WO2017195342A1 - Processing device - Google Patents

Processing device Download PDF

Info

Publication number
WO2017195342A1
WO2017195342A1 PCT/JP2016/064239 JP2016064239W WO2017195342A1 WO 2017195342 A1 WO2017195342 A1 WO 2017195342A1 JP 2016064239 W JP2016064239 W JP 2016064239W WO 2017195342 A1 WO2017195342 A1 WO 2017195342A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
installation position
support bar
workpiece
installation
Prior art date
Application number
PCT/JP2016/064239
Other languages
French (fr)
Japanese (ja)
Inventor
光 畠澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/064239 priority Critical patent/WO2017195342A1/en
Priority to JP2018516304A priority patent/JP6354931B2/en
Priority to TW105116575A priority patent/TWI607827B/en
Publication of WO2017195342A1 publication Critical patent/WO2017195342A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/03Stationary work or tool supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor

Definitions

  • the present invention is a processing apparatus for processing a workpiece by processing means such as laser and water pressure.
  • a laser processing apparatus that cuts a workpiece by irradiating a workpiece such as a metal plate, which is an object to be processed, with a laser beam and melting a portion irradiated with the laser beam.
  • a processing apparatus in order to avoid the melted workpiece melted at the time of laser irradiation becoming dross and adhering to the back surface of the cut workpiece, the dross is blown off by injecting high pressure gas to the laser irradiation position. I am doing so.
  • the space below the workpiece is as open as possible. For this reason, there are some which support the work with a plurality of sword pins (for example, Patent Document 1).
  • the sword pins for supporting the work are arranged at fixed positions aligned in the vertical and horizontal directions. For this reason, depending on the shape of the work, there is a problem that a part of the work straddling between the sword pins is bent without being sufficiently supported.
  • This invention was made in order to solve the said subject, and it aims at obtaining the processing apparatus which can suppress the bending of a workpiece
  • a processing apparatus includes a support rod for supporting a workpiece, a base on which the support rod is installed, and a workpiece placed on the support rod, a processing means for processing the workpiece placed on the base, a processing means, and a base Calculated by the calculating unit, a moving unit that moves the relative position of the workpiece, a calculation unit that calculates installation position information indicating an installation position of the support bar installed on the base based on the machining shape information of the workpiece, and And a support bar installation means for installing the support bar at an installation position on the base corresponding to the installation position information based on the installation position information.
  • the support bar is installed at the installation position on the base corresponding to the installation position information calculated based on the machining shape information of the workpiece, the workpiece is supported at the support point corresponding to the shape of the workpiece. Since it is supported, the bending of the workpiece is suppressed.
  • FIG. 3 is an explanatory diagram of the processing machine according to the first embodiment. It is the conceptual diagram which showed the example of the machining shape information input into the processing apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing of the rail of the processing apparatus which concerns on Embodiment 1.
  • FIG. 3 is a conceptual diagram of y-axis drive means of the processing machine according to Embodiment 1.
  • 3 is a flowchart showing a processing operation of the processing machine according to the first embodiment.
  • 4 is a flowchart illustrating in detail an operation of calculating installation position information of a calculation unit according to the first embodiment.
  • 5 is a flowchart showing in detail a support bar installation operation by a support bar installation unit according to the first embodiment.
  • FIG. 1 is an explanatory diagram of the processing machine according to the first embodiment.
  • the processing machine includes a plurality of support rods 2 that support the workpiece 1, a support 3 on which the support rod 2 is installed, a workpiece 3 on which the workpiece 1 is placed via the support rod 2, and a workpiece that is placed on the substrate 3 via the support rod 2.
  • a support bar installation means 7 for installing the support bar 2 at the installation position of the base 3 based on the installation position information calculated by the calculation unit 6. It is configured.
  • the support bar installation means 7 has push-out means 7a, rails 7b, x-axis drive means 7c, and y-axis drive means 7d.
  • Work 1 is a processing object of a processing machine, for example, a metal plate.
  • the support bar 2 supports the workpiece 1 that is the object to be processed.
  • the support bar 2 is made of a square columnar metal with sharp tips, and the work is supported on the tips of the support bars 2 by placing the work on the tips of the plurality of support bars 2.
  • the base 3 is fixed to a place where the processing apparatus is installed via a leg (not shown), and supports the work 1 via the support bar 2.
  • the base 3 has a U-shaped frame.
  • the frame is formed of a three-sided hollow quadrangular prism, and two opposing sides facing each other are open. .
  • the y-axis driving means 7d is accommodated in each of the two opposite sides.
  • the support bar 2 is appropriately disposed on the base 3 from the state where it is accommodated in the extrusion means 7a by the support bar installation means 7 including the extrusion means 7a, the rail 7b, the x-axis drive means 7c, and the y-axis drive means 7d. Is done.
  • the processing means 4 processes the workpiece 1 placed on the base 3, and in this embodiment is a laser processing head that emits laser light.
  • the moving means 5 moves the relative position between the processing means 4 and the substrate 3. In this embodiment, the position of the workpiece 1 is fixed, and the processing means 4 moves by the moving means 5. The relative position of the means 4 and the substrate 3 changes. In FIG. 1, when the depth direction of the base body 3 is the x axis and the lateral direction is the y axis, the moving means 5 moves the processing means 4 in the x axis direction by a moving mechanism inside the frame holding the processing means 4.
  • the frame itself holding the processing means 4 of the moving means 5 is moved in the y-axis direction by a moving mechanism (not shown) to move the relative position of the processing means 4 with respect to the base 3. ing.
  • the workpiece 1 can be cut into a desired shape by moving the machining means 4 according to the shape to be machined.
  • the calculation unit 6 calculates installation position information indicating the installation position of the support bar 2 installed on the base 3 based on the machining shape information of the workpiece 1.
  • the machining shape information indicates the shape of the workpiece to be machined.
  • the machining shape information is the shape of the part that the machining means 4 wants to cut out from the workpiece 1 that is the workpiece.
  • FIG. 2 is a conceptual diagram showing an example of machining shape information input to the machining apparatus.
  • the workpiece 1 is a metal on a flat plate and the shape of a part to be cut out from the workpiece 1 is a star shape or a trapezoidal shape as shown on the left side of FIG.
  • the vertex group data indicated by the two-dimensional position coordinates (x, y) is machining shape information.
  • a set of black spots of the graphic shown on the left side of FIG. 2 is a vertex group.
  • the workpiece 1 is machined by the moving means 5 sequentially moving the machining means 4 so that the laser irradiation destination of the machining means 4 moves from the vertex with the early machining order in the vertex group to the vertex with the next machining order.
  • the machining shape information is not limited to the vertex group data as described above, but may be information regarding the shape to be machined. For example, a function indicating the shape may be used as the machining shape information. When such machining shape information is input to the calculation unit 6, the calculation unit 6 calculates installation position information of the support bar 2 based on the machining shape information.
  • each vertex is moved in the center direction around the center coordinate 12 obtained by averaging the coordinates of each vertex included in the vertex group data of the machining shape information.
  • the degree of movement is determined by the material and thickness of the object to be processed, and the processing accuracy, and is set by the user, for example.
  • the installation pitch of the support bars 2 is 5 cm
  • the coordinates of the vertex group data are moved 5 cm to the center, and the position after the movement is set as the internal support position 13.
  • the black spot inside the star and trapezoid shown on the right side is the internal support position 13.
  • the intermediate support position 14 is calculated like a white point inside the trapezoid.
  • the internal support position 13 and the intermediate support position 14 calculated by the calculation unit 6 are output to the support bar installation means 7 as installation position information.
  • the support bar installation means 7 installs the support bar 2 at the installation position on the base 3 corresponding to the installation position information based on the installation position information calculated by the calculation unit 6.
  • the support bar installation means 7 is composed of push means 7a, rails 7b, x-axis drive means 7c and y-axis drive means 7d.
  • the push-out means 7a accommodates a plurality of support bars 2 and pushes out the support bars 2 to be placed on the rails 7b based on the installation position information calculated by the calculation unit 6.
  • the rail 7b sequentially holds the support rods 2 pushed out by the pushing means 7a and conveys them in the x direction.
  • FIG. 3 is an explanatory diagram of the rail 7b of the processing apparatus according to the first embodiment.
  • the rail 7b includes a rail housing 71b on which the support rod 2 is placed, a belt 72b that holds and supports the support rod 2 placed on the rail housing 71b with a protrusion, and a rotating portion 73b that rotates the belt 72b.
  • a plurality of rails 7b are arranged such that the long axis is in the x-axis direction of the base.
  • the belt 72b has a protrusion as shown in FIG. 3, and the support rod 2 is sandwiched and held by the protrusion.
  • the rotating part 73b is in contact with the belt 72b, and the belt 72b rotates when the rotating part 73b rotates.
  • the rotating portion 73b is rotated by being given a rotational force by the x-axis driving means 7c shown in FIG.
