WO2017193984A1 - 一种用于饱和铁心型超导限流器的高温超导绕组 - Google Patents

一种用于饱和铁心型超导限流器的高温超导绕组 Download PDF

Info

Publication number
WO2017193984A1
WO2017193984A1 PCT/CN2017/084066 CN2017084066W WO2017193984A1 WO 2017193984 A1 WO2017193984 A1 WO 2017193984A1 CN 2017084066 W CN2017084066 W CN 2017084066W WO 2017193984 A1 WO2017193984 A1 WO 2017193984A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature superconducting
high temperature
superconducting winding
end flange
double
Prior art date
Application number
PCT/CN2017/084066
Other languages
English (en)
French (fr)
Inventor
宋萌
夏亚君
梅桂华
罗运松
程文锋
李力
陈迅
Original Assignee
广东电网有限责任公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司电力科学研究院 filed Critical 广东电网有限责任公司电力科学研究院
Priority to DE112017002397.1T priority Critical patent/DE112017002397T5/de
Publication of WO2017193984A1 publication Critical patent/WO2017193984A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F2006/001Constructive details of inductive current limiters

Definitions

  • the invention relates to the technical field of high-temperature superconducting technology and low-temperature technology, and more particularly to a high-temperature superconducting winding for a saturated iron core type superconducting current limiter.
  • the high-temperature superconductor working in superconducting state has no AC loss and Joule heat generated under DC working current.
  • the saturated iron core type superconducting current limiter based on high temperature superconducting technology is one of the effective measures to solve the short-circuit current of the power grid.
  • the saturated core-type superconducting current limiter can effectively limit the short-circuit current of the power grid and reduce the burden on various electrical equipment such as circuit breakers, thereby improving the safety and stability of the power system.
  • the saturated iron core type superconducting current limiter is mainly composed of an alternating current winding, a core, a superconducting direct current winding, and a cooling system, as shown in Fig. 1 and Fig. 2.
  • two copper conductor AC windings functioning as current limiting are connected in series to the grid.
  • a cylindrical column of DC columns is formed by stacking two columns of two square-shaped iron cores.
  • the high-temperature superconducting winding of the DC working power supply is located on the vertical DC column, and the two series of high-voltage AC windings are respectively located at two.
  • the upper horizontal AC column of the mouth-shaped iron core is mainly composed of an alternating current winding, a core, a superconducting direct current winding, and a cooling system, as shown in Fig. 1 and Fig. 2.
  • the high-temperature superconducting winding of the DC working power supply makes the core in deep saturation state, the high-voltage AC winding has low inductive reactance, the current limiter exhibits low impedance, and the use of high-temperature superconducting material to manufacture the DC excitation winding not only improves the biasing ability, The volume and weight of the DC winding are reduced, and the problem of generating a high Joule heat loss by using a conventional conductor to produce a DC excitation winding is overcome.
  • the inventors of the present application have studied the saturated iron core type superconducting current limiter in the prior art and found that the high temperature superconducting winding in the existing saturated iron core type superconducting current limiter is a solenoid type, and the high temperature is super
  • the high-temperature superconducting winding module at the upper and lower ends of the conducting winding is subjected to a high vertical magnetic field, and the influence of the leakage magnetic field of the alternating magnetic field generated by the high-voltage alternating current coil on the high-temperature superconducting winding module at the upper and lower ends of the high-temperature superconducting winding, the high-temperature superconducting winding
  • the high-temperature superconducting tape in the high-temperature superconducting winding module at both ends has a reduced current capability.
  • the high-temperature superconducting winding adopts a non-modular structure and is powered by one power supply centrally, the current capability of the single high-temperature superconducting double-cone coil is reduced or the loss will affect the current capability of other high-temperature superconducting double-cake coils, and It may further cause all high temperature superconducting double cake coils to be quenched.
  • the present invention provides a high temperature superconducting winding for a saturated iron core type superconducting current limiter to solve the high temperature superconducting tape in the high temperature superconducting winding module of the upper and lower ends of the high temperature superconducting winding in the prior art.
  • the current capability of the material is reduced, and the current capability of other high-temperature superconducting double-cake coils is reduced due to the decrease or quenching of the current capability of the single high-temperature superconducting double-cake coil, and even all the high-temperature superconducting double-cake coils are quenched. problem.
  • the technical solutions are as follows:
  • the invention provides a high temperature superconducting winding for a saturated iron core type superconducting current limiter, comprising: a plurality of mutually independent high temperature superconducting winding modules, a cylindrical support cylinder and a connecting member; wherein
  • Each of the high-temperature superconducting winding modules is powered by a separate DC power supply module, and the plurality of mutually independent high-temperature superconducting winding modules are mounted on an outer surface of the cylindrical support cylinder;
  • the cylindrical support cylinder includes a cylindrical cylinder, an upper end flange and a lower end flange; the upper end flange is for axially positioning the high temperature superconducting winding module; and the lower end flange is opposite to the cylindrical cylinder One end is connected; the upper end flange and the lower end flange are connected by the connecting member.
  • each of the high-temperature superconducting winding modules comprises a plurality of high-temperature superconducting double-cake coils, the current-carrying capacities of the plurality of high-temperature superconducting double-cake coils are nearly equal, and the plurality of high-temperature superconducting double-cakes The coils are connected in series, and each of the high temperature superconducting winding modules includes a pair of current leads.
