WO2017193883A1 - 基站、用户设备和相关方法 - Google Patents

基站、用户设备和相关方法 Download PDF

Info

Publication number
WO2017193883A1
WO2017193883A1 PCT/CN2017/083425 CN2017083425W WO2017193883A1 WO 2017193883 A1 WO2017193883 A1 WO 2017193883A1 CN 2017083425 W CN2017083425 W CN 2017083425W WO 2017193883 A1 WO2017193883 A1 WO 2017193883A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap configuration
anchor
transmission
configuration
transmission gap
Prior art date
Application number
PCT/CN2017/083425
Other languages
English (en)
French (fr)
Inventor
刘仁茂
山田升平
肖芳英
Original Assignee
夏普株式会社
刘仁茂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 刘仁茂 filed Critical 夏普株式会社
Priority to US16/099,674 priority Critical patent/US20190159179A1/en
Priority to EP17795501.0A priority patent/EP3457779A4/en
Publication of WO2017193883A1 publication Critical patent/WO2017193883A1/zh
Priority to IL262841A priority patent/IL262841A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and more particularly, to a method of base station, user equipment, and associated physical channel transmit gap configuration.
  • MTC Machine Type Communication
  • LTE Long Term Evolution Project
  • MTC Machine Type Communication
  • MTC is a data communication service that does not require human involvement.
  • Large-scale deployment of MTC user equipment can be used in security, tracking, billing, measurement, and consumer electronics.
  • Applications include video surveillance, supply chain tracking, smart meters, and remote monitoring.
  • MTC requires lower power consumption, supports lower data transmission rates and lower mobility.
  • the current LTE system is mainly aimed at human-to-human communication services.
  • the key to achieving the scale competitive advantage and application prospect of MTC services lies in the fact that LTE networks support low-cost MTC devices.
  • MTC equipment needs to be installed in the basement of the residential building or protected by insulated foil, metal window or thick wall of traditional buildings, compared to conventional equipment terminals (such as mobile phones, tablets, etc.) in LTE networks.
  • the air interface will obviously suffer from more severe penetration losses.
  • 3GPP decided to study the design and performance evaluation of MTC devices with additional 20dB coverage enhancement. It is worth noting that MTC devices located in poor network coverage areas have the following characteristics: very low data transmission rate, very loose latency requirements and limited Mobility.
  • the LTE network can further optimize some signaling and/or channels to better support the MTC service.
  • Non-Patent Document RP-140990 New Work Item.
  • the LTE Rel-13 system needs to support the uplink and downlink 1.4MHz RF bandwidth of the MTC user equipment to work in any system bandwidth (for example, 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz, etc.).
  • the standardization of this work item will be completed by the end of 2015.
  • NB-IoT user equipment User Equipment, UE
  • UE User Equipment
  • the NB-IoT user equipment will support the uplink and downlink 180KHz RF bandwidth, and support three modes of operation: stand-alone mode, protection With operation mode (guard-band) and in-band operation mode (in-band).
  • the independent mode of operation is to implement NB-IOT on the existing GSM band, that is, the frequency band working with the existing GERAN system and the potentially deployed scatter band of the IoT.
  • the guard band mode of operation is to implement NB-IOT on the guard band of an LTE carrier, that is, to use the band used as the guard band in the LTE band.
  • the in-band mode of operation is to implement NB-IOT on the existing LTE band, that is, to utilize the frequency band actually transmitted on the LTE band.
  • Different bearer modes may use different physical parameters and processing mechanisms.
  • the 3GPP RAN1 working group divides the physical resource block (PRB) or anchor carrier of the NB IoT into an anchor PRB (anchor PRB) or an anchor carrier and a non-anchor PRB or a non-anchor carrier (non -anchor carrier).
  • anchor PRB refers to the anchor PRB and the anchor carrier
  • non-anchor PRB refers to the non-anchor PRB and the non-anchor carrier.
  • NB-PBCH NB-IoT related physical broadcast channel
  • NB-PSS primary synchronization signal
  • NB-SSS secondary synchronization signal
  • SIB system information block
  • the unicast transmission data such as the physical downlink control channel (PDCCH), the physical downlink shared channel (PDSCH), and the physical uplink shared channel (PUSCH) related to the NB-Io T can be received or transmitted only from the non-anchor PRB.
  • the anchor PRB may also be used by the user equipment to receive or send the NB-IoT-related PDCCH, Data for unicast transmission such as PDSCH and PUSCH.
  • the base station may configure a non-anchor PRB for the user equipment by using a radio resource control (RRC) connection setup message, an RRC connection reestablishment message, an RRC reconfiguration message, an RRC connection resume message, or the like.
  • RRC radio resource control
  • the RAN1 Working Group agreed to configure a transmit gap configuration for the anchor PRB and an additional transmit gap configuration for the other non-anchor PRBs.
  • the RAN2 Working Group agreed to indicate whether the non-anchor PRB contains the NB-IoT-related physical broadcast channel (NB-PBCH) and the primary synchronization signal (NB) with 1-bit information.
  • NB-PBCH NB-IoT-related physical broadcast channel
  • NB-SSS primary synchronization signal
  • SIB System Information Block
  • the non-anchor PRB may contain a physical broadcast channel (NB-PBCH), a primary synchronization signal (NB-PSS)/secondary synchronization signal (NB-SSS), and/or a system information block (SIB) associated with the NB-IoT.
  • NB-PBCH physical broadcast channel
  • NB-PSS primary synchronization signal
  • NB-SSS secondary synchronization signal
  • SIB system information block
  • a base station comprising: a transmitting unit that transmits a first transmission gap configuration for an anchor carrier, and transmits a second transmission gap configuration for a non-anchor carrier;
  • the two transmit gap configuration uses any of the following three terms: the first transmit gap configuration, a transmit gap configuration for a non-anchor carrier, or no transmit gap.
  • the first transmit gap configuration is configured by a system information block SIB; the second transmit gap configuration is configured by user equipment specific radio resource control RRC signaling.
  • a method in a base station comprising: transmitting a first transmission gap configuration for an anchor carrier; transmitting a second transmission gap configuration for a non-anchor carrier; wherein the second The transmit gap configuration uses any of the following three terms: the first transmit gap configuration, a transmit gap configuration for a non-anchor carrier, or no transmit gap.
  • the first transmit gap configuration is configured by a system information block SIB; the second transmit gap configuration is configured by user equipment specific radio resource control RRC signaling.
  • a user equipment comprising: a receiving unit, receiving a first transmission gap configuration for an anchor carrier, and receiving a second transmission gap configuration for a non-anchor carrier;
  • the second transmit gap configuration uses any of the following three terms: the first transmit gap configuration, a transmit gap configuration for a non-anchor carrier, or no transmit gap.
  • the first transmit gap configuration is configured by a system information block SIB; the second transmit gap configuration is configured by user equipment specific radio resource control RRC signaling.
  • a method in a user equipment comprising: receiving a first transmission gap configuration for an anchor carrier; receiving a second transmission gap configuration for a non-anchor carrier;
  • the two transmit gap configuration uses any of the following three terms: the first transmit gap configuration, a transmit gap configuration for a non-anchor carrier, or no transmit gap.
  • the first transmit gap configuration is configured by a system information block SIB; the second transmit gap configuration is configured by user equipment specific radio resource control RRC signaling.
  • FIG. 1 shows a block diagram of a base station in accordance with an embodiment of the present disclosure.
  • FIG. 2 shows a flow diagram of a method in a base station in accordance with an embodiment of the disclosure.
  • FIG. 3 shows a block diagram of a user equipment in accordance with an embodiment of the present disclosure.
  • FIG. 4 shows a flow diagram of a method in a user equipment in accordance with an embodiment of the disclosure.
  • the following uses the LTE mobile communication system and its subsequent evolved version as an example application environment, Taking a base station and a user equipment supporting NB-IOT as an example, various embodiments according to the present disclosure are specifically described. However, it should be noted that the present disclosure is not limited to the following embodiments, but is applicable to more other wireless communication systems, such as future 5G cellular communication systems. Moreover, it can be applied to other base stations and user equipment, such as base stations and user equipments supporting eMTC, MMTC, and the like.
  • FIG. 1 shows a block diagram of a base station 100 in accordance with an embodiment of the present disclosure.
  • the base station 100 includes a transmitting unit 120.
  • Base station 100 can also include an optional configuration unit 110.
  • base station 100 may also include other functional units necessary to perform its functions, such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical downlink channel transmission processing units, to name a few.
  • processors such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical downlink channel transmission processing units, to name a few.
  • radio frequency signal processing units such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical downlink channel transmission processing units
  • the transmitting unit 120 transmits a first transmission gap configuration for the anchor carrier and transmits a second transmission gap configuration for the non-anchor carrier.
  • the second transmission gap configuration uses any one of the following three terms: the first transmission gap configuration, a transmission gap configuration for a non-anchor carrier, or no transmission gap.
  • the first transmit gap configuration is configured by a system information block SIB; the second transmit gap configuration is configured by user equipment specific radio resource control RRC signaling.
  • configuration unit 110 configures a first gap configuration for the anchor carrier and selectively configures a second gap configuration for the non-anchor carrier.
  • the sending unit 120 sends a non-anchor carrier and an indicator, the indicator indicating whether the non-anchor carrier contains a physical broadcast channel NB-PBCH related to the narrowband Internet of Things NB-IoT, a primary synchronization signal NB-PSS, and a secondary synchronization Signal NB-SSS and/or system information block SIB.
  • NB-PBCH physical broadcast channel
  • NB-PSS primary synchronization signal
  • NB-SSS secondary synchronization Signal
  • SIB system information block SIB
  • the transmitting unit 120 transmits the non-anchor carrier using the first gap configuration.
  • the transmitting unit 120 adopts The second gap is configured to transmit the non-anchor carrier. If the configuration unit 110 does not configure the second gap configuration, the sending unit 120 uses the first gap configuration to send the non-anchor carrier. wave.
  • the configuration unit 110 configures a transmission gap of the NB-IoT physical channel.
  • the NB-IoT physical channel of the present invention includes an NB-IoT physical downlink channel (for example, NB-IoT physical downlink control channel: NB-PDCCH, NB-IoT physical downlink shared channel: NB-PDSCH) and/or NB-IoT Physical uplink channel (eg, NB-IoT physical uplink shared channel: NB-PUSCH, NB-IoT physical uplink control channel: NB-PUCCH).
  • NB-IoT physical downlink channel for example, NB-IoT physical downlink control channel: NB-PDCCH, NB-IoT physical downlink shared channel: NB-PDSCH
  • NB-IoT Physical uplink channel eg, NB-IoT physical uplink shared channel: NB-PUSCH, NB-IoT physical uplink control channel: NB-PUCCH.