  • the rail 7b carries the support rod 2 by sandwiching the support rod 2 from both sides by rotating the rotating portion 73b and moving the belt 72b. Since the support bar 2 is pushed out at an appropriate timing by the push-out means 7a operating in conjunction with the x-axis drive means 7c based on the installation position information calculated by the calculation unit 6, and is transported to the belt 72b. It will be arrange
  • FIG. 4 is a conceptual diagram of the y-axis driving unit 7d of the processing machine according to the first embodiment.
  • the y-axis driving means 7d is housed in two opposing sides of the frame of the base 3, and the two sides are exposed on the opposing surfaces.
  • the y-axis drive means 7d includes a belt 71d that conveys the rail 7b, and a motor 72d that contacts the belt 71d and rotates the belt 71d.
  • the y-axis drive unit 7d sandwiches the end of the long axis of the rail 7b by the two belts 71d, and the motor 72d Moves and the belt 71d rotates to move the rail 7b.
  • the plurality of rails 7b are finally held and moved by the y-axis driving means 7d, and the support bar 2 is arranged at the installation position based on the installation position information.
  • the support bar 2 is installed at the installation position based on the installation position information calculated by the calculation unit 6 when it is desired to machine the workpiece 1 into a star shape.
  • the calculated installation position information shows only the internal support position where the vertex group data is moved once to the center.
  • FIG. 5 is a flowchart showing the processing operation of the processing machine according to the first embodiment.
  • step S001 machining shape information of the workpiece 1 is input to the calculation unit 6.
  • the calculation unit 6 calculates the installation position information of the support bar 2 installed on the base 3 based on the machining shape information of the workpiece 1.
  • step S003 based on the installation position information calculated by the calculation unit 6, the support bar installation means 7 installs the support bar 2 at the installation position on the base 3 corresponding to the installation position information.
  • the processing unit 4 corresponds to the machining shape information by the moving unit 5 in step S004.
  • the workpiece 1 placed on the substrate 3 is cut by the processing means 4 emitting laser light while moving.
  • FIG. 6 is a flowchart showing in detail the operation of calculating the installation position information of the calculation unit 6 in step S002 of FIG.
  • step S101 the calculation unit 6 calculates center coordinates 12 obtained by averaging the coordinates of the vertices from the above-described vertex group data that is the input machining shape information. After calculating the center coordinate 12, the calculation unit 6 proceeds to step S102.
  • step S102 the calculation unit 6 calculates the internal support position 13. Specifically, the coordinates of each vertex of the vertex group data are moved by an amount corresponding to 5 cm in the direction of the central coordinate 12 calculated in step S101, and the position after the movement is calculated as the internal support position 13. .
  • step S103 when the 5 cm vertex group data is further moved from the internal support position 13 calculated in step S102 to the central coordinate 12, the internal support position is determined by determining whether or not the central coordinate 12 is reached. It is determined whether the calculation of is completed. If the central coordinates 12 are not reached for all the vertices, it is determined that the calculation of the internal support position has not been completed, and the process returns to step S102 to calculate the internal support position 13 again. On the other hand, for all the vertices, if the 5 cm vertex group data is further moved from the internal support position 13 calculated in step S102 to the central coordinate 12, if the central coordinate 12 is reached, the calculation of the internal support position 13 is completed. The process proceeds to S104.
  • step S104 a place where the distance between the internal support position 13 and the internal support position 13 in the next processing order is 5 cm or more is detected, and if there is no place where the distance is 5 cm or more, the intermediate support position 14 is calculated. The calculation of the installation position information is completed. On the other hand, if a location where the distance between the internal support position 13 and another internal support position 13 is 5 cm or more is detected, it is determined that the intermediate support position needs to be calculated, and the process proceeds to step S105. In step S105, the middle of the portion where the distance between the internal support position 13 and the internal support position 13 in the next processing order is 5 cm or more is calculated as the intermediate support position 14, and the process returns to step S104.
  • Steps S104 and S105 are repeated until it is determined in step S104 that a position where the distance between the internal support position 13 and another internal support position 13 is 5 cm or more is not detected.
  • the calculated internal support position 13 and intermediate support position 14 are output to the support bar installation means 7 as installation position information. The above is the operation in which the calculation unit 6 calculates the installation position information.
  • FIG. 7 is a flowchart showing in detail the support bar installation operation by the support bar installation means 7 in step S003 of FIG.
  • step S201 the rail 7b is installed at a position where the x-axis driving means 7c pushes out the support bar 2 accommodated in the pushing means 7a.
  • step S202 the x-axis drive means 7c rotates the rotating portion 73b of the rail 7b, and the pushing means 7a places the support bar 2 on the rail 7b at a timing based on the installation position information. Extrude.
  • the belt 72b of the rail 7b sandwiches the support rod 2 from both sides while rotating and conveys it in the x-axis direction.
  • step S203 it is determined whether or not the placement of the support bar 2 on the rail 7b is completed. If not completed, the process returns to step S202. If completed, the process proceeds to step S204.
  • step S204 the x-axis drive unit 7c pushes the rail 7b to the y-axis drive unit 7d at a timing based on the installation position information.
  • the motor 72d of the y-axis drive means 7d is driven and the belt 71d rotates, so that the rail 7b on which the support rod 2 is mounted moves in the y direction.
  • the amount of movement in the y direction at this time can be determined according to the pitch between the projections of the rail 7b and the installation position information.
  • the rail 7b is arranged between a certain projection, and then between adjacent projections.
  • the movement amount is one pitch between the protrusions. If the rail 7b is arranged between the separated protrusions, the movement amount to the position between the protrusions where the rail 7b is arranged next is used. That's fine.
  • step S205 it is confirmed whether or not the arrangement of the rails 7b at all installation positions, that is, the arrangement of the support rods 2, is completed. If not completed, the process returns to step S201, and steps S201 to S205 are repeated.
  • the arrangement of the support bar 2 is completed, the operation of the support bar installation by the support bar installation means 7 is terminated.
  • the installation position information based on the machining shape information is obtained, and the support rod is installed at the installation position corresponding to the installation position information, so that the periphery of the part to be cut out of the workpiece 1 is reliably supported and cut out. Difficult to bend during or after being cut out.
  • the processing apparatus is configured to install the support bar 2 at the installation position on the base 3 corresponding to the installation position information calculated based on the machining shape information of the workpiece 1. Since the workpiece 1 is supported at the support point corresponding to the shape of the workpiece 1, the deflection of the workpiece 1 is suppressed. In addition, since the support rods 2 are adaptively arranged in this way, they are not arranged at unnecessary places, so that the number of the support rods 2 used during processing can be reduced. Further, since the support bar installation position calculated by the calculation unit 6 is set inside the part to be cut out, the position at which the processing means 4 performs the processing and the position of the support bar 2 that supports the workpiece 1 coincide with each other.
  • the support rods 2 are stored together in the push-out means 7a as in the first embodiment and are appropriately arranged, the replacement work can be easily performed.
  • work 1 is not restricted to plate shape, A three-dimensional shape may be sufficient.
  • information on the solid shape may be input as the processing shape information, and the installation position information may be calculated.
  • the calculation of the internal support position 13 is not limited to the method of calculating by moving the coordinates of the coordinate group toward the center, and a position where the work 1 can be supported at a position where the deflection of the work 1 is small may be calculated.
  • the center of gravity may be obtained based on the weight distribution of the workpiece 1, and the arrangement position with less deflection may be calculated.
  • the resolution at which the support bar installation means 7 can install the support bar 2 depends on the size of the protrusions of the rail casing 71b or the belt 72b and the distance between the protrusions. Accordingly, when the installation position information is calculated by the calculation unit 6, the calculated coordinate value is corrected to the closest position among the coordinates where the support bar installation means 7 can install the support bar 2, and the support adapted to the machining shape is supported. It can be a position.
  • the processing means may be any laser light source as long as it can process the workpiece, and may be, for example, a water jet nozzle for cutting the workpiece with high-pressure water.
  • the moving means for moving the relative position between the processing means 4 and the base 3 has been described as moving means.
  • the processing means 4 is fixed and the base 3 is moved. But it ’s okay.
  • the part to be cut out from the workpiece 1 for example, the one that calculates the installation position information that supports the inside of the star when the part having a star shape in FIG. 2 is to be cut out has been described. It is good also as what calculates installation position information so that the workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Jigs For Machine Tools (AREA)
  • Machine Tool Units (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