  • the high temperature superconducting double cake coil in each of the high temperature superconducting winding modules is integrally cured by a vacuum pressure impregnation process; all of the high temperature superconducting double cake coils in each of the high temperature superconducting winding modules are detachable, replace.
  • the high-temperature superconducting double-cake coils in the high-temperature superconducting winding module at both ends of the cylindrical support cylinder are wound by a plurality of high-temperature superconducting tapes having a strong resistance to vertical magnetic fields at a liquid nitrogen temperature.
  • the cylindrical support cylinder is insulated and resistant to low temperatures.
  • the upper end flange of the cylindrical support cylinder is detachable, and the upper end flange has an inclined angle facing one side of the high temperature superconducting winding module.
  • the connecting member is a tie rod
  • the inner layer of the pull rod is a composite material
  • the outer rod of the pull rod The layer is wrapped in a metal material.
  • both ends of the pull rod adopt a double nut pretensioning structure with a disc spring.
  • the high temperature superconducting winding is immersed and cooled by a vacuum undercooled liquid nitrogen.
  • the plurality of high-temperature superconducting winding modules are independent of each other, and are respectively powered by independent DC power supply modules. Therefore, not only can the current capability of the high-temperature superconducting strip in the high-temperature superconducting winding module be effectively improved, but also the quenching chain reaction caused by the decrease or the quenching current of the single high-temperature superconducting double-cake coil can be greatly suppressed.
  • FIG. 1 is a schematic structural view of a saturated iron core type superconducting current limiter in the prior art
  • FIG. 2 is another schematic structural view of a saturated iron core type superconducting current limiter in the prior art
  • FIG. 3 is a schematic structural view of a high temperature superconducting winding for a saturated iron core type superconducting current limiter according to the present invention.
  • FIG. 3 is a structural diagram of a high temperature superconducting winding for a saturated core type superconducting current limiter provided by the present invention.
  • the high temperature superconducting winding provided by the present invention is a solenoid type, and includes: a plurality of mutually independent high temperature superconducting winding modules 100, a cylindrical support cylinder 200 and a connecting member 300. among them,
  • Each high temperature superconducting winding module 100 is powered by a separate DC power module 400, multiple phases
  • the mutually independent high temperature superconducting winding modules 100 are mounted on the outer surface of the cylindrical support cylinder 200.
  • the cylindrical support cylinder 200 includes a cylindrical barrel 201, an upper end flange 202, and a lower end flange 203.
  • the upper end flange 202 is used for axially positioning the high temperature superconducting winding module 100, and the lower end flange 203 is connected to one end of the cylindrical barrel 201.
  • the upper end flange 202 and the lower end flange 203 are connected by a connecting member 300.
  • the plurality of high-temperature superconducting winding modules 100 are independent of each other, and are respectively used by independent DC power supply modules 400.
  • the power supply can not only effectively improve the current capability of the high-temperature superconducting tape in the high-temperature superconducting winding module 100, but also greatly suppress the quenching chain reaction caused by the decrease or the overcurrent of the single high-temperature superconducting double-cake coil 101. .
  • each high-temperature superconducting winding module 100 includes a plurality of high-temperature superconducting double-cake coils 101, and the current-carrying capacities of the plurality of high-temperature superconducting double-cake coils 101 are nearly equal or equal, and the plurality of high-temperature superconductors The double cake coils 101 are connected in series.
  • Each high temperature superconducting winding module 100 in the present application also includes a pair of current leads 102.
  • the high temperature superconducting double cake coil 101 in each high temperature superconducting winding module 100 in the present application is integrally cured by a vacuum pressure impregnation process, and all high temperature superconducting double cake coils 101 in each high temperature superconducting winding module 100 Can be removed and replaced.
  • the high-temperature superconducting winding module 100 located at both ends of the high-temperature superconducting winding is subjected to a high vertical magnetic field, and the leakage magnetic field of the alternating magnetic field generated by the high-voltage alternating current coil is used for the high-temperature superconducting winding of the upper and lower ends of the high-temperature superconducting winding.
  • the influence of the module 100, the high-temperature superconducting winding module 100 in the high-temperature superconducting winding module 100 at the upper and lower ends of the high-temperature superconducting winding will have a lower current capability.
  • the present application will place the high-temperature superconducting double-cake coil 101 in the high-temperature superconducting winding module 100 at the upper and lower ends of the cylindrical support cylinder 200, using liquid nitrogen.
  • the second-generation high-temperature superconducting tape with high resistance to the vertical magnetic field is multi-wire-wound, and the high-temperature superconducting double-cake coil 101 in the high-temperature superconducting winding module 100 located at the middle of the cylindrical support cylinder 200 adopts a generation band. Multi-wire winding or single-wire winding.
  • the present application selects a second-generation high-temperature superconducting tape with a high current magnetic field strength and a multi-wire high-temperature superconducting double-cake coil 101, thereby ensuring a DC in a saturated iron core type superconducting current limiter.