  • the PRB of NB-IoT can be divided into anchor PRB and non-anchor PRB.
  • the anchor PRB contains NB-PBCH, NB-PSS/NB-SSS and/or SIB associated with NB-IoT.
  • the NB-IoT UE can access the NB-IoT system through the anchor PRB. Once the UE accesses the system and enters the RRC link state, the base station can configure the UE to the PRBs of other NB-IoTs through high layer signaling.
  • the NB-IoT PRB accessing the NB-IoT system is an anchor PRB, and the other NB-IoT PRBs are non-anchor PRBs, and the UE performs only unicast transmission and reception on the non-anchor PRB.
  • the repeated transmission technology is mainly used.
  • TDM Time Division Multiplexing
  • the UE with good channel state will get the scheduling opportunity, and the UE that needs the large coverage enhancement will send the sub-spatial.
  • the frame is regarded as an invalid subframe, that is, when the base station transmits a channel to a UE that requires large coverage enhancement, and when a large coverage enhanced UE reception channel is required, the subframe within the transmission gap is skipped.
  • the configuration unit 110 may separately configure a transmission gap for the anchor PRB and other non-anchor PRBs, that is, there may be two transmission gap configurations.
  • One transmit gap configuration is used for the anchor PRB and the other transmit gap configuration is used for the other non-anchor PRBs.
  • the transmit gap configuration for non-anchor PRBs is optional.
  • the NB-IoT base station can configure the UE to the PRBs containing NB-PBCH, NB-PSS/NB-SSS and/or SIB related to NB-IoT, these PRBs.
  • the UE is a non-anchor PRB, but for some in the NB-IoT system
  • it may be an anchor PRB, that is, some UEs are accessed through the PRB to access the NB-IoT system.
  • the base station 100 can indicate to the UE whether the configured non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS and/or SIB associated with the NB-IoT with 1-bit information (ie, an indicator).
  • the 1-bit information may be indicated by a field "anchorCarrier" in UE-specific RRC signaling.
  • anchorCarrier When the anchorCarrier is set to "true”, it means that the configured non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS and/or SIB related to NB-IoT; when anchorCarrier is set to "false” , indicating that the configured non-anchor PRB does not contain NB-PBCH, NB-PSS/NB-SSS, and/or SIB related to NB-IoT.
  • the transmission gap configuration of the anchor PRB is used for The transmission of the non-anchor PRB.
  • the sending unit 120 uses the transmission gap configuration of the non-anchor PRB for the transmission of the non-anchor PRB; if the configuration unit 110 does not configure the transmission gap configuration of the non-anchor PRB, the sending unit 120 adopts the transmission gap configuration of the anchor PRB. Used for the transmission of non-anchor PRBs.
  • the sending unit 120 uses the transmission gap configuration of the non-anchor PRB for the transmission of the non-anchor PRB; if the configuration unit 110 does not configure the transmission gap configuration of the non-anchor PRB, the non-anchor PRB is not sent. gap.
  • the configured non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS and/or SIB related to NB-IoT, ie when the anchorCarrier is set to "true"
  • the sending unit 120 uses the transmission gap configuration of the non-anchor PRB for the transmission of the non-anchor PRB; if the configuration unit 110 does not configure the transmission gap configuration of the non-anchor PRB, the transmitting unit 120 adopts the anchor PRB.
  • the transmit gap configuration is used for the transmission of non-anchor PRBs.
  • the configuration unit 110 When the configured non-anchor PRB does not contain the NB-PBCH, NB-PSS/NB-SSS, and/or SIB associated with the NB-IoT, that is, when the anchorCarrier is set to "false", if the configuration unit 110 is configured with a non-anchor PRB
  • the transmission gap configuration is performed by the sending unit 120 using the transmission gap of the non-anchor PRB for the transmission of the non-anchor PRB; if the configuration unit 110 is not configured with the transmission gap configuration of the non-anchor PRB, the non-anchor PRB is not There is a transmission gap.
  • a domain may be specifically defined in the UE-specific RRC signaling, by which the transmission gap configuration employed by the configured non-anchor PRB is directly indicated.
  • a 1-bit field is defined. When the field is "1" (or “true"), the transmitting unit 120 uses the transmission gap configuration of the anchor PRB for the transmission of the non-anchor PRB; when the field is "0" ( Or “false"), the transmitting unit 120 uses the transmission gap configuration of the non-anchor PRB for the transmission of the non-anchor PRB.
  • it may be an anchor PRB, a non-anchor PRB containing NB-PBCH associated with NB-IoT, NB-PSS/NB-SSS and/or SIB, NB-PBCH not associated with NB-IoT, NB-
  • the non-anchor PRBs of the PSS/NB-SSS and/or the SIB configure the first, second, and third gap configurations, respectively.
  • the transmitting unit 120 employs the first gap configuration for transmission of the anchor PRB and the second gap parameter for transmission of the non-anchor PRB. If the domain anchorCarrier is set to "false", the transmitting unit 120 uses the first gap parameter for the transmission of the anchor PRB and the third gap parameter for the transmission of the non-anchor PRB.
  • the configuration unit 110 does not have a gap configuration configured, there is no transmission gap on both the anchor PRB and the non-anchor PRB (if the non-anchor PRB is present).
  • the transmit gap configuration information for the anchor PRB and the non-anchor PRB is configured by the SIB.
  • the transmit gap configuration information of the anchor PRB is configured by the SIB, and the transmit gap configuration information of the non-anchor PRB is configured by UE-specific RRC signaling.
  • the transmit gap configuration information for the anchor PRB and the non-anchor PRB is configured by UE-specific RRC signaling.
  • the transmit gap configuration information of the anchor PRB and the non-anchor PRB is configured by MAC (Medium Access Control) signaling.
  • MAC Medium Access Control
  • the radio resource control signaling may refer to whether the non-anchor carrier contains NB-PBCH, NB-PSS, NB-SSS, and/or SIB associated with the NB-IoT.
  • configuration unit 110 can also configure the gap configuration in one of the following ways:
  • the configuration unit 110 can configure one gap configuration A, and the gap configuration A includes two gap configurations (or parameters): the first gap configuration (or parameter) is used for the anchor PRB, and the second gap configuration (or parameter) is used. Non-anchor PRB. Wherein, the gap configuration A is optional.
  • gap configuration A is not configured, there is no transmission gap on both the anchor PRB and the non-anchor PRB (if the non-anchor PRB is present).
  • gap configuration A is configured, and if the domain anchorCarrier is set to "true", then the transmitting unit 120 employs the first gap configuration (or parameter) for the transmission of the non-anchor PRB.
  • gap configuration A is configured, and if the domain anchorCarrier is set to "false", at this time, if a second gap configuration (or parameter) appears in the gap configuration A, the transmitting unit 120 adopts the second gap configuration (or parameter) ) for the transmission of the non-anchor PRB; if the second gap configuration (or parameter) does not appear in the gap configuration A, there is no transmission gap on the non-anchor PRB.
  • the domain anchorCarrier indicates whether the configured non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS, and/or SIB related to the narrowband Internet of Things.
  • the gap configuration and/or gap parameters may be configured by SIB and/or RRC and/or MAC (Medium Access Control) signaling.
  • the configuration unit 110 can configure one gap configuration A, and the gap configuration A includes two gap configurations (or parameters): the first gap configuration (or parameter) is used for the anchor PRB, and the second gap configuration (or parameter) is used. Non-anchor PRB. Wherein, the gap configuration A is optional.
  • gap configuration A is not configured, there is no transmission gap on both the anchor PRB and the non-anchor PRB (if the non-anchor PRB is present).
  • gap configuration A is configured, and if the domain anchorCarrier is set to "true", at this time, if a second gap configuration (or parameter) appears in the gap configuration, the transmitting unit 120 adopts the second gap configuration (or parameter). For the transmission of the non-anchor PRB; if the second gap configuration (or parameter) does not appear in the gap configuration A, the transmitting unit 120 uses the first gap configuration (or parameter) for the transmission of the non-anchor PRB.
  • gap configuration A is configured, and if the domain anchorCarrier is set to "false", at this time, if a second gap configuration (or parameter) occurs in the gap configuration, the transmitting unit 120 adopts the second gap configuration (or parameter).
  • the transmitting unit 120 adopts the second gap configuration (or parameter). For non-anchor PRB transmission; if there is no second gap configuration (or parameter) in the gap configuration, there is no transmission gap on the non-anchor PRB.
  • the domain anchorCarrier indicates whether the configured non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS, and/or SIB related to the narrowband Internet of Things.
  • the gap configuration and/or gap parameters may be by SIB and/or RRC and/or MAC (media Body access control: Medium Access Control) signaling.
  • the configuration unit 110 can configure one gap configuration A, and the gap configuration A includes two gap configurations (or parameters): the first gap configuration (or parameter) is used for the anchor PRB, and the second gap configuration (or parameter) is used. Non-anchor PRB. Wherein, the gap configuration A is optional.
  • gap configuration A is not configured, there is no transmission gap on both the anchor PRB and the non-anchor PRB (if the non-anchor PRB is present).
  • gap configuration A is configured, and if the domain anchorCarrier is set to "true", then the transmitting unit 120 employs the first gap configuration (or parameter) for the transmission of the non-anchor PRB.
  • gap configuration A is configured, and if the domain anchorCarrier is set to "false", at this time, if a second gap configuration (or parameter) appears in the gap configuration A, the transmitting unit 120 adopts the second gap configuration (or parameter) For the transmission of the non-anchor PRB; if the second gap configuration (or parameter) does not appear in the gap configuration A, the transmitting unit 120 uses the first gap configuration (or parameter) for the transmission of the non-anchor PRB.
  • the domain anchorCarrier indicates whether the configured non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS, and/or SIB related to the narrowband Internet of Things.
  • the gap configuration and/or gap parameters may be configured by SIB and/or RRC and/or MAC (Medium Access Control) signaling.
  • the configuration unit 110 can configure one gap configuration A, and the gap configuration A includes two gap configurations (or parameters): the first gap configuration (or parameter) is used for the anchor PRB, and the second gap configuration (or parameter) is used. Non-anchor PRB. Wherein, the gap configuration A is optional.
  • gap configuration A is not configured, there is no transmission gap on both the anchor PRB and the non-anchor PRB (if the non-anchor PRB is present).
  • a domain is specifically configured in the UE-specific RRC signaling, and the domain directly indicates the transmission gap configuration (or parameter) adopted by the configured non-anchor PRB.
  • a 1-bit field is defined. When the field is "1" (or “true"), the transmitting unit 120 uses the first gap configuration (or parameter) for the transmission of the non-anchor PRB; when the field is When "0" (or “false"), the transmitting unit 120 uses the first gap configuration (or parameter) for the transmission of the non-anchor PRB.
  • the gap configuration and/or gap parameters may be by SIB and/or RRC and/or MAC (media Body access control: Medium Access Control) signaling.
  • the configuration unit 110 can configure one gap configuration A, and the gap configuration A includes three gap configurations (or parameters): the first gap configuration (or parameter) is used for the anchor PRB, and the second gap configuration (or parameter) is used.