The processing device pertaining to the present invention is provided with a support rod for supporting a work piece, a base on which the support rod is installed and on which the work piece is mounted via the support rod, a processing means for processing the work piece mounted on the base, a movement means for moving the relative positions of the processing means and the base, a calculation unit for calculating installation position information indicating the installation position of the support rod installed on the base on the basis of processing shape information of the work piece, and a support rod installation means for installing the support rod in the installation position on the base corresponding to the installation position information on the basis of the installation position information calculated by the calculation unit, and the work piece is therefore supported at a support point corresponding to the shape of the work piece. Bending of the work piece is therefore suppressed.

Description

加工装置Processing equipment
 本発明は、レーザ、水圧等の加工手段によりワークを加工する加工装置。 The present invention is a processing apparatus for processing a workpiece by processing means such as laser and water pressure.
 加工対象物である金属板などのワークにレーザ光を照射し、レーザ光を照射した箇所を溶かすことによってワークを切断するレーザ加工装置がある。このような加工装置では、レーザ照射時に溶けたワークの融解物がドロスとなって、切断したワークの裏面に付着することを避けるため、レーザ照射位置に高圧ガスを噴射することにより、ドロスを吹き飛ばすようにしている。この時、ワークを切断した箇所からガスの噴射方向へドロスが吹き飛ばされるため、ワークの下はできるだけ空間が空いていることが望ましい。そのため、ワークを複数の剣山ピンで支えるようにしているものがあった(例えば、特許文献1)。 There is a laser processing apparatus that cuts a workpiece by irradiating a workpiece such as a metal plate, which is an object to be processed, with a laser beam and melting a portion irradiated with the laser beam. In such a processing apparatus, in order to avoid the melted workpiece melted at the time of laser irradiation becoming dross and adhering to the back surface of the cut workpiece, the dross is blown off by injecting high pressure gas to the laser irradiation position. I am doing so. At this time, since dross is blown off in the gas injection direction from the location where the workpiece is cut, it is desirable that the space below the workpiece is as open as possible. For this reason, there are some which support the work with a plurality of sword pins (for example, Patent Document 1).
特開平7-299682号公報JP 7-299682 A
 上記のようなレーザ加工装置では、ワークを支えるための剣山ピンが縦横方向に整列した固定箇所に配置されている。このため、ワークの形状によっては、剣山ピン間を跨るワークの一部が十分に支持されずに撓んでしまうという問題があった。 In the laser processing apparatus as described above, the sword pins for supporting the work are arranged at fixed positions aligned in the vertical and horizontal directions. For this reason, depending on the shape of the work, there is a problem that a part of the work straddling between the sword pins is bent without being sufficiently supported.
 本発明は、上記課題を解決するためになされたものであり、ワークの撓みを抑えられる加工装置を得ることを目的とする。 This invention was made in order to solve the said subject, and it aims at obtaining the processing apparatus which can suppress the bending of a workpiece | work.
 本発明に係る加工装置は、ワークを支持する支持棒と、支持棒が設置され、支持棒を介してワークを載せる基体と、基体に載せられたワークを加工する加工手段と、加工手段と基体との相対的な位置を移動させる移動手段と、ワークの加工形状情報に基づいて基体に設置される支持棒の設置位置を示す設置位置情報を算出する算出部と、算出部にて算出された設置位置情報に基づいて、支持棒を設置位置情報に対応した基体上の設置位置に設置する支持棒設置手段とを備えたものである。 A processing apparatus according to the present invention includes a support rod for supporting a workpiece, a base on which the support rod is installed, and a workpiece placed on the support rod, a processing means for processing the workpiece placed on the base, a processing means, and a base Calculated by the calculating unit, a moving unit that moves the relative position of the workpiece, a calculation unit that calculates installation position information indicating an installation position of the support bar installed on the base based on the machining shape information of the workpiece, and And a support bar installation means for installing the support bar at an installation position on the base corresponding to the installation position information based on the installation position information.
 本発明によれば、ワークの加工形状情報に基づいて算出された設置位置情報に対応した基体上の設置位置に支持棒を設置するようにしたので、ワークの形状に応じた支持点でワークが支持されるため、ワークの撓みが抑えられる。 According to the present invention, since the support bar is installed at the installation position on the base corresponding to the installation position information calculated based on the machining shape information of the workpiece, the workpiece is supported at the support point corresponding to the shape of the workpiece. Since it is supported, the bending of the workpiece is suppressed.
実施の形態1に係る加工機の説明図である。FIG. 3 is an explanatory diagram of the processing machine according to the first embodiment. 実施の形態1に係る加工装置に入力する加工形状情報の例を示した概念図である。It is the conceptual diagram which showed the example of the machining shape information input into the processing apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る加工装置のレールの説明図である。It is explanatory drawing of the rail of the processing apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る加工機のy軸駆動手段の概念図である。FIG. 3 is a conceptual diagram of y-axis drive means of the processing machine according to Embodiment 1. 実施の形態1に係る加工機の加工動作を示すフローチャートである。3 is a flowchart showing a processing operation of the processing machine according to the first embodiment. 実施の形態1に係る算出部の設置位置情報を算出する動作を詳細に示すフローチャートである。4 is a flowchart illustrating in detail an operation of calculating installation position information of a calculation unit according to the first embodiment. 実施の形態1に係る支持棒設置手段による支持棒設置動作を詳細に示すフローチャートである。5 is a flowchart showing in detail a support bar installation operation by a support bar installation unit according to the first embodiment.
実施の形態1.
 図1は、実施の形態1に係る加工機の説明図である。加工機は、ワーク1を支持する複数の支持棒2と、支持棒2が設置され、支持棒2を介してワーク1を載せる基体3と、支持棒2を介して基体3に載せられたワーク1を加工する加工手段4と、加工手段4と基体3との相対的な位置を移動させる移動手段5と、ワーク1の加工形状情報に基づいて基体3に設置される支持棒2の設置位置を示す設置位置情報を算出する算出部6と、算出部6にて算出された設置位置情報に基づいて、支持棒2を基体3の設置位置に設置する支持棒設置手段7とを有して構成されている。支持棒設置手段7は、押出手段7a、レール7b、x軸駆動手段7c及びy軸駆動手段7dとを有している。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram of the processing machine according to the first embodiment. The processing machine includes a plurality of support rods 2 that support the workpiece 1, a support 3 on which the support rod 2 is installed, a workpiece 3 on which the workpiece 1 is placed via the support rod 2, and a workpiece that is placed on the substrate 3 via the support rod 2. The processing means 4 for processing 1, the moving means 5 for moving the relative position of the processing means 4 and the base 3, and the installation position of the support bar 2 installed on the base 3 based on the processing shape information of the workpiece 1 And a support bar installation means 7 for installing the support bar 2 at the installation position of the base 3 based on the installation position information calculated by the calculation unit 6. It is configured. The support bar installation means 7 has push-out means 7a, rails 7b, x-axis drive means 7c, and y-axis drive means 7d.
 ワーク1は、加工機の加工対象物であり、例えば金属の板である。支持棒2は、この加工対象物であるワーク1を支持するものである。支持棒2は、先端が尖った四角柱状の金属で構成されたものであり、複数の支持棒2の先端にワークを載せることにより支持棒2の先端が支持点となってワークを支える。 Work 1 is a processing object of a processing machine, for example, a metal plate. The support bar 2 supports the workpiece 1 that is the object to be processed. The support bar 2 is made of a square columnar metal with sharp tips, and the work is supported on the tips of the support bars 2 by placing the work on the tips of the plurality of support bars 2.
 基体3は、図示しない脚等を介して加工装置の設置場所に固定されるものであり、支持棒2を介してワーク1を支えている。基体3は図1に示すようにU字状の枠体を有しており、枠体は3辺の中空の四角柱からなるとともに、対向する2辺の相互に対向する面は開口している。この対向する2辺それぞれの中にはy軸駆動手段7dが収納されている。
 支持棒2は、押出手段7a、レール7b、x軸駆動手段7c及びy軸駆動手段7dからなる支持棒設置手段7によって、押出手段7aに収納されている状態から、適宜、基体3上に配置される。
The base 3 is fixed to a place where the processing apparatus is installed via a leg (not shown), and supports the work 1 via the support bar 2. As shown in FIG. 1, the base 3 has a U-shaped frame. The frame is formed of a three-sided hollow quadrangular prism, and two opposing sides facing each other are open. . The y-axis driving means 7d is accommodated in each of the two opposite sides.
The support bar 2 is appropriately disposed on the base 3 from the state where it is accommodated in the extrusion means 7a by the support bar installation means 7 including the extrusion means 7a, the rail 7b, the x-axis drive means 7c, and the y-axis drive means 7d. Is done.
 加工手段4は、基体3上に載せられたワーク1を加工するものであり、この実施の形態ではレーザ光を放射するレーザ加工ヘッドである。