  • the magnetic field strength and magnetic field configuration of the upper and lower ends of the superconducting winding solve the prior art In the operation, only the problem of insufficient excitation caused by the decrease of the current carrying capacity of the high-temperature superconducting tape under the high vertical magnetic field strength was adopted.
  • the high-temperature superconducting double-cake coil 101 selects different types of high-temperature superconducting tapes and different types of winding methods, and the high-temperature superconducting winding module 100 of the upper and lower ends of the cylindrical supporting cylinder 200
  • the high-temperature superconducting double-cake coil 101 adopts a multi-wire high-temperature superconducting tape capable of withstanding a high vertical magnetic field strength at a liquid nitrogen temperature, and realizes a high-temperature superconducting winding module 100 at the upper and lower ends of the cylindrical support cylinder 200 at a higher level.
  • the ability to pass higher currents improves the ability of the high-temperature superconducting winding module 100 at the upper and lower ends of the cylindrical support cylinder 200 to resist quenching under the action of a higher steady-state vertical magnetic field and an alternating magnetic field.
  • the high-temperature superconducting winding for a saturated iron core type superconducting current limiter provided by the present application is subjected to a vertical magnetic field perpendicular to the surface of the high-temperature superconducting tape, and is used as a high-temperature superconducting double-cake coil of the basic unit of the high-temperature superconducting coil module. 101
  • the current capability varies depending on the location.
  • the saturated iron core type superconducting current limiter provided by the present application has a large diameter of a high temperature superconducting winding, a large number of high temperature superconducting double cake coils 101 and a large number of current leads 102.
  • the present application adopts a plurality of high temperature superconducting double cakes.
  • the modular high-temperature superconducting windings fabricated by the coil 101 are physically independent of each other, which reduces the problem of insufficient excitation of the high-temperature superconducting windings of the overall structure and the superconducting of the superconductors.
  • the modular structure of the high-temperature superconducting winding in the present application not only facilitates the quench protection of the high-temperature superconductor, but also facilitates the upgrading and maintenance of the high-temperature superconducting winding, and avoids the high-temperature superconducting winding which cannot be realized by the solidified high-temperature superconducting winding.
  • the cylindrical support cylinder 200 in the present application is insulated and low temperature resistant, and a plurality of independent high temperature superconducting winding modules 100 are mounted on the insulated and low temperature resistant cylindrical support cylinder 200.
  • the high temperature superconducting winding module 100 is positioned by using the insulating and low temperature resistant cylindrical support cylinder 200 to avoid the eddy current loss generated by the alternating magnetic field leakage magnetic field generated by the high voltage coil on the high temperature superconducting winding module 100.
  • the cylindrical support cylinder 200 includes a cylindrical cylinder 201, an upper end flange 202, and a lower end flange 203.
  • the lower end flange 203 is connected to one end of the cylindrical cylinder 201.
  • the connection manner may be integrally formed, or the lower end flange 203 may be fixedly connected to one end of the cylindrical barrel 201 by a fixing device.
  • the lower end flange 203 is preferably non-detachable in the present application.
  • the other end of the cylindrical cylinder 201 is connected to an upper end flange 202 having a step positioning structure for axially positioning the high temperature superconducting winding module 100, the upper end flange 202 being detachable, and the upper end method
  • the surface of the blue 202 facing the high temperature superconducting winding module 100 has an oblique angle.
  • the lower surface of the detachable upper end flange 202 has an inclination angle to realize the free flow of nitrogen, which can ensure timely overflow of nitrogen generated by liquid nitrogen gasification, and avoid the local temperature rise of the high temperature superconductor caused by the accumulation of nitrogen on the lower surface of the flange. A quench is produced.
  • the upper end flange 202 and the lower end flange 203 of the cylindrical support cylinder 200 are connected by a joint 300.
  • the connecting member 300 can be a tie rod
  • the inner layer of the pull rod is a composite material
  • the outer layer of the pull rod is wrapped by a metal material
  • the connecting member 300 in the present application adopts a metal + composite material + metal structure.
  • the eddy current loss caused by the leakage magnetic field of the alternating magnetic field is reduced.
  • the two ends of the tie rod adopt a double nut pre-tightening structure with a disc spring
  • the double-nut pre-tightening structure with a disc spring is used at both ends of the application rod to realize the temperature change process and the vibration environment.
  • Bolt preload is used at both ends of the application rod to realize the temperature change process and the vibration environment.
  • the cylindrical support cylinder 200 of the present application adopts a detachable structure, which is favorable for the installation and maintenance of the high temperature superconducting winding module 100, and improves the maintainability of the high temperature superconducting winding module 100.
  • the high temperature superconducting winding in the present application is immersed and cooled by vacuum under vacuum.
  • the application adopts negative pressure supercooled liquid nitrogen soaking and cooling high temperature superconducting winding to improve the current carrying capacity of the high temperature superconducting strip under the background magnetic field environment, thereby improving the biasing ability of the high temperature superconducting winding and saving high temperature superconducting.