  • the non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS and/or SIB related to NB-IoT, and the third gap configuration (or parameter) is used for non-anchor PRB, and non-anchor
  • the anchor PRB does not contain NB-PBCH, NB-PSS/NB-SSS and/or SIB associated with NB-IoT.
  • the gap configuration A is optional.
  • gap configuration A is not configured, there is no transmission gap on both the anchor PRB and the non-anchor PRB (if the non-anchor PRB is present).
  • gap configuration A is configured, and if the domain anchorCarrier is set to "true", then the transmitting unit 120 uses the first gap configuration (or parameter) for the transmission of the anchor PRB, with the second gap configuration (or parameter) The transmission of the non-anchor PRB.
  • gap configuration A is configured, and if the domain anchorCarrier is set to "false", then the transmitting unit 120 employs the first gap configuration (or parameter) for the transmission of the anchor PRB, with the third gap configuration (or parameter) The transmission of the non-anchor PRB.
  • the domain anchorCarrier indicates whether the configured non-anchor PRB contains NB-PBCH, NB-PSS/NB-SSS, and/or SIB related to the narrowband Internet of Things.
  • the gap configuration and/or gap parameters may be configured by SIB and/or RRC and/or MAC (Medium Access Control) signaling.
  • method 200 includes the following steps.
  • step S210 a first transmission gap configuration for the anchor carrier is transmitted.
  • a second transmit gap configuration for the non-anchor carrier is transmitted.
  • the second transmission gap configuration uses any one of the following three terms: the first transmission gap configuration, a transmission gap configuration for a non-anchor carrier, or no transmission gap.
  • the method 200 further includes configuring a first gap configuration for the anchor carrier and selectively configuring a second gap configuration for the non-anchor carrier.
  • the method 200 further includes transmitting a non-anchor carrier and an indicator indicating whether the non-anchor carrier contains a physical broadcast channel associated with the narrowband Internet of Things NB-IoT NB-PBCH, primary synchronization signal NB-PSS, secondary synchronization signal NB-SSS and/or system information block SIB.
  • the first gap configuration is used to transmit the non-anchor carrier.
  • the indicator indicates that the non-anchor carrier does not contain the NB-PBCH, NB-PSS, NB-SSS, and/or SIB associated with the NB-IoT: if the second gap configuration is configured, the second gap configuration is used to send Non-anchor carrier, if the second gap configuration is not configured, the first gap configuration is used to transmit the non-anchor carrier.
  • the indicator includes a domain anchorCarrier.
  • the first gap configuration and the second gap configuration are carried by system information blocks.
  • the first gap configuration and the second gap configuration are carried by user equipment specific radio resource control signaling.
  • the first gap configuration is carried by the system information block and the second gap configuration is carried by the user equipment specific radio resource control signaling.
  • radio resource control signaling refers to whether the non-anchor carrier contains NB-PBCH, NB-PSS, NB-SSS, and/or SIB associated with NB-IoT.
  • FIG. 3 shows a block diagram of a user equipment UE 300 in accordance with an embodiment of the present disclosure.
  • the UE 300 includes a receiving unit 320.
  • the UE 300 may also include an optional extraction unit 310.
  • the UE 300 may also include other functional units necessary to implement its functions, such as various processors, memories, radio frequency signal processing units, baseband signal processing units, and other physical uplink channel transmission processing units, to name a few.
  • a detailed description of these well-known elements has been omitted for the sake of brevity.
  • the receiving unit 320 receives a first transmit gap configuration for the anchor carrier and receives a second transmit gap configuration for the non-anchor carrier.
  • the second transmission gap configuration uses any one of the following three terms: the first transmission gap configuration, a transmission gap configuration for a non-anchor carrier, or no transmission gap.
  • the extraction unit 310 extracts a first gap configuration for the anchor carrier and extracts a second gap configuration if a second gap configuration for the non-anchor carrier is available.
  • receiving unit 320 receives an indicator and a non-anchor carrier, the indicator indicating non Whether the anchor carrier contains a physical broadcast channel NB-PBCH, a primary synchronization signal NB-PSS, a secondary synchronization signal NB-SSS, and/or a system information block SIB associated with the narrowband Internet of Things NB-IoT.
  • the indicator indicates non Whether the anchor carrier contains a physical broadcast channel NB-PBCH, a primary synchronization signal NB-PSS, a secondary synchronization signal NB-SSS, and/or a system information block SIB associated with the narrowband Internet of Things NB-IoT.
  • the receiving unit 320 employs the first gap configuration to receive the non-anchor carrier.
  • the receiving unit 320 When the indicator indicates that the non-anchor carrier does not contain the NB-PBCH, NB-PSS, NB-SSS, and/or SIB associated with the NB-IoT: if the extracting unit 310 extracts the second gap configuration, the receiving unit 320 adopts The second gap is configured to receive the non-anchor carrier, and if the extracting unit 310 does not extract the second gap configuration, the receiving unit 320 employs the first gap configuration to receive the non-anchor carrier.
  • the indicator includes a domain anchorCarrier.
  • the first gap configuration and the second gap configuration are carried by system information blocks.
  • the first gap configuration and the second gap configuration are carried by user equipment specific radio resource control signaling.
  • the first gap configuration is carried by the system information block and the second gap configuration is carried by the user equipment specific radio resource control signaling.
  • radio resource control signaling refers to whether the non-anchor carrier contains NB-PBCH, NB-PSS, NB-SSS, and/or SIB associated with NB-IoT.
  • FIG. 4 shows a flow diagram of a method 400 performed by a user equipment UE in accordance with an embodiment of the disclosure. As shown, method 400 includes the following steps.
  • a first transmit gap configuration for the anchor carrier is received.
  • a second transmit gap configuration for the non-anchor carrier is received.
  • the second transmission gap configuration uses any one of the following three terms: the first transmission gap configuration, a transmission gap configuration for a non-anchor carrier, or no transmission gap.
  • the method 400 further includes extracting a first gap configuration for the anchor carrier and extracting the second gap configuration if a second gap configuration for the non-anchor carrier is available.
  • the method 400 further includes: receiving an indicator and a non-anchor carrier, the indicator indicating whether the non-anchor carrier includes a physical broadcast channel NB-PBCH associated with the narrowband Internet of Things NB-IoT, a primary synchronization signal NB-PSS, Secondary synchronization signal NB-SSS and/or system information block SIB.
  • the first gap configuration is used to receive the non-anchor carrier.
  • the indicator indicates that the non-anchor carrier does not contain the NB-PBCH, NB-PSS, NB-SSS, and/or SIB associated with the NB-IoT: if the second gap configuration is extracted, the second gap configuration is used to receive The non-anchor carrier, if the second gap configuration is not extracted, the first gap configuration is employed to receive the non-anchor carrier.
  • the indicator includes a domain anchorCarrier.
  • the first gap configuration and the second gap configuration are carried by system information blocks.
  • the first gap configuration and the second gap configuration are carried by user equipment specific radio resource control signaling.
  • the first gap configuration is carried by the system information block and the second gap configuration is carried by the user equipment specific radio resource control signaling.
  • radio resource control signaling refers to whether the non-anchor carrier contains NB-PBCH, NB-PSS, NB-SSS, and/or SIB associated with NB-IoT.
  • the methods and apparatus of the present disclosure have been described above in connection with the preferred embodiments. Those skilled in the art will appreciate that the methods shown above are merely exemplary. The methods of the present disclosure are not limited to the steps and sequences shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that may be developed or developed in the future for base stations, or UEs, and the like.
  • the various logos shown above are merely exemplary and not limiting, and the disclosure is not limited to the specific cells as examples of such identifications. Many variations and modifications can be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present disclosure may be implemented by software, hardware, or a combination of both software and hardware.
  • the base station and various components within the user equipment in the above embodiments may be implemented by various devices including, but not limited to, analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, and programmable processing. , Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), and more.
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station refers to a mobile having a large transmission power and a relatively large coverage area.
  • Communication data and control switching center including resource allocation scheduling, data receiving and sending functions.
  • User equipment refers to a user mobile terminal, for example, a terminal device including a mobile phone, a notebook, etc., which can perform wireless communication with a base station or a micro base station.
  • embodiments of the present disclosure disclosed herein can be implemented on a computer program product.
  • the computer program product is a product having a computer readable medium encoded with computer program logic that, when executed on a computing device, provides related operations to implement The above technical solution of the present disclosure.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present disclosure.
  • Such an arrangement of the present disclosure is typically provided as software, code, and/or other data structures, such as one or more, that are arranged or encoded on a computer readable medium such as an optical medium (eg, CD-ROM), floppy disk, or hard disk.
  • Software or firmware or such a configuration may be installed on the computing device such that one or more processors in the computing device perform the technical solutions described in the embodiments of the present disclosure.
  • each functional module or individual feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by circuitry, typically one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs), or others.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the above general purpose processor or each circuit may be configured by a digital circuit or may be configured by a logic circuit.
  • the present disclosure may also use integrated circuits obtained using the advanced technology.
  • the program running on the device according to the invention can be controlled by a central processing unit (CPU)
  • CPU central processing unit
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a program for realizing the functions of the embodiments of the present invention can be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, the present invention can also be implemented using these new integrated circuit technologies.
  • the present invention is not limited to the above embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
  • Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices such as AV devices, kitchen devices, cleaning devices, air conditioners, office equipment, vending machines, and other home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本公开提供了一种基站,包括:发送单元,发送用于锚载波的第一发送间隙配置,并且发送用于非锚载波的第二发送间隙配置;其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。