 移動手段5は、加工手段4と基体3との相対的な位置を移動させるものであり、この実施の形態ではワーク1は位置が固定され、加工手段4が移動手段5により移動することで加工手段4と基体3との相対的な位置が変わる。図1において基体3の奥行き方向をx軸、横方向をy軸としたときに、移動手段5は、加工手段4を保持している枠体の内部の移動機構で加工手段4をx軸方向に移動させるとともに、移動手段5の加工手段4を保持している枠体自体が図示していない移動機構でy軸方向に動くことにより、加工手段4の基体3に対する相対的な位置を移動させている。ワーク1を加工したい形状に合わせて加工手段4を移動することで、ワーク1を所望の形状に切断することができる。
The processing means 4 processes the workpiece 1 placed on the base 3, and in this embodiment is a laser processing head that emits laser light.
The moving means 5 moves the relative position between the processing means 4 and the substrate 3. In this embodiment, the position of the workpiece 1 is fixed, and the processing means 4 moves by the moving means 5. The relative position of the means 4 and the substrate 3 changes. In FIG. 1, when the depth direction of the base body 3 is the x axis and the lateral direction is the y axis, the moving means 5 moves the processing means 4 in the x axis direction by a moving mechanism inside the frame holding the processing means 4. And the frame itself holding the processing means 4 of the moving means 5 is moved in the y-axis direction by a moving mechanism (not shown) to move the relative position of the processing means 4 with respect to the base 3. ing. The workpiece 1 can be cut into a desired shape by moving the machining means 4 according to the shape to be machined.
 算出部6は、ワーク1の加工形状情報に基づいて基体3に設置される支持棒2の設置位置を示す設置位置情報を算出するものである。
 加工形状情報とは、加工対象物を加工する形状を示したものであり、この実施の形態では、加工手段4によって加工対象物であるワーク1から切り出したい部品の形状である。図2は加工装置に入力する加工形状情報の例を示した概念図である。ワーク1が平板上の金属であり、このワーク1から切り出したい部品の形状が図2の左側に示すような星形、あるいは台形の形状である場合、これら形状の各頂点11を基体3を基準とした二次元の位置座標(x,y)で示す頂点群データが加工形状情報である。具体的には、図2の左側に示す図形の黒点の集合が頂点群である。頂点群の中の加工順序が早い頂点から次の加工順序の頂点へ加工手段4のレーザ照射先が移動するように、移動手段5が加工手段4を順次移動させることでワーク1が加工される。
 なお、加工形状情報は、上記のような頂点群データでなくとも、加工する形状に関する情報であればよく、例えば形状を示す関数を加工形状情報としてもよい。
 このような加工形状情報が算出部6に入力されると、算出部6は、加工形状情報に基づいて支持棒2の設置位置情報を算出する。具体的には、加工形状情報の頂点群データに含まれる各頂点の座標を平均化して求めた中心座標12を中心として、各頂点を中心方向へ移動させる。移動する程度は加工対象物の材質や厚み、また加工の精度によって決定されるものであり、例えばユーザによって設定される。具体例として、支持棒2の設置ピッチを5cmとした場合は、頂点群データの座標を中心へ5cm移動させ、移動させた後の位置を内部支持位置13とする。図2の例では、右側に示す星形及び台形の内部の黒点が内部支持位置13である。
 このように内部支持位置13が算出された後、内部支持位置13と次の加工順序の内部支持位置13との間の距離が5cm以上空いている場合は、図2の右側に示す星形及び台形の内部の白点のように中間支持位置14を算出する。算出部6で算出された内部支持位置13及び中間支持位置14は設置位置情報として支持棒設置手段7に出力される。
The calculation unit 6 calculates installation position information indicating the installation position of the support bar 2 installed on the base 3 based on the machining shape information of the workpiece 1.
The machining shape information indicates the shape of the workpiece to be machined. In this embodiment, the machining shape information is the shape of the part that the machining means 4 wants to cut out from the workpiece 1 that is the workpiece. FIG. 2 is a conceptual diagram showing an example of machining shape information input to the machining apparatus. When the workpiece 1 is a metal on a flat plate and the shape of a part to be cut out from the workpiece 1 is a star shape or a trapezoidal shape as shown on the left side of FIG. The vertex group data indicated by the two-dimensional position coordinates (x, y) is machining shape information. Specifically, a set of black spots of the graphic shown on the left side of FIG. 2 is a vertex group. The workpiece 1 is machined by the moving means 5 sequentially moving the machining means 4 so that the laser irradiation destination of the machining means 4 moves from the vertex with the early machining order in the vertex group to the vertex with the next machining order. .
The machining shape information is not limited to the vertex group data as described above, but may be information regarding the shape to be machined. For example, a function indicating the shape may be used as the machining shape information.
When such machining shape information is input to the calculation unit 6, the calculation unit 6 calculates installation position information of the support bar 2 based on the machining shape information. Specifically, each vertex is moved in the center direction around the center coordinate 12 obtained by averaging the coordinates of each vertex included in the vertex group data of the machining shape information. The degree of movement is determined by the material and thickness of the object to be processed, and the processing accuracy, and is set by the user, for example. As a specific example, when the installation pitch of the support bars 2 is 5 cm, the coordinates of the vertex group data are moved 5 cm to the center, and the position after the movement is set as the internal support position 13. In the example of FIG. 2, the black spot inside the star and trapezoid shown on the right side is the internal support position 13.
After the internal support position 13 is calculated in this way, when the distance between the internal support position 13 and the internal support position 13 in the next processing order is 5 cm or more, the star shape shown on the right side of FIG. The intermediate support position 14 is calculated like a white point inside the trapezoid. The internal support position 13 and the intermediate support position 14 calculated by the calculation unit 6 are output to the support bar installation means 7 as installation position information.
 支持棒設置手段7は、算出部6にて算出された設置位置情報に基づいて、設置位置情報に対応した基体3上の設置位置に支持棒2を設置するものである。支持棒設置手段7は、押出手段7a、レール7b、x軸駆動手段7c及びy軸駆動手段7dから構成される。
 押出手段7aは、複数の支持棒2を収納しており、算出部6で算出された設置位置情報に基づいて支持棒2をレール7bに載せるために押し出すものである。
 レール7bは、押出手段7aに押し出された支持棒2を順次保持してx方向に運搬する。図3は、本実施の形態1に係る加工装置のレール7bの説明図である。レール7bは、支持棒2を載せるレール筐体71b、レール筐体71bに載った支持棒2を突起で保持して運搬するベルト72b、ベルト72bを回転させる回転部73bから構成される。
 レール7bは基体のx軸方向が長軸となるよう複数配置される。ベルト72bには図3に示すような突起がついており、この突起で支持棒2を挟み込んで保持する。回転部73bはベルト72bと接触しており、回転部73bが回るとベルト72bが回るようになっている。この回転部73bは図1に示すx軸駆動手段7cにより回転力を与えられて回転する。
 レール7bは、支持棒2が押し出されてレール筐体71bに載ると、回転部73bが回されてベルト72bが動くことにより支持棒2を両側から挟み込み運搬する。支持棒2は、算出部6にて算出された設置位置情報に基づいて、x軸駆動手段7cと連動して動作する押出手段7aによって適切なタイミングで押し出され、ベルト72bに運搬されるので、設置位置情報に応じた間隔でレール7b内に配置されることになる。
 1つのレール7bのx軸方向全体に亘って所定の位置に支持棒2を設置し終わるとx軸駆動手段7cは、y軸駆動手段7dの方向へそのレール7bを押し出す。
 y軸駆動手段7dは、支持棒2が載ったレール7bを設置位置情報に対応した基体3上の設置位置yに移動させるものである。図4は、実施の形態1に係る加工機のy軸駆動手段7dの概念図である。y軸駆動手段7dは、基体3の枠体の対向する2辺の中に収納されており、その2辺が対向する面で露出している。y軸駆動手段7dは、レール7bを運搬するベルト71d、ベルト71dと接触しベルト71dを回転させるモータ72dから構成される。
 y軸駆動手段7dは、x軸駆動手段7cによって支持棒2が載ったレール7bが設置位置情報に基づくタイミングで押し出されると、2つのベルト71dによりレール7bの長軸の端を挟み込み、モータ72dが動いてベルト71dが回転することによってレール7bを移動させる。y軸駆動手段7dによって、最終的には複数のレール7bが保持されて移動し、設置位置情報に基づいた設置位置に支持棒2が配置される。図4では、ワーク1を星形に加工したい場合に、算出部6によって算出された設置位置情報に基づいて支持棒2を設置位置へ設置した様子を示す。簡単のため、算出された設置位置情報は頂点群データを1回中心へ移動させた内部支持位置のみ示している。
The support bar installation means 7 installs the support bar 2 at the installation position on the base 3 corresponding to the installation position information based on the installation position information calculated by the calculation unit 6. The support bar installation means 7 is composed of push means 7a, rails 7b, x-axis drive means 7c and y-axis drive means 7d.
The push-out means 7a accommodates a plurality of support bars 2 and pushes out the support bars 2 to be placed on the rails 7b based on the installation position information calculated by the calculation unit 6.
The rail 7b sequentially holds the support rods 2 pushed out by the pushing means 7a and conveys them in the x direction. FIG. 3 is an explanatory diagram of the rail 7b of the processing apparatus according to the first embodiment. The rail 7b includes a rail housing 71b on which the support rod 2 is placed, a belt 72b that holds and supports the support rod 2 placed on the rail housing 71b with a protrusion, and a rotating portion 73b that rotates the belt 72b.
A plurality of rails 7b are arranged such that the long axis is in the x-axis direction of the base. The belt 72b has a protrusion as shown in FIG. 3, and the support rod 2 is sandwiched and held by the protrusion. The rotating part 73b is in contact with the belt 72b, and the belt 72b rotates when the rotating part 73b rotates. The rotating portion 73b is rotated by being given a rotational force by the x-axis driving means 7c shown in FIG.
When the support rod 2 is pushed out and placed on the rail housing 71b, the rail 7b carries the support rod 2 by sandwiching the support rod 2 from both sides by rotating the rotating portion 73b and moving the belt 72b. Since the support bar 2 is pushed out at an appropriate timing by the push-out means 7a operating in conjunction with the x-axis drive means 7c based on the installation position information calculated by the calculation unit 6, and is transported to the belt 72b. It will be arrange | positioned in the rail 7b at the space | interval according to installation position information.