Abstract

本发明提供了一种用于饱和铁心型超导限流器的高温超导绕组,包括:多个相互独立的高温超导绕组模块、圆柱支撑筒和连接件;其中,每个所述高温超导绕组模块采用独立的直流电源模块进行供电,所述多个相互独立的高温超导绕组模块安装在所述圆柱支撑筒的外表面上;所述圆柱支撑筒包括圆柱形筒体、上端法兰和下端法兰;所述上端法兰用于轴向定位所述高温超导绕组模块;所述下端法兰与所述圆柱形筒体的一端连接;所述上端法兰和下端法兰通过所述连接件连接。本发明不仅能够有效提高高温超导绕组模块中的高温超导带材通电流能力,还能大大抑制单个高温超导双饼线圈通电流能力下降或失超引起的失超连锁反应。

Description

一种用于饱和铁心型超导限流器的高温超导绕组
本发明要求于2016年05月12日提交中国专利局、申请号为201610316740.5、发明名称为“一种用于饱和铁心型超导限流器的高温超导绕组”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及高温超导技术、低温技术的电力系统技术领域,更具体地说,涉及一种用于饱和铁心型超导限流器的高温超导绕组。
背景技术
工作于超导状态的高温超导体在直流工作电流下无交流损耗和焦尔热产生,基于高温超导技术的饱和铁心型超导限流器是解决电网短路电流的有效措施之一。饱和铁心型超导限流器可有效限制电网的短路电流,减轻断路器等各种电气设备的负担,从而提高电力系统的安全性和稳定性。
饱和铁心型超导限流器主要由交流绕组、铁心、超导直流绕组以及冷却系统等组成,如图1、图2所示。单相饱和铁心型超导限流器中两个起限流作用的铜导体交流绕组串联接入电网。通过两个口字形铁芯的各一个立柱叠合成一个类圆柱形的直流柱,直流工作电源的高温超导绕组位于垂直方向的直流柱上,而两个串联的高压交流绕组则分别位于两个口字形铁芯的上部水平交流柱上。直流工作电源的高温超导绕组使铁心处于深度饱和状态,高电压的交流绕组具有较低的感抗,限流器呈现低阻抗,使用高温超导材料制作直流励磁绕组不仅提高了偏磁能力、减小了直流绕组的体积和重量,并且克服了采用常规导体制作直流励磁绕组产生较高的焦尔热损耗等问题。
然而本申请的发明人对现有技术中的饱和铁心型超导限流器进行研究后发现,现有饱和铁心型超导限流器中的高温超导绕组为螺线管型,而高温超导绕组上下两端的高温超导绕组模块承受较高的垂直磁场,加之高压交流线圈产生的交变磁场的漏磁场对于高温超导绕组上下两端的高温超导绕组模块的影响,高温超导绕组上下两端的高温超导绕组模块中的高温超导带材通电流能力下降。
而如果高温超导绕组采用非模块化结构并通过一路电源集中进行供电,其单个高温超导双饼线圈通电流能力下降或者失超将影响到其他高温超导双饼线圈的通电流能力,并可能进一步造成所有高温超导双饼线圈失超。
发明内容
有鉴于此,本发明提供一种用于饱和铁心型超导限流器的高温超导绕组,以解决现有技术中,高温超导绕组上下两端的高温超导绕组模块中的高温超导带材通电流能力下降,以及由于单个高温超导双饼线圈通电流能力下降或者失超而影响到其他高温超导双饼线圈的通电流能力下降,甚至发生所有高温超导双饼线圈失超的问题。技术方案如下:
本发明提供一种用于饱和铁心型超导限流器的高温超导绕组,包括:多个相互独立的高温超导绕组模块、圆柱支撑筒和连接件;其中,
每个所述高温超导绕组模块采用独立的直流电源模块进行供电,所述多个相互独立的高温超导绕组模块安装在所述圆柱支撑筒的外表面上;
所述圆柱支撑筒包括圆柱形筒体、上端法兰和下端法兰;所述上端法兰用于轴向定位所述高温超导绕组模块;所述下端法兰与所述圆柱形筒体的一端连接;所述上端法兰和下端法兰通过所述连接件连接。
优选地,每个所述高温超导绕组模块包括多个高温超导双饼线圈,所述多个高温超导双饼线圈的通电流能力趋近相等,且所述多个高温超导双饼线圈串联连接,每个所述高温超导绕组模块包括一对电流引线。