Description

基站、用户设备和相关方法 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及基站、用户设备和相关的物理信道发射间隙配置的方法。
背景技术
随着移动通信的快速增长和技术的巨大进步,世界将走向一个完全互联互通的网络社会,即任何人或任何东西在任何时间和任何地方都可以获得信息和共享数据。预计到2020年,互联设备的数量将达到500亿部,其中仅有100亿部左右可能是手机和平板电脑,其它的则不是与人对话的机器,而是彼此对话的机器。因此,如何设计系统以更好地支持万物互联是一项需要深入研究的课题。
在第三代合作伙伴计划(3GPP)的长期演进项目(LTE)的标准中,将机器对机器的通信称为机器类型通信(Machine Type Communication,MTC)。MTC是一种不需要人为参与的数据通信服务。大规模的MTC用户设备部署,可以用于安全、跟踪、付账、测量以及消费电子等领域,具体涉及的应用包括视频监控、供货链跟踪、智能电表,远程监控等。MTC要求较低的功率消耗,支持较低的数据传输速率和较低的移动性。目前的LTE系统主要是针对人与人的通信服务。而实现MTC服务的规模竞争优势及应用前景的关键在于LTE网络支持低成本的MTC设备。
另外,一些MTC设备需要安装在居民楼地下室或者由绝缘箔片、金属护窗或者传统建筑物的厚墙保护的位置,相比较LTE网络中常规设备终端(如手机,平板电脑等),这些设备的空中接口将明显遭受更严重的穿透损失。3GPP决定研究附加20dB覆盖增强的MTC设备的方案设计与性能评估,值得注意的是,位于糟糕网络覆盖区域的MTC设备具有以下特点:非常低的数据传输速率、非常宽松的延时要求以及有限的移动性。针对以上MTC特点,LTE网络可以进一步优化一些信令和/或信道用以更好地支持MTC业务。
为此,在2014年6月举行的3GPP RAN#64次全会上,提出了一个新的面向Rel-13的低复杂性和覆盖增强的MTC的工作项目(参见非专利文献:RP-140990New Work Item on Even Lower Complexity and Enhanced Coverage LTE UE for MTC,Ericsson,NSN)。在该工作项目的描述中,LTE Rel-13系统需要支持上下行1.4MHz射频带宽的MTC用户设备工作在任意的系统带宽(例如1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz等等)下。该工作项目标准化将于2015年底结束。
另外,为了更好地实现万物互联,在2015年9月举行的3GPP RAN#69此次全会上,又提出了一个新的工作项目(参见非专利文献:RP-151621New Work Item:NarrowBand IoT(NB-IoT)),我们称之为窄带物联网(Narrowband Internet of Thing,NB-IoT)。在该项目的描述中,NB-IoT的用户设备(User Equipment,UE)将支持上下行180KHz的射频带宽,并且要支持3种操作模式(deployment mode):独立操作模式(stand-alone)、保护带操作模式(guard-band)和带内操作模式(in-band)。独立操作模式是在现有的GSM频段上实现NB-IOT,即利用现有的GERAN系统工作的频段及IoT潜在部署的散射频段。保护带操作模式是在一个LTE载波的保护频段上实现NB-IOT,即利用LTE频段上用作保护频段的频段。带内操作模式是在现有的LTE频段上实现NB-IOT,即利用LTE频段上实际传输的频段。不同的承载模式可能采用不同的物理参数和处理机制。
3GPP RAN1工作组将NB IoT的物理资源块(PRB)或锚载波(carrier)分成锚PRB(anchor PRB)或锚载波(anchor carrier)和非锚PRB(non-anchor PRB)或非锚载波(non-anchor carrier)。以下为叙述简便,由锚PRB代指锚PRB和锚carrier,由非锚PRB代指非锚PRB和非锚carrier。对于UE而言,可以从锚PRB接收NB-IoT相关的物理广播信道(NB-PBCH)、主同步信号(NB-PSS)/辅同步信号(NB-SSS)、系统信息块(SIB)等数据;而仅可以从非锚PRB接收或发送NB-Io T相关的物理下行控制信道(PDCCH)、物理下行共享信道(PDSCH)、物理上行共享信道(PUSCH)等单播传输的数据。当eNB没有为UE配置非锚PRB时,锚PRB也可以用于用户设备接收或发送NB-IoT相关的PDCCH、 PDSCH、PUSCH等单播传输的数据。基站可以通过无线资源控制(RRC)连接建立消息、RRC连接重建消息、RRC重配置消息,RRC连接恢复消息(RRC resume message)等为用户设备配置非锚PRB。
2016年4月份,在韩国釜山举行的3GPP RAN1#84bis次会议上,RAN1工作组同意为锚PRB配置一个发射间隙配置,而为其它非锚PRB配置一个附加的发射间隙配置。在克罗地亚杜布罗夫尼克举行的RAN2#93bis次会议上,RAN2工作组同意用1比特信息指示非锚PRB是否含与NB-IoT相关的物理广播信道(NB-PBCH)、主同步信号(NB-PSS)/辅同步信号(NB-SSS)和/或系统信息块(SIB)。也就是说,非锚PRB可能含有与NB-IoT相关的物理广播信道(NB-PBCH)、主同步信号(NB-PSS)/辅同步信号(NB-SSS)和/或系统信息块(SIB)。那么,当为UE配置的非锚PRB含有与NB-IoT相关的物理广播信道(NB-PBCH)、主同步信号(NB-PSS)/辅同步信号(NB-SSS)和/或系统信息块(SIB)时,UE采用哪个发射间隙配置需要有明确的界定。
发明内容
根据本发明的第一方面,提供了一种基站,包括:发送单元,发送用于锚载波的第一发送间隙配置,并且发送用于非锚载波的第二发送间隙配置;其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
在一个实施例中,所述第一发送间隙配置是由系统信息块SIB配置;所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
根据本发明的第二方面,提供了一种基站中的方法,包括:发送用于锚载波的第一发送间隙配置;发送用于非锚载波的第二发送间隙配置;其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
在一个实施例中,所述第一发送间隙配置是由系统信息块SIB配置;所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
根据本发明的第三方面,提供了一种用户设备,包括:接收单元,接收用于锚载波的第一发送间隙配置,并且接收用于非锚载波的第二发送间隙配置;其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
在一个实施例中,所述第一发送间隙配置是由系统信息块SIB配置;所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
根据本发明的第四方面,提供了一种用户设备中的方法,包括:接收用于锚载波的第一发送间隙配置;接收用于非锚载波的第二发送间隙配置;其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
在一个实施例中,所述第一发送间隙配置是由系统信息块SIB配置;所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了根据本公开实施例的基站的框图。
图2示出了根据本公开实施例的基站中的方法的流程图。
图3示出了根据本公开实施例的用户设备的框图。
图4示出了根据本公开实施例的用户设备中的方法的流程图。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下文以LTE移动通信系统及其后续的演进版本作为示例应用环境, 以支持NB-IOT的基站和用户设备为例,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如今后的5G蜂窝通信系统。而且可以适用于其他基站和用户设备,例如支持eMTC、MMTC等的基站和用户设备。
图1示出了根据本公开实施例的基站100的框图。如图所示,基站100包括:发送单元120。基站100还可以包括可选的配置单元110。本领域技术人员应理解,基站100还可以包括实现其功能所必需的其他功能单元,如各种处理器、存储器、射频信号处理单元、基带信号处理单元和其它物理下行信道发射处理单元等等。然而为了简便,省略了这些公知元件的详细描述。
发送单元120发送用于锚载波的第一发送间隙配置,并且发送用于非锚载波的第二发送间隙配置。
所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
在一个示例中,所述第一发送间隙配置是由系统信息块SIB配置;所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
可选地,配置单元110配置用于锚载波的第一间隙配置,并且选择性地配置用于非锚载波的第二间隙配置。
可选地,发送单元120发送非锚载波和指示符,所述指示符指示非锚载波是否含有与窄带物联网NB-IoT相关的物理广播信道NB-PBCH、主同步信号NB-PSS、辅同步信号NB-SSS和/或系统信息块SIB。
当所述指示符指示非锚载波含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时,发送单元120采用第一间隙配置来发送非锚载波。
当所述指示符指示非锚载波不含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时:如果配置单元110配置了第二间隙配置,则发送单元120采用第二间隙配置来发送非锚载波,如果配置单元110未配置第二间隙配置,则发送单元120采用第一间隙配置来发送非锚载 波。
可选地,配置单元110配置NB-IoT物理信道的发送间隙(transmission gap)。本发明所述的NB-IoT物理信道包括NB-IoT物理下行信道(例如,NB-IoT物理下行控制信道:NB-PDCCH,NB-IoT物理下行共享信道:NB-PDSCH)和/或NB-IoT物理上行信道(例如,NB-IoT物理上行共享信道:NB-PUSCH,NB-IoT物理上行控制信道:NB-PUCCH)。
