WO2017194805A1 - Proceso para la obtención de gas de síntesis por calentamiento con microondas de sustratos orgánicos - Google Patents

Proceso para la obtención de gas de síntesis por calentamiento con microondas de sustratos orgánicos Download PDF

Info

Publication number
WO2017194805A1
WO2017194805A1 PCT/ES2017/070288 ES2017070288W WO2017194805A1 WO 2017194805 A1 WO2017194805 A1 WO 2017194805A1 ES 2017070288 W ES2017070288 W ES 2017070288W WO 2017194805 A1 WO2017194805 A1 WO 2017194805A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
microwave
synthesis gas
organic substrate
process according
Prior art date
Application number
PCT/ES2017/070288
Other languages
English (en)
French (fr)
Inventor
José Ángel MENÉNDEZ DÍAZ
Ana Arenillas De La Puente
Daniel BENEROSO VALLEJO
José Miguel BERMÚDEZ MENÉNDEZ
Miguel Ángel MONTES MORÁN
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2017194805A1 publication Critical patent/WO2017194805A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the object of the present invention is a process for the production of a gas mixture, called synthesis gas, composed mostly of H 2 and CO, in proportions greater than 70% by volume, from biomass or organic waste (organic substrate ).
  • synthesis gas composed mostly of H 2 and CO, in proportions greater than 70% by volume, from biomass or organic waste (organic substrate ).
  • the process is based on a microwave heating in two stages.
  • the present invention is framed within the chemical, environmental and particularly the energy sector, more specifically in the field of fuel production procedures that are more environmentally friendly.
  • Pyrolysis is a process in which an organic material (for example, an organic substrate) is subjected to high temperatures (between 400 ° C and 800 ° C) using an inert atmosphere. These conditions allow obtaining three fractions with a remarkable energy content: a carbonaceous solid residue, a liquid fraction rich in organic compounds and a gaseous fraction, rich in H 2 and CO, which can be used as a starting material for the synthesis of chemical products such as alcohols, olefins or even biodegradable plastics [Griffin et al., Environmental Progress & Sustainable Energy, 31 (2), 219-224 (2012)]. Microwave-induced organic waste pyrolysis has been proposed as an alternative to produce synthesis gas (H 2 + CO) compared to conventional gasification processes, in order to avoid the use of gasifying agents, such as water vapor.
  • synthesis gas H 2 + CO
  • toluene is a model compound of pyrolysis oils; in this study a real pyrolysis oil has not been used which is composed of a complex mixture of dozens of organic compounds as in the case of the process proposed in the present invention. Furthermore, said process is not intended to treat solid organic substrates as the process proposed in this invention, but toluene. On the other hand, toluene is not a good model for biomass oils that have a high oxygen content.
  • Patent ES2310127 includes a process for obtaining synthesis gas from a gas rich in CH 4 and C0 2 .
  • the utility model CN202482282 describes an installation consisting of various microwave equipment for pyrolysis and gasification that interconnects with each other and allows the reuse of by-products from one unit to another.
  • Carbon particles are used as a microwave susceptor and the pyrolysis process takes place in a single stage at a temperature.
  • the comments included in section 3.2 of this document are interesting, indicating that at higher temperatures a higher proportion of synthesis gas and a lower amount of residual material are obtained in the rector, 700 ° being the temperature at which a higher gas yield, although not used because at this temperature PAHs (polycyclic aromatic hydrocarbons) and metals are obtained.
  • Organic substrate is defined as any residue or by-product composed mostly of organic compounds, such as fractions from lignocellulosic biomass or organic fractions from urban solid waste.
  • Synthesis gas is defined as a mixture of gases composed mostly of hydrogen (H 2 ) and carbon monoxide (CO). It is generally understood that the proportion of H 2 + CO is greater than 70% by volume. However, this mixture of gases may also minorly include other compounds such as: C0 2 , CH 4 or light hydrocarbons such as ethane or ethylene.
  • Pyrolysis oil is defined as a liquid product derived from the pyrolysis process, which consists of a multitude of organic compounds, such as organic acids, alcohols, ketones, aldehydes or phenols. In addition, it can also contain an appreciable amount in water.
  • Microwave susceptor is defined as a material capable of converting microwave radiation into heat.
  • activated carbons, graphite, carbonized or carbonaceous residue obtained in the present process are microwave susceptor materials.
  • Carbonic or carbonized residue is defined as a solid product derived from the pyrolysis process, which consists mainly of carbon (20% - 70% by mass) and inorganic compounds, generally oxides and metal salts (30% - 80% by mass).
  • the carbonaceous residue is a microwave susceptor material, which allows raise the temperature of the medium to the pyrolysis temperature when mixed with the organic substrate to be pyrolyzed.
  • Gasifying agent is defined as a reagent capable of partially oxidizing an organic substrate and allowing the production of synthesis gas.
  • a reagent capable of partially oxidizing an organic substrate and allowing the production of synthesis gas.
  • water vapor, oxygen, air or carbon dioxide are gasifying agents.
  • Microwave oven is defined as a device capable of generating microwaves with sufficient power to reach the temperatures of the pyrolysis process and which are transmitted to a cavity where the organic substrate to be pyrolyzed.
  • Thermal cracking is defined as the process of breaking bonds of molecules by the action of high temperatures and which results in lighter molecules.
  • the present invention describes a process based on heating with microwave energy, by means of which synthesis gas (H 2 + CO) can be produced from an organic substrate, without using gasifying agents and without generating pyrolysis oils as a byproduct.
  • the process consists of two stages of microwave-induced pyrolysis to carry out, during the first stage, the pyrolysis of an organic substrate and, later in the second stage, the pyrolysis of the oils produced to convert them into synthesis gas.
  • the process allows the maximum use of the volatile matter of an organic substrate for conversion into synthesis gas. This is a great advantage over other processes, since it is not necessary to use gasifying agents, as in conventional gasification processes, and unwanted oils are not produced. In addition, the use of metal catalysts is not necessary. On the other hand, this process has a greater versatility than conventional gasification processes since it has a greater tolerance to moisture of an organic substrate, as well as to its degree of grinding.
  • the process consists in subjecting an organic substrate to a microwave radiation of controlled intensity for a certain time.
  • the object of the present invention constitutes a process for obtaining synthesis gas from an organic substrate, which comprises the following steps:
  • the organic substrate is any material that contains mostly organic compounds and is particularly selected from urban solid waste and lignocellulosic biomass or mixture of both.
  • a bed of microwave susceptor material which is selected from activated carbon, graphite, carbonized, metallic particles or carbonaceous residue produced in the process stages.
  • the pyrolysis step of the organic substrate is carried out at a temperature between 400 and 800 ° C, more preferably at 400 ° C.
  • the pyrolysis stage of the liquid oil fraction it is preferably carried out at temperatures above 700 ° C, more preferably at a temperature of 800 ° C.
  • the carbonaceous residue of a previous pyrolysis in the pyrolysis stage of the organic substrate is used as a susceptor in a mass proportion equal to or greater than 0.3 microwave susceptor / 1 organic substrate and in the stage of Pyrolysis of the liquid fraction of oils is used as susceptor the carbonaceous residue of a previous pyrolysis in a mass proportion equal to or less than 0.3 liquid fraction of oils / 1 microwave susceptor.
  • the pyrolysis stages, both of the organic substrate and the liquid fraction of oils are carried out in a microwave oven, which can be operated at any frequency band allowed between 9 kHz and 400 Ghz.
  • the frequency bands at which the microwave oven operates are 915 MHz and 2.45 GHz.
  • a preliminary step of mixing the organic substrate and the microwave susceptor material before the pyrolysis of the organic substrate is included.
  • Figure 2. Shows the process material balance when operating at 800 ° C in the first stage and at 800 ° C in the second stage.
  • Figure 3. Shows the process material balance when operating at 400 ° C in the first stage and at 800 ° C in the second stage.
  • the present invention relates to a synthesis gas production process, characterized in that the pyrolysis steps of an organic substrate and the subsequent pyrolysis of the oils produced take place by a microwave heating process.