When the support rod 2 has been installed at a predetermined position over the entire x-axis direction of one rail 7b, the x-axis drive means 7c pushes the rail 7b in the direction of the y-axis drive means 7d.
The y-axis drive means 7d moves the rail 7b on which the support rod 2 is placed to the installation position y on the base 3 corresponding to the installation position information. FIG. 4 is a conceptual diagram of the y-axis driving unit 7d of the processing machine according to the first embodiment. The y-axis driving means 7d is housed in two opposing sides of the frame of the base 3, and the two sides are exposed on the opposing surfaces. The y-axis drive means 7d includes a belt 71d that conveys the rail 7b, and a motor 72d that contacts the belt 71d and rotates the belt 71d.
When the rail 7b on which the support rod 2 is placed is pushed out by the x-axis drive unit 7c at a timing based on the installation position information, the y-axis drive unit 7d sandwiches the end of the long axis of the rail 7b by the two belts 71d, and the motor 72d Moves and the belt 71d rotates to move the rail 7b. The plurality of rails 7b are finally held and moved by the y-axis driving means 7d, and the support bar 2 is arranged at the installation position based on the installation position information. FIG. 4 shows a state in which the support bar 2 is installed at the installation position based on the installation position information calculated by the calculation unit 6 when it is desired to machine the workpiece 1 into a star shape. For simplicity, the calculated installation position information shows only the internal support position where the vertex group data is moved once to the center.
 次に、実施の形態1に係る加工機の動作について説明する。
 図5は、実施の形態1に係る加工機の加工動作を示すフローチャートである。
Next, the operation of the processing machine according to Embodiment 1 will be described.
FIG. 5 is a flowchart showing the processing operation of the processing machine according to the first embodiment.
 ステップS001にて、算出部6にワーク1の加工形状情報が入力される。加工形状情報が入力されると、ステップS002において算出部6はワーク1の加工形状情報に基づいて基体3に設置される支持棒2の設置位置情報を算出する。
 次に、ステップS003にて、算出部6で算出された設置位置情報に基づいて、支持棒設置手段7が設置位置情報に対応した基体3上の設置位置に支持棒2を設置する。
 ステップS003が終了し、ユーザによりワーク1が基体3上の設置位置に設置された支持棒2の上に載置されると、ステップS004にて移動手段5により加工手段4を加工形状情報に対応して移動しながら、加工手段4がレーザ光を放射することで基体3に載せられたワーク1を切断加工する。
In step S001, machining shape information of the workpiece 1 is input to the calculation unit 6. When the machining shape information is input, in step S002, the calculation unit 6 calculates the installation position information of the support bar 2 installed on the base 3 based on the machining shape information of the workpiece 1.
Next, in step S003, based on the installation position information calculated by the calculation unit 6, the support bar installation means 7 installs the support bar 2 at the installation position on the base 3 corresponding to the installation position information.
When step S003 is completed and the work 1 is placed on the support bar 2 installed at the installation position on the base 3 by the user, the processing unit 4 corresponds to the machining shape information by the moving unit 5 in step S004. The workpiece 1 placed on the substrate 3 is cut by the processing means 4 emitting laser light while moving.
 図6は、図5のステップS002における算出部6の設置位置情報を算出する動作を詳細に示すフローチャートである。ステップS101にて、算出部6は入力された加工形状情報である前述の頂点群データから、各頂点の座標を平均化して求める中心座標12を算出する。算出部6は中心座標12を算出すると、ステップS102に進む。
 次に、ステップS102にて、算出部6は内部支持位置13を算出する。具体的には、頂点群データの各頂点の座標を、ステップS101にて算出した中心座標12の方向へ5cmに相当する分だけ移動させ、移動させた後の位置を内部支持位置13として算出する。
 そして、ステップS103に進み、ステップS102にて算出した内部支持位置13からさらに中心座標12へ5cm頂点群データを移動した場合、中心座標12へ到達するかしないかを判定することで、内部支持位置の算出が完了したか否かを判断する。全ての頂点について、中心座標12に到達しない場合は内部支持位置の算出が完了していないと判断し、再びステップS102に戻り内部支持位置13を算出する。一方、全ての頂点について、ステップS102にて算出した内部支持位置13からさらに中心座標12へ5cm頂点群データを移動させると中心座標12へ到達する場合は内部支持位置13の算出は完了したとしてステップS104へ進む。
 ステップS104では、内部支持位置13と次の加工順序の内部支持位置13との距離が5cm以上空いている箇所を検出し、距離が5cm以上空いている箇所がない場合は中間支持位置14の算出が必要ないと判断して設置位置情報の算出を完了する。一方、内部支持位置13と他の内部支持位置13との距離が5cm以上空いている箇所が検出された場合は中間支持位置の算出が必要と判断し、ステップS105に進む。
 ステップS105では、内部支持位置13と次の加工順序の内部支持位置13との距離が5cm以上空いている箇所の中間を中間支持位置14として算出し、ステップS104に戻る。ステップS104で内部支持位置13と他の内部支持位置13との距離が5cm以上空いている箇所が検出されないと判断されるまで、ステップS104とS105を繰り返す。
 設置位置情報の算出が終了すると、算出された内部支持位置13及び中間支持位置14は設置位置情報として支持棒設置手段7に出力される。
 以上が、算出部6が設置位置情報を算出する動作である。
FIG. 6 is a flowchart showing in detail the operation of calculating the installation position information of the calculation unit 6 in step S002 of FIG. In step S101, the calculation unit 6 calculates center coordinates 12 obtained by averaging the coordinates of the vertices from the above-described vertex group data that is the input machining shape information. After calculating the center coordinate 12, the calculation unit 6 proceeds to step S102.
Next, in step S102, the calculation unit 6 calculates the internal support position 13. Specifically, the coordinates of each vertex of the vertex group data are moved by an amount corresponding to 5 cm in the direction of the central coordinate 12 calculated in step S101, and the position after the movement is calculated as the internal support position 13. .
Then, the process proceeds to step S103, and when the 5 cm vertex group data is further moved from the internal support position 13 calculated in step S102 to the central coordinate 12, the internal support position is determined by determining whether or not the central coordinate 12 is reached. It is determined whether the calculation of is completed. If the central coordinates 12 are not reached for all the vertices, it is determined that the calculation of the internal support position has not been completed, and the process returns to step S102 to calculate the internal support position 13 again. On the other hand, for all the vertices, if the 5 cm vertex group data is further moved from the internal support position 13 calculated in step S102 to the central coordinate 12, if the central coordinate 12 is reached, the calculation of the internal support position 13 is completed. The process proceeds to S104.
In step S104, a place where the distance between the internal support position 13 and the internal support position 13 in the next processing order is 5 cm or more is detected, and if there is no place where the distance is 5 cm or more, the intermediate support position 14 is calculated. The calculation of the installation position information is completed. On the other hand, if a location where the distance between the internal support position 13 and another internal support position 13 is 5 cm or more is detected, it is determined that the intermediate support position needs to be calculated, and the process proceeds to step S105.
In step S105, the middle of the portion where the distance between the internal support position 13 and the internal support position 13 in the next processing order is 5 cm or more is calculated as the intermediate support position 14, and the process returns to step S104. Steps S104 and S105 are repeated until it is determined in step S104 that a position where the distance between the internal support position 13 and another internal support position 13 is 5 cm or more is not detected.
When the calculation of the installation position information is completed, the calculated internal support position 13 and intermediate support position 14 are output to the support bar installation means 7 as installation position information.
The above is the operation in which the calculation unit 6 calculates the installation position information.
 図7は、図5のステップS003における支持棒設置手段7による支持棒設置動作を詳細に示すフローチャートである。まず、ステップS201にて、x軸駆動手段7cが押出手段7aに収納された支持棒2を押し出す位置にレール7bを設置する。
 次に、ステップS202にて、x軸駆動手段7cがレール7bの回転部73bを回転させるとともに、押出手段7aが設置位置情報に基づいたタイミングで支持棒2をレール7bに載せるため支持棒2を押し出す。これにより、レール7bのベルト72bは、回転しながら支持棒2を両側から挟みこみ、x軸方向に運搬する。x軸駆動手段7cがレール7bの回転部73bを回転させる動作に連動して押出手段7aによって適切なタイミングで支持棒2が押し出され、ベルト72bにより運搬されるので、支持棒2は設置位置情報に応じた間隔でレール7b内の配置位置xまで移動される。
 そして、ステップS203にて、レール7bへの支持棒2の配置が完了したか否かを判断し、完了していない場合はステップS202に戻り、完了している場合はステップS204に進む。
 ステップS204では、x軸駆動手段7cが、設置位置情報に基づいたタイミングでレール7bをy軸駆動手段7dへ押し出す。レール7bが押し出されると同時に、y軸駆動手段7dのモータ72dが駆動され、ベルト71dが回転することによって支持棒2を載せたレール7bは、y方向に移動する。このときのy方向への移動量は、レール7bの突起の間のピッチと設置位置情報に対応して決めることができ、例えばある突起間にレール7bを配置し、続けて隣の突起間にレール7bを配置する場合は、突起間ピッチ1つ分の移動量とし、離れた突起間にレール7bを配置するのであれば、次にレール7bを配置する突起間の位置までの移動量とすればよい。
 ステップS205にて、全ての設置位置へのレール7bの配置、すなわち支持棒2の配置が完了したかを確認し、完了していない場合はステップS201へ戻り、ステップS201からS205を繰り返す。支持棒2の配置が完了した場合は、支持棒設置手段7による支持棒設置の動作を終了する。
