WO2017076319A1 - 物理信道的配置方法以及基站和用户设备 - Google Patents

物理信道的配置方法以及基站和用户设备 Download PDF

Info

Publication number
WO2017076319A1
WO2017076319A1 PCT/CN2016/104521 CN2016104521W WO2017076319A1 WO 2017076319 A1 WO2017076319 A1 WO 2017076319A1 CN 2016104521 W CN2016104521 W CN 2016104521W WO 2017076319 A1 WO2017076319 A1 WO 2017076319A1
Authority
WO
WIPO (PCT)
Prior art keywords
information block
ofdm symbol
downlink
starting
main information
Prior art date
Application number
PCT/CN2016/104521
Other languages
English (en)
French (fr)
Inventor
刘仁茂
肖芳英
Original Assignee
夏普株式会社
刘仁茂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 刘仁茂 filed Critical 夏普株式会社
Priority to US15/773,321 priority Critical patent/US10819546B2/en
Priority to EP16861587.0A priority patent/EP3373538B1/en
Publication of WO2017076319A1 publication Critical patent/WO2017076319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communication technologies, and more particularly, to a method for configuring a physical channel and a corresponding base station and user equipment.
  • MTC Machine Type Communication
  • LTE Long Term Evolution Project
  • MTC Machine Type Communication
  • MTC is a data communication service that does not require human involvement.
  • Large-scale deployment of MTC user equipment can be used in security, tracking, billing, measurement, and consumer electronics.
  • Applications include video surveillance, supply chain tracking, smart meters, and remote monitoring.
  • MTC requires lower power consumption, supports lower data transmission rates and lower mobility.
  • the current LTE system is mainly aimed at human-to-human communication services.
  • the key to achieving the scale competitive advantage and application prospect of MTC services lies in the fact that LTE networks support low-cost MTC devices.
  • MTC equipment needs to be installed in the basement of the residential building or protected by insulated foil, metal window or thick wall of traditional buildings, compared to conventional equipment terminals (such as mobile phones, tablets, etc.) in LTE networks.
  • the air interface will obviously suffer from more severe penetration losses.
  • 3GPP decided to study the design and performance evaluation of MTC devices with additional 20dB coverage enhancement. It is worth noting that MTC devices located in poor network coverage areas have the following characteristics: very low data transmission rate, very loose latency requirements and limited Mobility.
  • the LTE network can further optimize some signaling and/or channels to better support the MTC service.
  • Non-Patent Document RP-140990 New Work Item.
  • the LTE Rel-13 system needs to support the uplink and downlink 1.4MHz RF bandwidth of the MTC user equipment to work in any system bandwidth (for example, 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz, etc.).
  • the standardization of this work item will be completed by the end of 2015.
  • NB-IOT NarrowBand IOT
  • NB-IOT narrowband Internet of Things
  • NB-IOT needs to support the uplink and downlink 180KHz RF bandwidth, and support three modes of operation: stand-alone mode, guard-band mode (guard-band) And in-band operation mode (in-band).
  • the standalone mode of operation is to implement NB-IOT on the existing GSM band.
  • the guard band mode of operation is to implement NB-IOT on the guard band of an LTE carrier.
  • the in-band mode of operation is to implement NB-IOT on the existing LTE band.
  • Different bearer modes may use different physical parameters and processing mechanisms. If you can know as early as possible which operating mode NB-IOT adopts, it will be beneficial to the design and optimization of the system.
  • an LTE UE receives a physical downlink channel through control information carried by a broadband physical downlink control channel (PDCCH).
  • the LTE UE receives the UE-specific Enhanced Physical Downlink Control Channel (EPDCCH) through the control information carried by the Broadband Physical Downlink Control Channel (PDCCH), and then can receive the physical downlink channel by using the control information carried by the EPDCCH.
  • the NB-IOT can only work at uplink and downlink 180KHz (corresponding to the bandwidth occupied by 1 physical resource block (PRB)
  • the wideband PDCCH uses 20M bandwidth (corresponding to the bandwidth occupied by 100 PRBs).
  • the NB-IOT may even need to avoid the PDCCH (Physcal Downlink Control Channel) control region of the existing LTE. Therefore, the NB-IOT cannot use the PDCCH of the existing LTE to transmit control information.
  • PDCCH Physical Downlink Control Channel
  • the operating band is also smaller than that of existing LTE.
  • the bandwidth of 20M used by the Broadband Physical Downlink Control Channel (PDCCH) is therefore not able to receive control information in the existing manner.
  • a new resource configuration mechanism suitable for a narrowband system such as NB-IOT, eMTC, MMTC to inform user equipment such as an operation mode, a configuration mode of a master information block, and a start of downlink transmission/reception Configuration information such as OFDM symbols.
  • the present invention is directed to a new mechanism for transmitting downlink signals suitable for narrowband systems such as NB-IOT, eMTC, MMTC, and base stations and user equipment performing the mechanisms.
  • a method for performing in a user equipment comprising: receiving a primary information block; and parsing a starting orthogonal frequency division multiplexing (OFDM) OFDM in the received primary information block for indicating downlink reception a symbolic cell; and receiving a downlink signal based on the parsed starting OFDM symbol.
  • OFDM orthogonal frequency division multiplexing
  • a method performed in a base station includes: determining a starting orthogonal frequency division multiplexing OFDM symbol of a downlink transmission; generating a primary information block including a cell indicating the initial OFDM symbol; transmitting the generated primary information block; and, according to the The initial OFDM symbol is transmitted, and the downlink signal is transmitted.
  • a user equipment includes: a receiving unit configured to: receive a primary information block; and a processing unit configured to: parse the initial orthogonal frequency division multiplexing OFDM symbol used in the received primary information block to indicate downlink reception And the receiving unit is further configured to: receive the downlink signal according to the parsed initial OFDM symbol.
  • a base station includes: a processing unit configured to: determine a start orthogonal OFDM symbol of a downlink transmission; and generate a primary information block including a cell indicating the initial OFDM symbol; and a transmitting unit And configured to: transmit the generated primary information block; and, according to the starting OFDM symbol, transmit a downlink signal.
  • a cell indicating a starting OFDM symbol for downlink reception is included in the primary information block.
  • the cell indicating the start OFDM symbol received by the downlink may occupy the main information block One or two bits on a preset position.
  • the cell indicating the start OFDM symbol received by the downlink may occupy one or two bits of a start position, an intermediate position, an end position, or other positions in the main information block.
  • the cell indicating the start OFDM symbol received by the downlink may further define the meaning of other fields in the main information block.
  • FIG. 1 shows a block diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 2 shows a block diagram of a user equipment in accordance with an embodiment of the present invention.
  • FIG. 3 shows a schematic diagram of distinguishing an operation mode by synchronous signaling according to an embodiment of the present invention.
  • FIG. 4 shows a schematic diagram of an example of a master information block of three modes of operation in accordance with an embodiment of the present invention.
  • FIG. 5 shows a schematic diagram of distinguishing a master information block by synchronization signaling according to an embodiment of the present invention.
  • 6.1, 6.2, and 6.3 illustrate diagrams of examples of reference signaling for physical channel demodulation that may be used for three modes of operation, in accordance with an embodiment of the present invention.
  • FIG. 7 shows a schematic diagram of configuring a starting OFDM symbol according to synchronization signaling according to an embodiment of the present invention.
  • FIG. 8 shows a schematic diagram of an example of indicating a starting OFDM symbol by a master information block, in accordance with an embodiment of the present invention.
  • FIG. 9 shows an example flow chart of a method of transmitting a downlink signal according to an embodiment of the present invention.
  • the LTE mobile communication system and its subsequent evolved version are taken as an example application environment to support the base station and user equipment of the NB-IOT as an example, and various embodiments according to the present invention are specifically described.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as future 5G cellular communication systems, and can be applied to other base stations and user equipment, for example, supporting eMTC, Base stations and user equipment such as MMTC.
  • FIG. 1 shows a block diagram of a baseband BS 100 of a narrowband Internet of Things according to the invention.
  • the base station BS 100 may be a new standalone device or implemented by improving an existing LTE base station.
  • the base station BS 100 includes a transmitting unit 110 and a processing unit 120.
  • the base station BS 100 may also include other functional units necessary for implementing its functions, such as various memories, radio frequency receiving units, baseband signal generating/extracting units, physical uplink channel receiving processing units, and other physical downlink channels. Transmit processing unit and so on.
  • a detailed description of these well-known elements has been omitted for the sake of brevity.
  • the processing unit 120 determines an operation mode of the narrowband Internet of Things to be transmitted, a Primary Synchronization Signal, a Secondary Synchronization Signal, a scrambling sequence of the secondary synchronization signal, and a combination of sequences in the secondary synchronization signal, The relative position of the primary and secondary synchronization signals in the time and/or frequency domain, the Master Information Block, the reference signaling for physical broadcast channel demodulation, and/or the start for downlink transmission Orthogonal frequency division multiplexing OFDM symbols and the like.
  • the transmitting unit 110 transmits the relevant physical channel and/or signaling in a manner corresponding to the result according to the result determined by the processing unit 120.
  • processing unit 120 may determine a starting orthogonal frequency division multiplexing OFDM symbol for downlink transmission, and generate a primary information block that includes cells indicating the starting OFDM symbol.
  • the transmitting unit 110 can transmit the generated main information block.
  • Transmitting unit 110 may also transmit a downlink signal according to the starting OFDM symbol determined by processing unit 120.
  • the cell indicating the starting OFDM symbol may occupy 1 or 2 bits in a preset position in the main information block, such as a starting position, an intermediate position, an ending position, or other position in the main information block. 1 or 2 bits.
  • the cell indicating the starting OFDM symbol received by the downlink may further define a main message.
  • the meaning of other fields in the block may be further defined.
  • FIG. 2 shows a block diagram of a narrowband Internet of Things user equipment UE 200 in accordance with the present invention.
  • the UE 200 includes a receiving unit 210 and a processing unit 220.
  • the UE 200 also includes other functional units necessary to implement its functions, such as various memories, radio frequency transmitting units, baseband signal generation/extraction units, physical uplink channel transmission processing units, and other physical downlink channel reception processing. Unit and so on.
  • a detailed description of these well-known elements has been omitted for the sake of brevity.
  • the processing unit 220 determines an operation mode of the narrowband Internet of Things to be received, a primary synchronization signal, a secondary synchronization signal, a scrambling sequence of the secondary synchronization signal, a combination of sequences in the secondary synchronization signal, a primary synchronization signal, and a secondary synchronization signal in the time domain. And/or relative position of the frequency domain, a primary information block, reference signaling for physical broadcast channel demodulation, and/or a starting orthogonal frequency division multiplexing OFDM symbol for downlink reception, and the like.
  • the receiving unit 210 receives the relevant physical channel and/or signaling in a manner corresponding to the result according to the result determined by the processing unit 220.
  • receiving unit 210 can receive a master information block.
  • the processing unit 220 may determine the OFDM symbol used for downlink reception by parsing the cell indicated in the primary information block received by the receiving unit 210 indicating the initial OFDM symbol for downlink transmission. Then, the receiving unit 210 can also receive the downlink signal according to the initial OFDM symbol determined by the processing unit 220.
  • the operation mode of the narrowband Internet of Things is determined based on the synchronization signal.
  • the narrowband IoT can have three modes of operation: independent mode of operation, band mode of operation, and in-band mode of operation. Different modes of operation may be designed and handled differently. For example, three different designs and processing methods correspond to three modes of operation, or two different designs and processing modes correspond to three modes of operation (wherein, the independent mode of operation adopts a design and processing mode, and the protective band mode of operation And the in-band mode of operation adopts another design and processing method; or the independent operation mode and the guard band operation mode adopt one design and processing mode, and the in-band operation mode adopts another design and processing mode). Therefore, base stations and users The device needs to determine in which mode of operation the narrowband IoT works in order to transmit and receive signals in a corresponding manner.
  • This embodiment uses a synchronization signal to distinguish the operation mode of the narrowband Internet of Things.
  • the synchronization signal for distinguishing the operation mode includes, but is not limited to, the following information: a primary synchronization signal, a secondary synchronization signal, a scrambling sequence of the secondary synchronization signal, a combination of sequences in the secondary synchronization signal, and a primary synchronization signal and a secondary synchronization signal.
  • the specific implementation can be as follows:
  • Three different main synchronizing signals are designed to distinguish three different operating modes with different main synchronizing signals.
  • two different primary synchronisation signals are designed, with one of the main synchronisation signals representing the independent mode of operation and the other primary synchronizing signal representing the guard band mode of operation and the in-band mode of operation.