NB-IoT的PRB可以分为锚PRB和非锚PRB。锚PRB上含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。NB-IoT的UE可以通过锚PRB接入NB-IoT系统。一旦UE接入系统,进入RRC链接状态,基站可以通过高层信令将UE配置到其它NB-IoT的PRB上。对UE而言,其接入NB-IoT系统的NB-IoT PRB为锚PRB,而其它的NB-IoT PRB则为非锚PRB,UE在非锚PRB上只进行单播发送和接收。
当NB-IoT UE的信道状态恶劣时,需要采用覆盖增强技术来确保UE与基站之间的通信。目前,主要采用重复传输技术。当UE需要重复传输的次数非常大时,按照3GPP RAN1工作组已达成的协议,其它的NB-IoT UE与覆盖增强的UE只能采用TDM(时分复用,Time Division Multiplexing)方式复用。这样的话,当大覆盖增强的UE被调度时,其它的UE即使信道状态非常好,也需要等待较长的时间才能被调度到。因此,为了让信道好的UE有公平调度的机会,基站可以配置发送间隙,在发送间隙内,信道状态好的UE将获得调度的机会,而需要大覆盖增强的UE将把发送间隙内的子帧看做无效的子帧,也就是说基站向需要大覆盖增强的UE发送信道时,以及需要大覆盖增强UE接收信道时,都会跳过发送间隙内的子帧。
可选地,配置单元110可以给锚PRB和其它非锚PRB分别配置发送间隙,即可以有2个发送间隙配置(gap configuration)。一个发送间隙配置用于锚PRB,另一个发送间隙配置用于其它的非锚PRB。而且,用于非锚PRB的发送间隙配置是可选的。
此外,为了使系统能更好地进行负载均衡,NB-IoT基站可以将UE配置到含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB的PRB上,这些PRB对该UE而言是非锚PRB,而对NB-IoT系统中的某 些UE而言可以是锚PRB,即所述的某些UE是通过该PRB接入NB-IoT系统。基站100可以用1比特的信息(即指示符)向UE指示所配置的非锚PRB是否含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。该1比特信息可以由UE特定的RRC信令中的域(field)“anchorCarrier”来指示。当anchorCarrier被设置为“真”时,表示所配置的非锚PRB上含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB;当anchorCarrier被设置为“假”时,表示所配置的非锚PRB上不含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。
当所配置的非锚PRB含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB时,即anchorCarrier被设置为“真”时,将采用锚PRB的发送间隙配置用于该非锚PRB的发送。当所配置的非锚PRB不含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB时,即anchorCarrier被设置为“假”时,如果配置单元110配置了非锚PRB的发送间隙配置,则发送单元120采用非锚PRB的发送间隙配置用于非锚PRB的发送;如果配置单元110没有配置非锚PRB的发送间隙配置,则发送单元120采用锚PRB的发送间隙配置用于非锚PRB的发送。
备选地,当所配置的非锚PRB不含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB时,即anchorCarrier被设置为“假”时,如果配置单元110配置了非锚PRB的发送间隙配置,则发送单元120采用非锚PRB的发送间隙配置用于非锚PRB的发送;如果配置单元110没有配置非锚PRB的发送间隙配置,则非锚PRB上没有发送间隙。
备选地,当所配置的非锚PRB含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB时,即anchorCarrier被设置为“真”时,如果配置单元110配置了非锚PRB的发送间隙配置,则发送单元120采用非锚PRB的发送间隙配置用于非锚PRB的发送;如果配置单元110没有配置非锚PRB的发送间隙配置,则发送单元120采用锚PRB的发送间隙配置用于非锚PRB的发送。当所配置的非锚PRB不含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB时,即anchorCarrier被设置为“假”时,如果配置单元110配置了非锚PRB的发送间隙配置,则发送单元120采用非锚PRB的发送间隙配置用于非锚PRB的发送;如果配置单元110没有配置非锚PRB的发送间隙配置,则非锚PRB上没 有发送间隙。
备选地,可以在UE特定的RRC信令中专门定义一个域,由该域直接指示所配置的非锚PRB所采用的发送间隙配置。例如,定义一个1比特的域,当该域为“1”(或“真”)时,发送单元120采用锚PRB的发送间隙配置用于非锚PRB的发送;当该域为“0”(或“假”)时,发送单元120采用非锚PRB的发送间隙配置用于非锚PRB的发送。
备选地,可以为锚PRB、含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB的非锚PRB、不含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB的非锚PRB分别配置第一、第二和第三间隙配置。在这种情况下,当anchorCarrier被设置为“真”时,发送单元120采用第一间隙配置用于锚PRB的发送,采用第二间隙参数用于非锚PRB的发送。如果域anchorCarrier被设置为“假”,则发送单元120采用第一间隙参数用于锚PRB的发送,采用第三间隙参数用于非锚PRB的发送。
备选地,如果配置单元110没有配置间隙配置,则在锚PRB和非锚PRB(如果非锚PRB存在的话)上都没有发送间隙。
在一个示例中,锚PRB和非锚PRB的发送间隙配置信息由SIB配置。
在一个示例中,锚PRB的发送间隙配置信息由SIB配置,而非锚PRB的发送间隙配置信息由UE特定的RRC信令配置。
在一个示例中,锚PRB和非锚PRB的发送间隙配置信息由UE特定的RRC信令配置。
在一个示例中,锚PRB和非锚PRB的发送间隙配置信息由MAC(媒体接入控制:Medium Access Control)信令来配置
在一个示例中,可以由无线资源控制信令指非锚载波是否含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB。
此外,配置单元110还可以采用以下方式之一来配置间隙配置:
方式1:
配置单元110可以配置1个间隙配置A,所述间隙配置A包括2个间隙配置(或参数):第一个间隙配置(或参数)用于锚PRB,第二个间隙配置(或参数)用于非锚PRB。其中,所述的间隙配置A是可选的。
如果没有配置间隙配置A,则在锚PRB和非锚PRB(如果非锚PRB存在的话)上都没有发送间隙。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“真”,则发送单元120采用第一个间隙配置(或参数)用于非锚PRB的发送。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“假”,此时,如果间隙配置A中出现第二个间隙配置(或参数),则发送单元120采用第二个间隙配置(或参数)用于非锚PRB的发送;如果间隙配置A中没有出现第二个间隙配置(或参数),则非锚PRB上没有发送间隙。
其中,域anchorCarrier指示所配置的非锚PRB上是否含有与窄带物联网相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。
所述间隙配置和/或间隙参数可以由SIB和/或RRC和/或MAC(媒体接入控制:Medium Access Control)信令来配置。
方式2:
配置单元110可以配置1个间隙配置A,所述间隙配置A包括2个间隙配置(或参数):第一个间隙配置(或参数)用于锚PRB,第二个间隙配置(或参数)用于非锚PRB。其中,所述间隙配置A是可选的。
如果没有配置间隙配置A,则在锚PRB和非锚PRB(如果非锚PRB存在的话)上都没有发送间隙。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“真”,此时,如果间隙配置中出现第二个间隙配置(或参数),则发送单元120采用第二个间隙配置(或参数)用于非锚PRB的发送;如果间隙配置A中没有出现第二个间隙配置(或参数),则发送单元120采用第一个间隙配置(或参数)用于非锚PRB的发送。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“假”,此时,如果间隙配置中出现第二个间隙配置(或参数),则发送单元120采用第二个间隙配置(或参数)用于非锚PRB的发送;如果间隙配置中没有出现第二个间隙配置(或参数),则非锚PRB上没有发送间隙。
其中,域anchorCarrier指示所配置的非锚PRB上是否含有与窄带物联网相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。
所述间隙配置和/或间隙参数可以由SIB和/或RRC和/或MAC(媒 体接入控制:Medium Access Control)信令来配置。
方式3:
配置单元110可以配置1个间隙配置A,所述间隙配置A包括2个间隙配置(或参数):第一个间隙配置(或参数)用于锚PRB,第二个间隙配置(或参数)用于非锚PRB。其中,所述间隙配置A是可选的。
如果没有配置间隙配置A,则在锚PRB和非锚PRB(如果非锚PRB存在的话)上都没有发送间隙。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“真”,则发送单元120采用第一个间隙配置(或参数)用于非锚PRB的发送。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“假”,此时,如果间隙配置A中出现第二个间隙配置(或参数),则发送单元120采用第二个间隙配置(或参数)用于非锚PRB的发送;如果间隙配置A中没有出现第二个间隙配置(或参数),则发送单元120采用第一个间隙配置(或参数)用于非锚PRB的发送。