 以上のようにして、加工形状情報に基づく設置位置情報を求め、この設置位置情報に対応した設置位置に支持棒を設置することで、ワーク1の切り出す部分周辺が確実に支持され、切り出されている途中や切り出された後に撓みにくい。なお、切り出す部分周辺以外の位置への支持棒の配置は必要に応じて適宜行えばよい。
FIG. 7 is a flowchart showing in detail the support bar installation operation by the support bar installation means 7 in step S003 of FIG. First, in step S201, the rail 7b is installed at a position where the x-axis driving means 7c pushes out the support bar 2 accommodated in the pushing means 7a.
Next, in step S202, the x-axis drive means 7c rotates the rotating portion 73b of the rail 7b, and the pushing means 7a places the support bar 2 on the rail 7b at a timing based on the installation position information. Extrude. As a result, the belt 72b of the rail 7b sandwiches the support rod 2 from both sides while rotating and conveys it in the x-axis direction. The support bar 2 is pushed out at an appropriate timing by the push-out means 7a in conjunction with the operation in which the x-axis drive means 7c rotates the rotating portion 73b of the rail 7b and is transported by the belt 72b. Is moved to the arrangement position x in the rail 7b at an interval according to.
In step S203, it is determined whether or not the placement of the support bar 2 on the rail 7b is completed. If not completed, the process returns to step S202. If completed, the process proceeds to step S204.
In step S204, the x-axis drive unit 7c pushes the rail 7b to the y-axis drive unit 7d at a timing based on the installation position information. At the same time as the rail 7b is pushed out, the motor 72d of the y-axis drive means 7d is driven and the belt 71d rotates, so that the rail 7b on which the support rod 2 is mounted moves in the y direction. The amount of movement in the y direction at this time can be determined according to the pitch between the projections of the rail 7b and the installation position information. For example, the rail 7b is arranged between a certain projection, and then between adjacent projections. When the rail 7b is arranged, the movement amount is one pitch between the protrusions. If the rail 7b is arranged between the separated protrusions, the movement amount to the position between the protrusions where the rail 7b is arranged next is used. That's fine.
In step S205, it is confirmed whether or not the arrangement of the rails 7b at all installation positions, that is, the arrangement of the support rods 2, is completed. If not completed, the process returns to step S201, and steps S201 to S205 are repeated. When the arrangement of the support bar 2 is completed, the operation of the support bar installation by the support bar installation means 7 is terminated.
As described above, the installation position information based on the machining shape information is obtained, and the support rod is installed at the installation position corresponding to the installation position information, so that the periphery of the part to be cut out of the workpiece 1 is reliably supported and cut out. Difficult to bend during or after being cut out. In addition, what is necessary is just to perform arrangement | positioning of the support bar in positions other than the periphery of the part to cut out suitably as needed.
 以上のように、実施の形態1に係る加工装置は、ワーク1の加工形状情報に基づいて算出された設置位置情報に対応した基体3上の設置位置に支持棒2を設置するようにしたので、ワーク1の形状に応じた支持点でワーク1が支持されるため、ワーク1の撓みが抑えられる。
 また、このように適応的に支持棒2を配置することにより、不必要な場所に配置することがないので、加工時に使用される支持棒2の数を少なくすることができる。
 また、算出部6に算出される支持棒設置位置は切り出したい部品の内側に設定されるため、加工の際に加工手段4が加工を行う位置と、ワーク1を支える支持棒2の位置が一致しないので、加工手段4が放射するレーザ光が支持棒2にあって損傷することを避けることができる。
 さらに、支持棒2の劣化などにより支持棒2を交換する必要がある場合、従来のように固定的に支持棒2が配置されていると交換作業の範囲が広く作業しづらいが、本実施の形態1のように押出手段7aにまとめて支持棒2を収納しておき、適宜配置するようにしていれば、交換作業が容易に行える。
As described above, the processing apparatus according to Embodiment 1 is configured to install the support bar 2 at the installation position on the base 3 corresponding to the installation position information calculated based on the machining shape information of the workpiece 1. Since the workpiece 1 is supported at the support point corresponding to the shape of the workpiece 1, the deflection of the workpiece 1 is suppressed.
In addition, since the support rods 2 are adaptively arranged in this way, they are not arranged at unnecessary places, so that the number of the support rods 2 used during processing can be reduced.
Further, since the support bar installation position calculated by the calculation unit 6 is set inside the part to be cut out, the position at which the processing means 4 performs the processing and the position of the support bar 2 that supports the workpiece 1 coincide with each other. Therefore, it is possible to avoid the laser beam emitted from the processing means 4 from being damaged by the support rod 2.
Furthermore, when it is necessary to replace the support bar 2 due to deterioration of the support bar 2 or the like, if the support bar 2 is fixedly disposed as in the prior art, the range of replacement work is wide and difficult to work. If the support rods 2 are stored together in the push-out means 7a as in the first embodiment and are appropriately arranged, the replacement work can be easily performed.
 なお、ワーク1は板状に限らず、立体的な形状でも良い。また、その場合は加工形状情報として立体形状の情報を入力し、設置位置情報を算出してもよい。また、内部支持位置13の算出は、座標群の座標を中心に向けて移動させることで算出する方法に限らず、ワーク1の撓みが少ない位置で支持できる位置を算出すればよい。例えば、ワーク1の重量分布に基づいて重心を求め、撓みの少ない配置位置を算出してもよい。
 また、支持棒設置手段7が支持棒2を設置できる解像度は、レール筐体71bあるいはベルト72bの突起の大きさや突起間の距離に依存する。したがって、算出部6による設置位置情報の算出の際、計算した座標値を、支持棒設置手段7が支持棒2を設置できる座標のなかで最も近い位置に補正することで加工形状に適応した支持位置とすることができる。
 加工手段はレーザ光源の他、ワークを加工できるものであればよく、例えば高圧の水でワークを切断する場合の水噴射ノズルなどでも良い。
In addition, the workpiece | work 1 is not restricted to plate shape, A three-dimensional shape may be sufficient. In that case, information on the solid shape may be input as the processing shape information, and the installation position information may be calculated. Further, the calculation of the internal support position 13 is not limited to the method of calculating by moving the coordinates of the coordinate group toward the center, and a position where the work 1 can be supported at a position where the deflection of the work 1 is small may be calculated. For example, the center of gravity may be obtained based on the weight distribution of the workpiece 1, and the arrangement position with less deflection may be calculated.
Further, the resolution at which the support bar installation means 7 can install the support bar 2 depends on the size of the protrusions of the rail casing 71b or the belt 72b and the distance between the protrusions. Accordingly, when the installation position information is calculated by the calculation unit 6, the calculated coordinate value is corrected to the closest position among the coordinates where the support bar installation means 7 can install the support bar 2, and the support adapted to the machining shape is supported. It can be a position.
The processing means may be any laser light source as long as it can process the workpiece, and may be, for example, a water jet nozzle for cutting the workpiece with high-pressure water.
 上記実施の形態1では、加工手段4と基体3との相対的な位置を移動させる移動手段として、加工手段を移動させるものを説明したが、加工手段4を固定して基体3を移動させるものでも良い。
 なお、本実施の形態では、ワーク1から切り出したい部品、例えば図2において星形の形状の部品を切り出したい場合に星形内部を支持する設置位置情報を算出するものを説明したが、星形に切り抜かれたあとのワーク1も撓まないよう、設置位置情報を算出するものとしてもよい。これにより、加工中にワーク1全体がより安定し、精度のよい加工を行うことができる。
In the first embodiment, the moving means for moving the relative position between the processing means 4 and the base 3 has been described as moving means. However, the processing means 4 is fixed and the base 3 is moved. But it ’s okay.
In the present embodiment, the part to be cut out from the workpiece 1, for example, the one that calculates the installation position information that supports the inside of the star when the part having a star shape in FIG. 2 is to be cut out has been described. It is good also as what calculates installation position information so that the workpiece | work 1 after having been cut out by 2 may not bend. Thereby, the whole workpiece | work 1 can be stabilized more during processing, and it can process accurately.
1. ワーク
2. 支持棒
3. 基体
4. 加工手段
5. 移動手段
6. 算出部
7. 支持棒設置手段
7a. 押出手段
7b. レール
71b. レール筐体
72b. ベルト
73b. 回転部
7c. x軸駆動手段
7d. y軸駆動手段
71d. ベルト
72d. モータ
11. 頂点
12. 中心
13. 内部支持位置
14. 中間支持位置
1. Work 2 2. Support rod Substrate 4. Processing means 5. Moving means 6. Calculation unit 7. Support bar installation means 7a. Extruding means 7b. Rail 71b. Rail housing 72b. Belt 73b. Rotating part 7c. x-axis drive means 7d. y-axis drive means 71d. Belt 72d. Motor 11. Vertex 12. Center 13. Internal support position 14. Intermediate support position