  • one of the primary synchronization signals is used to indicate the independent mode of operation and the guard band mode of operation, and the other primary synchronization signal is used to indicate the in-band mode of operation.
  • the different primary synchronization signals may refer to different generation manners of the primary synchronization signal sequence, or different serial numbers of the primary synchronization signals, and the like.
  • the sequence of the primary synchronization signal may be generated by a Zadoff-Chu sequence, a PN (pseudo-noise) sequence, a Walsh-Hadamard sequence, a Gold sequence, or a Golomb sequence.
  • the primary synchronization signal sequence of the independent operation mode adopts a Walsh-Hadamard sequence
  • the primary synchronization signal sequence of the protection band operation mode adopts a PN sequence
  • the primary synchronization signal sequence of the in-band operation mode adopts a Zadoff-Chu sequence.
  • the mode of operation can be distinguished by detecting different sequences.
  • the different serial numbers of the primary synchronization signal may refer to different root sequences of the primary synchronization signal sequence of the same generation mode, or sequences obtained by different cyclic shifts of the same root sequence.
  • the primary synchronization signal in the independent mode of operation, the guard band mode of operation, and the in-band mode of operation may be different root sequences generated by the same means (eg, secondary Zadoff-Chu sequence), or by different cyclic shifts of the same root sequence. The sequence obtained after the bit.
  • the primary synchronization signals may be the same, but three or three different sets of secondary synchronization signals are designed to represent different modes of operation with different secondary synchronization signals or group numbers.
  • the primary synchronization signals may be the same, and two or two different sets of secondary synchronization signals are designed, and one of the secondary synchronization signals or the group number is used to represent the independent operation mode, and the other secondary synchronization signal or group number is used.
  • the independent operation mode and the guard band operation mode are represented by one of the secondary synchronization signals or the group number
  • the in-band operation mode is represented by another secondary synchronization signal or group number.
  • the different secondary synchronization signals refer to different generation modes of the secondary synchronization signals, or different serial numbers of the secondary synchronization signals, and the like.
  • the primary synchronization signal and the secondary synchronization signal may be the same, and the different operational modes are distinguished by the relative positions of the primary synchronization signal and the secondary synchronization signal in the time domain and/or the frequency domain.
  • the primary synchronization signal and the secondary synchronization signal may be identical, with different scrambling code sequences of the secondary synchronization signals representing different modes of operation.
  • the primary synchronization signals are identical to represent different combinations of modes between the multiple sequences of secondary synchronization signals to represent different modes of operation.
  • the type of the main information block is implicitly or explicitly indicated by the synchronization signal.
  • a narrowband Internet of Things may define multiple master blocks, and different master blocks may be used for different applications or different modes of operation.
  • the narrowband Internet of Things can predefine three main information blocks: MIB1, MIB2, and MIB3.
  • MIB1 is used for the stand-alone mode of operation
  • MIB2 is used for the band mode of operation
  • MIB3 is used for the in-band mode of operation.
  • the contents of MIB1, MIB2, and MIB3 are different, or some of the fields in MIB1, MIB2, and MIB3 are the same, and the other fields are different.
  • the transport block size (TBS, Transport Block Size) of MIB1, MIB2, and MIB3 may be the same or different.
  • MIB1 and MIB2 are used in the stand-alone mode of operation, while MIB2 is used to protect the band mode of operation and the in-band mode of operation.
  • MIB1 is used for the stand-alone mode of operation and the band mode of operation, while MIB2 is used for the in-band mode of operation.
  • the contents of MIB1 and MIB2 are different, or some of the fields in the contents of MIB1 and MIB2 are the same, and the other fields are different.
  • the transport block size (TBS, Transport Block Size) of MIB1 and MIB2 may be the same or different.
  • the master information block used can be implicitly or explicitly indicated by the synchronization signal.
  • the synchronization signal for indicating the main information block includes, but is not limited to, the following information: a primary synchronization signal, a secondary synchronization signal, a scrambling sequence of the secondary synchronization signal, a combination of sequences in the secondary synchronization signal, and a primary synchronization signal and a secondary synchronization signal. Relative position in the time domain and/or frequency domain, etc.
  • the specific implementation can be as follows:
  • MIB1, MIB2 and MIB3 Three different main synchronizing signals are designed, and three main information blocks MIB1, MIB2 and MIB3 are implicitly or explicitly distinguished by different main synchronizing signals.
  • two different primary synchronization signals are designed, one of which is implicitly or explicitly represented by MIB1, and the other primary synchronization signal is used to implicitly or explicitly represent MIB2 and MIB3.
  • MIB2 and MIB3 can be the same or it can be different.
  • MIB1 and MIB2 may be implicitly or explicitly represented by one of the primary synchronization signals, wherein MIB1 and MIB2 may be the same or different.
  • the other primary sync signal is used to implicitly or explicitly represent MIB3.
  • the different primary synchronization signals described above may refer to different generation modes of the primary synchronization signal sequence, or different serial numbers of the primary synchronization signals, and the like.
  • the sequence of the primary synchronization signal may be generated by a Zadoff-Chu sequence, a PN (pseudo-noise) sequence, a Walsh-Hadamard sequence, a Gold sequence, or a Golomb sequence.
  • the primary synchronization signal sequence corresponding to MIB1 adopts a Walsh-Hadamard sequence
  • the primary synchronization signal sequence corresponding to MIB2 adopts a PN sequence
  • the primary synchronization signal sequence corresponding to MIB3 adopts a Zadoff-Chu sequence.
  • the type of the main information block can be distinguished by detecting different sequences.
  • the different serial numbers of the primary synchronization signal may refer to different root sequences of the primary synchronization signal sequence of the same generation mode, or sequences obtained by different cyclic shifts of the same root sequence.
  • the primary synchronization signals corresponding to each of MIB1, MIB2, and MIB3 may be different root sequences generated by the same method (such as secondary Zadoff-Chu sequence), or sequences obtained by different cyclic shifts of the same root sequence.
  • the primary synchronization signals may be the same, and three or three different sets of secondary synchronization signals are designed, and three primary information blocks MIB1, MIB2, and MIB3 are implicitly or explicitly represented by different secondary synchronization signals or group numbers.
  • the primary synchronization signals may be the same, and two or two different sets of secondary synchronization signals are designed, and one of the secondary synchronization signals or the group number is used to implicitly or explicitly represent the primary information block MIB1, and the other is used.
  • the secondary synchronization signal or group number implicitly or explicitly represents the primary information blocks MIB2 and MIB3.
  • MIB2 and MIB3 can be the same or different.
  • the primary information blocks MIB1 and MIB2 may be implicitly or explicitly represented by one of the secondary synchronization signals or the group number, wherein the MIB1 and the MIB2 may be the same or different.
  • the other auxiliary sync signal or group number is used to implicitly or explicitly represent the main information block MIB3 in the in-band operation mode.
  • the different secondary synchronization signals refer to different generation modes of the secondary synchronization signals, or different serial numbers of the secondary synchronization signals, and the like.
  • the primary synchronization signal and the secondary synchronization signal may be the same, and the different primary information blocks MIB1, MIB2 are implicitly or explicitly distinguished by the relative positions of the primary synchronization signal and the secondary synchronization signal in the time domain and/or the frequency domain. And / or MIB3.
  • the primary synchronization signal and the secondary synchronization signal may be identical, and the different primary information blocks MIB1, MIB2 and/or may be implicitly or explicitly distinguished by different scrambling sequences of the secondary synchronization signals. MIB3.
  • the primary synchronization signals may be identical, and different primary information blocks MIB1, MIB2 and/or MIB3 may be implicitly or explicitly distinguished by different combinations between the multiple sequences that generate the secondary synchronization signals.
  • the reference signal (RS, Reference Signal) used for physical broadcast channel (PBCH) demodulation is implicitly or explicitly indicated by the synchronization signal.
  • Figure 6 there may be three types of reference signaling.
  • Figure 6.1 shows the CRS (Cell Specific Reference Signal) of the existing LTE 2 antenna ports;
  • Figure 6.2 shows an example of a CRS designed for NB-IOT, which avoids the existing four antenna ports of LTE CRS;
  • Figure 6.3 shows an example of a DMRS (Demodulation Reference Signal) designed specifically for NB-IOT, which also avoids the CRS of the existing four antenna ports of LTE.
  • CRS Cell Specific Reference Signal
  • Different modes of operation may use different reference signaling for demodulation of PBCH and/or other physical channels.
  • the reference signaling of Figure 6.1 can be used for demodulation of PBCH and/or other physical channels in an independent mode of operation;
  • the reference signaling of Figure 6.2 can be used to protect demodulation of PBCH and/or other physical channels with mode of operation;
  • the reference signaling of 6.3 can be used for demodulation of PBCH and/or other physical channels in the in-band mode of operation.
  • the reference signaling of Figure 6.1 can be used for demodulation of PBCH and/or other physical channels in independent mode of operation and guard band mode of operation; the reference signaling of Figure 6.2 or Figure 6.3 can be used for PBCH and in-band mode of operation / or demodulation of other physical channels.
  • the reference signaling of Figure 6.1 can be used for demodulation of PBCH and/or other physical channels in an independent mode of operation; the reference signaling of Figure 6.2 or Figure 6.3 can be used to protect PBCH and band mode and in-band mode of operation. / or demodulation of other physical channels.
  • the NB-IOT user needs to know the reference signaling that can be used for PBCH demodulation before performing cell search and performing PBCH demodulation.
  • the reference signaling can be implicitly or explicitly indicated by the synchronization signal.
  • the synchronization signal for indicating the reference signaling of the PBCH demodulation includes but is not limited to the following information: a primary synchronization signal, a secondary synchronization signal, a scrambling code sequence of the secondary synchronization signal, a combination of sequences in the secondary synchronization signal, and a primary synchronization signal. And the relative position of the secondary synchronization signal in the time domain and/or the frequency domain, and the like.
  • the specific implementation can be as follows:
  • Three different primary synchronization signals are designed to implicitly or explicitly distinguish reference signaling for PBCH demodulation with different primary synchronization signals.
  • two different primary synchronization signals are designed,
  • the reference signaling for PBCH demodulation for the independent operation mode and the protection in-band operation mode is implicitly or explicitly indicated by one of the primary synchronization signals, and the other primary synchronization signal is used to implicitly or explicitly indicate Reference signaling for in-band mode of operation PBCH demodulation.
  • reference signaling for independent mode of operation PBCH demodulation is implicitly or explicitly indicated with one of the primary synchronization signals.
  • Reference signalling for protection band mode of operation and in-band mode of operation PBCH demodulation is implicitly or explicitly indicated by another primary synchronization signal.
  • the different primary synchronization signals described above may refer to different generation modes of the primary synchronization signal sequence, or different sequences of the primary synchronization signals, and the like.
  • the sequence of the primary synchronization signal may be generated by a Zadoff-Chu sequence, a PN (pseudo-noise) sequence, a Walsh-Hadamard sequence, a Gold sequence, or a Golomb sequence.
  • the primary synchronization signal sequence of the independent operation mode adopts a Walsh-Hadamard sequence
  • the primary synchronization signal sequence of the protection band operation mode adopts a PN sequence
  • the primary synchronization signal sequence of the in-band operation mode adopts a Zadoff-Chu sequence.
  • the mode of operation can be distinguished by detecting different sequences.
  • the different serial numbers of the primary synchronization signal refer to different root sequences of the primary synchronization signal sequence of the same generation mode, or sequences obtained by different cyclic shifts of the same root sequence.
  • the primary synchronization signals may be the same, but three or three different sets of secondary synchronization signals are designed, and the reference signaling for PBCH demodulation is implicitly or explicitly distinguished by different secondary synchronization signals or group numbers.
  • the primary synchronization signals may be the same, and two or two different sets of secondary synchronization signals are designed, implicitly or explicitly indicated by one of the secondary synchronization signals or group numbers for independent operation mode and protection in-band operation.
  • the reference PBCH demodulated reference signaling, with another secondary synchronization signal or group number, implicitly or explicitly indicates the reference signaling for the in-band mode of operation PBCH demodulation.
  • reference signaling for independent mode of operation PBCH demodulation is implicitly or explicitly indicated by one of the secondary synchronization signals or group numbers.
  • the reference signalling for the protection band mode of operation and the in-band mode of operation PBCH demodulation is implicitly or explicitly indicated by another secondary synchronization signal or group number.
