pigment, a leveling agent, an antifoaming agent, an ion trapping agent, and an antioxidant as necessary. Etc., and any known ones can be used.
  • ester solvent examples include methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, and ethyl acetate.
  • amide solvent examples include N-methylpyrrolidone, formamide, N-methylformamide, N, N-dimethylacetamide and the like.
  • alcohol solvents examples include methanol, ethanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol, propylene glycol monomethyl ether, Examples include dipropylene glycol monomethyl ether, propylene glycol monopropyl ether, and dipropylene glycol monopropyl ether. These organic solvents may be used alone or in combination of two or more.
  • the phase separation structure in the present invention is a sea-island structure, a continuous spherical structure, a composite dispersed phase structure, or a co-continuous phase structure, and the average domain size of the island phase is 1 ⁇ m to 10 ⁇ m, preferably 1.5 ⁇ m to 9 ⁇ m. More preferably, it is 2 ⁇ m to 8 ⁇ m.
  • the average domain size of the island phase is less than 1 ⁇ m, good insulation reliability and high heat resistance of the thermosetting resin (B) tend not to be exhibited.
  • the surface area of the acrylic polymer having relatively weak adhesive strength with the metal foil is increased, and there is a tendency that good adhesive strength between the insulating layer and the metal foil cannot be obtained.
  • the average domain size of an island phase exceeds 10 micrometers, it exists in the tendency for the low elasticity which (A) component has to express easily.
  • the average domain size of the island phase is the maximum of 70 or more island phases obtained from the cross-sectional structure obtained by an electron microscope after smoothing the cross section of the thermosetting resin composition with a microtome. The large and minimum widths were measured, and the average value was calculated.
  • continuous spherical structure As the phase separation structure, for example, “Polymer Alloy” page 325 (1993)
  • the continuous spherical structure is described in detail, for example, in Keizo Yamanaka and Takashi Iniue, POLYMER, Vol. 30, pp. 662 (1989).
  • 1 to 4 show model diagrams representing a continuous spherical structure, a sea-island structure, a composite dispersed phase structure, and a co-continuous phase structure, respectively.
  • Such a fine phase separation structure can be obtained by controlling the catalyst species of the resin composition, the curing conditions such as the reaction temperature, or the compatibility between the components of the resin composition.
  • the curing temperature is increased. This can be achieved by slowing the curing rate by the choice of catalyst species.
  • FIG. 5 shows an electron micrograph showing a cross-sectional structure of an example of the resin composition having a sea-island structure obtained in this manner.
  • the resin composition has a sea-island structure composed of an acrylic polymer phase and an epoxy resin-rich phase.
  • the average domain size of the island phase made of epoxy resin is about 1 ⁇ m to 10 ⁇ m.
  • the resin composition used in the present invention forms a sea-island structure or a continuous spherical structure when the component (C) is not added to the resin composition.
  • a resin insulating layer having a fine co-continuous phase structure or a composite dispersed phase structure may be formed.
  • FIG. 6 shows an electron micrograph showing a cross-sectional structure of an example of an insulating resin having a composite dispersed phase structure.
  • the prepreg of the present invention can be produced by impregnating a base material with the varnish of the above resin composition and drying it in the range of 80 ° C. to 180 ° C., for example.
  • a base material will not be restrict
  • fiber base materials such as a woven fabric and a nonwoven fabric, are used.
  • Examples of the material of the fiber base material include glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyether ether ketone, polyether imide, Examples thereof include organic fibers such as polyethersulfone, carbon and cellulose, and mixed papers thereof.
  • a glass cloth is preferable, a glass cloth having a thickness of 100 ⁇ m or less is more preferable, and a glass cloth having a thickness of 50 ⁇ m or less is particularly preferable. When the thickness of the glass cloth is 50 ⁇ m or less, a printed circuit board that can be bent arbitrarily can be obtained, and the dimensional change accompanying temperature, moisture absorption, etc. in the manufacturing process is small, which is preferable.
  • the organic solvent used in the prepreg varnish obtained is volatilized.
  • the production method and drying conditions are not limited, and the drying temperature is, for example, 80 ° C. to 180 ° C., and the time is the gelation time of the varnish. It is set as appropriate in consideration of the above.
  • the amount of impregnation of the varnish is preferably 30% by mass to 80% by mass with respect to the total amount of the varnish solid and the base material.
  • the prepreg with a metal foil of the present invention is preferably formed by laminating the above prepreg and a metal foil.
  • the prepreg with a metal foil of the present invention is, for example, a metal foil laminated on one or both sides of the prepreg of the present invention, and usually at a temperature in the range of 130 ° C. to 250 ° C., preferably 150 ° C. to 230 ° C., usually 0.5 MPa to It can be produced by heating and pressing at a pressure in the range of 20 MPa, preferably 1 MPa to 8 MPa.
  • the method of heating and pressing is not particularly limited, and for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like can be used.
  • metal foil used when manufacturing the prepreg with metal foil of this invention For example, copper foil and aluminum foil are generally used.
  • the thickness of the metal foil is not particularly limited, and a thickness of 1 ⁇ m to 200 ⁇ m can be used.
  • nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and 0.5 ⁇ m to 15 ⁇ m copper layer and 10 ⁇ m to 300 ⁇ m on both sides.
  • a composite foil having a three-layer structure provided with a copper layer or a composite foil having a two-layer structure in which aluminum and copper foil are combined can be used.
  • the laminate of the present invention preferably has a plurality of the above prepregs.
  • the laminate of the present invention is formed, for example, by laminating the prepreg of the present invention and heating and pressing.
  • the method of heating and pressing is not particularly limited, and for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like can be used.
  • the metal-clad laminate of the present invention is preferably such that the laminate described above further has a metal foil.
  • the metal-clad laminate of the present invention is, for example, a metal foil laminated on one or both sides of the laminate of the present invention, and usually at a temperature in the range of 130 ° C. to 250 ° C., preferably 150 ° C. to 230 ° C., usually 0.5 MPa. It can be produced by heating and pressing at a pressure in the range of ⁇ 20 MPa, preferably in the range of 1 MPa to 8 MPa.
  • the method of heating and pressing is not particularly limited, and for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like can be used.
  • metal foil used when manufacturing the metal-clad laminated board of this invention For example, copper foil and aluminum foil are generally used.
  • the thickness of the metal foil is not particularly limited, and a thickness of 1 ⁇ m to 200 ⁇ m can be used.
  • nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and 0.5 ⁇ m to 15 ⁇ m copper layer and 10 ⁇ m to 300 ⁇ m on both sides.
  • a composite foil having a three-layer structure provided with a copper layer or a composite foil having a two-layer structure in which aluminum and copper foil are combined can be used.
  • the above-mentioned laminated board further has a circuit. It is preferable that the circuit is obtained by processing the laminate of the present invention.
  • the method for producing a printed circuit board of the present invention is not particularly limited, but circuit (wiring) processing is performed on the metal foil of the laminate (metal-clad laminate) of the present invention in which metal foil is provided on one or both sides. It can manufacture by giving.
  • the storage elastic modulus was evaluated by cutting a laminated board obtained by etching a copper clad laminated board prepared by superposing resin-coated copper foils so that the resin surfaces face each other into a width of 5 mm and a length of 30 mm.
  • the storage elastic modulus was calculated using a mechanical viscoelasticity measuring device (manufactured by UBM Co., Ltd.). When the storage elastic modulus at 25 ° C. was 2.0 ⁇ 10 9 Pa or less, it was judged that the stress relaxation effect could be exhibited. The results are shown in Tables 1 and 2.
  • Tensile elongation The tensile elongation is evaluated by cutting a laminated sheet obtained by etching a copper-clad laminated sheet made of a resin-coated copper foil so that the resin faces face each other into a width of 10 mm and a length of 100 mm. The tensile elongation was calculated using a graph (manufactured by Shimadzu Corporation). If the tensile elongation at 25 ° C. was 3% or more, it was judged that the stress relaxation effect could be exhibited. The results are shown in Tables 1 and 2. (6) Heat resistance A double-sided copper clad laminate prepared from four prepregs was cut into a 50 mm square to obtain a test piece.
  • the test piece was immersed in a solder bath at 260 ° C., and the time elapsed from that point to the point when the swelling of the test piece was visually observed was measured. The elapsed time was measured up to 300 seconds, and it was judged that the heat resistance was sufficient for 300 seconds or more.
  • the results are shown in Tables 1 and 2.
  • (7) Evaluation of adhesion of metal foil to substrate A copper foil of a double-sided copper clad laminate prepared from four prepregs was partially etched to form a 3 mm wide copper foil line. Next, the load when the copper foil line was peeled off at a speed of 50 mm / min in the direction of 90 ° with respect to the bonding surface was measured, and the copper foil peeling strength was obtained.
  • Electrical insulation reliability is 400 holes for each sample using a test pattern in which a double-sided copper-clad laminate made from four prepregs is processed so that the through-hole hole wall spacing is 350 ⁇ m.
  • the insulation resistance was measured over time. The measurement was performed by applying 100 V in an 85 ° C./85% RH atmosphere, and measuring the time until conduction breakdown occurred. The measurement time was up to 2000 hours, and it was judged that the electrical insulation reliability was sufficient for 1000 hours or more. The results are shown in Tables 1 and 2.
  • the examples of the present invention are excellent in all of low elasticity, heat resistance, adhesion to metal foil, and insulation reliability.
  • none of the comparative examples is excellent in all of low elasticity, heat resistance, adhesion to metal foil, and insulation reliability.
  • prepreg, prepreg with metal foil, laminate, metal-clad laminate and printed circuit board of the present invention it has low elasticity, high insulation reliability, high heat resistance, and high adhesion to metal foil. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

A prepreg impregnated with a resin composition in which (A) a first phase including an acrylic polymer and (B) a second phase serving as an island phase including a thermosetting resin form a phase separation structure, with the average domain size of the island phase being 1-10 µm, and (C) a filler is contained.