  • the synthesis gas production process consists of two main stages: i) Microwave induced pyrolysis, where an organic substrate (1.1) is thermally degraded with the assistance of a microwave susceptor material (1.7), to produce a carbonaceous residue (1.2), a liquid fraction of pyrolysis oils (1.5) and a fraction of synthesis gas (1.4), represented in block 1.A.
  • the first stage of the process (1.A) is carried out at a temperature between 400 ° C and 800 ° C. More preferably, the first stage of the process (1.A) is carried out at a temperature of 400 ° C.
  • the carbonaceous residue from a previous pyrolysis process (1.7) is used as a microwave susceptor material in a proportion equal to or greater than 0.3 kg per 1 kg of substrate Organic fed to the process. More preferably, the carbonaceous residue of a previous pyrolysis process (1.7) is used in a mass ratio of 0.3 kg of susceptor per 1 kg of organic substrate.
  • the second stage of the process (1.B) is carried out at a temperature greater than 700 ° C. More preferably, the second stage of the process
  • (1.B) is carried out at a temperature of 800 ° C.
  • the liquid fraction mass of pyrolysis oils (1.5) fed to the second stage (1.B) is 0.3 kg per 1 kg of bed formed by the carbonaceous residue (1.9). More preferably, the liquid fraction mass of pyrolysis oils (1.5) fed to the second stage (1.B) is less than 0.3 kg per 1 kg of bed formed by the carbonaceous residue (1.9).
  • the organic substrate (1.1) is mixed with a microwave susceptor material (1.7), from a solids distribution system (1.D), in a suitable mass ratio in a reactor that has to be able to withstand the temperature at which the pyrolysis will occur, normally below 1000 ° C.
  • the reactor be made of a microwave-transparent material, for example, quartz or alumina. Is it is convenient to subject this mixture to stirring before introducing it into the reactor, so that the mixture is as homogeneous as possible.
  • the proportions in which the organic substrate is mixed with the microwave susceptor material, which will lead to the production of synthesis gas, are important.
  • the organic substrate and the microwave susceptor material must normally be mixed in predetermined proportions for maximum synthesis gas production to take place.
  • the mixture of an organic substrate and microwave susceptor material is subjected to the action of the microwaves, which produces a heating thereof and induces the pyrolysis process.
  • a microwave oven (1.A). Normally the microwave oven operates at a frequency of 2.45 GHz, although it can also operate at a frequency of 915 MHz.
  • the microwave-induced pyrolysis process (1.A) is carried out at a temperature between 400 ° C and 800 ° C. More preferably, in said step the microwave-induced pyrolysis process (1.A) is carried out at a temperature of 400 ° C.
  • the temperature used directly influences the energy consumption of the process.
  • the organic substrate mixture with the microwave susceptor material is subjected to a heating process in the microwave oven. Within minutes, sometimes seconds, the organic substrate begins to degrade as the microwave susceptor material absorbs microwave energy and transforms it into heat, which is transmitted by conduction to said organic substrate.
  • a part of the organic substrate remains as a carbonaceous solid fraction (1.2), transported to the solids distribution system (1.D), which is, in turn, a microwave susceptor material, whereby the microwave-induced pyrolysis process can hold on Another part of the organic substrate is transformed into volatile compounds leaving the reactor (1.3). These volatile compounds are passed through a condenser (1.C) at a temperature below 20 ° C, so that they are separated into a fraction of synthesis gas (1.4), which is stored in a tank, and in a tank. liquid fraction of pyrolysis oils (1.5).
  • the second stage of the process object of the present invention consists in subjecting the liquid fraction of pyrolysis oils obtained at the exit of the condenser (1.5) to the action of the microwaves, which will produce a thermal cracking thereof.
  • a device is used, a microwave oven (1.B), in which there is a reactor made of a microwave transparent material; for example, quartz or alumina.
  • Said reactor contains a bed formed by the carbonaceous residue obtained in the previous step (1.9), which is a microwave susceptor material that acts as a catalyst for the microwave induced pyrolysis of the liquid oil fraction.
  • the liquid fraction of oils is circulated through the bed formed by the carbonaceous residue, which reaches very high local temperatures that favor the decomposition reactions of organic molecules, present in the liquid fraction of oils in: a solid or coke residue, which is essentially carbon (C); and a mixture of gases, among which are mostly (more than 70% by volume) hydrogen (H 2 ) and carbon monoxide (CO) and, minority form (less than 30% by volume) carbon dioxide ( C0 2 ), methane and other light hydrocarbons.
  • a solid or coke residue which is essentially carbon (C)
  • gases among which are mostly (more than 70% by volume) hydrogen (H 2 ) and carbon monoxide (CO) and, minority form (less than 30% by volume) carbon dioxide ( C0 2 ), methane and other light hydrocarbons.
  • the carbonaceous residue of the bed whose carbon content has increased during the microwave-induced pyrolysis of the oils in said stage, is extracted therefrom (1.10) and replaced by fresh carbonaceous solid fraction from the distributor system. of solids (1.9).
  • the carbonaceous residue extracted from step 1.B can be mixed, in whole or in part, with the carbonaceous residue from stream 1.8.
  • the microwave-induced pyrolysis process of the liquid oil fraction (1.B) is carried out at a temperature greater than 700 ° C. More preferably, the microwave-induced pyrolysis process of the liquid oil fraction (1.B) is carried out at a temperature of 800 ° C.
  • the mass of liquid fraction of pyrolysis oils (1.5) fed to said stage (1.B) is 0.3 kg per 1 kg of bed formed by the carbonaceous residue (1.9).
  • the mass of the liquid fraction of pyrolysis oils (1.5) fed to said stage (1.B) is less than 0.3 kg per 1 kg of bed formed by the carbonaceous residue (1.9).
  • the process object of the present invention based on the use of microwave radiation to produce synthesis gas, is clearly superior to conventional processes in terms of the full use of an organic substrate, without this detrimental to the quality of the synthesis gas obtained.
  • no gasifying agents typical of conventional processes or metal catalysts are used to convert pyrolysis oils into synthesis gas.
  • the present example describes the process of producing synthesis gas from an organic fraction of urban solid waste subjected to the process described in the present invention (Figure 2).
  • the currents are referred to a base of 1 kg of organic fraction of urban solid waste, although the experimental process was carried out with 5 g.
  • Figure 2 represents the material balances of the entire process and Table 1 shows the energy balances of the entire process.
  • the present example describes the process of producing synthesis gas from an organic fraction of urban solid waste subjected to the process described in the present invention (Figure 3).
  • the currents are referred to a base of 1 kg of organic fraction of urban solid waste, although the experimental process was carried out with 5 g.
  • Figure 3 represents the material balances of the entire process and Table 2 shows the energy balances of the entire process.
  • 1 kg of the organic fraction of urban solid waste is fed to the first stage of the process together with 0.30 kg of the carbonaceous residue, from a system solids distributor, which is used as microwave susceptor material.
  • the temperature in said step is 400 ° C and the energy used 0.83 kWh / kg res duo, although this energy depends on the scale of the process and the equipment used.
  • the temperature in said step is 800 ° C and the energy used 1, 36 kWh / kg res duo, although this energy depends on the scale of the process and the equipment used.
  • 0.10 kg of synthesis gas fraction is obtained (with a proportion H 2 + CO> 90% by volume).
  • Example 1 When comparing Example 1 and Example 2, the energy cost for the production of synthesis gas is 14% higher when using 800 ° C in the first stage (4.42 kWh / m 3 versus 5.04 kWh / m 3 ). However, when using 800 ° C in the first stage, the production of synthesis gas is 1.5 times higher (0.54 kg vs. 0.37 kg).
  • the second stage of this process deserves particular attention since it could be used to crack other oils or other complex mixtures of hydrocarbons, not necessarily from the first stage of the process of this invention.
  • the process converts all oils into gases and carbonaceous residue, so that approximately occurs between 75% and 77% by mass of gases and between 23% and 25% by mass of coke or carbonaceous residue.
  • the proportion of synthesis gas (H 2 + CO) of these oils is greater than 90% by volume, with an H 2 / CO molar ratio of approximately 1.4.
  • the energy consumed in the microwave oven to produce this synthesis gas is 3.2 kWh per kg of bed of carbonaceous residue, although this energy consumption depends on the scale of the process and the equipment used, and the energy contained in the gas produced is between 2.3 - 2.8 kWh per m 3 of synthesis gas produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