  • the different secondary synchronization signals refer to different generation modes of the secondary synchronization signals, or different serial numbers of the secondary synchronization signals, and the like.
  • the primary synchronization signal and the secondary synchronization signal may be the same, and the reference signal for PBCH demodulation is implicitly or explicitly distinguished by the relative positions of the primary synchronization signal and the secondary synchronization signal in the time domain and/or the frequency domain. make.
  • the primary synchronization signal and the secondary synchronization signal may be identical, and the reference signaling for PBCH demodulation is implicitly or explicitly distinguished by a different scrambling sequence of the secondary synchronization signal.
  • the primary synchronization signals may be the same to generate multiple sequences of secondary synchronization signals Different combinations between them implicitly or explicitly distinguish the reference signaling used for PBCH demodulation.
  • the starting OFDM symbol for downlink transmission/reception may be implicitly or explicitly indicated by the synchronization signal.
  • the starting OFDM symbols may be different for different modes of operation.
  • the in-band mode of operation needs to avoid the PDCCH (Physcal Downlink Control Channel) control region of the existing LTE, and the size of the existing LTE PDCCH control region is obtained by the PCFICH (Physical Control Format Indicator Channel) channel.
  • the independent mode of operation and the mode of operation of the guard band have no such limitations. Therefore, the starting OFDM symbols in different modes of operation may be different. As shown in FIG. 7, the starting OFDM symbols in each mode of operation may be implicitly or explicitly indicated by a synchronization signal.
  • the synchronization signal used to indicate the initial OFDM symbol includes, but is not limited to, the following information: a primary synchronization signal, a secondary synchronization signal, a scrambling sequence of the secondary synchronization signal, a combination of sequences in the secondary synchronization signal, and a primary synchronization signal and secondary synchronization.
  • Three different primary synchronization signals are designed to implicitly or explicitly indicate the starting OFDM symbols in each mode of operation with different primary synchronization signals.
  • two different primary synchronization signals are designed, with one of the primary synchronization signals implicitly or explicitly indicating the starting OFDM symbols for the independent mode of operation and the guard band mode of operation, with another master
  • the sync signal implicitly or explicitly indicates the starting OFDM symbol for use in the in-band mode of operation.
  • the initial OFDM symbol for the independent mode of operation is implicitly or explicitly indicated by one of the primary synchronization signals.
  • the other primary sync signal is used to implicitly or explicitly indicate the starting OFDM symbol for use in the guard band mode of operation and the in-band mode of operation.
  • the different primary synchronization signals described above may refer to different generation modes of the primary synchronization signal sequence, or different serial numbers of the primary synchronization signals, and the like.
  • the sequence of the primary synchronization signal may be generated by a Zadoff-Chu sequence, a PN (pseudo-noise) sequence, a Walsh-Hadamard sequence, a Gold sequence, or a Golomb sequence.
  • the primary synchronization signal sequence of the independent operation mode adopts a Walsh-Hadamard sequence
  • the primary synchronization signal sequence of the protection band operation mode adopts a PN sequence
  • the primary synchronization signal sequence of the in-band operation mode adopts a Zadoff-Chu sequence.
  • the mode of operation can be distinguished by detecting different sequences.
  • the different serial numbers of the main synchronization signal refer to the main synchronization signal sequence of the same generation mode.
  • the primary synchronization signal in the independent mode of operation, the guard band mode of operation, and the in-band mode of operation may be different root sequences generated by the same means (eg, secondary Zadoff-Chu sequence), or by different cyclic shifts of the same root sequence.
  • the sequence obtained after the bit may be different root sequences generated by the same means (eg, secondary Zadoff-Chu sequence), or by different cyclic shifts of the same root sequence.
  • the primary synchronization signals may be the same, but three or three different sets of secondary synchronization signals are designed to implicitly or explicitly indicate the starting OFDM symbols in each mode of operation with different secondary synchronization signals or group numbers.
  • the primary synchronization signals may be the same, and two or two different sets of secondary synchronization signals are designed, implicitly or explicitly indicated by one of the secondary synchronization signals or group numbers for the independent operation mode and the protection band operation mode.
  • the next starting OFDM symbol, with another secondary sync signal or group number implicitly or explicitly indicates the starting OFDM symbol for use in the in-band mode of operation.
  • the initial OFDM symbol for the independent mode of operation is implicitly or explicitly indicated by one of the secondary synchronization signals or the group number.
  • the other secondary sync signal or group number is used to implicitly or explicitly indicate the starting OFDM symbol for use in the guard band mode of operation and the in-band mode of operation.
  • the different secondary synchronization signals refer to different generation modes of the secondary synchronization signals, or different serial numbers of the secondary synchronization signals, and the like.
  • the primary synchronization signal and the secondary synchronization signal may be the same, and the initial OFDM in each operation mode is implicitly or explicitly indicated by the relative positions of the primary synchronization signal and the secondary synchronization signal in the time domain and/or the frequency domain. symbol.
  • the primary synchronization signal and the secondary synchronization signal may be identical, with the different scrambling code sequences of the secondary synchronization signals implicitly or explicitly indicating the starting OFDM symbols in each mode of operation.
  • the primary synchronization signals may be the same, and the initial OFDM symbols in each mode of operation are implicitly or explicitly indicated in a different combination between the multiple sequences that generate the secondary synchronization signals.
  • the starting OFDM symbol for downlink transmission/reception is explicitly or implicitly indicated by the master information block.
  • the primary information block may include a cell for indicating the initial orthogonal frequency division multiplexing OFDM symbol for downlink reception.
  • the cell indicating the start OFDM symbol received in the downlink may occupy 1 or 2 bits in a preset position in the main information block.
  • the preset position may include: a starting position, an intermediate position, an ending position, or other positions of the main information block.
  • the cell indicating the starting OFDM symbol received in the downlink may also define the meaning of other fields in the main information block.
  • Figure 8 is a schematic diagram of an example master information block.
  • the first 2 bits are field 1 and can be used to indicate the starting OFDM symbols in different modes of operation.
  • 00: indicates a starting OFDM symbol in an independent mode of operation
  • 01: indicates a starting OFDM symbol in a guard band mode of operation.
  • the specific values of the initial OFDM symbols in the independent mode of operation and the guard band mode of operation may be obtained by pre-setting, or common signaling configuration, or UE-specific signaling configuration.
  • 10 and 11 indicate the starting OFDM symbols in the in-band mode of operation.
  • 10 indicates that the starting OFDM symbol in the in-band mode of operation is the 3rd OFDM symbol; 11 indicates that the starting OFDM symbol in the in-band mode of operation is the 4th OFDM symbol.
  • 10 indicates that the starting OFDM symbol in the in-band mode of operation is the 2nd OFDM symbol; 11 indicates that the starting OFDM symbol in the in-band mode of operation is the 3rd OFDM symbol.
  • the meaning of other fields may be explained depending on the field 1.
  • the meaning of field 2 to field n in the main information block may be an explanation (eg, explanation 1); and when field 1 is 01, the meaning of field 2 to field n in the main information block may be Is another explanation (such as: explanation 2); when field 1 is 10, it is explanation 3; when field 1 is 10, it is explanation 4.
  • the number of fields to be interpreted may be the same or different.
  • the 2 bits of field 1 in Figure 8 can be used to indicate different modes of operation. For example, 00: indicates an independent operation mode; 01: indicates a protection operation mode; 10: indicates an in-band operation mode; 11: reserved.
  • the starting OFDM symbols in each mode of operation can be implicitly obtained from their mode of operation.
  • the fields used to indicate the starting OFDM symbols in different modes of operation may be located at the end of the main information block.
  • the fields used to indicate the starting OFDM symbols in different modes of operation may be located in the middle of the main information block or any other pre-fixed location.
  • the mode of operation of the NB-IOT is determined by the operating band of the narrowband IoT.
  • the operating band of LTE is defined.
  • the operating mode of the narrowband Internet of Things can be determined by the operating frequency band.
  • the operation mode of the narrowband Internet of Things is the in-band operation mode and the protection band operation. Mode.
  • the operating mode of the narrowband Internet of Things is an independent mode of operation.
  • FIG. 9 illustrates an example flow diagram of a transmission method 1000 in accordance with an embodiment of the present invention that may be implemented in a communication system that supports narrowband Internet of Things.
  • the communication system may include one or more base stations BS 100 supporting narrowband Internet of Things and one or more user equipment UEs 200 supporting narrowband Internet of Things. Although only one base station BS 100 and one UE 200 are shown in the figure, the present invention may include more BSs and more UEs, and the present invention is not limited in this regard.
  • the base station BS 100 determines a starting orthogonal frequency division multiplexing OFDM symbol for downlink transmission, and generates an indication including the initial OFDM symbol.
  • the main information block of the cell includes
  • step S1120 the base station BS 100 (specifically, the transmitting unit 110 of the base station) transmits the generated main information block.
  • step S1210 the UE 200 (specifically, the receiving unit 210 of the UE) receives the primary information block.
  • step S1220 the UE 200 determines the starting OFDM symbol for downlink reception by parsing the cell in the received primary information block indicating the downlink received OFDM symbol.
  • step S1130 the base station BS 100 (specifically, the transmitting unit 110 of the base station) transmits a downlink signal according to the initial OFDM symbol determined in step S1110.
  • step S1230 the UE 200 (specifically, the receiving unit 210 of the UE) receives the downlink signal according to the initial OFDM symbol determined in step S1220.
  • method 1000 is merely exemplary and the method 1000 is not limited to the illustrated steps or sequences.
  • method 1000 can include more or fewer steps.
  • the method 1100 may further include determining, according to the synchronization signal, a type of the primary information block to be received by the user equipment and/or a type of reference signaling to be used by the user equipment for physical broadcast channel demodulation, and according to the determination result. Transmit/receive primary information blocks and/or reference signaling for physical broadcast channel demodulation, and the like.
  • the synchronization signal can be pre-set. In this case, the base station can omit the step of determining the synchronization signal.
  • several of the steps in method 1000 can be combined in a single step, or a single step can be performed in multiple steps.
  • the method and apparatus of the present invention have been described above in connection with the preferred embodiments. Those skilled in the art will appreciate that the methods shown above are merely exemplary. The method of the present invention is not limited to the steps and sequences shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that may be developed or developed in the future for base stations or UEs, and the like.
  • the various logos shown above are merely exemplary and not limiting, and the invention is not limited to specific cells as examples of such identifications. Many variations and modifications can be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention can be implemented by software, hardware, or a combination of both software and hardware.
  • the base station and various components within the user equipment in the above embodiments may be implemented by various devices including, but not limited to, analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, and programmable processing. , Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), and more.
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station refers to a mobile communication data and control switching center having a large transmission power and a relatively large coverage area, including resource allocation scheduling, data reception and transmission, and the like.
  • User equipment refers to a user mobile terminal, for example, a terminal device including a mobile phone, a notebook, etc., which can perform wireless communication with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer readable medium encoded with computer program logic that, when executed on a computing device, provides related operations to implement The above technical solution of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such an arrangement of the present invention is typically provided as software, code and/or other data structures, or such as one or more, that are arranged or encoded on a computer readable medium such as an optical medium (e.g., CD-ROM), floppy disk, or hard disk.
  • Software or firmware or such a configuration may be installed on the computing device such that one or more processors in the computing device perform the technical solutions described in the embodiments of the present invention.
  • each function of the base station device and the terminal device used in each of the above embodiments Modules or individual features may be implemented or executed by circuitry, typically one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs), or others.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the above general purpose processor or each circuit may be configured by a digital circuit or may be configured by a logic circuit. Further, when advanced technologies capable of replacing current integrated circuits have emerged due to advances in semiconductor technology, the present invention can also use integrated circuits obtained by using the advanced technology.