Description

プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板Prepreg, prepreg with metal foil, laminate, metal-clad laminate and printed circuit board
 本発明は、プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板に関する。 The present invention relates to a prepreg, a prepreg with a metal foil, a laminate, a metal-clad laminate, and a printed circuit board.
 情報電子機器の急速な普及に伴って、電子機器の小型化及び薄型化が進んでおり、その中に搭載されるプリント回路基板も高密度化、高機能化の要求が高まっている。 With the rapid spread of information electronic devices, electronic devices are becoming smaller and thinner, and the demand for higher density and higher functionality of printed circuit boards mounted therein is increasing.
 プリント回路基板の高密度化は、基材となるガラスクロスの厚さをより薄くすること、例えば、30μm以下の厚さにすることで更に好適に成し遂げられるため、そのようなガラスクロスを備えたプリプレグが、昨今開発及び上市されている。これにより、プリント回路基板の高密度化はますます進行しているものの、それに伴い、プリント回路基板における十分な耐熱性、絶縁信頼性及び配線層と絶縁層との接着性等を確保することが困難になってきている。 Densification of the printed circuit board can be achieved more suitably by reducing the thickness of the glass cloth as a base material, for example, by making the thickness to 30 μm or less. Prepreg has been developed and marketed recently. As a result, although the density of printed circuit boards is increasing, it is possible to ensure sufficient heat resistance, insulation reliability and adhesion between the wiring layer and the insulating layer in the printed circuit board. It has become difficult.
 このような高機能プリント回路基板に使用される配線板材料には、耐熱性、電気絶縁性、長期信頼性、及び接着性等が要求されている。また、これらの高機能プリント回路基板の中の1つに挙げられるフレキシブルな配線板材料には、上記の特性に加え、低弾性であることも要求されている。 The wiring board material used for such a high-performance printed circuit board is required to have heat resistance, electrical insulation, long-term reliability, adhesiveness, and the like. In addition to the above properties, the flexible wiring board material listed as one of these high-performance printed circuit boards is also required to have low elasticity.
 さらには、セラミック部品を搭載したプリント回路基板においては、セラミック部品とプリント回路基板の熱膨張係数の差、及び外的な衝撃によって発生する部品接続信頼性の問題がある。この問題の解決方法として、プリント回路基板側からの応力緩和が挙げられる。 Furthermore, in a printed circuit board on which ceramic parts are mounted, there are problems of differences in thermal expansion coefficients between the ceramic parts and the printed circuit board, and component connection reliability caused by external impact. As a solution to this problem, stress relaxation from the printed circuit board side can be mentioned.
 これらの要求を満たす配線板材料としては、例えば、アクリロニトリルブタジエン系樹脂、カルボキシ基含有アクリロニトリルブタジエン樹脂等の架橋性官能基を共重合した高分子アクリルポリマーに熱硬化性樹脂を配合した樹脂組成物が提案されている(例えば、特許文献1~3参照)。 As a wiring board material satisfying these requirements, for example, a resin composition in which a thermosetting resin is blended with a polymer acrylic polymer obtained by copolymerizing a crosslinkable functional group such as an acrylonitrile butadiene resin or a carboxy group-containing acrylonitrile butadiene resin. It has been proposed (see, for example, Patent Documents 1 to 3).
特開平8-283535号公報JP-A-8-283535 特開2002-134907号公報JP 2002-134907 A 特開2002-371190号公報JP 2002-371190 A
 架橋性官能基を共重合した高分子アクリルポリマーと、熱硬化性樹脂を混合してなるポリアクリレートエポキシ樹脂は、あたかもお互いに連結しあって規則正しく分散した状態の構造であり、主成分が高分子アクリルポリマーである高分子アクリルポリマーの海相と、主成分がポリアクリレートエポキシ樹脂であるエポキシ樹脂の島相との相分離構造を形成する。相分離構造を形成した高分子アクリルポリマーとポリアクリレートエポキシ樹脂を含有する樹脂組成物は、高分子アクリルポリマーとエポキシ樹脂の双方の優れた特徴を兼ね備えることが望まれているが、十分に双方の優れた特徴を兼ね備えるものはなかった。
 架橋性官能基を共重合した高分子アクリルポリマーの特徴は、低弾性、伸び率が高い、及び官能基を入れ易い等である。一方、熱硬化性樹脂であるエポキシ樹脂の特徴は、高い絶縁信頼性、高い耐熱性、及び高ガラス転移温度(Tg)等である。
Polyacrylate epoxy resin, which is a mixture of polymer acrylic polymer copolymerized with crosslinkable functional groups and thermosetting resin, is as if it is connected to each other and regularly dispersed. A phase-separated structure is formed between the sea phase of the polymer acrylic polymer, which is an acrylic polymer, and the island phase of the epoxy resin, the main component of which is a polyacrylate epoxy resin. A resin composition containing a polymer acrylic polymer having a phase-separated structure and a polyacrylate epoxy resin is desired to have the excellent characteristics of both a polymer acrylic polymer and an epoxy resin. None of them had excellent characteristics.
The characteristics of the polymer acrylic polymer copolymerized with a crosslinkable functional group are low elasticity, high elongation, and easy insertion of a functional group. On the other hand, the characteristics of the epoxy resin that is a thermosetting resin are high insulation reliability, high heat resistance, high glass transition temperature (Tg), and the like.
 架橋性官能基を共重合した高分子アクリルポリマーとエポキシ樹脂(熱硬化性樹脂)が均一に混ざり合い、見かけ上相溶に近い構造を有した場合は、高分子アクリルポリマー海相の網目にエポキシ樹脂がナノサイズで分散しているため、高分子アクリルポリマーの特性に偏り、エポキシ樹脂が有する高い絶縁信頼性、高い耐熱性、及び高Tgが十分に発現できない。また、比較的金属箔との密着強度が弱い高分子アクリルポリマーの表面積が大きくなり、絶縁層と金属箔との密着強度が低下してしまう。
 一方、相分離構造において、島相の比率が高い場合は、エポキシ樹脂の島相の特性に偏り、金属箔との密着強度は向上するものの、高分子アクリルポリマーが有する低弾性及び柔軟性が十分に発現できない。
If a polymer acrylic polymer copolymerized with crosslinkable functional groups and an epoxy resin (thermosetting resin) are uniformly mixed and apparently have a structure close to compatibility, an epoxy is formed in the network of the polymer acrylic polymer sea phase. Since the resin is dispersed in a nano size, the characteristics of the polymer acrylic polymer are biased, and the high insulation reliability, high heat resistance, and high Tg that the epoxy resin has cannot be sufficiently expressed. Further, the surface area of the polymer acrylic polymer having relatively weak adhesion strength with the metal foil is increased, and the adhesion strength between the insulating layer and the metal foil is lowered.
On the other hand, in the phase separation structure, when the ratio of the island phase is high, the characteristics of the island phase of the epoxy resin are biased and the adhesion strength with the metal foil is improved, but the low elasticity and flexibility of the polymer acrylic polymer are sufficient. Cannot be expressed.
 更には、強度及び耐熱性を付与する目的でフィラー成分の導入が試みられているが、成分の凝集及び沈降、樹脂組成物の高弾性化及び耐熱性の低下を招き、バランスをとることが難しかった。すなわち、絶縁信頼性、高耐熱性、柔軟性、及び低弾性等をすべて満足する絶縁層を形成することが困難であった。 Furthermore, introduction of a filler component has been attempted for the purpose of imparting strength and heat resistance, but it has been difficult to achieve a balance by causing aggregation and sedimentation of the component, higher elasticity of the resin composition and lowering of heat resistance. It was. That is, it has been difficult to form an insulating layer that satisfies all of insulation reliability, high heat resistance, flexibility, low elasticity, and the like.
 本発明の目的は、低弾性、絶縁信頼性、耐熱性、及び金属箔との接着性に優れる、プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板を提供することである。 An object of the present invention is to provide a prepreg, a prepreg with a metal foil, a laminate, a metal-clad laminate, and a printed circuit board that are excellent in low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil. .
 本発明は以下に記載の各事項に関する。
 (1)(A)アクリルポリマーを含む第1相と、(B)熱硬化性樹脂を含む島相としての第2相とが相分離構造を形成し、前記島相の平均ドメインサイズが1μm~10μmであり、(C)フィラーを含有する樹脂組成物が含浸されたプリプレグ。
 (2)前記(A)アクリルポリマーの配合量が、前記(A)アクリルポリマーと前記(B)熱硬化性樹脂の総量を100質量部としたとき10~70質量部である、(1)に記載のプリプレグ。
 (3)前記(C)フィラーとして、(C-1)カップリング処理されたフィラーを含有する、(1)又は(2)に記載のプリプレグ。
 (4)前記(C)フィラーとして、(C-2)カップリング処理されていないフィラーを含有する、(1)~(3)のいずれかに記載のプリプレグ。
 (5)前記(B)熱硬化性樹脂が、(B-1)エポキシ樹脂と(B-2)フェノール樹脂を含む、(1)~(4)のいずれかに記載のプリプレグ。
 (6)前記(B-1)エポキシ樹脂が、1分子内に2個以上のエポキシ基を有するエポキシ樹脂を含有する、(5)に記載のプリプレグ。
 (7)前記(B-1)エポキシ樹脂の重量平均分子量が、200~1,000である、(5)又は(6)に記載のプリプレグ。
 (8)前記(B-1)エポキシ樹脂のエポキシ当量が、150~500である、(5)~(7)に記載のプリプレグ。
 (9)前記(A)アクリルポリマーの重量平均分子量が、10,000~1,500,000である、(1)~(8)のいずれかに記載のプリプレグ。
 (10)前記(B-2)フェノール樹脂が、1分子内に2個以上の水酸基を有するフェノール樹脂を含有する、(5)~(9)のいずれかに記載のプリプレグ。
 (11)前記(C)フィラーとして、シリカを含有する、(1)~(10)のいずれかに記載のプリプレグ。
 (12)前記(C-2)フィラーの体積平均粒径が、1.0μm~3.5μmである(1)~(11)のいずれかに記載のプリプレグ。
 (13)(1)~(12)のいずれかに記載のプリプレグと金属箔とを積層してなる金属箔付きプリプレグ。
 (14)(1)~(12)のいずれかに記載のプリプレグを複数有する積層板。
 (15)(14)に記載の積層板がさらに金属箔を有する金属張積層板。
 (16)(14)に記載の積層板がさらに回路を有するプリント回路基板。
The present invention relates to each item described below.
(1) (A) A first phase containing an acrylic polymer and (B) a second phase as an island phase containing a thermosetting resin form a phase separation structure, and the average domain size of the island phase is 1 μm to A prepreg that is 10 μm and (C) impregnated with a resin composition containing a filler.
(2) The blending amount of the (A) acrylic polymer is 10 to 70 parts by mass when the total amount of the (A) acrylic polymer and the (B) thermosetting resin is 100 parts by mass. The prepreg as described.
(3) The prepreg according to (1) or (2), which contains (C-1) a coupling-treated filler as the (C) filler.
(4) The prepreg according to any one of (1) to (3), wherein (C-2) a filler not subjected to coupling treatment is contained as the (C) filler.
(5) The prepreg according to any one of (1) to (4), wherein the (B) thermosetting resin contains (B-1) an epoxy resin and (B-2) a phenol resin.
(6) The prepreg according to (5), wherein the (B-1) epoxy resin contains an epoxy resin having two or more epoxy groups in one molecule.
(7) The prepreg according to (5) or (6), wherein the weight average molecular weight of the (B-1) epoxy resin is 200 to 1,000.
(8) The prepreg according to (5) to (7), wherein the epoxy equivalent of the (B-1) epoxy resin is 150 to 500.
(9) The prepreg according to any one of (1) to (8), wherein the acrylic polymer (A) has a weight average molecular weight of 10,000 to 1,500,000.
(10) The prepreg according to any one of (5) to (9), wherein the (B-2) phenol resin contains a phenol resin having two or more hydroxyl groups in one molecule.
(11) The prepreg according to any one of (1) to (10), which contains silica as the filler (C).
(12) The prepreg according to any one of (1) to (11), wherein the volume average particle size of the (C-2) filler is 1.0 μm to 3.5 μm.
(13) A prepreg with a metal foil obtained by laminating the prepreg according to any one of (1) to (12) and a metal foil.
(14) A laminate having a plurality of the prepregs according to any one of (1) to (12).
(15) A metal-clad laminate in which the laminate according to (14) further has a metal foil.
(16) A printed circuit board in which the laminated board according to (14) further has a circuit.
 本発明によれば、低弾性、絶縁信頼性、耐熱性、及び金属箔との接着性に優れる、プリプレグ、樹脂付き金属箔、及びプリント回路基板を提供することができる。 According to the present invention, it is possible to provide a prepreg, a metal foil with a resin, and a printed circuit board that are excellent in low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil.
樹脂組成物の相分離構造が連続球状構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a continuous spherical structure. 樹脂組成物の相分離構造が海島構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a sea-island structure. 樹脂組成物の相分離構造が複合分散相構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a composite dispersed phase structure. 樹脂組成物の相分離構造が共連続相構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a bicontinuous phase structure. 本発明で得られる海島構造を有する樹脂組成物の一例としての断面構造を表す電子顕微鏡写真である。It is an electron micrograph showing the cross-sectional structure as an example of the resin composition which has the sea island structure obtained by this invention. 本発明で得られる複合分散相構造を有する樹脂組成物の一例としての断面構造を表す電子顕微鏡写真である。It is an electron micrograph showing the cross-sectional structure as an example of the resin composition which has the composite dispersed phase structure obtained by this invention.
 以下、本発明の一実施形態について詳述するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, one embodiment of the present invention will be described in detail, but the present invention is not limited to the following embodiment.
(プリプレグ)
 本発明の実施の形態に係るプリプレグは、(A)アクリルポリマー(以下、「(A)成分」と称する。)を含む第1相と、(B)熱硬化性樹脂(以下、「(B)成分」と称する。)を含む島相としての第2相とが相分離構造を形成し、前記島相の平均ドメインサイズが1μm~10μmであり、(C)フィラー成分(以下、「(C)成分」と称する。)を含有する樹脂組成物が含浸されたプリプレグであることを特徴とする。
 (A)成分が島相ではなくて海相を形成する理由については、分子量が大きくて絡み合いが多い(A)成分中で、(B)成分の相分離が起こる際、(A)成分が島相となるためにはその絡み合いや架橋網目を切断しなくてはならず、島相にはなりにくいためと考えられる。
(Prepreg)
The prepreg according to the embodiment of the present invention includes a first phase containing (A) an acrylic polymer (hereinafter referred to as “component (A)”), and (B) a thermosetting resin (hereinafter referred to as “(B)”. And the second phase as an island phase containing a component)) forms a phase separation structure, and the average domain size of the island phase is 1 μm to 10 μm. (C) filler component (hereinafter referred to as “(C) It is a prepreg impregnated with a resin composition containing “component”.
The reason why the component (A) forms the sea phase instead of the island phase is that when the phase separation of the component (B) occurs in the component (A) having a large molecular weight and a large amount of entanglement, the component (A) In order to become a phase, it is considered that the entanglement and cross-linking network must be cut, and it is difficult to become an island phase.
[樹脂組成物]
[アクリルポリマー:(A)成分]
 (A)成分は、アクリルポリマーであり、通常(メタ)アクリル酸アルキルエステルをモノマーとする共重合体である。共重合体としては、架橋性官能基を共重合したアクリルポリマーが好ましい。このような共重合体は一般に、(メタ)アクリル酸アルキルエステルと架橋性官能基を有する共重合モノマーとを共重合することにより生成される。架橋性官能基を有する共重合モノマーとしては、(メタ)アクリル酸アルキルエステルと共重合できる化合物であれば特に制限されものではなく、架橋性官能基としては、エポキシ基を有することが好ましく、グリシジル基を有することがより好ましい。架橋性官能基を有する共重合モノマーとしては、(メタ)アクリル酸グリシジルを用いることが好ましい。(メタ)アクリル酸アルキルエステルにおいて、アルキル基は炭素数1~20のアルキル基であることが好ましく、アルキル基は置換基を有していてもよい。アルキル基の置換基としては、例えば、脂環基、グリシジル基、水酸基を有する炭素数1~6のアルキル基、含窒素環状基等が挙げられる。