El proceso para producir gas de síntesis por calentamiento con microondas de residuos orgánicos se basa en la producción de gas de síntesis mediante calentamiento por microondas en dos etapas. Inicialmente, el sustrato orgánico, junto con un susceptor de microondas, se somete a un calentamiento por microondas, en ausencia de oxígeno, a temperaturas entre los 400ºC y 800ºC. Se obtiene un gas de síntesis, un residuo carbonoso y una fracción líquida de aceites de pirólisis. Posteriormente, los aceites procedentes de la primera etapa se mezclan y se calientan en un horno microondas, en ausencia de oxígeno, a una temperatura superior a 700ºC, obteniéndose un gas de síntesis y el susceptor enriquecido en carbono. El proceso en su conjunto da lugar únicamente a gas de síntesis y a un residuo carbonoso.

Description

PROCESO PARA LA OBTENCION DE GAS DE SÍNTESIS POR CALENTAMIENTO CON MICROONDAS DE SUSTRATOS ORGÁNICOS
DESCRIPCIÓN
SECTOR DE LA TÉCNICA
El objeto de la presente invención es un proceso para la producción de una mezcla de gases, denominada gas de síntesis, compuesta mayoritariamente de H2 y CO, en proporciones superiores al 70% en volumen, a partir de biomasa o residuos orgánicos (sustrato orgánico). El proceso está basado en un calentamiento por microondas en dos etapas.
Por tanto, la presente invención se enmarca dentro del sector químico, medioambiental y particularmente del sector energético, más concretamente en el ámbito de los procedimientos de producción de combustibles más respetuo-sos con el medio ambiente.
ANTECEDENTES DE LA INVENCIÓN
La preocupación social por el cambio climático y su relación con las emisiones de C02 procedentes de procesos de generación de energía es cada vez mayor. Sin embargo, los recursos fósiles continúan siendo la fuente primaria para la generación de energía, por lo que es necesario desarrollar tecnologías competitivas basadas en fuentes renovables. La pirólisis de biomasa es una de las tecnologías que tienen un papel clave en dicho desarrollo.
La pirólisis es un proceso en el que se somete a altas temperaturas (entre 400°C y 800°C) a un material orgánico (por ejemplo, un sustrato orgánico) utilizando una atmósfera inerte. Estas condiciones permiten obtener tres fracciones con un contenido energético notable: un residuo sólido carbonoso, una fracción líquida rica en compuestos orgánicos y una fracción gaseosa, rica en H2 y CO, que puede ser utilizada como materia de partida para la síntesis de productos químicos tales como alcoholes, olefinas o incluso plásticos biodegradables [Griffin et al., Environmental Progress & Sustainable Energy, 31 (2), 219-224 (2012)]. La pirólisis de residuos orgánicos inducida por microondas ha sido propuesta como alternativa para producir gas de síntesis (H2+CO) frente a procesos convencionales de gasificación, con el fin de evitar el uso de agentes gasificantes, tales como el vapor de agua.
La producción de gas de síntesis mediante pirólisis inducida por microondas de residuos sólidos urbanos orgánicos ha demostrado ser prometedora (0,64 Lgas de síntesis gresiduo), con un rendimiento en gas de 48,3% en masa, además de reducir el rendimiento en aceites hasta un 7,8% en masa [D. Beneroso et al., Journal of Analytical and Applied Pyrolysis, 1 11 , 55-63 (2015)]. En el caso de residuos agrícolas, como la paja de arroz, se han obtenido rendimientos en gas de hasta 53,9% en masa, con una proporción de gas de síntesis del 70% en volumen [Zhang et al., Bioresource Technology, 191 , 17-23 (2015)]. No obstante, estos procesos producen una cierta cantidad de líquidos o aceites de pirólisis. El uso de radiación microondas para inducir un proceso de pirólisis de residuos orgánicos se recoge en los documentos de las patentes US8354005 y US8808507. Dichas invenciones proponen un sistema para llevar a cabo la pirólisis flash inducida por microondas a escala industrial. Sin embargo, estos sistemas no se encuentran diseñados para la producción de gas de síntesis, ya que producen una corriente consistente en la fracción líquida de aceites de pirólisis.
La producción de un gas rico en hidrógeno a partir de pirólisis de biomasa utilizando un reactor de lecho fluidizado seguido de un lecho catalítico calentado con microondas se recoge en el documento de la patente CN 102963866. En este proceso, la pirólisis de la biomasa tiene lugar en un reactor de lecho fluidizado y los volátiles generados (aceites y gas de síntesis) se introducen en un lecho catalítico basado en óxidos de níquel, que se calienta mediante radiación microondas y que, junto a la alimentación de una corriente de vapor de agua, permite reformar la fracción líquida de aceites de pirólisis hacia gas de síntesis.
El estudio recogido en el artículo científico de Zhang et al. [Zhang et al., Bioresource Technology, 191 , 17-23 (2015)] propone el uso de catalizadores carbonosos basados en níquel y cobre durante la pirólisis inducida por microondas de la paja de arroz, lo que ha permitido reducir el rendimiento en aceites desde 22% hasta 10% en masa. El estudio recogido en el artículo científico de Xie et al. [Xie et al., Bioresource Technology, 156, 291-296 (2014)] hace uso de vapor de agua en la conversión de la biomasa en gas de síntesis mediante pirólisis inducida por microondas, permitiendo una reducción en el rendimiento en aceites hasta un 5, 1 % en masa durante la pirólisis catalítica de rastrojo de maíz sobre Ni/Al203.
La producción de gas de síntesis mediante gasificación de biomasa utilizando un reactor de lecho fijo con plasma de microondas se recoge en el documento de solicitud de patente US20140306161A1. Este sistema emplea como agentes gasificantes vapor de agua u oxígeno.
El uso de materiales carbonosos como material de lecho catalítico para la pirólisis de tolueno inducida por microondas ha permitido una conversión del 92,8% de dicho compuesto [L. Li et al., Chemical Engineering Journal, 284, 1308-1316 (2016)]. Sin embargo, el tolueno es un compuesto modelo de los aceites de pirólisis; en dicho estudio no se ha utilizado un aceite de pirólisis real que esté compuesto por una mezcla compleja de decenas de compuestos orgánicos como en el caso del proceso propuesto en la presente invención. Además, dicho proceso no está pensado para tratar sustratos orgánicos sólidos como el proceso propuesto en esta invención, sino tolueno. Por otro lado, el tolueno no es un buen modelo para los aceites de biomasa que poseen un alto contenido en oxígeno.