Claims (4)

  1.  ワークを支持する支持棒と、
     前記支持棒が設置され、前記支持棒を介して前記ワークを載せる基体と、
     前記基体に載せられた前記ワークを加工する加工手段と、
     前記加工手段と前記基体との相対的な位置を移動させる移動手段と、
     前記ワークの加工形状情報に基づいて前記基体に設置される前記支持棒の設置位置を示す設置位置情報を算出する算出部と、
     前記算出部にて算出された前記設置位置情報に基づいて、前記支持棒を前記設置位置情報に対応した前記基体上の設置位置に設置する支持棒設置手段と、
    を備えた加工装置。
    A support rod for supporting the workpiece;
    A base on which the support bar is installed, and the workpiece is placed via the support bar;
    Processing means for processing the workpiece placed on the substrate;
    Moving means for moving a relative position between the processing means and the base;
    A calculation unit that calculates installation position information indicating an installation position of the support bar installed on the base based on the machining shape information of the workpiece;
    Based on the installation position information calculated by the calculation unit, support bar installation means for installing the support bar at an installation position on the base corresponding to the installation position information;
    A processing device with
  2.  前記算出部は、前記加工形状情報に含まれる加工形状の頂点を平均化した中心点を求め、各頂点を前記中心点に向けて移動した点を内部支持位置として求め、この内部支持位置を前記支持棒の設置位置とすることを特徴とする請求項1に記載の加工装置。 The calculation unit obtains a center point obtained by averaging the vertices of the machining shape included in the machining shape information, obtains a point that moves each vertex toward the center point as an internal support position, and determines the internal support position as the internal support position. The processing apparatus according to claim 1, wherein the processing apparatus is set as a support bar installation position.
  3.  前記算出部は、前記内部支持位置同士の距離に基づき、中間支持位置の算出要否を判断し、必要と判断した場合に前記内部支持位置間の中間点を中間支持位置とし、前記内部支持位置と前記中間支持位置を前記支持棒の設定位置とすることを特徴とする請求項2に記載の加工装置。 The calculation unit determines whether it is necessary to calculate an intermediate support position based on the distance between the internal support positions, and when it is determined to be necessary, an intermediate point between the internal support positions is set as an intermediate support position. The processing apparatus according to claim 2, wherein the intermediate support position is a set position of the support bar.
  4.  前記支持棒設置手段は、
     前記支持棒を収納するとともに、前記設置位置情報に基づくタイミングで押し出す押出手段と、
     前記押出手段に押し出された前記支持棒を保持するレールと、
     前記レールに前記保持された前記支持棒をレール上の前記設置位置情報に基づく位置に移動するとともに、前記レールを押し出すx軸駆動手段と、
     前記x軸駆動手段に押し出された前記レールを保持して前記設置位置情報に基づく位置に移動するy軸駆動手段と
    を有することを特徴とする請求項1ないし3いずれかに記載の加工装置。
    The support bar installation means is
    Extruding means for storing the support rod and extruding at a timing based on the installation position information;
    A rail for holding the support rod pushed out by the pushing means;
    An x-axis driving means for moving the support rod held by the rail to a position based on the installation position information on the rail and pushing the rail;
    The processing apparatus according to claim 1, further comprising a y-axis driving unit that holds the rail pushed out by the x-axis driving unit and moves to a position based on the installation position information.
PCT/JP2016/064239 2016-05-13 2016-05-13 Processing device WO2017195342A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/064239 WO2017195342A1 (en) 2016-05-13 2016-05-13 Processing device
JP2018516304A JP6354931B2 (en) 2016-05-13 2016-05-13 Processing equipment
TW105116575A TWI607827B (en) 2016-05-13 2016-05-27 Processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064239 WO2017195342A1 (en) 2016-05-13 2016-05-13 Processing device