 (メタ)アクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸イソブチル、アクリル酸エチレングリコールメチルエーテル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸イソボルニル、アクリル酸アミド、アクリル酸イソデシル、アクリル酸オクタデシル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸N-ビニルピロリドン、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸イソブチル、メタクリル酸エチレングリコールメチルエーテル、メタクリル酸シクロヘキシル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸イソボルニル、メタクリル酸アミド、メタクリル酸イソデシル、メタクリル酸オクタデシル、メタクリル酸ラウリル、メタクリル酸アリル、メタクリル酸N-ビニルピロリドン、アクリロニトリル等が挙げられる。
[Resin composition]
[Acrylic polymer: component (A)]
The component (A) is an acrylic polymer, and is usually a copolymer having a (meth) acrylic acid alkyl ester as a monomer. As the copolymer, an acrylic polymer copolymerized with a crosslinkable functional group is preferable. Such a copolymer is generally produced by copolymerizing a (meth) acrylic acid alkyl ester and a copolymerizable monomer having a crosslinkable functional group. The copolymerizable monomer having a crosslinkable functional group is not particularly limited as long as it is a compound copolymerizable with (meth) acrylic acid alkyl ester, and the crosslinkable functional group preferably has an epoxy group, and glycidyl. It is more preferable to have a group. As the copolymerizable monomer having a crosslinkable functional group, glycidyl (meth) acrylate is preferably used. In the (meth) acrylic acid alkyl ester, the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, and the alkyl group may have a substituent. Examples of the substituent of the alkyl group include an alicyclic group, a glycidyl group, an alkyl group having 1 to 6 carbon atoms having a hydroxyl group, and a nitrogen-containing cyclic group.
Examples of (meth) acrylic acid alkyl esters include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, ethylene glycol methyl ether acrylate, and acrylic. Cyclohexyl acid, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, amide acrylate, isodecyl acrylate, octadecyl acrylate, lauryl acrylate, allyl acrylate, N-vinylpyrrolidone acrylate, methacrylic acid Methyl, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, isobutyl methacrylate, ethyl methacrylate Lenglycol methyl ether, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, isobornyl methacrylate, methacrylic acid amide, isodecyl methacrylate, octadecyl methacrylate, lauryl methacrylate, allyl methacrylate, N methacrylate -Vinylpyrrolidone, acrylonitrile and the like.
 (A)成分がエポキシ機を有する場合、そのエポキシ価は、2当量/kg~18当量/kgであることが好ましく、2当量/kg~8当量/kgであることがより好ましい。エポキシ価が2当量/kg以上であると、硬化物のガラス転移温度の低下が抑えられて基板の耐熱性が十分に保たれ、18当量/kg以下であると、貯蔵弾性率が大きくなりすぎることなく、基板の寸法安定性が保持される傾向にある。(A)成分のエポキシ価は、(メタ)アクリル酸グリシジルとこれと共重合可能な他のモノマーとを共重合する際、共重合比を適宜調整することで調節可能である。通常、(メタ)アクリル酸グリシジル100質量部に対して、これ以外のモノマーの比率を5質量部~15質量部とすることで、2当量/kg~18当量/kgのエポキシ価を有する高分子アクリルポリマーが得られる。 When the component (A) has an epoxy machine, the epoxy value is preferably 2 equivalent / kg to 18 equivalent / kg, more preferably 2 equivalent / kg to 8 equivalent / kg. When the epoxy value is 2 equivalents / kg or more, a decrease in the glass transition temperature of the cured product is suppressed, and the heat resistance of the substrate is sufficiently maintained. When the epoxy value is 18 equivalents / kg or less, the storage elastic modulus becomes too large. Without tending, the dimensional stability of the substrate tends to be maintained. The epoxy value of the component (A) can be adjusted by appropriately adjusting the copolymerization ratio when copolymerizing glycidyl (meth) acrylate and another monomer copolymerizable therewith. Usually, a polymer having an epoxy value of 2 equivalents / kg to 18 equivalents / kg is obtained by setting the ratio of other monomers to 5 to 15 parts by mass with respect to 100 parts by mass of glycidyl (meth) acrylate. An acrylic polymer is obtained.
 エポキシ基を有する(A)成分の市販品としては、例えば、「HTR-860」(ナガセケムテックス株式会社製、商品名、エポキシ価3.1)、「KH-CT-865」(日立化成株式会社製、商品名、エポキシ価3.0)、「HAN5-M90S」(根上工業株式会社製、商品名、エポキシ価2.2)が入手可能である。(A)成分の重量平均分子量は、伸び率を向上させる観点、及び低弾性を向上させる観点から、10,000~1,500,000であることが好ましく、50,000~1,500,000であることがより好ましく、300,000~1,500,000であることがさらに好ましく、300,000~1,100,000であることが特に好ましい。(A)成分の重量平均分子量が1,500,000以下であると、溶剤に溶けやすくて扱いやすい傾向にある。また、(A)成分の重量平均分子量が1,500,000以下であると、(B)成分を配合したときにドメインの比較的大きな共連続相を有する相分離構造を形成しにくい傾向にあり、高い絶縁信頼性、高耐熱性、金属箔との高い接着性を発現しやすくなる傾向にある。(A)成分の重量平均分子量が10,000以上であると、(A)成分の有する低弾性を発現しやすい傾向となる。
 (A)成分は、重量平均分子量の異なる2種以上を組み合わせてもよい。
 上記の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)分析によって測定される値であって、標準ポリスチレン換算値のことを意味する。GPC分析は、テトラヒドロフラン(THF)を溶解液として用いて行うことができる。
Commercially available products of component (A) having an epoxy group include, for example, “HTR-860” (manufactured by Nagase ChemteX Corporation, product name, epoxy value 3.1), “KH-CT-865” (Hitachi Chemical Co., Ltd.) Company name, product name, epoxy value 3.0), “HAN5-M90S” (manufactured by Negami Kogyo Co., Ltd., product name, epoxy value 2.2) are available. The weight average molecular weight of the component (A) is preferably 10,000 to 1,500,000 from the viewpoint of improving elongation and improving low elasticity, and is preferably 50,000 to 1,500,000. Is more preferable, 300,000 to 1,500,000 is more preferable, and 300,000 to 1,100,000 is particularly preferable. When the weight average molecular weight of the component (A) is 1,500,000 or less, the component tends to be easily dissolved in a solvent and easy to handle. Moreover, when the weight average molecular weight of the component (A) is 1,500,000 or less, when the component (B) is blended, it tends to be difficult to form a phase separation structure having a relatively large co-continuous phase of the domain. In addition, high insulation reliability, high heat resistance, and high adhesiveness with metal foil tend to be developed. When the weight average molecular weight of the component (A) is 10,000 or more, the low elasticity of the component (A) tends to be easily developed.
(A) A component may combine 2 or more types from which a weight average molecular weight differs.
The weight average molecular weight is a value measured by gel permeation chromatography (GPC) analysis and means a standard polystyrene equivalent value. The GPC analysis can be performed using tetrahydrofuran (THF) as a solution.
 また、(A)成分は、プレッシャークッカーバイアステスト(PCBT)等の絶縁信頼性の加速試験において十分な特性を得るためには、そのアルカリ金属イオン濃度が500ppm以下であることが好ましく、より好ましくは200ppm以下、さらに好ましくは100ppm以下である。 The component (A) preferably has an alkali metal ion concentration of 500 ppm or less, more preferably, in order to obtain sufficient characteristics in an insulation reliability acceleration test such as a pressure cooker bias test (PCBT). 200 ppm or less, more preferably 100 ppm or less.
 (A)成分は、一般的にはラジカルを発生させるラジカル重合開始剤を用いて、モノマーをラジカル重合することにより得られる。ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、過安息香酸tert-ブチル、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等の過硫酸塩、クメンヒドロペルオキシド、t-ブチルヒドロペルオキシド、ジクミルペルオキシド、ジt-ブチルペルオキシド、2,2’-アゾビス-2,4-ジメチルバレロニトリル、t-ブチルペルイソブチレート、t-ブチルペルピバレート、過酸化水素/第一鉄塩、過硫酸塩/酸性亜硫酸ナトリウム、クメンヒドロペルオキシド/第一鉄塩、過酸化ベンゾイル/ジメチルアニリン等が挙げられる。ラジカル重合開始剤として、これらを単独で用いてもよいし、2種以上を組み合わせてもよい。 The component (A) is generally obtained by radical polymerization of a monomer using a radical polymerization initiator that generates radicals. Examples of radical polymerization initiators include persulfates such as azobisisobutyronitrile (AIBN), tert-butyl perbenzoate, benzoyl peroxide, lauroyl peroxide, potassium persulfate, cumene hydroperoxide, t-butyl hydroperoxide Dicumyl peroxide, di-t-butyl peroxide, 2,2′-azobis-2,4-dimethylvaleronitrile, t-butyl perisobutyrate, t-butyl perpivalate, hydrogen peroxide / ferrous salt, Examples thereof include persulfate / sodium acid sulfite, cumene hydroperoxide / ferrous salt, benzoyl peroxide / dimethylaniline, and the like. As the radical polymerization initiator, these may be used alone or in combination of two or more.
 本発明の実施の形態に係る樹脂組成物において(A)成分の配合量は、(A)成分と(B)成分の総量を100質量部としたとき10~70質量部であることが好ましい。10質量部未満であると、(A)成分の優れた特徴である低弾性が効果的に発現しない傾向にある。また70質量部を超えると、良好な金属箔との接着強度が得られない傾向や、難燃性が低下する傾向がある。
 また、特に低弾性とする観点からは、(A)成分と(B)成分の総量100質量部における(A)成分の配合量が15質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
 また、特に良好な金属箔との接着強度を得る観点からは、(A)成分と(B)成分の総量100質量部における(A)成分の配合量が60質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。
In the resin composition according to the embodiment of the present invention, the amount of the component (A) is preferably 10 to 70 parts by mass when the total amount of the components (A) and (B) is 100 parts by mass. When the amount is less than 10 parts by mass, low elasticity, which is an excellent feature of the component (A), tends not to be effectively expressed. Moreover, when it exceeds 70 mass parts, there exists a tendency for the adhesive strength with favorable metal foil not to be obtained, or for a flame retardance to fall.
Moreover, it is preferable that the compounding quantity of (A) component in the total amount of 100 mass parts of (A) component and (B) component is 15 mass parts or more from a viewpoint made especially low elasticity, and is 20 mass parts or more. More preferably, it is more preferably 30 parts by mass or more.
In addition, from the viewpoint of obtaining particularly good adhesive strength with the metal foil, the blending amount of the component (A) in the total amount of 100 parts by mass of the component (A) and the component (B) is preferably 60 parts by mass or less. The amount is more preferably 50 parts by mass or less, and further preferably 40 parts by mass or less.
[熱硬化性樹脂:(B)成分]
 本発明において用いられる(B)成分としては、(A)成分と組み合わせて硬化したときに相分離構造を有するものが適宜選択される。(B)成分としては、特に限定されるものではないが、例えば、エポキシ樹脂、シアネート樹脂、ビスマレイミド樹脂、ビスマレイミド樹脂とジアミンとの付加重合物、フェノール樹脂、レゾール樹脂、イソシアネート樹脂、トリアリルイソシアヌレート樹脂、トリアリルシアヌレート樹脂、及びビニル基含有ポリオレフィン化合物等が挙げられる。これらの中でも耐熱性、絶縁性等の性能のバランスを考慮すると、エポキシ樹脂又はシアネート樹脂が好ましい。
[Thermosetting resin: component (B)]
As the component (B) used in the present invention, one having a phase separation structure when cured in combination with the component (A) is appropriately selected. The component (B) is not particularly limited. For example, epoxy resin, cyanate resin, bismaleimide resin, addition polymer of bismaleimide resin and diamine, phenol resin, resole resin, isocyanate resin, triallyl. Examples include isocyanurate resins, triallyl cyanurate resins, and vinyl group-containing polyolefin compounds. Among these, an epoxy resin or a cyanate resin is preferable in consideration of a balance of performance such as heat resistance and insulation.
 本発明の実施の形態に係る樹脂組成物を硬化すると、相分離構造を有する樹脂複合体を形成し得る(B)成分は、(B-1)1分子内に2個以上のエポキシ基を有するエポキシ樹脂(以下、「(B-1)成分」と称する。)と(B-2)1分子内に2個以上の水酸基を有するフェノール樹脂(以下、「(B-2)成分」と称する。)を含む樹脂組成物であることが好ましい。 When the resin composition according to the embodiment of the present invention is cured, the component (B) capable of forming a resin composite having a phase separation structure has (B-1) two or more epoxy groups in one molecule. Epoxy resin (hereinafter referred to as “component (B-1)”) and (B-2) a phenol resin having two or more hydroxyl groups in one molecule (hereinafter referred to as “component (B-2)”). It is preferable that it is a resin composition containing).
<1分子内に2個以上のエポキシ基を有するエポキシ樹脂:(B-1)成分>
 (B)成分は、(B-1)成分を含むことが好ましい。
 (B-1)成分の重量平均分子量は、200~1,000であることが好ましく、300~900であることがより好ましい。重量平均分子量が200以上であると、(A)成分と相分離構造を形成する傾向があり、1,000以下であるとドメインの比較的小さな第2相を有する相分離構造を形成しやすい傾向があり、低弾性を発現しやすい傾向がある。
 (B-1)成分のエポキシ当量としては、150~500であることが好ましく、150~450であることがより好ましく、150~300であることがより好ましい。エポキシ樹脂のエポキシ当量が上記の範囲内にあると、第2相の平均ドメインサイズが大きくなり過ぎない傾向にある。
<Epoxy resin having two or more epoxy groups in one molecule: Component (B-1)>
The component (B) preferably contains the component (B-1).
The weight average molecular weight of the component (B-1) is preferably 200 to 1,000, and more preferably 300 to 900. When the weight average molecular weight is 200 or more, there is a tendency to form a phase separation structure with the component (A), and when it is 1,000 or less, a phase separation structure having a second phase having a relatively small domain tends to be formed. There is a tendency to exhibit low elasticity.
The epoxy equivalent of the component (B-1) is preferably 150 to 500, more preferably 150 to 450, and more preferably 150 to 300. When the epoxy equivalent of the epoxy resin is within the above range, the average domain size of the second phase tends not to be too large.
 (B-1)成分としては、公知のものを用いることができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、リン含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アラルキレン骨格含有エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノールサリチルアルデヒドノボラック型エポキシ樹脂、低級アルキル基置換フェノールサリチルアルデヒドノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、多官能グリシジルアミン型エポキシ樹脂、多官能脂環式エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。
 (B-1)成分の市販品としては、例えば、フェノールノボラック型エポキシ樹脂である「N770」(DIC株式会社製、商品名)、テトラブロモビスフェノールA型エポキシ樹脂である「EPICLON 153」(DIC株式会社製、商品名)、ビフェニルアラルキル型エポキシ樹脂である「NC-3000H」(日本化薬株式会社製、商品名)、ビスフェノールA型エポキシ樹脂である「エピコート1001」(三菱化学株式会社製、商品名)、リン含有エポキシ樹脂である「ZX-1548」(東都化成株式会社製、商品名)、クレゾールノボラック型エポキシ樹脂である「EPICLON N-660」(DIC株式会社製、商品名)等が挙げられる。