Abstract

本发明提供了一种适合于诸如NB-IOT、eMTC、MMTC之类的窄带系统的传输下行链路信号的方法,以及执行所述方法的基站和用户设备。所述方法包括:接收主信息块;解析所接收的主信息块中用于指示下行接收的起始正交频分复用OFDM符号的信元;以及,根据解析出的起始OFDM符号,接收下行链路信号。

Description

物理信道的配置方法以及基站和用户设备 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及物理信道的配置方法以及相应的基站和用户设备。
背景技术
随着移动通信的快速增长和技术的巨大进步,世界将走向一个完全互联互通的网络社会,即任何人或任何东西在任何时间和任何地方都可以获得信息和共享数据。预计到2020年,互联设备的数量将达到500亿部,其中仅有100亿部左右可能是手机和平板电脑,其它的则不是与人对话的机器,而是彼此对话的机器。因此,如何设计系统以更好地支持万物互联是一项需要深入研究的课题。
在第三代合作伙伴计划(3GPP)的长期演进项目(LTE)的标准中,将机器对机器的通信称为机器类型通信(Machine Type Communication,MTC)。MTC是一种不需要人为参与的数据通信服务。大规模的MTC用户设备部署,可以用于安全、跟踪、付账、测量以及消费电子等领域,具体涉及的应用包括视频监控、供货链跟踪、智能电表,远程监控等。MTC要求较低的功率消耗,支持较低的数据传输速率和较低的移动性。目前的LTE系统主要是针对人与人的通信服务。而实现MTC服务的规模竞争优势及应用前景的关键在于LTE网络支持低成本的MTC设备。
另外,一些MTC设备需要安装在居民楼地下室或者由绝缘箔片、金属护窗或者传统建筑物的厚墙保护的位置,相比较LTE网络中常规设备终端(如手机,平板电脑等),这些设备的空中接口将明显遭受更严重的穿透损失。3GPP决定研究附加20dB覆盖增强的MTC设备的方案设计与性能评估,值得注意的是,位于糟糕网络覆盖区域的MTC设备具有以下特点:非常低的数据传输速率、非常宽松的延时要求以及有限的移动性。针对以上MTC特点,LTE网络可以进一步优化一些信令和/或信道用以更好地支持MTC业务。
为此,在2014年6月举行的3GPP RAN#64次全会上,提出了一个新的面向Rel-13的低复杂性和覆盖增强的MTC的工作项目(参见非专利文献:RP-140990New Work Item on Even Lower Complexity and Enhanced Coverage LTE UE for MTC,Ericsson,NSN)。在该工作项目的描述中,LTE Rel-13系统需要支持上下行1.4MHz射频带宽的MTC用户设备工作在任意的系统带宽(例如1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz等等)下。该工作项目标准化将于2015年底结束。
另外,为了更好地实现万物互联,在2015年9月举行的3GPP RAN#69此次全会上,又提出了一个新的工作项目(参见非专利文献:RP-151621New Work Item:NarrowBand IOT(NB-IOT)),其可被称之为窄带物联网(NB-IOT)。在该项目的描述中,NB-IOT需要支持上下行180KHz的射频带宽,并且要支持3种操作模式(mode of operation):独立操作模式(stand-alone)、保护带操作模式(guard-band)和带内操作模式(in-band)。独立操作模式是在现有的GSM频段上实现NB-IOT。保护带操作模式是在一个LTE载波的保护频段上实现NB-IOT。带内操作模式是在现有的LTE频段上实现NB-IOT。不同的承载模式可能采用不同的物理参数和处理机制。如果能尽早地知道NB-IOT采用何种操作模式将有利于系统的设计和优化。
在现有的LTE系统中,LTE UE通过宽带的物理下行控制信道(PDCCH)承载的控制信息来接收物理下行信道。或者,LTE UE通过宽带的物理下行控制信道(PDCCH)承载的控制信息来接收用户特定(UE-specific)的增强物理下行控制信道(EPDCCH),然后可以通过EPDCCH承载的控制信息来接收物理下行信道。由于NB-IOT只能工作在上下行180KHz(对应于1个物理资源块(PRB)占用的频带宽度),而宽带的PDCCH使用20M的带宽(对应于100个PRB占用的频带宽度)。有些情况下(例如带内操作模式下)NB-IOT甚至需要避开已有LTE的PDCCH(Physcal Downlink Control Channel)控制区域。因此NB-IOT不能使用现有LTE的PDCCH来传输控制信息。
类似地,在增强的机器类通信(enhanced MTC,eMTC)和大规模机器类通信(Massive MTC,MMTC)等系统中,工作频带也小于现有LTE的 宽带的物理下行控制信道(PDCCH)使用的20M的带宽,因此不能够按照现有方式来接收控制信息。
因此,需要一种新的适合于诸如NB-IOT、eMTC、MMTC之类的窄带系统的资源配置机制,以向用户设备通知诸如操作模式、主信息块的配置模式、下行发射/接收的起始OFDM符号等配置信息。
发明内容
本发明旨在提供一种新的适合于诸如NB-IOT、eMTC、MMTC之类的窄带系统的传输下行链路信号的机制,以及执行所述机制的基站和用户设备。
根据本发明的第一方面,提供了一种在用户设备中执行的方法,包括:接收主信息块;解析所接收的主信息块中用于指示下行接收的起始正交频分复用OFDM符号的信元;以及,根据解析出的起始OFDM符号,接收下行链路信号。
根据本发明的第二方面,提供了一种在基站中执行的方法。所述方法包括:确定下行发射的起始正交频分复用OFDM符号;生成包含指示所述起始OFDM符号的信元的主信息块;发射所生成的主信息块;以及,根据所述起始OFDM符号,发射下行链路信号。
根据本发明的第三方面,提供了一种用户设备。所述用户设备包括:接收单元,配置用于:接收主信息块;处理单元,配置用于:解析所接收的主信息块中用于指示下行接收的起始正交频分复用OFDM符号的信元;其中,所述接收单元还配置用于:根据解析出的起始OFDM符号,接收下行链路信号。
根据本发明的第四方面,提供了一种基站。所述基站包括:处理单元,配置用于:确定下行发射的起始正交频分复用OFDM符号;以及,生成包含指示所述起始OFDM符号的信元的主信息块;以及,发射单元,配置用于:发射所生成的主信息块;以及,根据所述起始OFDM符号,发射下行链路信号。
在一些实施例中,在主信息块中包含指示下行接收的起始OFDM符号的信元。
所述指示下行接收的起始OFDM符号的信元可以占用主信息块中 的预先设定的位置上的1个或2个比特。例如,所述指示下行接收的起始OFDM符号的信元可以占用主信息块中的起始位置、中间位置、结尾位置、或者其他位置的1个或2个比特。
优选地,所述指示下行接收的起始OFDM符号的信元还可以限定主信息块中的其他字段的含义。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1示出了根据本发明实施例的基站的框图。
图2示出了根据本发明实施例的用户设备的框图。
图3示出了根据本发明实施例的用同步信令区分操作模式的示意图。
图4示出了根据本发明实施例的三种操作模式的主信息块的示例的示意图。
图5示出了根据本发明实施例的用同步信令区分主信息块的示意图。
图6.1、图6.2和图6.3示出了根据本发明实施例的可用于三种操作模式的物理信道解调的参考信令的示例的示意图。
图7示出了根据本发明实施例的根据同步信令配置起始OFDM符号的示意图。
图8示出了根据本发明实施例的由主信息块指示起始OFDM符号的示例的示意图。
图9示出了根据本发明实施例的下行链路信号的传输方法的示例流程图。
在附图中,相同的附图标记指示相同或类似的要素。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省 略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以LTE移动通信系统及其后续的演进版本作为示例应用环境,以支持NB-IOT的基站和用户设备为例,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如今后的5G蜂窝通信系统,而且可以适用于其他基站和用户设备,例如支持eMTC、MMTC等的基站和用户设备。
图1示出了根据本发明的窄带物联网的基站BS 100的框图。应该理解,所述基站BS 100可以是新的独立设备,或者通过改进现有LTE基站来实现。如图所示,基站BS 100包括:发射单元110和处理单元120。本领域技术人员应理解,基站BS 100还可以包括实现其功能所必需的其他功能单元,如各种存储器、射频接收单元、基带信号生成/提取单元、物理上行信道接收处理单元和其它物理下行信道发射处理单元等等。然而为了简便,省略了这些公知元件的详细描述。
处理单元120确定需要发射的窄带物联网的操作模式、主同步信号(Primary Synchronization Signal)、辅同步信号(Secndary Synchronization Signal)、辅同步信号的扰码序列、辅同步信号中的序列的组合方式、主同步信号和辅同步信号在时域和/或频域的相对位置、主信息块(Master Information Block)、用于物理广播信道解调的参考信令、以及/或者用于下行发射的起始正交频分复用OFDM符号等等。
发射单元110根据处理单元120确定的结果,采用与该结果对应的方式发射相关的物理信道和/或信令。
在一些实施例中,处理单元120可以确定下行发射的起始正交频分复用OFDM符号,以及生成包含指示所述起始OFDM符号的信元的主信息块。发射单元110可以发射所生成的主信息块。发射单元110还可以根据处理单元120确定的所述起始OFDM符号,发射下行链路信号。
指示所述起始OFDM符号的信元可以占用主信息块中的预先设定的位置上的1个或2个比特,例如主信息块中的起始位置、中间位置、结尾位置、或者其他位置的1个或2个比特。
优选地,所述指示下行接收的起始OFDM符号的信元还可以限定主信 息块中的其他字段的含义。
图2示出了根据本发明的窄带物联网的用户设备UE 200的框图。如图所示,UE 200包括:接收单元210、处理单元220。本领域技术人员应理解,UE 200还包括实现其功能所必需的其他功能单元,如各种存储器、射频发射单元、基带信号生成/提取单元、物理上行信道发射处理单元和其它物理下行信道接收处理单元等等。然而为了简便,省略了这些公知元件的详细描述。