Publications (1)

Publication Number Publication Date
WO2017195342A1 true WO2017195342A1 (en) 2017-11-16

Family

ID=60268031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064239 WO2017195342A1 (en) 2016-05-13 2016-05-13 Processing device

Country Status (3)

Country Link
JP (1) JP6354931B2 (en)
TW (1) TWI607827B (en)
WO (1) WO2017195342A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507033A1 (en) * 1991-04-05 1992-10-07 Manuel Torres Martinez Machine tool installation for supporting and machining workpieces
JPH05146888A (en) * 1991-11-28 1993-06-15 Nippei Toyama Corp Work supporting table for laser beam machine
WO2013104741A1 (en) * 2012-01-13 2013-07-18 Materialise N.V. Locator for supporting and/or positioning an object

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363308A (en) * 1992-12-02 1994-11-08 General Electric Company Method for automating the optimization of tool path generation for profile milling
JPH07299682A (en) * 1994-04-28 1995-11-14 Nippei Toyama Corp Machining device and its method
JP2005033190A (en) * 2003-06-20 2005-02-03 Sumitomo Electric Ind Ltd Manufacturing method of semiconductor single crystal wafer and laser processing apparatus therefor
CN101855061B (en) * 2007-09-17 2014-09-24 3D系统公司 Region-based supports for parts produced by solid freeform fabrication
EP2285521B1 (en) * 2008-02-20 2019-06-12 Lasercoil Technologies, LLC Progressive laser blanking device for high speed cutting
JP2011018205A (en) * 2009-07-09 2011-01-27 Amada Co Ltd Nesting data generation device and nesting data generation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507033A1 (en) * 1991-04-05 1992-10-07 Manuel Torres Martinez Machine tool installation for supporting and machining workpieces
JPH05146888A (en) * 1991-11-28 1993-06-15 Nippei Toyama Corp Work supporting table for laser beam machine
WO2013104741A1 (en) * 2012-01-13 2013-07-18 Materialise N.V. Locator for supporting and/or positioning an object

Also Published As

Publication number Publication date
JPWO2017195342A1 (en) 2018-08-09
TWI607827B (en) 2017-12-11
TW201739571A (en) 2017-11-16
JP6354931B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6078298B2 (en) Work device having position correction function and work method
TWI472493B (en) The breaking device of the brittle material substrate
CN109789434B (en) Working device and working method
CA2998569C (en) Laser processing method and laser processing device
JPWO2009122758A1 (en) Processing control device and laser processing device
KR20100047923A (en) Laser machining chuck and laser machining method using the same
JP6354931B2 (en) Processing equipment
JP2008015314A (en) Exposure device
EP3296079A1 (en) Scanning mirror navigation apparatus and method
JP6440183B2 (en) Work processing equipment
JP6621086B2 (en) Steel material processing method and steel material processing system
US10702950B2 (en) Machine for the laser working of profiles and method for carrying out an inclined cutting operation on a profile by means of this machine
JP2008119795A (en) Machining device
JP6306312B2 (en) Drawing apparatus and drawing method
JPH0825073A (en) Laser beam machine and method for adjusting optical axis in the same
JP2006192410A (en) Liquid-jetting apparatus
EP3626437A1 (en) Method for calibrating an apparatus for additively manufacturing threedimensional objects
JP5039395B2 (en) Processing system
JP5088579B2 (en) Glass substrate repair device
JP5873320B2 (en) Component mounting equipment
JP5646861B2 (en) Measuring device and measuring method
JP2010160084A (en) Measuring device
JP2007271493A (en) Surface profile measuring apparatus and method of same
JP5939946B2 (en) Polishing equipment
TW201724211A (en) Laser processing apparatus and laser processing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901690

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901690

Country of ref document: EP

Kind code of ref document: A1