优选地,每个所述高温超导绕组模块中的高温超导双饼线圈通过真空压力浸渍工艺整体固化;每个所述高温超导绕组模块中的所有高温超导双饼线圈均可拆卸、更换。
优选地,位于所述圆柱支撑筒的两端的高温超导绕组模块中的高温超导双饼线圈,采用液氮温度下抵抗垂直磁场较强的二代高温超导带材多线并绕。
优选地,所述圆柱支撑筒绝缘、耐低温。
优选地,所述圆柱支撑筒中的上端法兰可拆卸,所述上端法兰面向所述高温超导绕组模块的一面具有倾斜角度。
优选地,所述连接件为拉杆,所述拉杆的内层为复合材料,所述拉杆的外 层被金属材料包裹。
优选地,所述拉杆的两端采用带有碟簧的双螺帽预紧结构。
优选地,所述高温超导绕组采用负压过冷液氮浸泡冷却。
因此应用本发明的上述技术方案,本发明提供的用于饱和铁心型超导限流器的高温超导绕组中,多个高温超导绕组模块相互独立,且分别采用独立的直流电源模块进行供电,由此不仅能够有效提高高温超导绕组模块中的高温超导带材通电流能力,还能大大抑制单个高温超导双饼线圈通电流能力下降或失超引起的失超连锁反应。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术中饱和铁心型超导限流器的结构示意图;
图2为现有技术中饱和铁心型超导限流器的另一结构示意图;
图3为本发明提供的用于饱和铁心型超导限流器的高温超导绕组的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图3,其示出了本发明提供的一种用于饱和铁心型超导限流器的高温超导绕组的结构示意图。本发明提供的高温超导绕组为螺线管型,包括:多个相互独立的高温超导绕组模块100、圆柱支撑筒200和连接件300。其中,
每个高温超导绕组模块100采用独立的直流电源模块400进行供电,多个相 互独立的高温超导绕组模块100安装在圆柱支撑筒200的外表面上。
圆柱支撑筒200包括圆柱形筒体201、上端法兰202和下端法兰203。其中,上端法兰202用于轴向定位高温超导绕组模块100,下端法兰203与圆柱形筒体201的一端连接。上端法兰202和下端法兰203通过连接件300连接。
应用本发明的上述技术方案,本发明提供的用于饱和铁心型超导限流器的高温超导绕组中,多个高温超导绕组模块100相互独立,且分别采用独立的直流电源模块400进行供电,由此不仅能够有效提高高温超导绕组模块100中的高温超导带材通电流能力,还能大大抑制单个高温超导双饼线圈101通电流能力下降或失超引起的失超连锁反应。
下面,发明人将对本申请提供的用于饱和铁心型超导限流器的高温超导绕组进行进一步的详细说明。
本申请中,每个高温超导绕组模块100包括多个高温超导双饼线圈101,该多个高温超导双饼线圈101的通电流能力趋近相等或者相等,且该多个高温超导双饼线圈101串联连接。本申请中每个高温超导绕组模块100还包括一对电流引线102。
具体的,本申请中每个高温超导绕组模块100中的高温超导双饼线圈101通过真空压力浸渍工艺整体固化,且每个高温超导绕组模块100中的所有高温超导双饼线圈101均可拆卸、更换。
在实际应用过程中,位于高温超导绕组两端的高温超导绕组模块100承受较高的垂直磁场,加之高压交流线圈产生的交变磁场的漏磁场对于高温超导绕组上下两端的高温超导绕组模块100的影响,高温超导绕组上下两端的高温超导绕组模块100中的高温超导带材通电流能力会下降。基于此,本申请为提高高温超导双饼线圈101承受垂直磁场的能力,本申请将位于圆柱支撑筒200上下两端的高温超导绕组模块100中的高温超导双饼线圈101,采用液氮温度下抵抗垂直磁场较强的二代高温超导带材多线并绕方式,而位于圆柱支撑筒200中间部位的高温超导绕组模块100中的高温超导双饼线圈101,则采用一代带材多线并绕或单线绕制方式。因此,本申请选用在较高垂直磁场强度下通电流能力较强的二代高温超导带材多线并绕高温超导双饼线圈101,从而保证了饱和铁心型超导限流器中直流超导绕组上下两端的磁场强度和磁场位形,解决了现有技 术中只采用一代高温超导带材在较高垂直磁场强度下通电流能力下降引起的励磁不足的问题。