其中,域anchorCarrier指示所配置的非锚PRB上是否含有与窄带物联网相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。
所述间隙配置和/或间隙参数可以由SIB和/或RRC和/或MAC(媒体接入控制:Medium Access Control)信令来配置。
方式4:
配置单元110可以配置1个间隙配置A,所述间隙配置A包括2个间隙配置(或参数):第一个间隙配置(或参数)用于锚PRB,第二个间隙配置(或参数)用于非锚PRB。其中,所述间隙配置A是可选的。
如果没有配置间隙配置A,则在锚PRB和非锚PRB(如果非锚PRB存在的话)上都没有发送间隙。
如果配置了间隙配置A,在UE特定的RRC信令中专门配置一个域,由该域直接指示所配置的非锚PRB所采用的发送间隙配置(或参数)。例如,定义一个1比特的域,当该域为“1”(或“真”)时,则发送单元120采用第一个间隙配置(或参数)用于非锚PRB的发送;当该域为“0”(或“假”)时,则发送单元120采用第一个间隙配置(或参数)用于非锚PRB的发送。
所述间隙配置和/或间隙参数可以由SIB和/或RRC和/或MAC(媒 体接入控制:Medium Access Control)信令来配置。
方式5:
配置单元110可以配置1个间隙配置A,所述间隙配置A包括3个间隙配置(或参数):第一个间隙配置(或参数)用于锚PRB,第二个间隙配置(或参数)用于非锚PRB,且非锚PRB上含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB,第三个间隙配置(或参数)用于非锚PRB,且非锚PRB上不含有与NB-IoT相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。其中,所述间隙配置A是可选的。
如果没有配置间隙配置A,则在锚PRB和非锚PRB(如果非锚PRB存在的话)上都没有发送间隙。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“真”,则发送单元120采用第一个间隙配置(或参数)用于锚PRB的发送,采用第二个间隙配置(或参数)用于非锚PRB的发送。
如果配置了间隙配置A,并且如果域anchorCarrier被设置为“假”,则发送单元120采用第一个间隙配置(或参数)用于锚PRB的发送,采用第三个间隙配置(或参数)用于非锚PRB的发送。
其中,域anchorCarrier指示所配置的非锚PRB上是否含有与窄带物联网相关的NB-PBCH、NB-PSS/NB-SSS和/或SIB。
所述间隙配置和/或间隙参数可以由SIB和/或RRC和/或MAC(媒体接入控制:Medium Access Control)信令来配置。
图2示出了根据本公开实施例的基站执行的方法200的流程图。如图所示,方法200包括以下步骤。
在步骤S210,发送用于锚载波的第一发送间隙配置。
在步骤S220,发送用于非锚载波的第二发送间隙配置。
所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
可选地,方法200还包括:配置用于锚载波的第一间隙配置,并且选择性地配置用于非锚载波的第二间隙配置。
可选地,方法200还包括:发送非锚载波和指示符,所述指示符指示非锚载波是否含有与窄带物联网NB-IoT相关的物理广播信道 NB-PBCH、主同步信号NB-PSS、辅同步信号NB-SSS和/或系统信息块SIB。
可选地,当所述指示符指示非锚载波含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时,采用第一间隙配置来发送非锚载波。当所述指示符指示非锚载波不含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时:如果配置了第二间隙配置,则采用第二间隙配置来发送非锚载波,如果未配置第二间隙配置,则采用第一间隙配置来发送非锚载波。
在一个示例中,所述指示符包括域anchorCarrier。
在一个示例中,第一间隙配置和第二间隙配置由系统信息块所承载。
在一个示例中,第一间隙配置和第二间隙配置由用户设备特定的无线资源控制信令所承载。
在一个示例中,第一间隙配置由系统信息块所承载,而第二间隙配置由用户设备特定的无线资源控制信令所承载。
在一个示例中,由无线资源控制信令指非锚载波是否含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB。
与上述基站100相结合描述的实施例也适用于方法200。
图3示出了根据本公开实施例的用户设备UE 300的框图。如图所示,UE 300包括:接收单元320。UE 300还可以包括可选的提取单元310。本领域技术人员应理解,UE 300还可以包括实现其功能所必需的其他功能单元,如各种处理器、存储器、射频信号处理单元、基带信号处理单元和其它物理上行信道发射处理单元等等。然而为了简便,省略了这些公知元件的详细描述。
接收单元320接收用于锚载波的第一发送间隙配置,并且接收用于非锚载波的第二发送间隙配置。
所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
可选地,提取单元310提取用于锚载波的第一间隙配置,并且在用于非锚载波的第二间隙配置可用的情况下提取第二间隙配置。
可选地,接收单元320接收指示符和非锚载波,所述指示符指示非 锚载波是否含有与窄带物联网NB-IoT相关的物理广播信道NB-PBCH、主同步信号NB-PSS、辅同步信号NB-SSS和/或系统信息块SIB。
当所述指示符指示非锚载波含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时,接收单元320采用第一间隙配置来接收非锚载波。
当所述指示符指示非锚载波不含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时:如果提取单元310提取到第二间隙配置,则接收单元320采用第二间隙配置来接收非锚载波,如果提取单元310未提取到第二间隙配置,则接收单元320采用第一间隙配置来接收非锚载波。
在一个示例中,所述指示符包括域anchorCarrier。
在一个示例中,第一间隙配置和第二间隙配置由系统信息块所承载。
在一个示例中,第一间隙配置和第二间隙配置由用户设备特定的无线资源控制信令所承载。
在一个示例中,第一间隙配置由系统信息块所承载,而第二间隙配置由用户设备特定的无线资源控制信令所承载。
在一个示例中,由无线资源控制信令指非锚载波是否含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB。
与上述基站100相结合描述的实施例也适用于UE 300。
图4示出了根据本公开实施例的用户设备UE执行的方法400的流程图。如图所示,方法400包括以下步骤。
在步骤S410,接收用于锚载波的第一发送间隙配置。
在步骤S420,接收用于非锚载波的第二发送间隙配置。
所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
可选地,方法400还包括:提取用于锚载波的第一间隙配置,并且在用于非锚载波的第二间隙配置可用的情况下提取第二间隙配置。
可选地,方法400还包括:接收指示符和非锚载波,所述指示符指示非锚载波是否含有与窄带物联网NB-IoT相关的物理广播信道NB-PBCH、主同步信号NB-PSS、辅同步信号NB-SSS和/或系统信息块 SIB。
可选地,当所述指示符指示非锚载波含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时,采用第一间隙配置来接收非锚载波。当所述指示符指示非锚载波不含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB时:如果提取到第二间隙配置,则采用第二间隙配置来接收非锚载波,如果未提取到第二间隙配置,则采用第一间隙配置来接收非锚载波。
在一个示例中,所述指示符包括域anchorCarrier。
在一个示例中,第一间隙配置和第二间隙配置由系统信息块所承载。
在一个示例中,第一间隙配置和第二间隙配置由用户设备特定的无线资源控制信令所承载。
在一个示例中,第一间隙配置由系统信息块所承载,而第二间隙配置由用户设备特定的无线资源控制信令所承载。
在一个示例中,由无线资源控制信令指非锚载波是否含有与NB-IoT相关的NB-PBCH、NB-PSS、NB-SSS和/或SIB。
与上述基站100相结合描述的实施例也适用于方法400。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本公开的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”是指具有较大发射功率和较广覆盖面积的移动 通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”是指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本公开的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本公开的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本公开实施例所述的操作(方法)。本公开的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本公开实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本公开也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本公开的优选实施例示出了本公开,但是本领域的技术人员将会理解,在不脱离本公开的精神和范围的情况下,可以对本公开进行各种修改、替换和改变。因此,本公开不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元 (CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (8)