As the component (B-1), known components can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol Novolac type epoxy resin, bisphenol A novolac type epoxy resin, phosphorus containing epoxy resin, naphthalene skeleton containing epoxy resin, aralkylene skeleton containing epoxy resin, phenol biphenyl aralkyl type epoxy resin, phenol salicylaldehyde novolak type epoxy resin, lower alkyl group substituted phenol salicyl Aldehyde novolac type epoxy resin, dicyclopentadiene skeleton-containing epoxy resin, polyfunctional glycidylamine type epoxy resin, polyfunctional alicyclic epoxy resin, Love Romo bisphenol A type epoxy resins. These 1 type (s) or 2 or more types can be used.
Commercially available products of component (B-1) include, for example, “N770” which is a phenol novolac type epoxy resin (trade name, manufactured by DIC Corporation), and “EPICLON 153” which is a tetrabromobisphenol A type epoxy resin (DIC stock). "NC-3000H" (product name) manufactured by Nippon Kayaku Co., Ltd., "Epicoat 1001" (product manufactured by Mitsubishi Chemical Corporation, product) Name), “ZX-1548” (trade name, manufactured by Toto Kasei Co., Ltd.) which is a phosphorus-containing epoxy resin, “EPICLON N-660” (trade name, manufactured by DIC Corporation), which is a cresol novolac type epoxy resin, and the like. It is done.
<1分子内に2個以上の水酸基を有するフェノール樹脂:(B-2)成分>
 (B)成分は、金属箔との密着強度確保の観点から、(B-2)成分を含むことが好ましい。
 (B-2)成分としては、公知のものを用いることができ、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂の共重合型樹脂及びノボラック型フェノール樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。
<Phenol resin having two or more hydroxyl groups in one molecule: Component (B-2)>
The component (B) preferably contains the component (B-2) from the viewpoint of ensuring adhesion strength with the metal foil.
As the component (B-2), known components can be used. For example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a copolymer of a benzaldehyde type phenol resin and an aralkyl type phenol resin. Type resin and novolac type phenol resin. These 1 type (s) or 2 or more types can be used.
 (B-2)成分としては、低吸水性の観点から、フェノールノボラック等の多価フェノール類の使用が好ましい。
 (B-2)成分の市販品として、例えば、クレゾールノボラック型樹脂である「KA-1165」(DIC株式会社社製、商品名)、及びビフェニルノボラック型樹脂である「MEH-7851」(明和化成株式会社社製、商品名)等が挙げられる。
As the component (B-2), polyhydric phenols such as phenol novolac are preferably used from the viewpoint of low water absorption.
As commercial products of the component (B-2), for example, “KA-1165” (trade name, manufactured by DIC Corporation) which is a cresol novolac resin, and “MEH-7851” (Maywa Kasei Co., Ltd.) which is a biphenyl novolac resin. For example, product name).
 (B-2)成分の配合割合は、通常、ガラス転移温度が高くなるようにその配合比が決定される。例えば、(B-2)成分としてフェノールノボラック型樹脂を用いる場合は、(B-1)成分のエポキシ基に対して0.5当量~1.5当量であることが好ましい。エポキシ基に対して0.5当量~1.5当量であることで、外層銅との接着性の低下を防ぎ、かつガラス転移温度(Tg)及び絶縁性の低下をも防ぐことができる。 (B-2) The blending ratio of the component is usually determined so that the glass transition temperature becomes high. For example, when a phenol novolac resin is used as the component (B-2), the amount is preferably 0.5 to 1.5 equivalents relative to the epoxy group of the component (B-1). When the amount is 0.5 to 1.5 equivalents relative to the epoxy group, it is possible to prevent a decrease in adhesiveness with the outer layer copper and to prevent a decrease in glass transition temperature (Tg) and insulation.
<(B)成分の硬化剤>
 本発明の樹脂組成物は、(B)成分の硬化剤を含んでもよい。(B)成分の硬化剤としては、公知のものを用いることができる。例えば、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等のアミン系硬化剤、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸等の酸無水物硬化剤又はこれらの混合物等が挙げられる。
 本発明における(B)成分とその硬化剤との組み合わせは、使用する(A)成分、硬化条件、硬化剤、及び硬化触媒により種々の組み合わせが考えられる。
 一般的に、樹脂硬化物の相構造は相分離速度と架橋反応速度の競争反応で決定される。エポキシ樹脂を例として挙げれば、触媒種及び骨格構造等をコントロールして、特性のそれぞれ異なるエポキシ樹脂を混合し、硬化させることで、平均ドメインサイズが約1μm~10μmという相分離構造である海島構造を形成することが可能となる。
<Curing agent for component (B)>
The resin composition of the present invention may contain a curing agent as component (B). (B) A well-known thing can be used as a hardening | curing agent of a component. Examples thereof include amine curing agents such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone, acid anhydride curing agents such as pyromellitic anhydride, trimellitic anhydride, and benzophenonetetracarboxylic acid, or a mixture thereof.
Various combinations of the component (B) and its curing agent in the present invention are conceivable depending on the component (A), curing conditions, curing agent, and curing catalyst used.
In general, the phase structure of the cured resin is determined by a competitive reaction between the phase separation rate and the crosslinking reaction rate. Taking an epoxy resin as an example, a sea-island structure that has a phase separation structure with an average domain size of about 1 μm to 10 μm by mixing and curing epoxy resins with different characteristics while controlling the catalyst type and skeleton structure, etc. Can be formed.
[フィラー:(C)成分]
 本発明の実施の形態に係る樹脂組成物は、(C)成分としてシリカを1種以上含有することが好ましい。また、本発明の実施の形態に係る樹脂組成物は、(C)成分として、(C-1)カップリング処理を施したフィラー(以下、「(C-1)成分」と称する。)を1種以上含有することが好ましい。また、本発明の実施の形態に係る樹脂組成物は、(C)成分として、(C-2)カップリング処理を施していないフィラー(以下、「(C-2)成分」と称する。)を1種以上含有することが好ましい。
[Filler: (C) component]
The resin composition according to the embodiment of the present invention preferably contains one or more types of silica as the component (C). In the resin composition according to the embodiment of the present invention, as the component (C), (C-1) a filler subjected to a coupling treatment (hereinafter referred to as “(C-1) component”) is 1. It is preferable to contain more than one species. In the resin composition according to the embodiment of the present invention, (C-2) a filler not subjected to coupling treatment (hereinafter referred to as “(C-2) component”) is used as the (C) component. It is preferable to contain 1 or more types.
 本発明に用いられる(C)成分は、(C-1)成分を1種以上、且つ、(C-2)成分を1種以上含むことが好ましい。カップリング処理を施したものと施していない(C-2)成分を用いることで、樹脂組成物内のフィラー分散性をコントロールすることができ、(A)成分及び(B)成分の双方の特徴を十分に発現することが可能となる。
 (C-1)成分の平均粒径は、0.1μm~1.5μmであることが好ましく、0.2μm~1.2μmであることがより好ましく、0.3μm~1.0μmであることがさらに好ましい。(C-1)成分の平均粒径が0.1μm以上であるとワニス化した際にフィラー同士が分散しやすくなり凝集が起こりにくい傾向があり、1.5μm以下であるとワニス化の際に(C)成分の沈降が起き難い傾向がある。
 (C-2)成分の平均粒径は、1.0μm~3.5μmであることが好ましく、1.2μm~3.2μmであることがより好ましく、1.4μm~3.0μmであることがさらに好ましい。(C-2)成分の平均粒径が1.0μm以上であるとフィラー同士が分散しやすくなり凝集が起こりにくい傾向があり、3.5μm以下であるとワニス化の際に(C)成分の沈降が起き難い傾向がある。
 ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
The component (C) used in the present invention preferably contains one or more components (C-1) and one or more components (C-2). By using the component (C-2) with and without the coupling treatment, the dispersibility of the filler in the resin composition can be controlled, and the characteristics of both the component (A) and the component (B) Can be fully expressed.
The average particle size of the component (C-1) is preferably 0.1 μm to 1.5 μm, more preferably 0.2 μm to 1.2 μm, and preferably 0.3 μm to 1.0 μm. Further preferred. When the average particle size of component (C-1) is 0.1 μm or more, fillers tend to disperse when varnished, and aggregation tends not to occur, and when it is 1.5 μm or less, varnishing occurs. There is a tendency that the precipitation of the component (C) hardly occurs.
The average particle diameter of the component (C-2) is preferably 1.0 μm to 3.5 μm, more preferably 1.2 μm to 3.2 μm, and preferably 1.4 μm to 3.0 μm. Further preferred. When the average particle size of the component (C-2) is 1.0 μm or more, the fillers tend to disperse and tend not to agglomerate, and when it is 3.5 μm or less, the component (C) There is a tendency that sedimentation hardly occurs.
Here, the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve according to the particle diameter is obtained with the total volume of the particles being 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
 本発明に用いられる(C)成分は、公知のものを使用できる。熱膨張率を下げる目的、難燃性を確保する目的のため無機系フィラーを添加することが好ましい。無機系フィラーとしては、シリカ、アルミナ、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、酸化カルシウム、酸化マグネシウム、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、炭化ケイ素等を挙げることができる。中でも、誘電率が低いこと、線膨張率が低いことからシリカを用いることがより好ましい。
 本発明で用いられるシリカとしては、湿式法又は乾式法で合成された各種合成シリカ又は珪石を破砕した破砕シリカ、一度溶融させた溶融シリカ等種々なものを用いることができる。
A well-known thing can be used for (C) component used for this invention. It is preferable to add an inorganic filler for the purpose of lowering the coefficient of thermal expansion and ensuring the flame retardancy. As inorganic fillers, silica, alumina, titanium oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, calcium oxide, magnesium oxide, aluminum nitride, aluminum borate whisker, boron nitride, silicon carbide, etc. Can be mentioned. Among these, silica is more preferable because of its low dielectric constant and low linear expansion coefficient.
As the silica used in the present invention, various synthetic silicas synthesized by a wet method or a dry method, crushed silica obtained by crushing silica stone, fused silica once melted, and the like can be used.
 本発明において、(C)成分の配合比は、全樹脂組成物の固形分の5質量%~40質量%であることが好ましく、10質量%~35質量%であることがより好ましく、15質量%~30質量%であることがさらに好ましい。(C)成分の配合比が40質量%以下であることで、絶縁性樹脂が脆くなることがなく、(A)成分の架橋性官能基を共重合した高分子アクリルポリマーの有する低弾性、柔軟性が十分に得られる傾向がある。また、(C)成分の配合比が5質量%以上であることで、線膨張率が低くなり十分な耐熱性が得られる傾向がある。
 本明細書において、「固形分」とは、溶媒等の揮発する物質を除いた不揮発分のことであり、該樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を示す。
In the present invention, the blending ratio of component (C) is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 35% by mass, and more preferably 15% by mass, based on the solid content of the total resin composition. More preferably, the content is from 30% by mass to 30% by mass. The blending ratio of the component (C) is 40% by mass or less, so that the insulating resin does not become brittle and the low-elasticity and flexibility of the polymer acrylic polymer copolymerized with the crosslinkable functional group of the component (A) There is a tendency that sufficient sex is obtained. Moreover, when the compounding ratio of the component (C) is 5% by mass or more, the linear expansion coefficient tends to be low and sufficient heat resistance tends to be obtained.
In the present specification, the “solid content” is a non-volatile content excluding a volatile substance such as a solvent, and indicates a component that remains without volatilization when the resin composition is dried. Also includes liquid, syrupy and waxy. Here, room temperature in this specification indicates 25 ° C.
<硬化促進剤>
 樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤としては、特に限定されるものではないが、アミン類、又はイミダゾール類が好ましい。アミン類は、ジシアンジアミド、ジアミノジフェニルエタン、グアニル尿素等を例示することができる。イミダゾール類は、2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、ベンゾイミダゾール等を例示することができる。
 硬化促進剤の配合量は、例えば、樹脂組成物におけるオキシラン環の総量に応じて決定することができるが、一般的に樹脂組成物の樹脂固形分100質量部中、0.01質量部~10質量部とすることが好ましく、0.02質量部~9.0質量部であることがより好ましく、0.03質量部~8.0質量部であることがさらに好ましい。
<Curing accelerator>
The resin composition may contain a curing accelerator. Although it does not specifically limit as a hardening accelerator, Amines or imidazoles are preferable. Examples of amines include dicyandiamide, diaminodiphenylethane, guanylurea and the like. Imidazoles include 2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, A benzimidazole etc. can be illustrated.
The blending amount of the curing accelerator can be determined, for example, according to the total amount of oxirane rings in the resin composition, but is generally 0.01 to 10 parts by mass in 100 parts by mass of the resin solid content of the resin composition. The mass is preferably 0.02 parts by mass to 9.0 parts by mass, and more preferably 0.03 parts by mass to 8.0 parts by mass.
<その他成分>
 本発明に係る樹脂組成物は、必要に応じて、例えば、架橋剤、難燃剤、流動調整剤、導電性粒子、カップリング剤、顔料、レベリング剤、消泡剤、イオントラップ剤及び酸化防止剤等を含んでいてもかまわず、公知のものを用いることができる。
<Other ingredients>
The resin composition according to the present invention includes, for example, a crosslinking agent, a flame retardant, a flow regulator, conductive particles, a coupling agent, a pigment, a leveling agent, an antifoaming agent, an ion trapping agent, and an antioxidant as necessary. Etc., and any known ones can be used.
<溶剤>
 本発明の樹脂組成物を用いて、プリプレグ等を製造する場合、本発明の樹脂組成物の成分が有機溶媒に溶解又は分散した状態のワニスにしてもよい。
 本発明の樹脂組成物をワニスにする際に用いられる有機溶剤としては、特に制限されるものではないが、ケトン系、芳香族炭化水素系、エステル系、アミド系、アルコール系等が用いられる。
 ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン等が挙げられる。
 エステル系溶剤としては、例えば、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等が挙げられる。
 アミド系溶剤としては、例えば、N-メチルピロリドン、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 アルコール系溶剤としては、例えば、メタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等が挙げられる。
 これらの有機溶剤は1種又は2種以上を混合して用いてもよい。
<Solvent>
When manufacturing a prepreg etc. using the resin composition of this invention, you may make it the varnish in which the component of the resin composition of this invention melt | dissolved or disperse | distributed to the organic solvent.