Otros documentos en los que se describe también el calentamiento en microondas para la obtención de gas de síntesis son:
- la patente ES2310127 recoge un procedimiento de obtención de gas de síntesis a partir de un gas rico en CH4 y C02.
- en el modelo de utilidad CN202482282 se describe una instalación formada por diversos equipos de microondas para pirólisis y gasificación que se interconectan entre sí y permiten la reutilización de subproductos de una unidad a otra.
- en el artículo de A. Domínguez et al. "Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge"; Fuel Processing Technology,
Vol. 86, Issue 9 (2005), 1007-1020, se describe la composición de los aceites obtenidos por pirólisis en microondas de lodos de depuradora, utilizando residuos carbonosos como catalizador. En este caso el proceso de calentamiento es en una única etapa y la temperatura de 1000°. Se obtiene agua, sólidos, aceite y gases. - en el artículo de Su Shiung Lama et al. "Production of hydrogen and light hydrocarbons as a potential gaseous fuel from microwave-heated pyrolysis of waste automotive engine oil"; International Journal of Hydrogen Energy, Vol. 37, Issue 6, (2012), 5011-5021 , se describe la pirólisis por microondas de aceites usados de vehículos para la obtención de gas de síntesis. Se emplean partículas de carbono como susceptor de microondas y el proceso de pirólisis transcurre en una única etapa a una temperatura. Son interesantes los comentarios incluidos en el apartado 3.2 de este documento, donde se indica que a mayores temperaturas se obtiene una mayor proporción de gas de síntesis y menor cantidad de material residual en el rector, siendo 700° la temperatura a la que se obtiene un mayor rendimiento de gases, aunque no se emplea porque en esta temperatura se obtienen PAHs (hidrocarburos aromáticos policíclicos) y metales.
- en el artículo de revisión, "A Review on Waste to Energy Processes Using Microwave Pyrolysis"; Su Shiung Lam et al. Energies 2012, 5(10), 4209-4232, se recoge una extensa lista de tecnologías y proyectos que se están desarrollando para la ha aplicación de microondas en el tratamiento de residuos y obtención de subproductos con valor energético como biocombsutibles o gas de síntesis. No se menciona ningún proyecto con una doble pirólisis.
- en la publicación de D. Beneroso et al. "Oil fractions from the pyrolysis of diverse organic wastes: The different effects of conventional and microwave induced pyrolysis",
Journal of Analytical and Applied Pyrolysis, Vol. 1 14 (2015), 256-264 se compara la obtención de aceites y gases de síntesis a partir de diversos tipos de residuos orgánicos (agroresiduos, lodos de depuradora, basuras municipales) a partir de un tratamiento de pirólisis por microondas a 800° en presencia de un susceptor de microondas.
Como conclusión, en el estado de la técnica no se han encontrado referencias a procesos que combinen una doble pirólisis y permitan obtener exclusivamente gas de síntesis y residuos sólidos, sin presencia de aceites. Un proceso de estas características permitiría evitar el uso de catalizadores metálicos y agentes gasificantes. EXPLICACIÓN DE LA INVENCIÓN
Se definen a continuación diferentes términos utilizados a lo largo de la descripción de la presente invención:
Se define sustrato orgánico como cualquier residuo o subproducto compuesto mayoritariamente por compuestos orgánicos, como por ejemplo fracciones procedentes de biomasa lignocelulósica o fracciones orgánicas procedentes de residuos sólidos urbanos.
Se define pirólisis como el proceso en el que tiene lugar la descomposición térmica de un sustrato orgánico a altas temperaturas (400°C - 800°C) en ausencia de atmósfera oxidante. Se define gas de síntesis como una mezcla de gases compuesta mayoritariamente por hidrógeno (H2) y monóxido de carbono (CO). Entendiéndose por mayoritariamente que la proporción de H2 + CO sea superior a un 70% en volumen. No obstante esta mezcla de gases también puede incluir de forma minoritaria otros compuestos como: C02, CH4 o hidrocarburos ligeros tales como etano o etileno.
Se define aceite de pirólisis como un producto líquido derivado del proceso de pirólisis, que consta de multitud de compuestos orgánicos, tales como ácidos orgánicos, alcoholes, cetonas, aldehidos o fenoles. Además, también puede llegar a contener una cantidad apreciable en agua.
Se define susceptor de microondas como un material capaz de convertir radiación microondas en calor. Por ejemplo, los carbones activados, el grafito, los carbonizados o el residuo carbonoso obtenido en el presente proceso son materiales susceptores de microondas.
Se define residuo carbonoso o carbonizado como un producto sólido derivado del proceso de pirólisis, que consta principalmente de carbono (20% - 70% en masa) y compuestos inorgánicos, generalmente óxidos y sales metálicas (30% - 80% en masa). El residuo carbonoso es un material susceptor de microondas, lo que permite elevar la temperatura del medio hasta la temperatura de pirólisis cuando se mezcla con el sustrato orgánico a pirolizar.
Se define agente gasificante como un reactivo capaz de oxidar parcialmente un sustrato orgánico y que permite la producción de gas de síntesis. Por ejemplo, el vapor de agua, el oxígeno, el aire o el dióxido de carbono son agentes gasificantes.
Se define horno microondas como un dispositivo capaz de generar microondas con una potencia suficiente como para alcanzar las temperaturas del proceso de pirólisis y que son transmitidas hasta una cavidad donde se encuentra el sustrato orgánico a pirolizar.
Se define craqueo térmico como el proceso de rotura de enlaces de las moléculas por acción de las altas temperaturas y que produce como resultado moléculas más ligeras.
La presente invención describe un proceso basado en el calentamiento con energía microondas, mediante el cual puede producirse gas de síntesis (H2+CO) a partir de un sustrato orgánico, sin utilizar agentes gasificantes y sin generar aceites de pirólisis como subproducto.
El proceso consta de dos etapas de pirólisis inducida por microondas para llevar a cabo, durante la primera etapa, la pirólisis de un sustrato orgánico y, posteriormente en la segunda etapa, la pirólisis de los aceites producidos para convertirlos en gas de síntesis.