因此,本申请为了达到预期的偏磁能力,高温超导双饼线圈101选用不同类型的高温超导带材和不同类型的绕制方式,圆柱支撑筒200上下两端的高温超导绕组模块100的高温超导双饼线圈101采用液氮温度下能够承受较高垂直磁场强度的二带高温超导带材多线并绕,实现了圆柱支撑筒200上下两端高温超导绕组模块100在较高垂直磁场下,通较高电流的能力,提高了圆柱支撑筒200上下两端的高温超导绕组模块100在较高稳态垂直磁场和交变磁场共同作用下抵抗失超的能力。
本申请提供的用于饱和铁心型超导限流器的高温超导绕组,受垂直于高温超导带带面的垂直磁场的影响,作为高温超导线圈模块基本单元的高温超导双饼线圈101根据所处位置的不同,通电流能力有所差别。本申请提供的饱和铁心型超导限流器的高温超导绕组直径大,高温超导双饼线圈101的数量多并且电流引线102的数量也多,本申请采用基于多个高温超导双饼线圈101制作而成的模块化高温超导绕组在物理上相互独立,降低了整体结构的高温超导绕组采用一路电源供电带来的励磁不足与超导体容易失超的问题。
本申请中的高温超导绕组采用模块化结构不仅有利于高温超导体的失超保护,还有利于高温超导绕组的升级与维护,避免了整体固化的高温超导绕组无法实现各高温超导双饼线圈101的合理通流问题,以及高温超导绕组损坏之后难以维修的问题。
进一步,对于本申请中的圆柱支撑筒200来说,本申请中的圆柱支撑筒200绝缘、耐低温,多个相互独立的高温超导绕组模块100安装在该绝缘、耐低温的圆柱支撑筒200的外表面上。本申请中采用绝缘、耐低温的圆柱支撑筒200对高温超导绕组模块100加以定位,避免了高压线圈产生的交变磁场漏磁场在高温超导绕组模块100上产生的涡流损耗。
具体的,圆柱支撑筒200包括圆柱形筒体201、上端法兰202和下端法兰203。其中,下端法兰203与圆柱形筒体201的一端连接,该连接方式可以采用一体成型方式,也可通过固定装置将下端法兰203与圆柱形筒体201的一端固定连接。本申请中下端法兰203优选为不可拆卸。
在圆柱形筒体201的另一端与具有台阶定位结构的上端法兰202连接,该上端法兰202用于轴向定位高温超导绕组模块100,该上端法兰202可拆卸,且该上端法兰202面向所述高温超导绕组模块100的一面具有倾斜角度。本申请中,可拆卸的上端法兰202的下表面具有的倾斜角度实现了氮气的自由流动,可保证液氮气化产生的氮气及时溢出,避免氮气聚集在法兰下表面引起高温超导体局部温升产生失超。
圆柱支撑筒200的上端法兰202和下端法兰203通过连接件300连接。具体的,该连接件300可以为拉杆,所述拉杆的内层为复合材料,所述拉杆的外层被金属材料包裹,即本申请中的连接件300采用了金属+复合材料+金属的结构,降低了交变磁场的漏磁场引起的涡流损耗。且作为更优的,拉杆的两端采用带有碟簧的双螺帽预紧结构,本申请拉杆两端采用带碟簧的双螺帽预紧结构实现了在温度变化过程中以及振动环境下的螺栓预紧力。
因此本申请中的圆柱支撑筒200采用了可拆卸结构,有利于高温超导绕组模块100的安装与维护,提高了高温超导绕组模块100的可维护性。
此外作为更优的,本申请中的高温超导绕组采用负压过冷液氮浸泡冷却。本申请采用负压过冷液氮浸泡冷却高温超导绕组提高了高温超导带材在背景磁场环境下的载流能力,从而提高了高温超导绕组的偏磁能力,有利于节省高温超导带材的用量。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请所提供的一种用于饱和铁心型超导限流器的高温超导绕组进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐 述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (9)