Although it does not restrict | limit especially as an organic solvent used when making the resin composition of this invention a varnish, Ketone type, aromatic hydrocarbon type, ester type, amide type, alcohol type etc. are used.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
Examples of the aromatic hydrocarbon solvent include toluene and xylene.
Examples of the ester solvent include methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, and ethyl acetate.
Examples of the amide solvent include N-methylpyrrolidone, formamide, N-methylformamide, N, N-dimethylacetamide and the like.
Examples of alcohol solvents include methanol, ethanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol, propylene glycol monomethyl ether, Examples include dipropylene glycol monomethyl ether, propylene glycol monopropyl ether, and dipropylene glycol monopropyl ether.
These organic solvents may be used alone or in combination of two or more.
[相分離構造]
 本発明における相分離構造とは、海島構造、連続球状構造、複合分散相構造、共連続相構造であって、島相の平均ドメインサイズは1μm~10μmであり、好ましくは1.5μm~9μmであり、より好ましくは2μm~8μmである。
 島相の平均ドメインサイズが1μm未満であると、熱硬化性樹脂(B)の持つ良好な絶縁信頼性及び高耐熱性が発現し難い傾向にある。また、比較的金属箔との接着強度が弱いアクリルポリマーの表面積が大きくなり、絶縁層と金属箔との良好な接着強度が得られない傾向にある。
 また、島相の平均ドメインサイズが10μmを超えると、(A)成分の持つ低弾性が発現し難い傾向にある。
 ここで、島相の平均ドメインサイズとは、熱硬化させた当該樹脂組成物の断面をミクロトームにて平滑化した後、電子顕微鏡により得られた断面構造から、70個以上の島相について、最大幅と最小幅をそれぞれ測定し、その平均値を算出した。
[Phase separation structure]
The phase separation structure in the present invention is a sea-island structure, a continuous spherical structure, a composite dispersed phase structure, or a co-continuous phase structure, and the average domain size of the island phase is 1 μm to 10 μm, preferably 1.5 μm to 9 μm. More preferably, it is 2 μm to 8 μm.
When the average domain size of the island phase is less than 1 μm, good insulation reliability and high heat resistance of the thermosetting resin (B) tend not to be exhibited. Moreover, the surface area of the acrylic polymer having relatively weak adhesive strength with the metal foil is increased, and there is a tendency that good adhesive strength between the insulating layer and the metal foil cannot be obtained.
Moreover, when the average domain size of an island phase exceeds 10 micrometers, it exists in the tendency for the low elasticity which (A) component has to express easily.
Here, the average domain size of the island phase is the maximum of 70 or more island phases obtained from the cross-sectional structure obtained by an electron microscope after smoothing the cross section of the thermosetting resin composition with a microtome. The large and minimum widths were measured, and the average value was calculated.
 なお、相分離構造としての海島構造、連続球状構造、複合分散相構造、及び共連続相構造(連続相構造ともいう)については、例えば、「ポリマーアロイ」第325頁(1993)東京化学同人に、連続球状構造については、例えば、Keizo Yamanaka and Takashi Iniue,POLYMER,Vol.30,pp.662(1989)に詳しく述べられている。 Regarding the sea-island structure, continuous spherical structure, composite dispersed phase structure, and co-continuous phase structure (also referred to as continuous phase structure) as the phase separation structure, for example, “Polymer Alloy” page 325 (1993) The continuous spherical structure is described in detail, for example, in Keizo Yamanaka and Takashi Iniue, POLYMER, Vol. 30, pp. 662 (1989).
 図1~図4に、それぞれ連続球状構造、海島構造、複合分散相構造、及び共連続相構造を表すモデル図を示す。 1 to 4 show model diagrams representing a continuous spherical structure, a sea-island structure, a composite dispersed phase structure, and a co-continuous phase structure, respectively.
 このような微細な相分離構造は、樹脂組成物の触媒種、反応温度等の硬化条件、又は樹脂組成物の各成分間の相溶性を制御することにより得られる。相分離を発生しやすくするためには、例えば、アルキル基置換のエポキシ樹脂を用いて高分子アクリルポリマーとの相溶性を低下させたり、同一の組成系の場合には、硬化温度を高くしたり、触媒種の選択によって硬化速度を遅くすることによって達成できる。 Such a fine phase separation structure can be obtained by controlling the catalyst species of the resin composition, the curing conditions such as the reaction temperature, or the compatibility between the components of the resin composition. In order to facilitate the occurrence of phase separation, for example, using an alkyl group-substituted epoxy resin to reduce the compatibility with the polymer acrylic polymer, or in the case of the same composition system, the curing temperature is increased. This can be achieved by slowing the curing rate by the choice of catalyst species.
 図5に、このようにして得られた海島構造を有する樹脂組成物の一例の断面構造を表す電子顕微鏡写真を示す。図示するように、樹脂組成物は、アクリルポリマー相とエポキシ樹脂リッチ相とからなる海島構造を有している。また、エポキシ樹脂からなる島相の平均ドメインサイズは、約1μm~10μmである。このような相分離構造を有することにより、アクリルポリマーの有する低弾性と、熱硬化性樹脂の有する高い絶縁信頼性、高耐熱性、金属箔との高い接着性の双方の優れた特徴を兼ね備えることができる。 FIG. 5 shows an electron micrograph showing a cross-sectional structure of an example of the resin composition having a sea-island structure obtained in this manner. As illustrated, the resin composition has a sea-island structure composed of an acrylic polymer phase and an epoxy resin-rich phase. The average domain size of the island phase made of epoxy resin is about 1 μm to 10 μm. By having such a phase separation structure, it has excellent characteristics of both low elasticity of acrylic polymer, high insulation reliability of thermosetting resin, high heat resistance, and high adhesion to metal foil. Can do.
 上述のように,本発明に用いられる樹脂組成物は、これに(C)成分を添加しない場合は,海島構造又は連続球状構造を形成するが、(C)成分を添加することにより、海島構造又は連続球状構造に加えて、微細な共連続相構造又は複合分散相構造の樹脂絶縁層も形成され得る。図6に、複合分散相構造を有する絶縁性樹脂の一例の断面構造を表す電子顕微鏡写真を示す。 As described above, the resin composition used in the present invention forms a sea-island structure or a continuous spherical structure when the component (C) is not added to the resin composition. Alternatively, in addition to the continuous spherical structure, a resin insulating layer having a fine co-continuous phase structure or a composite dispersed phase structure may be formed. FIG. 6 shows an electron micrograph showing a cross-sectional structure of an example of an insulating resin having a composite dispersed phase structure.
[プリプレグの製造方法]
 本発明のプリプレグは、上述の樹脂組成物のワニスを基材に含浸させ、例えば、80℃~180℃の範囲で乾燥させて製造することができる。
 基材は、金属張積層板、プリント回路基板等を製造する際に用いられるものであれば特に制限されないが、通常、織布、不織布等の繊維基材が用いられる。繊維基材の材質としては、例えば、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維、アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維及びこれら混抄系などが挙げられる。これらの中でも、ガラスクロスが好ましく、厚みが100μm以下のガラスクロスがより好ましく、厚みが50μm以下のガラスクロスが特に好ましい。ガラスクロスの厚みが50μm以下であると、任意に折り曲げ可能なプリント回路基板を得ることができ、製造プロセス上での温度、吸湿等に伴う寸法変化が小さいため好ましい。
[Prepreg production method]
The prepreg of the present invention can be produced by impregnating a base material with the varnish of the above resin composition and drying it in the range of 80 ° C. to 180 ° C., for example.
Although a base material will not be restrict | limited especially if it is used when manufacturing a metal-clad laminated board, a printed circuit board, etc. Usually, fiber base materials, such as a woven fabric and a nonwoven fabric, are used. Examples of the material of the fiber base material include glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyether ether ketone, polyether imide, Examples thereof include organic fibers such as polyethersulfone, carbon and cellulose, and mixed papers thereof. Among these, a glass cloth is preferable, a glass cloth having a thickness of 100 μm or less is more preferable, and a glass cloth having a thickness of 50 μm or less is particularly preferable. When the thickness of the glass cloth is 50 μm or less, a printed circuit board that can be bent arbitrarily can be obtained, and the dimensional change accompanying temperature, moisture absorption, etc. in the manufacturing process is small, which is preferable.
 得られるプリプレグのワニスに使用した有機溶剤が80質量%以上揮発していることが好ましい。ワニスに使用した有機溶剤が80質量%以上揮発していれば、製造方法、乾燥条件等も制限はなく、乾燥時の温度は、例えば、80℃~180℃、時間はワニスのゲル化時間との兼ね合いで適宜設定される。また、ワニスの含浸量は、ワニス固形分と基材の総量に対して、ワニス固形分が30質量%~80質量%になるようにされることが好ましい。 It is preferable that 80% by mass or more of the organic solvent used in the prepreg varnish obtained is volatilized. If the organic solvent used in the varnish is volatilized by 80% by mass or more, the production method and drying conditions are not limited, and the drying temperature is, for example, 80 ° C. to 180 ° C., and the time is the gelation time of the varnish. It is set as appropriate in consideration of the above. The amount of impregnation of the varnish is preferably 30% by mass to 80% by mass with respect to the total amount of the varnish solid and the base material.
(金属箔付きプリプレグ)
 本発明の金属箔付きプリプレグは、上述のプリプレグと金属箔とを積層してなることが好ましい。
 本発明の金属箔付きプリプレグは、例えば、本発明のプリプレグの片面又は両面に金属箔を重ね、通常130℃~250℃、好ましくは150℃~230℃の範囲の温度で、通常0.5MPa~20MPa、好ましくは1MPa~8MPaの範囲の圧力で加熱加圧することで製造することができる。加熱加圧の方法についても、特に限定されるものではなく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
 また、本発明の金属箔付きプリプレグを製造する際に用いられる金属箔としては、特に限定されるものではないが、例えば、銅箔、アルミニウム箔が一般的に用いられる。金属箔の厚みも特に限定されるものではなく、1μm~200μmのものを使用できる。その他にも、例えば、ニッケル、ニッケル‐リン、ニッケル‐スズ合金、ニッケル‐鉄合金、鉛、鉛‐スズ合金等を中間層とし、この両面に0.5μm~15μmの銅層と10μm~300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。
(Prepreg with metal foil)
The prepreg with a metal foil of the present invention is preferably formed by laminating the above prepreg and a metal foil.
The prepreg with a metal foil of the present invention is, for example, a metal foil laminated on one or both sides of the prepreg of the present invention, and usually at a temperature in the range of 130 ° C. to 250 ° C., preferably 150 ° C. to 230 ° C., usually 0.5 MPa to It can be produced by heating and pressing at a pressure in the range of 20 MPa, preferably 1 MPa to 8 MPa. The method of heating and pressing is not particularly limited, and for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like can be used.
Moreover, it does not specifically limit as metal foil used when manufacturing the prepreg with metal foil of this invention, For example, copper foil and aluminum foil are generally used. The thickness of the metal foil is not particularly limited, and a thickness of 1 μm to 200 μm can be used. In addition, for example, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and 0.5 μm to 15 μm copper layer and 10 μm to 300 μm on both sides. A composite foil having a three-layer structure provided with a copper layer or a composite foil having a two-layer structure in which aluminum and copper foil are combined can be used.
(積層板)
 本発明の積層板は、上述のプリプレグを複数有するものであることが好ましい。
 本発明の積層板は、例えば、本発明のプリプレグを積層し加熱加圧してなるものである。加熱加圧の方法は、特に限定されるものではなく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
(Laminated board)
The laminate of the present invention preferably has a plurality of the above prepregs.
The laminate of the present invention is formed, for example, by laminating the prepreg of the present invention and heating and pressing. The method of heating and pressing is not particularly limited, and for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like can be used.
(金属張積層板)
 本発明の金属張積層板は、上述の積層板がさらに金属箔を有するものであることが好ましい。
 本発明の金属張積層板は、例えば、本発明の積層板の片面又は両面に金属箔を重ね、通常130℃~250℃、好ましくは150℃~230℃の範囲の温度で、通常0.5MPa~20MPa、好ましくは1MPa~8MPaの範囲の圧力で加熱加圧することで製造することができる。加熱加圧の方法についても、特に限定されるものではなく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
 また、本発明の金属張積層板を製造する際に用いられる金属箔としては、特に限定されるものではないが、例えば、銅箔、アルミニウム箔が一般的に用いられる。金属箔の厚みも特に限定されるものではなく、1μm~200μmのものを使用できる。その他にも、例えば、ニッケル、ニッケル-リン、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等を中間層とし、この両面に0.5μm~15μmの銅層と10μm~300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。
(Metal-clad laminate)
The metal-clad laminate of the present invention is preferably such that the laminate described above further has a metal foil.
The metal-clad laminate of the present invention is, for example, a metal foil laminated on one or both sides of the laminate of the present invention, and usually at a temperature in the range of 130 ° C. to 250 ° C., preferably 150 ° C. to 230 ° C., usually 0.5 MPa. It can be produced by heating and pressing at a pressure in the range of ˜20 MPa, preferably in the range of 1 MPa to 8 MPa. The method of heating and pressing is not particularly limited, and for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like can be used.
Moreover, it does not specifically limit as metal foil used when manufacturing the metal-clad laminated board of this invention, For example, copper foil and aluminum foil are generally used. The thickness of the metal foil is not particularly limited, and a thickness of 1 μm to 200 μm can be used. In addition, for example, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and 0.5 μm to 15 μm copper layer and 10 μm to 300 μm on both sides. A composite foil having a three-layer structure provided with a copper layer or a composite foil having a two-layer structure in which aluminum and copper foil are combined can be used.
(プリント回路基板)
 本発明のプリント回路基板は、上述の積層板がさらに回路を有するものであることが好ましい。回路は、本発明の積層板を回路加工してなるものであることが好ましい。
 本発明のプリント回路基板の製造方法は、特に限定されるものではないが、片面又は両面に金属箔が設けられた本発明の積層板(金属張積層板)の金属箔に回路(配線)加工を施すことによって製造することができる。
(Printed circuit board)
In the printed circuit board of the present invention, it is preferable that the above-mentioned laminated board further has a circuit. It is preferable that the circuit is obtained by processing the laminate of the present invention.
The method for producing a printed circuit board of the present invention is not particularly limited, but circuit (wiring) processing is performed on the metal foil of the laminate (metal-clad laminate) of the present invention in which metal foil is provided on one or both sides. It can manufacture by giving.