El proceso permite el máximo aprovechamiento de la materia volátil de un sustrato orgánico para su conversión en gas de síntesis. Esto supone una gran ventaja con respecto a otros procesos, dado que no es necesario utilizar agentes gasificantes, como ocurre en los procesos convencionales de gasificación, y no se producen aceites no deseados. Además, no es necesario el uso de catalizadores metálicos. Por otra parte, este proceso presenta una mayor versatilidad que los procesos convencionales de gasificación ya que presenta una mayor tolerancia a la humedad de un sustrato orgánico, así como a su grado de molienda. El proceso consiste en someter un sustrato orgánico a una radiación de microondas de intensidad controlada durante un determinado tiempo. Esto hace que tenga lugar la pirólisis del material orgánico y se produzcan un residuo carbonoso y una fracción de volátiles que, tras pasar por un condensador, proporciona una fracción de gas de síntesis y una fracción líquida de aceites de pirólisis. Posteriormente, los aceites de pirólisis se pasan a través de un lecho irradiado con microondas que contiene el residuo carbonoso obtenido anteriormente. Esto hace que tenga lugar el craqueo térmico de los compuestos orgánicos contenidos en los aceites de pirólisis, dando lugar a más gas de síntesis.
En un primer aspecto constituye el objeto de la presente invención un proceso para la obtención de gas de síntesis a partir de un sustrato orgánico, que comprende las siguientes etapas:
a) pirólisis inducida por microondas del sustrato orgánico para obtener gas de síntesis, un residuo carbonoso y una fracción líquida de aceites
b) pirólisis inducida por microondas de la fracción líquida de aceites obtenida en la etapa anterior para producir gas de síntesis.
El sustrato orgánico es cualquier material que contenga mayoritariamente compuestos orgánicos y particularmente se selecciona entre residuos sólidos urbanos y biomasa lignocelulósica o mezcla de ambos.
En cada una de las etapas se utiliza un lecho de material susceptor de microondas que se selecciona entre carbón activado, grafito, carbonizados, partículas metálicas o residuo carbonoso producido en las etapas del proceso.
En un modo preferente de realización, la etapa de pirólisis del sustrato orgánico se lleva a cabo a una temperatura comprendida entre 400 y 800°C, más preferentemente a 400°C. En cuanto a la etapa de pirólisis de la fracción líquida de aceites se lleva a cabo preferentemente a temperaturas superiores a 700°C, más preferentemente a una temperatura de 800°C.
En otro modo preferente de realización, en la etapa de pirólisis del sustrato orgánico se utiliza como susceptor el residuo carbonoso de una pirólisis anterior en una proporción en masa igual o superior a 0,3 susceptor de microondas/1 sustrato orgánico y en la etapa de pirólisis de la fracción líquida de aceites se utiliza como susceptor el residuo carbonoso de una pirólisis anterior en una proporción en masa igual o inferior a 0,3 fracción liquida de aceites/1 susceptor de microondas.
Las etapas de pirólisis, tanto del sustrato orgánico como de la fracción líquida de aceites se llevan a cabo en un horno microondas, que puede operarse a cualquier banda de frecuencias permitida entre 9 kHz y 400 Ghz. Preferentemente, las bandas de frecuencia a las que opera el horno microondas son 915 MHz y 2,45 GHz.
Opcionalmente, se incluye una etapa previa de mezcla del sustrato orgánico y el material susceptor de microondas antes de la pirólisis del sustrato orgánico.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción:
Figura 1.- Muestra el diagrama del proceso global.
Figura 2.- Muestra el balance de materia del proceso cuando se opera a 800°C en la primera etapa y a 800°C en la segunda etapa.
Figura 3.- Muestra el balance de materia del proceso cuando se opera a 400°C en la primera etapa y a 800°C en la segunda etapa. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
La presente invención se refiere a un proceso de producción de gas de síntesis, caracterizado porque las etapas de pirólisis de un sustrato orgánico y la posterior pirólisis de los aceites producidos tienen lugar mediante un proceso de calentamiento con microondas.
El proceso descrito se representa en el diagrama de flujo recogido en la Figura 1.
El proceso de producción de gas de síntesis consta de dos etapas principales: i) Pirólisis inducida por microondas, donde un sustrato orgánico (1.1) se degrada térmicamente con la asistencia de un material susceptor de microondas (1.7), para producir un residuo carbonoso (1.2), una fracción líquida de aceites de pirólisis (1.5) y una fracción de gas de síntesis (1.4), representada en el bloque 1.A.
ii) Pirólisis inducida por microondas de la fracción líquida de aceites de pirólisis producidos en la anterior etapa (1.5), donde ésta se craquea térmicamente sobre un lecho que contiene el residuo carbonoso obtenido en la anterior etapa (1.9), para producir una fracción de gas de síntesis (1.6), representada en el bloque 1.B. En una realización preferida, la primera etapa del proceso (1.A) se lleva a cabo a una temperatura comprendida entre 400°C y 800°C. Más preferiblemente, la primera etapa del proceso (1.A) se lleva a cabo a una temperatura de 400°C.
Preferiblemente, durante la primera etapa del proceso (1.A) se utiliza el residuo carbonoso procedente de un proceso de pirólisis anterior (1.7) como material susceptor de microondas en una proporción igual o superior a 0,3 kg por cada 1 kg de sustrato orgánico alimentado al proceso. Más preferiblemente, se utiliza el residuo carbonoso de un proceso de pirólisis anterior (1.7) en una relación másica de 0,3 kg de susceptor por cada 1 kg de sustrato orgánico.
En otra realización preferida, la segunda etapa del proceso (1.B) se lleva a cabo a una temperatura superior a 700°C. Más preferiblemente, la segunda etapa del proceso
(1.B) se lleva a cabo a una temperatura de 800°C.
En una realización preferida, la masa de fracción líquida de aceites de pirólisis (1.5) alimentada a la segunda etapa (1.B) es de 0,3 kg por cada 1 kg de lecho formado por el residuo carbonoso (1.9). Más preferiblemente, la masa de fracción líquida de aceites de pirólisis (1.5) alimentada a la segunda etapa (1.B) es menor de 0,3 kg por cada 1 kg de lecho formado por el residuo carbonoso (1.9). En primer lugar, se mezcla el sustrato orgánico (1.1) con un material susceptor de microondas (1.7), procedente de un sistema distribuidor de sólidos (1.D), en una relación másica adecuada en un reactor que tiene que ser capaz de aguantar la temperatura a la que se va a producir la pirólisis, normalmente inferior a los 1000°C. Si bien en determinados dispositivos no sería necesario, es aconsejable que el reactor sea de un material transparente a las microondas, por ejemplo, cuarzo o alúmina. Es conveniente someter esta mezcla a agitación antes de introducirla en el reactor, de forma que la mezcla sea lo más homogénea posible.