  1. 一种基站,包括:
    发送单元,发送用于锚载波的第一发送间隙配置,并且发送用于非锚载波的第二发送间隙配置;
    其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
  2. 根据权利要求1所述的基站,其中,
    所述第一发送间隙配置是由系统信息块SIB配置;
    所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
  3. 一种基站中的方法,包括:
    发送用于锚载波的第一发送间隙配置;
    发送用于非锚载波的第二发送间隙配置;
    其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
  4. 根据权利要求3所述的方法,其中,
    所述第一发送间隙配置是由系统信息块SIB配置;
    所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
  5. 一种用户设备,包括:
    接收单元,接收用于锚载波的第一发送间隙配置,并且接收用于非锚载波的第二发送间隙配置;
    其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
  6. 根据权利要求5所述的用户设备,其中,
    所述第一发送间隙配置是由系统信息块SIB配置;
    所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
  7. 一种用户设备中的方法,包括:
    接收用于锚载波的第一发送间隙配置;
    接收用于非锚载波的第二发送间隙配置;
    其中,所述第二发送间隙配置使用以下三项中的任一项:所述第一发送间隙配置、用于非锚载波的发送间隙配置、或者没有发送间隙。
  8. 根据权利要求7所述的方法,其中,
    所述第一发送间隙配置是由系统信息块SIB配置;
    所述第二发送间隙配置是由用户设备特定的无线资源控制RRC信令配置。
PCT/CN2017/083425 2016-05-11 2017-05-08 基站、用户设备和相关方法 WO2017193883A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/099,674 US20190159179A1 (en) 2016-05-11 2017-05-08 Base station, user equipment, and related method
EP17795501.0A EP3457779A4 (en) 2016-05-11 2017-05-08 BASE STATION, USER DEVICE AND RELATED PROCEDURE
IL262841A IL262841A (en) 2016-05-11 2018-11-06 Base station, user equipment, and associated method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610308482.6A CN107371240B (zh) 2016-05-11 2016-05-11 基站、用户设备和相关方法
CN201610308482.6 2016-05-11