 以下、実施例を示し、本発明について具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記例中の数値は特に断らない限り、質量%を意味する。 Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to these. In addition, the numerical value in the following example means the mass% unless there is particular notice.
[実施例1~実施例13]
 (A)成分、(B-1)成分、(B-2)成分、(C-1)成分、(C-2)成分を表1に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分、カップリング剤を表1に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Examples 1 to 13]
Component (A), Component (B-1), Component (B-2), Component (C-1), Component (C-2) were blended in the blending amounts shown in Table 1, dissolved in methyl ethyl ketone, (D ) Component and coupling agent were blended according to Table 1 to obtain a resin composition varnish having a nonvolatile content of 40%.
[比較例1~比較例10]
 (A)成分、(B-1)成分、(B-2)成分、(C-1)成分、(C-2)成分を表2に示す配合量で配合し、メチルエチルケトンに溶解後、成分(D)を表2に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Comparative Examples 1 to 10]
Component (A), Component (B-1), Component (B-2), Component (C-1), Component (C-2) were blended in the amounts shown in Table 2, and dissolved in methyl ethyl ketone. D) was blended according to Table 2 to obtain a resin composition varnish having a nonvolatile content of 40%.
[プリプレグ、樹脂付き銅箔、金属張積層板の作製]
(1)プリプレグの作製
 実施例1~13、比較例1~10で作製したワニスを厚さ0.028mmのガラス布「1037」(旭シュエーベル株式会社製、商品名)に含浸後、140℃にて10分間加熱して、乾燥しプリプレグを得た。
(2)樹脂付き銅箔の作製
実施例1~13、比較例1~10で作製したワニスを厚さ18μmの電解銅箔「YGP-18」(日本電解株式会社社製、商品名)に塗工機により塗工成型し、140℃にて約6分熱風乾燥させ、塗布厚さ50μmの樹脂付き銅箔を作製した。
(3)金属張積層板(銅張積層板)の作製
 4枚重ねた(1)で作成したプリプレグの両側に厚さ18μmの電解銅箔「YGP-18」(日本電解株式会社社製、商品名)を接着面がプリプレグと合わさるように重ね、200℃にて60分間、4MPaの真空プレス条件で両面銅張積層板を作製した。また、樹脂付き銅箔は樹脂面が向き合うように重ね、200℃にて60分間、4MPaの真空プレス条件で両面銅張積層板を作製した。
[Preparation of prepreg, copper foil with resin, metal-clad laminate]
(1) Preparation of prepreg After impregnating the varnish prepared in Examples 1 to 13 and Comparative Examples 1 to 10 into a glass cloth “1037” (trade name, manufactured by Asahi Schavel Co., Ltd.) having a thickness of 0.028 mm, the temperature is 140 ° C. For 10 minutes and dried to obtain a prepreg.
(2) Fabrication of resin-coated copper foil The varnishes produced in Examples 1 to 13 and Comparative Examples 1 to 10 were applied to an electrolytic copper foil “YGP-18” (trade name, manufactured by Nippon Electrolytic Co., Ltd.) having a thickness of 18 μm. It was coated and molded by a machine and dried with hot air at 140 ° C. for about 6 minutes to produce a resin-coated copper foil with a coating thickness of 50 μm.
(3) Preparation of metal-clad laminate (copper-clad laminate) Electrolytic copper foil “YGP-18” with a thickness of 18 μm on both sides of the prepreg prepared in (1), which was stacked four times (manufactured by Nippon Electrolytic Co., Ltd., product) Name) was laminated so that the adhesive surface was combined with the prepreg, and a double-sided copper-clad laminate was produced at 200 ° C. for 60 minutes under a 4 MPa vacuum press condition. Moreover, the copper foil with resin was stacked so that the resin surfaces face each other, and a double-sided copper-clad laminate was produced at 200 ° C. for 60 minutes under a 4 MPa vacuum press condition.
[ワニス、プリプレグ及び金属張積層板の評価方法]
(1)ワニス性
 ワニス性の評価は、作製したワニスを透明な容器に受け、24時間後の外観を目視により観察し、ワニス成分の分離、及び、沈降物について観察した。ワニス色相が均一であれば分離していないと判断した。また、容器の底に沈降物の堆積が目視で確認できない場合は沈降物なしと判断した。結果を表1、2に示す。
(2)プリプレグのタック性
 プリプレグのタック性の評価は、作製したプリプレグを250mm×250mmサイズに加工し100枚重ね、密閉封入可能な袋に入れたものを、温度25℃、湿度70%の恒温恒湿環境に投入し、プリプレグ同士の密着発生有無を観察した。48時間経過後に、1番下に配置したプリプレグとそれと接するプリプレグが剥がれ、おのおのが投入前の表面を維持している場合は、密着発生なしとし、タック性が問題ないと判断した。結果を表1、2に示す。
(3)プリプレグの外観(凝集物の有無)
 プリプレグの外観の評価は、20倍の拡大鏡を用いて凝集物の発生について観察した。結果を表1、2に示す。
(4)貯蔵弾性率
 貯蔵弾性率の評価は、樹脂付き銅箔を樹脂面が向き合うように重ね作製した銅張積層板を全面エッチングした積層板を、幅5mm×長さ30mmに切断し、動的粘弾性測定装置(株式会社UBM社製)を用いて貯蔵弾性率を算出した。25℃の貯蔵弾性率が2.0×10Pa以下であれば応力緩和効果を発現可能と判断した。結果を表1、2に示す。
(5)引張り伸び率
 引張り伸び率の評価は、樹脂付き銅箔を樹脂面が向き合うように重ね作製した銅張積層板を全面エッチングした積層板を、幅10mm×長さ100mmに切断し、オートグラフ(島津製作所製)を用いて引張り伸び率を算出した。25℃の引張り伸び率が3%以上であれば応力緩和効果を発現可能と判断した。結果を表1、2に示す。
(6)耐熱性
 4枚重ねたプリプレグから作製した両面銅張積層板を50mm四方の正方形に切り出して試験片を得た。その試験片を260℃のはんだ浴中に浸漬して、その時点から試験片の膨れが目視で認められる時点までに経過した時間を測定した。経過時間の測定は300秒までとし、300秒以上は耐熱性が十分であると判断した。結果を表1、2に示す。
(7)基板に対する金属箔接着性の評価
 4枚重ねたプリプレグから作製した両面銅張積層板の銅箔を部分的にエッチングして、3mm幅の銅箔ラインを形成した。次に、銅箔ラインを、接着面に対して90°方向に50mm/分の速度で引き剥がした際の荷重を測定し、銅箔引き剥がし強さとした。銅箔引き剥がし強さが結果を0.5kN/m以上であれば金属箔との接着性は十分であると判断した。表1、2に示す。
(8)相構造観察試験
 島相の平均ドメインサイズは、樹脂付き銅箔を樹脂面が向き合うように重ね作製した銅張積層板の樹脂絶縁層の断面をミクロトームにて平滑化した後、過硫酸塩溶液でエッチングし、電子顕微鏡により得られた断面構造から、70個以上の島相について、最大幅と最小幅をそれぞれ測定し,その平均値を算出した。結果を表1、2に示す。
(9)電気絶縁信頼性
 電気絶縁信頼性は、4枚重ねたプリプレグから作製した両面銅張積層板をスルーホール穴壁間隔が350μmとなるよう加工したテストパターンを用いて、各試料について400穴の絶縁抵抗を経時的に測定した。測定条件は、85℃/85%RH雰囲気中100V印加して行い、導通破壊が発生するまでの時間を測定した。測定時間は2000時間までとし、1000時間以上は電気絶縁信頼性が十分であると判断した。結果を表1、2に示す。
[Evaluation method for varnish, prepreg and metal-clad laminate]
(1) Varnish Properties The varnish properties were evaluated by receiving the prepared varnish in a transparent container, visually observing the appearance after 24 hours, and observing separation of varnish components and sediment. If the varnish hue was uniform, it was judged as not separated. Moreover, when the deposit of sediment was not visually confirmed on the bottom of the container, it was judged that there was no sediment. The results are shown in Tables 1 and 2.
(2) Tackiness of prepreg Tackiness of prepreg was evaluated by processing the prepared prepreg into 250 mm x 250 mm size, stacking 100 sheets, and putting them in a hermetically sealed bag at a temperature of 25 ° C and a humidity of 70%. The sample was put in a constant humidity environment, and the presence or absence of adhesion between the prepregs was observed. After 48 hours, when the prepreg disposed at the bottom and the prepreg in contact therewith were peeled off and each maintained the surface before being put in, it was determined that there was no adhesion and there was no problem with tackiness. The results are shown in Tables 1 and 2.
(3) Appearance of prepreg (presence of aggregates)
The evaluation of the appearance of the prepreg was observed with respect to the generation of aggregates using a 20 × magnifier. The results are shown in Tables 1 and 2.
(4) Storage elastic modulus The storage elastic modulus was evaluated by cutting a laminated board obtained by etching a copper clad laminated board prepared by superposing resin-coated copper foils so that the resin surfaces face each other into a width of 5 mm and a length of 30 mm. The storage elastic modulus was calculated using a mechanical viscoelasticity measuring device (manufactured by UBM Co., Ltd.). When the storage elastic modulus at 25 ° C. was 2.0 × 10 9 Pa or less, it was judged that the stress relaxation effect could be exhibited. The results are shown in Tables 1 and 2.
(5) Tensile elongation The tensile elongation is evaluated by cutting a laminated sheet obtained by etching a copper-clad laminated sheet made of a resin-coated copper foil so that the resin faces face each other into a width of 10 mm and a length of 100 mm. The tensile elongation was calculated using a graph (manufactured by Shimadzu Corporation). If the tensile elongation at 25 ° C. was 3% or more, it was judged that the stress relaxation effect could be exhibited. The results are shown in Tables 1 and 2.
(6) Heat resistance A double-sided copper clad laminate prepared from four prepregs was cut into a 50 mm square to obtain a test piece. The test piece was immersed in a solder bath at 260 ° C., and the time elapsed from that point to the point when the swelling of the test piece was visually observed was measured. The elapsed time was measured up to 300 seconds, and it was judged that the heat resistance was sufficient for 300 seconds or more. The results are shown in Tables 1 and 2.
(7) Evaluation of adhesion of metal foil to substrate A copper foil of a double-sided copper clad laminate prepared from four prepregs was partially etched to form a 3 mm wide copper foil line. Next, the load when the copper foil line was peeled off at a speed of 50 mm / min in the direction of 90 ° with respect to the bonding surface was measured, and the copper foil peeling strength was obtained. When the copper foil peel strength was 0.5 kN / m or more as a result, it was judged that the adhesion to the metal foil was sufficient. Shown in Tables 1 and 2.
(8) Phase structure observation test The average domain size of the island phase was obtained by smoothing the cross section of the resin insulation layer of the copper-clad laminate prepared by stacking the resin-coated copper foils so that the resin surfaces face each other with a microtome. The maximum width and the minimum width were measured for 70 or more island phases from the cross-sectional structure obtained by etching with a salt solution and obtained by an electron microscope, and the average value was calculated. The results are shown in Tables 1 and 2.
(9) Electrical insulation reliability Electrical insulation reliability is 400 holes for each sample using a test pattern in which a double-sided copper-clad laminate made from four prepregs is processed so that the through-hole hole wall spacing is 350 μm. The insulation resistance was measured over time. The measurement was performed by applying 100 V in an 85 ° C./85% RH atmosphere, and measuring the time until conduction breakdown occurred. The measurement time was up to 2000 hours, and it was judged that the electrical insulation reliability was sufficient for 1000 hours or more. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
※1:商品名「KH-CT-865」、日立化成株式会社製、(重量平均分子量:Mw=45×10~65×10、式(1)で表される化合物として、エステル部分に炭素数5~10のシクロアルキル基を有するメタクリル酸エステルを含有且つ、構造中にニトリル基を含まないアクリルポリマー)
※2:商品名「HTR-860P-3」、ナガセケムテックス株式会社製、(重量平均分子量:Mw=80×10、構造中にニトリル基を含まないアクリルポリマー)
※3:商品名「HAN5-M90S」、根上工業株式会社製、(重量平均分子量:Mw=90×10、構造中にニトリル基を含むアクリルポリマー)
※4:商品名「N770」、DIC株式会社製、(フェノールノボラック型エポキシ樹脂)
※5:商品名「EPICLON 153」、DIC株式会社製、(テトラブロモビスフェノールA型エポキシ樹脂)
※6:商品名「NC-3000H」、日本化薬株式会社製、(ビフェニルアラルキル型エポキシ樹脂)
※7:商品名「4005P」、三菱化学株式会社製、(ビスフェノールF型エポキシ樹脂)
※8:商品名「KA-1165」、DIC株式会社製、(クレゾールノボラック型樹脂)
※9:商品名「SC-2050KC」、アドマテック株式会社製、(溶融球状シリカ、シランカップリング処理、平均粒子径0.5μm)
※10:商品名「HK-001」、河合石灰株式会社製、(水酸化アルミニウム、平均粒子径4.0μm)
※11:商品名「F05-12」、福島窯業株式会社製、(破砕シリカ、平均粒子径2.5μm)
※12:商品名「F05-30」、福島窯業株式会社製、(破砕シリカ、平均粒子径4.2μm)
※13:商品名「2PZ」、四国化成工業株式会社製、(2-フェニルイミダゾール)
※14:商品名「A-187」、東レ・ダウコーニング株式会社製、(シランカップリング剤)
* 1: Product name “KH-CT-865”, manufactured by Hitachi Chemical Co., Ltd. (weight average molecular weight: Mw = 45 × 10 4 to 65 × 10 4 , as a compound represented by formula (1) Acrylic polymer containing a methacrylic acid ester having a cycloalkyl group having 5 to 10 carbon atoms and no nitrile group in the structure)
* 2: Trade name “HTR-860P-3”, manufactured by Nagase ChemteX Corporation (weight average molecular weight: Mw = 80 × 10 4 , acrylic polymer containing no nitrile group in the structure)
* 3: Product name “HAN5-M90S”, manufactured by Negami Kogyo Co., Ltd. (weight average molecular weight: Mw = 90 × 10 4 , acrylic polymer containing nitrile group in the structure)
* 4: Product name “N770”, manufactured by DIC Corporation (phenol novolac type epoxy resin)
* 5: Trade name “EPICLON 153”, manufactured by DIC Corporation (tetrabromobisphenol A type epoxy resin)
* 6: Product name “NC-3000H”, manufactured by Nippon Kayaku Co., Ltd. (biphenylaralkyl epoxy resin)
* 7: Product name “4005P”, manufactured by Mitsubishi Chemical Corporation (bisphenol F type epoxy resin)
* 8: Product name “KA-1165”, manufactured by DIC Corporation (cresol novolac resin)
* 9: Product name “SC-2050KC”, manufactured by Admatech Co., Ltd. (fused spherical silica, silane coupling treatment, average particle size 0.5 μm)
* 10: Product name “HK-001”, manufactured by Kawai Lime Co., Ltd. (aluminum hydroxide, average particle size 4.0 μm)
* 11: Product name “F05-12”, manufactured by Fukushima Ceramics Co., Ltd. (crushed silica, average particle size 2.5 μm)
* 12: Product name “F05-30”, manufactured by Fukushima Ceramics Co., Ltd. (crushed silica, average particle size 4.2 μm)
* 13: Trade name “2PZ”, manufactured by Shikoku Chemicals Co., Ltd. (2-phenylimidazole)
* 14: Product name “A-187”, manufactured by Toray Dow Corning Co., Ltd. (silane coupling agent)
 表1から明らかなように、本発明の実施例は低弾性、耐熱性、金属箔との接着性、絶縁信頼性の全てに優れている。一方、比較例は低弾性、耐熱性、金属箔との接着性、絶縁信頼性の全てに優れるものはない。 As is clear from Table 1, the examples of the present invention are excellent in all of low elasticity, heat resistance, adhesion to metal foil, and insulation reliability. On the other hand, none of the comparative examples is excellent in all of low elasticity, heat resistance, adhesion to metal foil, and insulation reliability.
 本発明の樹脂組成物、プリプレグ、金属箔付きプリプレグ、積層板、金属張積層板及びプリント回路基板によれば、低弾性、高い絶縁信頼性、高耐熱性、金属箔との高い密着性を有する。 According to the resin composition, prepreg, prepreg with metal foil, laminate, metal-clad laminate and printed circuit board of the present invention, it has low elasticity, high insulation reliability, high heat resistance, and high adhesion to metal foil. .