Las proporciones en las que se mezcla el sustrato orgánico con el material susceptor de microondas, que dará lugar a la producción de gas de síntesis, son importantes. El sustrato orgánico y el material susceptor de microondas han de mezclarse, normalmente, en unas proporciones predeterminadas para que tenga lugar una producción máxima de gas de síntesis. En la siguiente etapa del proceso objeto de la presente invención se somete la mezcla de un sustrato orgánico y material susceptor de microondas a la acción de las microondas, lo que produce un calentamiento de la misma e induce el proceso de pirólisis. Para ello se utiliza un dispositivo, un horno microondas (1.A). Normalmente el horno microondas opera a una frecuencia de 2,45 GHz, aunque también puede operar a una frecuencia de 915 MHz.
Preferiblemente, en dicha etapa el proceso de pirólisis inducida por microondas (1.A) se realiza a una temperatura comprendida entre 400°C y 800°C. Más preferiblemente, en dicha etapa el proceso de pirólisis inducida por microondas (1.A) se realiza a una temperatura de 400°C. La temperatura utilizada influye directamente sobre el consumo energético del proceso. La mezcla de sustrato orgánico con el material susceptor de microondas se somete a un proceso de calentamiento en el horno microondas. En cuestión de minutos, a veces segundos, el sustrato orgánico comienza a degradarse a medida que el material susceptor de microondas absorbe la energía microondas y la transforma en calor, que es transmitido por conducción a dicho sustrato orgánico. Una parte del sustrato orgánico permanece como fracción sólida carbonosa (1.2), transportada al sistema distribuidor de sólidos (1.D), que es, a su vez, un material susceptor de microondas, por lo que el proceso de pirólisis inducida por microondas puede sostenerse. Otra parte del sustrato orgánico se transforma en compuestos volátiles que salen del reactor (1.3). Estos compuestos volátiles se hacen pasar por un condensador (1.C) a una temperatura inferior a 20°C, de tal forma que se separan en una fracción de gas de síntesis (1.4), que se almacena en un tanque, y en una fracción líquida de aceites de pirólisis (1.5). La segunda etapa del proceso objeto de la presente invención consiste en someter la fracción líquida de aceites de pirólisis obtenida a la salida del condensador (1.5) a la acción de las microondas, lo que producirá un craqueo térmico de la misma. Para ello se utiliza un dispositivo, un horno microondas (1.B), en el que se encuentra un reactor hecho de un material transparente a las microondas; por ejemplo, cuarzo o alúmina. Dicho reactor contiene un lecho formado por parte del residuo carbonoso obtenido en la etapa anterior (1.9), la cual es un material susceptor de microondas que actúa como catalizador de la pirólisis inducida por microondas de la fracción líquida de aceites. La fracción líquida de aceites se hace circular a través del lecho formado por el residuo carbonoso, el cual alcanza temperaturas locales muy altas que favorecen las reacciones de descomposición de moléculas orgánicas, presentes en la fracción líquida de aceites en: un residuo sólido o coque, que es esencialmente carbono (C); y una mezcla de gases, entre los que se encuentran mayoritariamente (más del 70% en volumen) el hidrógeno (H2) y el monóxido de carbono (CO) y, forma minoritaria (menos del 30% en volumen) dióxido de carbono (C02), metano y otros hidrocarburos ligeros. De esta forma la corriente líquida es eliminada por completo del proceso en su conjunto y, convertida en gas de síntesis (1.6). Este gas de síntesis se almacena en otro tanque, y puede mezclarse total o parcialmente con el gas de síntesis producido en la primera etapa 1.A. Por otra parte, el residuo carbonoso del lecho, cuyo contenido en carbono se ha incrementado durante la pirólisis inducida por microondas de los aceites en dicha etapa, se extrae de la misma (1.10) y se reemplaza por fracción sólida carbonosa fresca procedente del sistema distribuidor de sólidos (1.9). El residuo carbonoso extraído de la etapa 1.B puede mezclarse, total o parcialmente, con el residuo carbonoso procedente de la corriente 1.8.
Preferiblemente, el proceso de pirólisis inducida por microondas de la fracción líquida de aceites (1.B) se realiza a una temperatura superior a 700°C. Más preferiblemente, el proceso de pirólisis inducida por microondas de la fracción líquida de aceites (1.B) se realiza a una temperatura de 800°C.
Preferiblemente, la masa de fracción líquida de aceites de pirólisis (1.5) alimentada a dicha etapa (1.B) es de 0,3 kg por cada 1 kg de lecho formado por el residuo carbonoso (1.9). Muy preferiblemente, la masa de fracción líquida de aceites de pirólisis (1.5) alimentada a dicha etapa (1.B) es menor de 0,3 kg por cada 1 kg de lecho formado por el residuo carbonoso (1.9). Como resultado del proceso propuesto en la presente invención, se obtienen dos corrientes de gas de síntesis (gas1 , gas2) que pueden mezclarse, total o parcialmente (gas3), y dos corrientes de fracción sólida carbonosa (sólidol , sólido2) que pueden mezclarse, total o parcialmente (sólido3).
El proceso objeto de la presente invención, basado en el uso de la radiación microondas para producir gas de síntesis, es netamente superior a los procesos convencionales en lo que se refiere al aprovechamiento íntegro de un sustrato orgánico, sin que ello vaya en detrimento de la calidad del gas de síntesis obtenido. Además, no se utilizan agentes gasificantes propios de procesos convencionales ni catalizadores metálicos para convertir los aceites de pirólisis en gas de síntesis.
EJEMPLOS Ejemplo 1
El presente ejemplo describe el proceso de producción de gas de síntesis a partir de una fracción orgánica de residuos sólidos urbanos sometida al proceso descrito en la presente invención (Figura 2). Las corrientes están referidas a una base de 1 kg de fracción orgánica de residuos sólidos urbanos, aunque el proceso experimental se llevó a cabo con 5 g. La Figura 2 representa los balances de materia del proceso completo y la Tabla 1 muestra los balances de energías del proceso completo.
Tabla 1. Consumos y balances energéticos del proceso cuando se opera a 800°C en la primera etapa y a 800°C en la segunda etapa.
kWh por kg de kWh por m3 de gas
Etapa 1
alimentación producido
Energía consumida 3,00 4,43
Energía contenida en el
2,63 3,89
gas
Energía contenida en el