  1. 一种用于饱和铁心型超导限流器的高温超导绕组,其特征在于,包括:多个相互独立的高温超导绕组模块、圆柱支撑筒和连接件;其中,
    每个所述高温超导绕组模块采用独立的直流电源模块进行供电,所述多个相互独立的高温超导绕组模块安装在所述圆柱支撑筒的外表面上;
    所述圆柱支撑筒包括圆柱形筒体、上端法兰和下端法兰;所述上端法兰用于轴向定位所述高温超导绕组模块;所述下端法兰与所述圆柱形筒体的一端连接;所述上端法兰和下端法兰通过所述连接件连接。
  2. 根据权利要求1所述的高温超导绕组,其特征在于,每个所述高温超导绕组模块包括多个高温超导双饼线圈,所述多个高温超导双饼线圈的通电流能力趋近相等,且所述多个高温超导双饼线圈串联连接,每个所述高温超导绕组模块包括一对电流引线。
  3. 根据权利要求2所述的高温超导绕组,其特征在于,每个所述高温超导绕组模块中的高温超导双饼线圈通过真空压力浸渍工艺整体固化;每个所述高温超导绕组模块中的所有高温超导双饼线圈均可拆卸、更换。
  4. 根据权利要求2或3所述的高温超导绕组,其特征在于,位于所述圆柱支撑筒的两端的高温超导绕组模块中的高温超导双饼线圈,采用液氮温度下抵抗垂直磁场较强的二代高温超导带材多线并绕。
  5. 根据权利要求1所述的高温超导绕组,其特征在于,所述圆柱支撑筒绝缘、耐低温。
  6. 根据权利要求1或5所述的高温超导绕组,其特征在于,所述圆柱支撑筒中的上端法兰可拆卸,所述上端法兰面向所述高温超导绕组模块的一面具有倾斜角度。
  7. 根据权利要求1所述的高温超导绕组,其特征在于,所述连接件为拉杆,所述拉杆的内层为复合材料,所述拉杆的外层被金属材料包裹。
  8. 根据权利要求7所述的高温超导绕组,其特征在于,所述拉杆的两端采用带有碟簧的双螺帽预紧结构。
  9. 根据权利要求1所述的高温超导绕组,其特征在于,所述高温超导绕组采用负压过冷液氮浸泡冷却。
PCT/CN2017/084066 2016-05-12 2017-05-12 一种用于饱和铁心型超导限流器的高温超导绕组 WO2017193984A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017002397.1T DE112017002397T5 (de) 2016-05-12 2017-05-12 Hochtemperatur-supraleitende spule für einen supraleitenden strombegrenzer mit gesättigtem eisenkern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610316740.5 2016-05-12
CN201610316740.5A CN105761872B (zh) 2016-05-12 2016-05-12 一种用于饱和铁心型超导限流器的高温超导绕组