Claims (16)

  1.  (A)アクリルポリマーを含む第1相と、(B)熱硬化性樹脂を含む島相としての第2相とが相分離構造を形成し、前記島相の平均ドメインサイズが1μm~10μmであり、(C)フィラーを含有する樹脂組成物が含浸されたプリプレグ。 (A) A first phase containing an acrylic polymer and (B) a second phase as an island phase containing a thermosetting resin form a phase separation structure, and the average domain size of the island phase is 1 μm to 10 μm (C) A prepreg impregnated with a resin composition containing a filler.
  2.  前記(A)アクリルポリマーの配合量が、前記(A)アクリルポリマーと前記(B)熱硬化性樹脂の総量を100質量部としたとき10~70質量部である、請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the blending amount of the (A) acrylic polymer is 10 to 70 parts by mass when the total amount of the (A) acrylic polymer and the (B) thermosetting resin is 100 parts by mass. .
  3.  前記(C)フィラーとして、(C-1)カップリング処理されたフィラーを含有する、請求項1又は2に記載のプリプレグ。 The prepreg according to claim 1 or 2, comprising (C-1) a coupling-treated filler as the (C) filler.
  4.  前記(C)フィラーとして、(C-2)カップリング処理されていないフィラーを含有する、請求項1~3のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 3, wherein (C-2) a filler not subjected to coupling treatment is contained as the (C) filler.
  5.  前記(B)熱硬化性樹脂が、(B-1)エポキシ樹脂と(B-2)フェノール樹脂を含む、請求項1~4のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 4, wherein the (B) thermosetting resin contains (B-1) an epoxy resin and (B-2) a phenol resin.
  6.  前記(B-1)エポキシ樹脂が、1分子内に2個以上のエポキシ基を有するエポキシ樹脂を含有する、請求項5に記載のプリプレグ。 The prepreg according to claim 5, wherein the (B-1) epoxy resin contains an epoxy resin having two or more epoxy groups in one molecule.
  7.  前記(B-1)エポキシ樹脂の重量平均分子量が、200~1,000である、請求項5又は6に記載のプリプレグ。 The prepreg according to claim 5 or 6, wherein the (B-1) epoxy resin has a weight average molecular weight of 200 to 1,000.
  8.  前記(B-1)エポキシ樹脂のエポキシ当量が、150~500である、請求項5~7のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 5 to 7, wherein the epoxy equivalent of the (B-1) epoxy resin is 150 to 500.
  9.  前記(A)アクリルポリマーの重量平均分子量が、10,000~1,500,000である、請求項1~8のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 8, wherein the (A) acrylic polymer has a weight average molecular weight of 10,000 to 1,500,000.
  10.  前記(B-2)フェノール樹脂が、1分子内に2個以上の水酸基を有するフェノール樹脂を含有する、請求項5~9のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 5 to 9, wherein the (B-2) phenol resin contains a phenol resin having two or more hydroxyl groups in one molecule.
  11.  前記(C)フィラーとして、シリカを含有する、請求項1~10のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 10, which contains silica as the filler (C).
  12.  前記(C-2)フィラーの体積平均粒径が、1.0μm~3.5μmである請求項1~11のいずれか1項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 11, wherein the volume average particle size of the (C-2) filler is 1.0 µm to 3.5 µm.
  13.  請求項1~12のいずれか1項に記載のプリプレグと金属箔とを積層してなる金属箔付きプリプレグ。 A prepreg with a metal foil obtained by laminating the prepreg according to any one of claims 1 to 12 and a metal foil.
  14.  請求項1~12のいずれか1項に記載のプリプレグを複数有する積層板。 A laminate having a plurality of the prepregs according to any one of claims 1 to 12.
  15.  請求項14に記載の積層板がさらに金属箔を有する金属張積層板。 A metal-clad laminate in which the laminate according to claim 14 further comprises a metal foil.
  16.  請求項14に記載の積層板がさらに回路を有するプリント回路基板。 A printed circuit board, wherein the laminate according to claim 14 further comprises a circuit.
PCT/JP2016/064253 2016-05-13 2016-05-13 Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board WO2017195344A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018516306A JP6996500B2 (en) 2016-05-13 2016-05-13 Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board
PCT/JP2016/064253 WO2017195344A1 (en) 2016-05-13 2016-05-13 Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064253 WO2017195344A1 (en) 2016-05-13 2016-05-13 Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board