0,32
sólido
Balance -0,05 -0,54
Etapa 2
Energía consumida 0,85 9,61
Energía contenida en el
0,25 2,82
gas Energía contenida en el
0,55
sólido
Balance -0,05 -6,79
Proceso global
Energía consumida 3,85 5,04
Energía contenida en el
2,88 3,77
gas
Energía contenida en el
0,88
sólido
Balance -0,09 -1 ,27
Se alimenta 1 kg de la fracción orgánica de residuos sólidos urbanos a la primera etapa del proceso junto a 0,30 kg del residuo carbonoso, procedente de un sistema distribuidor de sólidos, que se utiliza como material susceptor de microondas. En otros experimentos (no mostrados) se ha determinado que la relación en masa 0,3/1 (susceptor/fracción orgánica) es la relación mínima y preferible para maximizar la producción de gas de síntesis. La temperatura en esta etapa es de 800°C y la energía utilizada de 3 kWh/kgres¡duo, aunque este consumo energético depende de la escala del proceso y del equipo utilizado. Como resultado de dicho proceso, se obtienen 0,48 kg de gas de síntesis (con una proporción H2+CO>80% en volumen) y 0,08 kg de la fracción líquida de aceites de pirólisis que se alimentan a la segunda etapa del proceso. En otros experimentos (no mostrados) se ha determinado que por debajo de 700°C la conversión de los aceites no es completa y que la temperatura preferida para llevar a cabo esta etapa es de 800°C. En otros experimentos (no mostrados) se ha determinado que la relación en masa 0,3/1 (aceite/residuo carbonoso) es la relación máxima para que la conversión de los aceites sea completa, siendo la relación preferida de 0,3/1. La temperatura en esta etapa es de 800°C y la energía utilizada de 0,85 kWh/kgres¡duo, aunque este consumo energético depende de la escala del proceso y del equipo utilizado. Como resultado de dicha etapa, se obtienen 0,06 kg de fracción de gas de síntesis (con una proporción H2+CO=90% en volumen).
En resumen, a partir de 1 kg de fracción orgánica de residuos sólidos urbanos, se obtienen 0,54 kg de fracción de gas de síntesis (que tiene un poder calorífico de 2,88 kWh/kgres¡duo) y 0,46 kg de fracción sólida carbonosa (que tiene un poder calorífico de 0,88 kWh/kgres¡duo)- El coste de producción del gas de síntesis es de 5,04 kWh/m3. Ejemplo 2
El presente ejemplo describe el proceso de producción de gas de síntesis a partir de una fracción orgánica de residuos sólidos urbanos sometida al proceso descrito en la presente invención (Figura 3). Las corrientes están referidas a una base de 1 kg de fracción orgánica de residuos sólidos urbanos, aunque el proceso experimental se llevó a cabo con 5 g. La Figura 3 representa los balances de materia del proceso completo y la Tabla 2 muestra los balances de energías del proceso completo.
Tabla 2. Consumos y balances energéticos del proceso cuando se opera a 400°C en la primera etapa y a 800°C en la segunda etapa.
Figure imgf000016_0001
Se alimenta 1 kg de la fracción orgánica de residuos sólidos urbanos a la primera etapa del proceso junto a 0,30 kg del residuo carbonoso, procedente de un sistema distribuidor de sólidos, que se utiliza como material susceptor de microondas. La temperatura en dicha etapa es de 400°C y la energía utilizada de 0,83 kWh/kgres¡duo, aunque este consumo energético depende de la escala del proceso y del equipo utilizado. Como resultado de dicho proceso, se obtienen 0,27 kg de gas de síntesis (con una proporción H2+CO=79% en volumen) y 0, 13 kg de la fracción líquida de aceites de pirólisis que se alimentan a la segunda etapa del proceso. La temperatura en dicha etapa es de 800°C y la energía utilizada de 1 ,36 kWh/kgres¡duo, aunque este consumo energético depende de la escala del proceso y del equipo utilizado. Como resultado de dicha etapa, se obtienen 0, 10 kg de fracción de gas de síntesis (con una proporción H2+CO>90% en volumen).
En resumen, a partir de 1 kg de fracción orgánica de residuos sólidos urbanos, se obtienen 0,37 kg de fracción de gas de síntesis (que tiene un poder calorífico de 1 ,85 kWh/kgres¡duo) y 0,63 kg de fracción sólida carbonosa (que tiene un poder calorífico de 1 ,80 kWh/kgres¡duo)- El coste de producción del gas de síntesis es de 4,42 kWh/m3.
Comparativa entre los Ejemplos 1 y 2
Al comparar el Ejemplo 1 y el Ejemplo 2, el coste energético para la producción de gas de síntesis es 14% superior al utilizar 800°C en la primera etapa (4,42 kWh/m3 frente a 5,04 kWh/m3). Sin embargo, al utilizar 800°C en la primera etapa, la producción de gas de síntesis es 1 ,5 veces mayor (0,54 kg frente a 0,37 kg).
Por otra parte, y sin tener en cuenta la energía calorífica del residuo carbonoso producido, al utilizar una temperatura de 400°C en la primera etapa (Ejemplo 2), la energía contenida en el gas de síntesis es el 85% de la energía consumida en el proceso completo. Sin embargo, al utilizar una temperatura de 800°C en la primera etapa (Ejemplo 1), la energía contenida en el gas de síntesis disminuye hasta un 75% de la energía consumida en el proceso completo. Esta recuperación de energía es positiva si se valoriza el residuo sólido.
Esto permite establecer las condiciones de operación preferibles para llevar a cabo el proceso entre 400°C, temperatura por debajo de la cual no tendría lugar la pirólisis o los rendimientos en volátiles serían muy bajos y 800°C, temperatura por encima de la cual los costes energéticos serían demasiado elevados. Conversiones y rendimientos energéticos de la segunda etapa o etapa de craqueo térmico de los aceites
La segunda etapa de este proceso merece particular atención dado que podría ser usada para craquear otros aceites u otras mezclas complejas de hidrocarburos, no necesariamente provenientes de la primera etapa del proceso de esta invención.
En las condiciones de temperatura y relación aceite/residuo carbonoso anteriormente descritas (es decir: >700°C y <0,3/1 en masa) el proceso convierte todos los aceites en gases y residuo carbonoso, de forma tal que se produce aproximadamente entre un 75% y un 77% en masa de gases y entre un 23% y un 25% en masa de coque o residuo carbonoso. Además, la proporción de gas de síntesis (H2+CO) de estos aceites es superior al 90% en volumen, con una relación molar H2/CO de aproximadamente 1 ,4. Por otro lado, la energía consumida en el horno microondas para producir este gas de síntesis es de 3,2 kWh por cada kg de lecho de residuo carbonoso, aunque este consumo energético depende de la escala del proceso y del equipo utilizado, y la energía contenida en el gas producido es de entre 2,3 - 2,8 kWh por cada m3 de gas de síntesis producido.