处理单元220确定需要接收的窄带物联网的操作模式、主同步信号、辅同步信、辅同步信号的扰码序列、辅同步信号中的序列的组合方式、主同步信号和辅同步信号在时域和/或频域的相对位置、主信息块、用于物理广播信道解调的参考信令、以及/或者用于下行接收的起始正交频分复用OFDM符号等等。
接收单元210根据处理单元220确定的结果,采用与该结果对应的方式接收相关的物理信道和/或信令。
在一些实施例中,接收单元210可以接收主信息块。处理单元220可以通过解析接收单元210所接收的主信息块中包含的指示用于下行发射的起始OFDM符号的信元,以确定用于下行接收的OFDM符号。于是,接收单元210还可以根据处理单元220所确定的起始OFDM符号,接收下行链路信号。
下面参考附图介绍根据本发明实施例的基站和用户设备的具体执行机制。
实施例1
如图3所示,在该实施例中,根据同步信号确定窄带物联网的操作模式。
窄带物联网可以有三种可用操作模式:独立操作模式、保护带操作模式和带内操作模式。不同的操作模式可能会采用不同的设计和处理方式。例如,三种不同的设计和处理方式对应于三种操作模式、或者两种不同的设计和处理方式对应于三种操作模式(其中,独立操作模式采用一种设计和处理方式,保护带操作模式和带内操作模式采用另一种设计和处理方式;或者独立操作模式和保护带操作模式采用一种设计和处理方式,而带内操作模式采用另一种设计和处理方式)。因此,基站和用户 设备需要确定窄带物联网工作在何种操作模式下,以便采用与之对应的方式进行信号的发射和接收。
本实施例采用同步信号来区分窄带物联网的操作模式。用于区分操作模式的同步信号包括但不限于以下信息:主同步信号、辅同步信号、辅同步信号的扰码序列、辅同步信号中的序列的组合方式、以及主同步信号和辅同步信号在时域和/或频域的相对位置等。具体实现可以如下:
设计三个不同主同步信号,以不同的主同步信号来区分三种不同的操作模式。备选地,设计二个不同的主同步信号,以其中的一个主同步信号来表示独立操作模式,而用另一个主同步信号来表示保护带操作模式和带内操作模式。或者,以其中一个主同步信号来表示独立操作模式和保护带操作模式,而用另一个主同步信号来表示带内操作模式。其中,不同的主同步信号可以指主同步信号序列的不同产生方式、或主同步信号的不同序列号等。例如,主同步信号的序列可以由Zadoff-Chu序列、PN(pseudo-noise)序列、沃尔什-阿达玛(Walsh-Hadamard)序列、Gold序列、或哥伦布(Golomb)序列等产生。例如,独立操作模式的主同步信号序列采用沃尔什-阿达玛序列,保护带操作模式的主同步信号序列采用PN序列,带内操作模式的主同步信号序列采用Zadoff-Chu序列。通过检测不同的序列可以区分出操作模式。主同步信号的不同序列号可以指相同产生方式的主同步信号序列的不同根序列、或由同一根序列通过不同的循环移位后得到的序列。例如,独立操作模式、保护带操作模式和带内操作模式下的主同步信号可以是通过相同方式(如次用Zadoff-Chu序列)产生的不同根序列、或由同一根序列通过不同的循环移位后得到的序列。
备选地,主同步信号可以相同,但是设计三个或三组不同的辅同步信号,以不同的辅同步信号或组号来表示不同的操作模式。备选地,主同步信号可以相同,而设计二个或二组不同的辅同步信号,以其中的一个辅同步信号或组号来表示独立操作模式,而用另一个辅同步信号或组号来表示保护带操作模式和带内操作模式。或者,以其中一个辅同步信号或组号来表示独立操作模式和保护带操作模式,而用另一个辅同步信号或组号来表示带内操作模式。其中,不同的辅同步信号指辅同步信号的不同生成方式、或辅同步信号的不同序列号等。
备选地,主同步信号和辅同步信号可以相同,而以主同步信号和辅同步信号在时域和/或频域的相对位置来区分不同的操作模式。
备选地,主同步信号和辅同步信号可以相同,而以辅同步信号的不同扰码序列来表示不同的操作模式。
备选地,主同步信号相同,以生成辅同步信号的多个序列之间的不同组合方式来表示不同的操作模式。
实施例2
主信息块的类型由同步信号隐式或显式地指示。
窄带物联网可能会定义多种主信息块,不同的主信息块用于不同的应用场合或不同的操作模式。如图4所示,窄带物联网可以预先定义三种主信息块:MIB1、MIB2和MIB3。MIB1用于独立操作模式,MIB2用于保护带操作模式,MIB3用于带内操作模式。MIB1、MIB2和MIB3的内容是不相同的,或者说,MIB1、MIB2和MIB3内容中的部分字段相同,另外部分字段不同。MIB1、MIB2和MIB3的传输块大小(TBS,Transport Block Size)可以相同,也可以不同。
备选地,可以预先定义二个主信息块:MIB1和MIB2。MIB1用于独立操作模式,而MIB2用于保护带操作模式和带内操作模式。或者,MIB1用于独立操作模式和保护带操作模式,而MIB2用于带内操作模式。MIB1和MIB2的内容是不相同的,或者说,MIB1和MIB2内容中的部分字段相同,另外部分字段不同。MIB1和MIB2的传输块大小(TBS,Transport Block Size)可以相同,也可以不同。
如图5所示,所用的主信息块可以由同步信号隐式(implicitly)或显式(explicitly)地指示。用于指示主信息块的同步信号包括但不限于以下信息:主同步信号、辅同步信号、辅同步信号的扰码序列、辅同步信号中的序列的组合方式、以及主同步信号和辅同步信号在时域和/或频域的相对位置等。具体实现可以如下:
设计三个不同主同步信号,以不同的主同步信号来隐式或显式地区分三个主信息块MIB1、MIB2和MIB3。备选地,设计二个不同的主同步信号,以其中的一个主同步信号来隐式或显式地表示MIB1,而用另一个主同步信号来隐式或显式地表示MIB2和MIB3。其中,MIB2和 MIB3可以是一样的,也可以是不一样的。或者,以其中一个主同步信号来隐式或显式地表示MIB1和MIB2,其中,MIB1和MIB2可以是一样的,也可以是不一样的。而用另一个主同步信号来隐式或显式地表示MIB3。上述不同的主同步信号可以指主同步信号序列的不同产生方式、或主同步信号的不同序列号等。例如,主同步信号的序列可以由Zadoff-Chu序列、PN(pseudo-noise)序列、沃尔什-阿达玛(Walsh-Hadamard)序列、Gold序列、或哥伦布(Golomb)序列等产生。例如,MIB1对应的主同步信号序列采用沃尔什-阿达玛序列,MIB2对应的主同步信号序列采用PN序列,MIB3对应的主同步信号序列采用Zadoff-Chu序列。通过检测不同的序列可以区分出主信息块的类型。主同步信号的不同序列号可以指相同产生方式的主同步信号序列的不同根序列、或由同一根序列通过不同的循环移位后得到的序列。例如,MIB1、MIB2、MIB3各自对应的主同步信号可以是通过相同方式(如次用Zadoff-Chu序列)产生的不同根序列、或由同一根序列通过不同的循环移位后得到的序列。
备选地,主同步信号可以相同,而设计三个或三组不同的辅同步信号,以不同的辅同步信号或组号来隐式或显式地表示三种主信息块MIB1、MIB2和MIB3。备选地,主同步信号可以相同,而设计二个或二组不同的辅同步信号,以其中的一个辅同步信号或组号来隐式或显式地表示主信息块MIB1,而用另一个辅同步信号或组号来隐式或显式地表示主信息块MIB2和MIB3。其中,MIB2和MIB3可以是一样的,也可以是不一样的。或者,以其中一个辅同步信号或组号来隐式或显式地表示主信息块MIB1和MIB2,其中,MIB1和MIB2可以是一样的,也可以是不一样的。而用另一个辅同步信号或组号来隐式或显式地表示带内操作模式下的主信息块MIB3。上述不同的辅同步信号指辅同步信号的不同生成方式、或辅同步信号的不同序列号等。
备选地,主同步信号和辅同步信号可以相同,而以主同步信号和辅同步信号在时域和/或频域的相对位置来隐式或显式地区分不同的主信息块MIB1、MIB2和/或MIB3。
备选地,主同步信号和辅同步信号可以相同,而以辅同步信号的不同扰码序列来隐式或显式地区分不同的主信息块MIB1、MIB2和/或 MIB3。
备选地,主同步信号可以相同,而以生成辅同步信号的多个序列之间的不同组合方式来隐式或显式地区分不同的主信息块MIB1、MIB2和/或MIB3。
实施例3
用于物理广播信道(PBCH,Physical Broadcast Channel)解调的参考信令(RS,Reference Signal)由同步信号隐式或显式地指示。
如图6所示,可以存在三种参考信令。图6.1示出了现有LTE 2个天线端口的CRS(Cell Specific Reference Signal);图6.2示出了专为NB-IOT设计的CRS的示例,该CRS避开了现有LTE四个天线端口的CRS;图6.3示出了专为NB-IOT设计的DMRS(Demodulation Reference Signal)的示例,该DMRS也避开了现有LTE四个天线端口的CRS。
不同的操作模式可以采用不同的参考信令进行PBCH和/或其它物理信道的解调。例如,图6.1的参考信令可用于独立操作模式的PBCH和/或其它物理信道的解调;图6.2的参考信令可用于保护带操作模式的PBCH和/或其它物理信道的解调;图6.3的参考信令可用于带内操作模式的PBCH和/或其它物理信道的解调。备选地,图6.1的参考信令可用于独立操作模式和保护带操作模式的PBCH和/或其它物理信道的解调;图6.2或图6.3的参考信令可用于带内操作模式的PBCH和/或其它物理信道的解调。备选地,图6.1的参考信令可用于独立操作模式的PBCH和/或其它物理信道的解调;图6.2或图6.3的参考信令可用于保护带操作模式和带内操作模式的PBCH和/或其它物理信道的解调。
NB-IOT用户在完成小区搜索,进行PBCH解调前,需要知道可用于PBCH解调的参考信令。该参考信令可以由由同步信号隐式或显式地指示。用于指示PBCH解调的参考信令的同步信号包括但不限于以下信息:主同步信号、辅同步信号、辅同步信号的扰码序列、辅同步信号中的序列的组合方式、以及主同步信号和辅同步信号在时域和/或频域的相对位置等。具体实现可以如下:
设计三个不同主同步信号,以不同的主同步信号来隐式或显式地区分用于PBCH解调的参考信令。备选地,设计二个不同的主同步信号, 以其中的一个主同步信号来隐式或显式地指示用于独立操作模式和保护带内操作模式的PBCH解调的参考信令,而用另一个主同步信号来隐式或显式地指示用于带内操作模式PBCH解调的参考信令。或者,以其中一个主同步信号来隐式或显式地指示用于独立操作模式PBCH解调的参考信令。而用另一个主同步信号来隐式或显式地指示用于保护带操作模式和带内操作模式PBCH解调的参考信令。上述不同的主同步信号可以指主同步信号序列的不同产生方式、或主同步信号的不同序列等。其中,主同步信号的序列可以由Zadoff-Chu序列、PN(pseudo-noise)序列、沃尔什-阿达玛(Walsh-Hadamard)序列、Gold序列、或哥伦布(Golomb)序列等产生。例如,独立操作模式的主同步信号序列采用沃尔什-阿达玛序列,保护带操作模式的主同步信号序列采用PN序列,带内操作模式的主同步信号序列采用Zadoff-Chu序列。通过检测不同的序列可以区分出操作模式。主同步信号的不同序列号指相同产生方式的主同步信号序列的不同根序列、或由同一根序列通过不同的循环移位后得到的序列。
备选地,主同步信号可以相同,但是设计三个或三组不同的辅同步信号,以不同的辅同步信号或组号来隐式或显式地区分用于PBCH解调的参考信令。备选地,主同步信号可以相同,而设计二个或二组不同的辅同步信号,以其中的一个辅同步信号或组号来隐式或显式指示用于独立操作模式和保护带内操作模式的PBCH解调的参考信令,而用另一个辅同步信号或组号来隐式或显式地指示用于带内操作模式PBCH解调的参考信令。或者,以其中一个辅同步信号或组号来隐式或显式地指示用于独立操作模式PBCH解调的参考信令。而用另一个辅同步信号或组号来隐式或显式地指示用于保护带操作模式和带内操作模式PBCH解调的参考信令。上述不同的辅同步信号指辅同步信号的不同生成方式、或辅同步信号的不同序列号等。
备选地,主同步信号和辅同步信号可以相同,而以主同步信号和辅同步信号在时域和/或频域的相对位置来隐式或显式地区分用于PBCH解调的参考信令。
备选地,主同步信号和辅同步信号可以相同,而以辅同步信号的不同扰码序列来隐式或显式地区分用于PBCH解调的参考信令。
备选地,主同步信号可以相同,而以生成辅同步信号的多个序列之 间的不同组合方式来隐式或显式地区分用于PBCH解调的参考信令。
实施例4
下行发射/接收的起始OFDM符号可以由同步信号隐式或显式地指示。
对于不同的操作模式,其起始OFDM符号可能不同。例如,带内操作模式需要避开已有LTE的PDCCH(Physcal Downlink Control Channel)控制区域,而现有LTE PDCCH控制区域的大小是由PCFICH(Physical Control Format Indicator Channel)信道所获得。而独立操作模式和保护带操作模式没有这方面的限制。因此,不同操作模式下的起始OFDM符号可能不同。如图7所示,可以通过同步信号隐式或显式地指示各操作模式下的起始OFDM符号。
用于指示起始OFDM符号的同步信号包括但不限于以下信息:主同步信号、辅同步信号、辅同步信号的扰码序列、辅同步信号中的序列的组合方式、以及主同步信号和辅同步信号在时域和/或频域的相对位置等。具体实现可以如下:
设计三个不同主同步信号,以不同的主同步信号来隐式或显式地指示各操作模式下的起始OFDM符号。备选地,设计二个不同的主同步信号,以其中的一个主同步信号来隐式或显式地指示用于独立操作模式和保护带操作模式下的起始OFDM符号,而用另一个主同步信号来隐式或显式地指示用于带内操作模式下的起始OFDM符号。或者,以其中一个主同步信号来隐式或显式地指示用于独立操作模式下的起始OFDM符号。而用另一个主同步信号来隐式或显式地指示用于保护带操作模式和带内操作模式下的起始OFDM符号。上述不同的主同步信号可以指主同步信号序列的不同产生方式、或主同步信号的不同序列号等。其中,主同步信号的序列可以由Zadoff-Chu序列、PN(pseudo-noise)序列、沃尔什-阿达玛(Walsh-Hadamard)序列、Gold序列、或哥伦布(Golomb)序列等产生。例如,独立操作模式的主同步信号序列采用沃尔什-阿达玛序列,保护带操作模式的主同步信号序列采用PN序列,带内操作模式的主同步信号序列采用Zadoff-Chu序列。通过检测不同的序列可以区分出操作模式。主同步信号的不同序列号指相同产生方式的主同步信号序 列的不同根序列、或由同一根序列通过不同的循环移位后得到的序列。例如,独立操作模式、保护带操作模式和带内操作模式下的主同步信号可以是通过相同方式(如次用Zadoff-Chu序列)产生的不同根序列、或由同一根序列通过不同的循环移位后得到的序列。
备选地,主同步信号可以相同,但是设计三个或三组不同的辅同步信号,以不同的辅同步信号或组号来隐式或显式地指示各操作模式下的起始OFDM符号。备选地,主同步信号可以相同,而设计二个或二组不同的辅同步信号,以其中的一个辅同步信号或组号来隐式或显式指示用于独立操作模式和保护带操作模式下的起始OFDM符号,而用另一个辅同步信号或组号来隐式或显式地指示用于带内操作模式下的起始OFDM符号。或者,以其中一个辅同步信号或组号来隐式或显式地指示用于独立操作模式下的起始OFDM符号。而用另一个辅同步信号或组号来隐式或显式地指示用于保护带操作模式和带内操作模式下的起始OFDM符号。上述不同的辅同步信号指辅同步信号的不同生成方式、或辅同步信号的不同序列号等。
备选地,主同步信号和辅同步信号可以相同,而以主同步信号和辅同步信号在时域和/或频域的相对位置来隐式或显式地指示各操作模式下的起始OFDM符号。
备选地,主同步信号和辅同步信号可以相同,而以辅同步信号的不同扰码序列来隐式或显式地指示各操作模式下的起始OFDM符号。
备选地,主同步信号可以相同,而以生成辅同步信号的多个序列之间的不同组合方式来隐式或显式地指示各操作模式下的起始OFDM符号。
实施例5
下行发射/接收的起始OFDM符号由主信息块显式或隐式地指示。
在该实施例中,主信息块中可以包含用于指示下行接收的起始正交频分复用OFDM符号的信元。
该指示下行接收的起始OFDM符号的信元可以占用所述主信息块中的预先设定的位置上的1个或2个比特。所述预先设定的位置可以包括:所述主信息块的起始位置、中间位置、结尾位置、或者其他位置。
该指示下行接收的起始OFDM符号的信元还可以限定主信息块中的其他字段的含义。
图8为示例主信息块的示意图。在图8的示例中,前2个比特为字段1,可用于指示不同操作模式下的起始OFDM符号。例如,00:指示独立操作模式下的起始OFDM符号;01:指示保护带操作模式下的起始OFDM符号。而独立操作模式和保护带操作模式下的起始OFDM符号的具体数值可以通过预先设置、或公共信令配置、或UE特定信令配置的方式获得。10和11指示带内操作模式下的起始OFDM符号。例如,10指示带内操作模式下的起始OFDM符号为第3个OFDM符号;11指示带内操作模式下的起始OFDM符号为第4个OFDM符号。备选地,10指示带内操作模式下的起始OFDM符号为第2个OFDM符号;11指示带内操作模式下的起始OFDM符号为第3个OFDM符号。
另外,在图8中,其它字段的含义可以依赖于字段1来解释。例如当字段1为00时,主信息块中字段2至字段n的含义可以是一种解释(如:解释1);而字段1为01时,主信息块中字段2至字段n的含义可以是另一种解释(如:解释2);字段1为10时,则为解释3;字段1为10时,则为解释4。各种解释的字段数可以相同,也可以不相同。
备选地,图8中的字段1的2个比特,可用于指示不同操作模式。例如,00:指示独立操作模式;01:指示保护操作模式;10:指示带内操作模式;11:预留。而各操作模式下的起始OFDM符号可以隐式地由其操作模式获得。
备选地,用于指示不同操作模式下的起始OFDM符号的字段可以位于主信息块的末尾。
备选地,用于指示不同操作模式下的起始OFDM符号的字段可以位于主信息块的中间或其它任何预先固定的位置。
实施例6
NB-IOT的操作模式由窄带物联网的工作频带所决定。
在3GPP TS 36.101文件中,定义了LTE的工作频段。在该实施例中,可以由工作频段来确定窄带物联网的操作模式。例如,当窄带物联网工作在LTE频段上时,窄带物联网的操作模式为带内操作模式和保护带操 作模式。而当窄带物联网工作在LTE工作频带以外的其它频带上时,窄带物联网的操作模式为独立操作模式。
图9示出了可在支持窄带物联网的通信系统中实现的根据本发明实施例的传输方法1000的示例流程图。该通信系统可以包括一个或多个支持窄带物联网的基站BS 100以及一个或多个支持窄带物联网的用户设备UE 200。尽管图中仅示出了一个基站BS 100和一个UE 200,但是本发明可以包括更多个BS和更多个UE,本发明在这方面不受限制。
如图所示,在步骤S1110中,基站BS 100(具体地,基站的处理单元120)确定用于下行发射的起始正交频分复用OFDM符号,以及生成包含指示所述起始OFDM符号的信元的主信息块。
在步骤S1120中,基站BS 100(具体地,基站的发射单元110)发射所生成的主信息块。
在步骤S1210中,UE 200(具体地,UE的接收单元210)接收主信息块。
在步骤S1220中,UE 200通过解析所接收的主信息块中的用于指示下行接收的OFDM符号的信元,确定用于下行接收的起始OFDM符号。
在步骤S1130中,基站BS 100(具体地,基站的发射单元110)根据步骤S1110中确定的起始OFDM符号,发射下行链路信号。
在步骤S1230中,UE 200(具体地,UE的接收单元210)根据步骤S1220中确定的起始OFDM符号,接收下行链路信号。
应该理解,方法1000仅是示例性的,方法1000不局限于示出的步骤或顺序。例如,方法1000可以包括更多或者更少的步骤。例如,可选地,方法1100还可以包括根据同步信号确定用户设备要接收的主信息块的类型和/或用户设备要用于物理广播信道解调的参考信令的类型,以及根据该确定结果发射/接收主信息块和/或用于物理广播信道解调的参考信令等等。又如,可选地,同步信号可以是预先设定的。在该情况下,基站可以省略确定同步信号的步骤。此外,在一些实施例中,方法1000中的若干步骤可以合并在单个步骤中执行,或者单个步骤可以分为多个步骤来执行。
基站BS 100和UE 200的操作已经在上文中参考图1-图8进行了 详述,在此不再对方法1000进一步详述。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”是指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”是指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能 模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (16)