Publications (1)

Publication Number Publication Date
WO2017195344A1 true WO2017195344A1 (en) 2017-11-16

Family

ID=60267698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064253 WO2017195344A1 (en) 2016-05-13 2016-05-13 Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board

Country Status (2)

Country Link
JP (1) JP6996500B2 (en)
WO (1) WO2017195344A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208825A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Composite prepreg and laminate
WO2019208810A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Composite prepreg and composite laminate
WO2020100916A1 (en) * 2018-11-14 2020-05-22 株式会社ブリヂストン Reinforced fiber composite resin production method
WO2023199803A1 (en) * 2022-04-12 2023-10-19 Agc株式会社 Liquid composition, prepreg, resin-including metal substrate, and wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038022A (en) * 2000-07-21 2002-02-06 Toppan Printing Co Ltd Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and production method using the same
JP2011162615A (en) * 2010-02-05 2011-08-25 Kyocera Chemical Corp Prepreg and metal-clad laminated plate
JP2012211255A (en) * 2011-03-31 2012-11-01 Toho Tenax Co Ltd Resin composition, cured matter, prepreg and fiber-reinforced composite material
JP2013058577A (en) * 2011-09-07 2013-03-28 Hitachi Chemical Co Ltd Semiconductor device
JP2014193994A (en) * 2013-02-28 2014-10-09 Panasonic Corp Resin composition for printed wiring board, prepreg, and metal-clad laminate
JP2016047921A (en) * 2014-08-27 2016-04-07 パナソニックIpマネジメント株式会社 Prepreg, metal clad laminated board and printed wiring board
JP2016079367A (en) * 2014-10-22 2016-05-16 日立化成株式会社 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board each using them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038022A (en) * 2000-07-21 2002-02-06 Toppan Printing Co Ltd Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and production method using the same
JP2011162615A (en) * 2010-02-05 2011-08-25 Kyocera Chemical Corp Prepreg and metal-clad laminated plate
JP2012211255A (en) * 2011-03-31 2012-11-01 Toho Tenax Co Ltd Resin composition, cured matter, prepreg and fiber-reinforced composite material
JP2013058577A (en) * 2011-09-07 2013-03-28 Hitachi Chemical Co Ltd Semiconductor device
JP2014193994A (en) * 2013-02-28 2014-10-09 Panasonic Corp Resin composition for printed wiring board, prepreg, and metal-clad laminate
JP2016047921A (en) * 2014-08-27 2016-04-07 パナソニックIpマネジメント株式会社 Prepreg, metal clad laminated board and printed wiring board
JP2016079367A (en) * 2014-10-22 2016-05-16 日立化成株式会社 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board each using them

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208825A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Composite prepreg and laminate
WO2019208810A1 (en) * 2018-04-27 2019-10-31 株式会社ブリヂストン Composite prepreg and composite laminate
JPWO2019208810A1 (en) * 2018-04-27 2021-05-20 株式会社ブリヂストン Composite prepreg and composite laminate
JPWO2019208825A1 (en) * 2018-04-27 2021-05-27 株式会社ブリヂストン Composite prepreg and laminate
WO2020100916A1 (en) * 2018-11-14 2020-05-22 株式会社ブリヂストン Reinforced fiber composite resin production method
WO2023199803A1 (en) * 2022-04-12 2023-10-19 Agc株式会社 Liquid composition, prepreg, resin-including metal substrate, and wiring board

Also Published As

Publication number Publication date
JPWO2017195344A1 (en) 2019-03-22
JP6996500B2 (en) 2022-01-17

Similar Documents

Publication Publication Date Title
JP7287432B2 (en) Resin composition, prepreg, resin-coated metal foil, laminate, printed wiring board, and method for producing resin composition
JP6277542B2 (en) Prepreg, metal-clad laminate
JP5082373B2 (en) Resin composition for printed wiring board, prepreg, substrate, metal foil-clad laminate, metal foil with resin, and printed wiring board
JP4586609B2 (en) Curable resin composition, prepreg, substrate, metal foil-clad laminate and printed wiring board
JP2011162615A (en) Prepreg and metal-clad laminated plate
WO2017195344A1 (en) Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board
JP2010209140A (en) Prepreg, metal-clad laminate and printed circuit board
CN110382589A (en) Resin material, stack membrane and multilayer printed-wiring board
JP6972651B2 (en) Resin composition, prepreg, metal foil with resin, laminated board and printed wiring board
JP2009185170A (en) Prepreg, metal-clad laminate and printed wiring board
JP2024116204A (en) Thermosetting resin composition, prepreg, resin-coated metal foil, laminate, printed wiring board, and semiconductor package
JP6451204B2 (en) Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these
WO2023145471A1 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded laminated board, and printed wiring board
JP5056099B2 (en) Curable resin composition, resin-impregnated base material, prepreg, substrate, metal foil with adhesive layer and printed wiring board
JP2008266513A (en) Curable resin composition, prepreg, laminate, metal foil with adhesive layer, film sheet, and printed wiring board using these materials
TWI778410B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
TWI777919B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
JP7070074B2 (en) Resin composition, prepreg, metal leaf with resin, laminated board and printed wiring board
WO2023145473A1 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded laminated board, and printed wiring board
JP2022122082A (en) Resin composition, prepreg, metal foil with resin, laminate, print circuit board and semiconductor package
JP2006219664A (en) Curable resin composition, prepreg, substrate, metal foil-clad laminated plate, metal foil with resin, and printed wiring board
JP2008108955A (en) Wiring board material, resin impregnated base, prepreg, metal foil with resin, laminate sheet, and printed circuit board
JP2018009126A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516306

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901692

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901692

Country of ref document: EP

Kind code of ref document: A1