Claims

REIVINDICACIONES
1. Proceso para la obtención de gas de síntesis a partir de un sustrato orgánico, que comprende las siguientes etapas:
a) pirólisis inducida por microondas del sustrato orgánico para obtener gas de síntesis, un residuo carbonoso y una fracción líquida de aceites
b) pirólisis inducida por microondas de la fracción líquida de aceites obtenida en la etapa anterior para producir gas de síntesis.
2. Proceso según reivindicación 1 , donde el sustrato orgánico es cualquier material que contenga mayoritariamente compuestos orgánicos.
3. Proceso según la reivindicación 2 donde el sustrato orgánico se selecciona entre residuos sólidos urbanos y biomasa lignocelulósica o mezcla de ambos.
4. Proceso según una cualquiera de las reivindicaciones 1 a 3, donde se utiliza un lecho de material susceptor de microondas en cada una de las etapas.
5. Proceso según la reivindicación 4, donde el susceptor de microondas se selecciona entre carbón activado, grafito, carbonizados, partículas metálicas o residuo carbonoso producido en las etapas del proceso.
6 Proceso según una cualquiera de las reivindicaciones 1 a 5, donde la etapa de pirólisis del sustrato orgánico se lleva a cabo a una temperatura comprendida entre 400 y 800°C.
7. Proceso según la reivindicación 6, donde la etapa de pirólisis del sustrato orgánico se lleva a cabo a una temperatura de 400°C.
8. Proceso según una cualquiera de las reivindicaciones 1 a 7, donde la etapa de pirólisis de la fracción líquida de aceites se lleva a cabo a temperaturas superiores a 700°C.
9. Proceso según la reivindicación 8, donde la etapa de pirólisis de la fracción líquida de aceites de se lleva a cabo a una temperatura de 800°C.
10. Proceso según una cualquiera de las reivindicaciones 1 a 9, donde en la etapa de pirólisis del sustrato orgánico se utiliza como susceptor el residuo carbonoso de una pirólisis anterior en una proporción en masa igual o superior a 0,3 susceptor de microondas/1 sustrato orgánico.
1 1. Proceso según una cualquiera de las reivindicaciones 1 a 10, donde en la etapa de pirólisis de la fracción líquida de aceites se utiliza como susceptor el residuo carbonoso de una pirólisis anterior en una proporción en masa igual o inferior a 0,3 fracción líquida de aceites/1 susceptor de microondas.
12. Proceso según una cualquiera de las reivindicaciones 1 a 1 1 , donde la etapa de pirólisis del sustrato orgánico se lleva a cabo en un horno microondas operando a una frecuencia que se selecciona entre 915 MHz y 2,45 GHz.
13. Proceso según una cualquiera de las reivindicaciones 1 a 12, donde la etapa de pirólisis de la fracción líquida de aceites se lleva a cabo en un horno microondas operando a una frecuencia que se selecciona entre 915 MHz y 2,45 GHz.
14. Proceso según una cualquiera de las reivindicaciones 1 a 13, donde se incluye una etapa previa de mezcla del sustrato orgánico y el material susceptor de microondas antes de la pirólisis del sustrato orgánico.
PCT/ES2017/070288 2016-05-10 2017-05-09 Proceso para la obtención de gas de síntesis por calentamiento con microondas de sustratos orgánicos WO2017194805A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201630602A ES2646546B1 (es) 2016-05-10 2016-05-10 Proceso para la obtencion de gas de síntesis por calentamiento con microondas de sustratos orgánicos
ESP201630602 2016-05-10

Publications (1)

Publication Number Publication Date
WO2017194805A1 true WO2017194805A1 (es) 2017-11-16

Family

ID=60266332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070288 WO2017194805A1 (es) 2016-05-10 2017-05-09 Proceso para la obtención de gas de síntesis por calentamiento con microondas de sustratos orgánicos

Country Status (2)

Country Link
ES (1) ES2646546B1 (es)
WO (1) WO2017194805A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029146A (zh) * 2022-05-05 2022-09-09 东方电气集团东方锅炉股份有限公司 一种固体废弃物热解耦合等离子制氢系统
GB2633189A (en) * 2023-07-04 2025-03-05 Sylatech Ltd Electromagnetic pyrolysis apparatus and a method of use thereof to recycle waste materials to obtain separated hydrocarbon chemical components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2310127A1 (es) * 2007-06-01 2008-12-16 Consejo Superior De Investigaciones Cientificas Procedimiento de produccion de gas de sintesis, dispositivo para su ejecucion y sus aplicaciones.
CN202482282U (zh) * 2012-02-04 2012-10-10 王俊 一种多仓微波加热连续工业制取煤气装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2310127A1 (es) * 2007-06-01 2008-12-16 Consejo Superior De Investigaciones Cientificas Procedimiento de produccion de gas de sintesis, dispositivo para su ejecucion y sus aplicaciones.
CN202482282U (zh) * 2012-02-04 2012-10-10 王俊 一种多仓微波加热连续工业制取煤气装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DOMINGUEZ A ET AL.: "Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge", FUEL PROCESSING TECHNOL, vol. 86, no. 9, 25 May 2005 (2005-05-25), NL . Li Wen, pages 1007 - 1020, XP027621821, ISSN: 0378-3820, [retrieved on 20170717] *
LAM SU SHIUNG ET AL.: "Production of hydrogen and light hydrocarbons as a potential gaseous fuel from microwave-heated pyrolysis of waste automotive engine oil", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 37, no. 6, March 2012 (2012-03-01), BARKING, GB ., pages 5011 - 5021, XP028898478, ISSN: 0360-3199, [retrieved on 20170717] *
SU SHIUNG LAM ET AL.: "A Review on Waste to Energy Processes Using Microwave Pyrolysis.", ENERGIES, vol. 5, no. 12, 23 October 2012 (2012-10-23), pages 4209 - 4232, XP055239747, [retrieved on 20170717] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029146A (zh) * 2022-05-05 2022-09-09 东方电气集团东方锅炉股份有限公司 一种固体废弃物热解耦合等离子制氢系统
GB2633189A (en) * 2023-07-04 2025-03-05 Sylatech Ltd Electromagnetic pyrolysis apparatus and a method of use thereof to recycle waste materials to obtain separated hydrocarbon chemical components

Also Published As

Publication number Publication date
ES2646546B1 (es) 2018-09-18
ES2646546A1 (es) 2017-12-14

Similar Documents

Publication Publication Date Title
Yuan et al. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues
Peng et al. Hydrogen and syngas production by catalytic biomass gasification
Song et al. The combined catalytic action of solid acids with nickel for the transformation of polypropylene into carbon nanotubes by pyrolysis
CA2523318C (en) Method to recapture energy from organic waste
WO2010119972A1 (ja) Btl製造システム及びbtlの製造方法
Reddy et al. Preparation of carbon nanostructures from medium and high ash Indian coals via microwave-assisted pyrolysis
JP2017502159A (ja) マイクロ波システムによる熱分解油
Zhao et al. Microwave-enhanced hydrogen production: a review
Valin et al. CO2 as a substitute of steam or inert transport gas in a fluidised bed for biomass gasification
ES2646546B1 (es) Proceso para la obtencion de gas de síntesis por calentamiento con microondas de sustratos orgánicos
CN103484163B (zh) 一种生物质双模式重整气化制备纯净合成气的方法
Liu et al. Microwave-assisted pyrolysis of industrial biomass waste: Insights into kinetic, characteristics and intrinsic mechanisms
EP2451894A1 (en) Pyrolisis reactor and process for disposal of waste materials
WO2012017893A1 (ja) 廃棄物処理システム
KR20130082131A (ko) 2단계 열분해 가스화 장치 및 2단계 열분해 가스화 방법
Fu et al. Exploration of microwave absorptivity and catalysis of CMF@ Co-MoS2 for microwave-initiated depolymerization of lignin
Bashir et al. Plastic waste gasification for low-carbon hydrogen production: A comprehensive review
JP2006205135A (ja) 複合廃棄物処理システム
Dineshkumar et al. Synthesis and characterization study of solid carbon biocatalyst produced from novel biomass char in a microwave pyrolysis
CN1268542C (zh) 利用生物物质生产碳的设备
Frediani et al. Mixed or contaminated waste plastic recycling through microwave-assisted pyrolysis
Liu et al. Study on a potential bone char catalyst for high efficiency catalytic pyrolysis of polypropylene plastic
AU2022271852B2 (en) Process for producing synthetic hydrocarbons from biomass
Dan et al. On the potential of microwave heating to convert waste into added-value chemicals and materials: a review
Kim et al. Enhanced hydrogen production through temperature-optimized pyrolysis of mixed plastic waste for sustainable energy recovery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795663

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795663

Country of ref document: EP

Kind code of ref document: A1