  1. 一种在用户设备中执行的方法,包括:
    接收主信息块;
    解析所接收的主信息块中用于指示下行接收的起始正交频分复用OFDM符号的信元;以及
    根据解析出的起始OFDM符号,接收下行链路信号。
  2. 根据权利要求1所述的方法,其中,
    所述指示下行接收的起始OFDM符号的信元占用所述主信息块中的预先设定的位置上的1个或2个比特。
  3. 根据权利要求2所述的方法,其中,
    所述预先设定的位置包括:所述主信息块的起始位置、中间位置、结尾位置、或者其他位置。
  4. 根据权利要求1-3中任一项所述的方法,其中,
    所述指示下行接收的起始OFDM符号的信元还限定所述主信息块中的其他字段的含义。
  5. 一种在基站中执行的方法,包括:
    确定下行发射的起始正交频分复用OFDM符号;
    生成包含指示所述起始OFDM符号的信元的主信息块;
    发射所生成的主信息块;以及
    根据所述起始OFDM符号,发射下行链路信号。
  6. 根据权利要求5所述的方法,其中,
    所述指示所述起始OFDM符号的信元占用所述主信息块中的预先设定的位置上的1个或2个比特。
  7. 根据权利要求5所述的方法,其中,
    所述预先设定的位置包括:所述主信息块的起始位置、中间位置、结尾位置、或者其他位置。
  8. 根据权利要求5-7中任一项所述的方法,其中,
    所述指示所述起始OFDM符号的信元还限定所述主信息块中的其他字段的含义。
  9. 一种用户设备,包括:
    接收单元,配置用于:接收主信息块;
    处理单元,配置用于:解析所接收的主信息块中用于指示下行接收的起始正交频分复用OFDM符号的信元,
    其中,所述接收单元还配置用于:根据解析出的起始OFDM符号,接收下行链路信号。
  10. 根据权利要求9所述的用户设备,其中,
    所述指示下行接收的起始OFDM符号的信元占用所述主信息块中的预先设定的位置上的1个或2个比特。
  11. 根据权利要求10所述的用户设备,其中,
    所述预先设定的位置包括:所述主信息块的起始位置、中间位置、结尾位置、或者其他位置。
  12. 根据权利要求9-11中任一项所述的用户设备,其中,
    所述指示下行接收的起始OFDM符号的信元还限定所述主信息块中的其他字段的含义。
  13. 一种基站,包括:
    处理单元,配置用于:确定下行发射的起始正交频分复用OFDM符号;以及,生成包含指示所述起始OFDM符号的信元的主信息块;以及
    发射单元,配置用于:发射所生成的主信息块;以及,根据所述起始OFDM符号,发射下行链路信号。
  14. 根据权利要求13所述的基站,其中,
    所述指示所述起始OFDM符号的信元占用所述主信息块中的预先设定的位置上的1个或2个比特。
  15. 根据权利要求14所述的基站,其中,
    所述预先设定的位置包括:所述主信息块的起始位置、中间位置、结尾位置、或者其他位置。
  16. 根据权利要求13-15中任一项所述的基站,其中,
    所述指示所述起始OFDM符号的信元还限定所述主信息块中的其他字段的含义。
PCT/CN2016/104521 2015-11-05 2016-11-04 物理信道的配置方法以及基站和用户设备 WO2017076319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/773,321 US10819546B2 (en) 2015-11-05 2016-11-04 Configuration method for physical channel, base station and user equipment
EP16861587.0A EP3373538B1 (en) 2015-11-05 2016-11-04 Configuration method for physical channel, base station, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510745520.XA CN106685872B (zh) 2015-11-05 2015-11-05 物理信道的配置方法以及基站和用户设备
CN201510745520.X 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017076319A1 true WO2017076319A1 (zh) 2017-05-11