Publications (1)

Publication Number Publication Date
WO2017193883A1 true WO2017193883A1 (zh) 2017-11-16

Family

ID=60266312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083425 WO2017193883A1 (zh) 2016-05-11 2017-05-08 基站、用户设备和相关方法

Country Status (6)

Country Link
US (1) US20190159179A1 (zh)
EP (1) EP3457779A4 (zh)
CN (1) CN107371240B (zh)
BR (1) BR112018072778A8 (zh)
IL (1) IL262841A (zh)
WO (1) WO2017193883A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584966B1 (en) * 2017-02-17 2024-02-07 LG Electronics Inc. Signal transmission/reception method between terminal and base station in wireless communication system supporting narrowband internet of things, and device supporting same
WO2018231918A1 (en) * 2017-06-13 2018-12-20 Intel IP Corporation Paging and essential system information block (sib) transmission in the unlicensed internet of things (u-iot) system
EP3637818B1 (en) * 2017-08-10 2022-05-04 Huawei Technologies Co., Ltd. Signal sending and receiving method and device
EP3735756A4 (en) * 2018-01-03 2021-07-07 Lenovo (Beijing) Limited NON-ANCHORING CARRIER FREQUENCY OFFSET INDICATION
KR102456934B1 (ko) 2018-02-28 2022-10-21 삼성전자주식회사 무선 통신 시스템에서의 데이터 송수신 방법 및 장치
CN112042253B (zh) * 2018-04-04 2022-10-11 华为技术有限公司 通信方法、装置及计算机可读存储介质
WO2019191919A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 时分双工物联网中传输系统信息块类型一的方法和装置
US11470649B2 (en) * 2019-02-22 2022-10-11 Qualcomm Incorporated Transmission gap configuration for random access messages
US20220159720A1 (en) * 2019-05-13 2022-05-19 Nokia Solutions And Networks Oy Mechanism for transmission for wideband system in unlicensed spectrum
WO2021051379A1 (en) 2019-09-20 2021-03-25 Lenovo (Beijing) Limited Non anchor carrier synchronization signal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
CN102271415A (zh) * 2010-06-01 2011-12-07 中兴通讯股份有限公司 随机接入过程与载波操作过程冲突的处理方法和系统
CN102325334A (zh) * 2010-05-04 2012-01-18 宏碁股份有限公司 处理量测间隙配置的方法及相关通信装置
CN102356592A (zh) * 2009-03-17 2012-02-15 高通股份有限公司 双小区高速上行链路包接入的设备与方法
CN103260242A (zh) * 2012-02-17 2013-08-21 华为技术有限公司 配置载波的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356592A (zh) * 2009-03-17 2012-02-15 高通股份有限公司 双小区高速上行链路包接入的设备与方法
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
CN102325334A (zh) * 2010-05-04 2012-01-18 宏碁股份有限公司 处理量测间隙配置的方法及相关通信装置
CN102271415A (zh) * 2010-06-01 2011-12-07 中兴通讯股份有限公司 随机接入过程与载波操作过程冲突的处理方法和系统
CN103260242A (zh) * 2012-02-17 2013-08-21 华为技术有限公司 配置载波的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457779A4 *

Also Published As

Publication number Publication date
CN107371240A (zh) 2017-11-21
EP3457779A1 (en) 2019-03-20
CN107371240B (zh) 2022-12-06
BR112018072778A2 (pt) 2019-03-12
EP3457779A4 (en) 2019-12-11
US20190159179A1 (en) 2019-05-23
IL262841A (en) 2018-12-31
BR112018072778A8 (pt) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2017193883A1 (zh) 基站、用户设备和相关方法
US11626947B2 (en) Communication method and communications device
JP6507168B2 (ja) ユーザ機器、基地局、物理下り制御チャネルを受信する方法、および、物理下り制御チャネルを送信する方法
CN105101044B (zh) 寻呼消息接收/发送方法及其相关设备
WO2017157115A1 (zh) 物理共享信道参数的确定机制以及基站和用户设备
WO2016107518A1 (zh) 寻呼消息的接收/发送方法及相关网络节点和用户设备
WO2016107520A1 (zh) 针对寻呼消息的资源分配方法及网络节点和用户设备
WO2015103952A1 (zh) 物理信道配置方法以及基站和用户设备
WO2015110035A1 (zh) 物理上行链路信道配置方法以及基站和用户设备
WO2017114498A1 (zh) 基于非访问层消息的数据传输方法、基站和用户设备
WO2017118394A1 (zh) 上行参考信号传输方法和接收方法、以及用户设备和基站
WO2016015609A1 (zh) 用于配置物理信道起始符号的方法以及基站和用户设备
US10772089B2 (en) Method and base station for configuring non-anchor physical resource block, and method and user equipment for determining location of non-anchor physical resource block
WO2016070765A1 (zh) 传输随机接入响应方法以及基站和用户设备
WO2017114350A1 (zh) 窄带物联网物理下行信道的复用方法、基站和用户设备
WO2017118398A1 (zh) 上行传输子载波带宽指示方法和选择方法、以及基站和用户设备
WO2017076319A1 (zh) 物理信道的配置方法以及基站和用户设备
WO2017166930A1 (zh) 配置非锚物理资源块的方法和基站、确定非锚物理资源块位置的方法和用户设备
CN114679770B (zh) Pdcch的监听方法和设备
WO2017114349A1 (zh) 解调参考信令的资源配置方法、基站和用户设备
US11363650B2 (en) Fifth generation (5G) global unique temporary identity (GUTI) reallocation for cellular-internet of things (CIOT)
IL261301A (en) Method, network node and wireless device adapted to insert gaps in retrievable transmission for the Internet of Things (dl nb-iot)
WO2017161973A1 (zh) 数据传输方法、用户设备和基站
WO2018201968A1 (zh) 用户设备、基站和相关方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018072778

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795501

Country of ref document: EP

Effective date: 20181211

ENP Entry into the national phase

Ref document number: 112018072778

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181106