Publications (1)

Publication Number Publication Date
WO2017193984A1 true WO2017193984A1 (zh) 2017-11-16

Family

ID=56322960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084066 WO2017193984A1 (zh) 2016-05-12 2017-05-12 一种用于饱和铁心型超导限流器的高温超导绕组

Country Status (3)

Country Link
CN (1) CN105761872B (zh)
DE (1) DE112017002397T5 (zh)
WO (1) WO2017193984A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105761872B (zh) * 2016-05-12 2017-12-01 广东电网有限责任公司电力科学研究院 一种用于饱和铁心型超导限流器的高温超导绕组
CN109545497B (zh) * 2019-01-11 2020-07-17 西南交通大学 一种阶梯形超导磁体及具有其的电动悬浮系统
CN112018897B (zh) * 2020-09-10 2021-08-24 广东电网有限责任公司电力科学研究院 基于重合闸的超导交流限流器状态的监控方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202650758U (zh) * 2012-05-09 2013-01-02 湖北省电力公司电力科学研究院 一种储能用高温超导混合磁体
CN103035353A (zh) * 2012-12-17 2013-04-10 中国科学院电工研究所 一种应用Bi系和Y系高温超导带材绕制的组合绕组
CN105304262A (zh) * 2015-11-27 2016-02-03 云南电网有限责任公司电力科学研究院 一种用于交流磁场的高温超导线圈装置
CN105761872A (zh) * 2016-05-12 2016-07-13 广东电网有限责任公司电力科学研究院 一种用于饱和铁心型超导限流器的高温超导绕组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100209894B1 (ko) * 1996-06-14 1999-07-15 윤종용 펄스부호변조된 디지털 오디오신호의 기록 및 재생을 위한 시스템
US5912607A (en) * 1997-09-12 1999-06-15 American Superconductor Corporation Fault current limiting superconducting coil
CN102320380B (zh) * 2011-06-30 2014-03-26 吴春俐 超导磁体直接释能弹射器
CN204303528U (zh) * 2014-12-31 2015-04-29 上海和鸣变压器有限公司 用于光伏干式变压器的超导线圈组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202650758U (zh) * 2012-05-09 2013-01-02 湖北省电力公司电力科学研究院 一种储能用高温超导混合磁体
CN103035353A (zh) * 2012-12-17 2013-04-10 中国科学院电工研究所 一种应用Bi系和Y系高温超导带材绕制的组合绕组
CN105304262A (zh) * 2015-11-27 2016-02-03 云南电网有限责任公司电力科学研究院 一种用于交流磁场的高温超导线圈装置
CN105761872A (zh) * 2016-05-12 2016-07-13 广东电网有限责任公司电力科学研究院 一种用于饱和铁心型超导限流器的高温超导绕组

Also Published As

Publication number Publication date
CN105761872A (zh) 2016-07-13
CN105761872B (zh) 2017-12-01
DE112017002397T5 (de) 2019-01-24

Similar Documents

Publication Publication Date Title
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
CN102789883B (zh) 一种应用于高压直流输电的超导平波限流电抗器
WO2017193984A1 (zh) 一种用于饱和铁心型超导限流器的高温超导绕组
JP2011510603A (ja) 故障電流限流器
CN104078220B (zh) 电感与电阻复合型超导电抗器
US20060158803A1 (en) Fault current limiters (fcl) with the cores staurated by superconducting coils
Dai et al. Development and demonstration of a 1 MJ high-Tc SMES
JP5187750B2 (ja) 磁気飽和型限流器
CN206497818U (zh) 新型磁控电抗器
WO2013078845A1 (zh) 单相变压器
Guo et al. Optimized design and electromagnetic analysis of a hybrid type DC SFCL in MMC system
US20150357814A1 (en) Fault Current Limiter
CN203760286U (zh) 单相电抗器低漏磁结构
Niu et al. Structure and performance characteristics of saturated iron-core superconducting fault current limiter
KR101308138B1 (ko) 초전도 직류 리액터
Wang et al. Saturated iron core superconducting fault current limiter
CN204303528U (zh) 用于光伏干式变压器的超导线圈组件
JP5921875B2 (ja) 電力用誘導機器の超電導コイルおよび電力用誘導機器
JP5921874B2 (ja) 電力用誘導機器の超電導コイル
US20170047732A1 (en) Fault Current Limiter
CN204303537U (zh) 光伏超导干式变压器
CN202373419U (zh) 一种高绝缘性安全水冷电抗器
CN104485217B (zh) 光伏超导干式变压器
JP2013120777A (ja) 超電導コイルおよび超電導変圧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795602

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17795602

Country of ref document: EP

Kind code of ref document: A1