Family

ID=58661781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104521 WO2017076319A1 (zh) 2015-11-05 2016-11-04 物理信道的配置方法以及基站和用户设备

Country Status (4)

Country Link
US (1) US10819546B2 (zh)
EP (1) EP3373538B1 (zh)
CN (1) CN106685872B (zh)
WO (1) WO2017076319A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327962B1 (en) 2015-07-22 2020-12-02 Samsung Electronics Co., Ltd. Techniques for operating an nb-iot-device in a cellular communication system
US10736113B2 (en) * 2016-02-16 2020-08-04 Qualcomm Incorporated Positioning signal techniques for narrowband devices
WO2019095330A1 (en) * 2017-11-17 2019-05-23 Zte Corporation Predetermined master information block coding
US10462752B2 (en) * 2017-12-01 2019-10-29 At&T Intellectual Property I, L.P. Transmitting content using guard band frequencies at reduced power
US11160050B2 (en) 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
CN112911521B (zh) * 2021-02-02 2022-01-21 北京达源环保科技有限公司 基于d2d通信的污水处理厂的智能监控方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160426A (zh) * 2008-09-18 2011-08-17 英飞凌科技股份有限公司 用于确定移动无线电基站的类型、无线电通信终端和网络设备、无线电通信智能卡设备的方法
WO2015020237A1 (en) * 2013-08-06 2015-02-12 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, communication method, and integrated circuit
CN104641582A (zh) * 2012-09-16 2015-05-20 Lg电子株式会社 在无线通信系统中考虑天线端口关系发送/接收下行链路信号的方法和装置
CN104756435A (zh) * 2012-11-02 2015-07-01 高通股份有限公司 Lte中的epdcch资源和准协同定位管理

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391254B2 (en) * 2005-10-06 2013-03-05 Samsung Electronics Co., Ltd Channel configuration and bandwidth allocation in multi-hop cellular communication networks
CN101662820B (zh) * 2007-01-09 2014-12-24 华为技术有限公司 基站装置、移动台装置、控制信息发送方法、控制信息接收方法及程序
KR100991767B1 (ko) * 2007-12-24 2010-11-03 한국전자통신연구원 다중 로봇을 원격제어하기 위한 휴대 인터넷의 상향 링크자원 할당 시스템 및 그 방법
KR101586622B1 (ko) * 2009-01-15 2016-02-02 삼성전자주식회사 이동통신 시스템에서 대역폭 결합을 위한 pdcch 전송 방법 및 시스템
CN106712921B (zh) 2011-07-14 2020-06-30 Lg电子株式会社 无线通信系统中设置信道的方法和装置
CN102916918B (zh) * 2011-08-01 2016-03-30 华为技术有限公司 通知mcch消息改变的方法、基站和终端
US20130142138A1 (en) * 2011-12-05 2013-06-06 Esmael Hejazi Dinan Coordination of Control Channel Transmissions
US9071399B2 (en) * 2012-08-29 2015-06-30 Intel Mobile Communications GmbH Method for operating a transceiver circuit and transceiver circuit
JP6294327B2 (ja) 2012-09-20 2018-03-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアンテナポート相互関係を考慮した下りリンク信号送受信方法及び装置
KR102086516B1 (ko) 2012-10-04 2020-03-09 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
JP6342904B2 (ja) 2012-10-04 2018-06-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてアンテナポートの関係を考慮した下りリンク信号送受信方法および装置
JP6228216B2 (ja) 2012-10-04 2017-11-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてアンテナポートの関係を考慮した下りリンク信号送受信方法および装置
JP6352935B2 (ja) 2012-10-25 2018-07-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける下りリンク信号の送受信方法および無線通信システムにおける下りリンク信号の送受信装置
US9455810B2 (en) * 2014-06-26 2016-09-27 Intel IP Corporation On the definition of the resource block in OFDMA/UL MUMIMO in HEW

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102160426A (zh) * 2008-09-18 2011-08-17 英飞凌科技股份有限公司 用于确定移动无线电基站的类型、无线电通信终端和网络设备、无线电通信智能卡设备的方法
CN104641582A (zh) * 2012-09-16 2015-05-20 Lg电子株式会社 在无线通信系统中考虑天线端口关系发送/接收下行链路信号的方法和装置
CN104756435A (zh) * 2012-11-02 2015-07-01 高通股份有限公司 Lte中的epdcch资源和准协同定位管理
WO2015020237A1 (en) * 2013-08-06 2015-02-12 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, communication method, and integrated circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373538A4 *

Also Published As

Publication number Publication date
CN106685872B (zh) 2020-07-14
EP3373538B1 (en) 2020-09-30
US20180324017A1 (en) 2018-11-08
US10819546B2 (en) 2020-10-27
CN106685872A (zh) 2017-05-17
EP3373538A1 (en) 2018-09-12
EP3373538A4 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
CN110249579B (zh) 对在nr-lte设备中的跟踪参考信号的发送和接收
EP3691374B1 (en) Communication method and communication device
WO2017076319A1 (zh) 物理信道的配置方法以及基站和用户设备
CN109937561B (zh) 用于无线通信的方法、装置和计算机可读介质
WO2017076317A1 (zh) 物理信道的配置方法以及基站和用户设备
WO2017076316A1 (zh) 物理信道的配置方法以及基站和用户设备
EP3457779A1 (en) Base station, user equipment, and related method
CN105337712B (zh) 用于配置物理信道起始符号的方法以及基站和用户设备
WO2017118394A1 (zh) 上行参考信号传输方法和接收方法、以及用户设备和基站
EP3439389B1 (en) Method and base station for configuring non-anchor physical resource block, and method and user equipment for determining position of non-anchor physical resource block
JP7040600B2 (ja) ネットワークデバイス、端末デバイス、及び方法
US20200288491A1 (en) Multiplexing method for narrowband internet of things physical downlink channels, base station, and user equipment
US20190058559A1 (en) Resource configuration method for demodulation reference signal, base station, and user equipment
WO2017166930A1 (zh) 配置非锚物理资源块的方法和基站、确定非锚物理资源块位置的方法和用户设备
KR20210067919A (ko) 무선통신 시스템에서 타겟 단말의 위치측정을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15773321

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016861587

Country of ref document: EP