WO2017193834A1 - 一种信号处理方法及装置 - Google Patents

一种信号处理方法及装置 Download PDF

Info

Publication number
WO2017193834A1
WO2017193834A1 PCT/CN2017/082500 CN2017082500W WO2017193834A1 WO 2017193834 A1 WO2017193834 A1 WO 2017193834A1 CN 2017082500 W CN2017082500 W CN 2017082500W WO 2017193834 A1 WO2017193834 A1 WO 2017193834A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
qam
conjugate
subcarriers
mapping
Prior art date
Application number
PCT/CN2017/082500
Other languages
English (en)
French (fr)
Inventor
王艺
黄磊
史桢宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017193834A1 publication Critical patent/WO2017193834A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a signal processing method and apparatus.
  • OFDM Orthogonal Frequency Division Multiplex
  • LTE Long Term Evolution
  • IEEE 802.11 OFDM waveforms
  • Modulation technology is a process of transforming a binary baseband signal into a transmittable digital signal.
  • the modulation technique widely used in OFDM systems is QAM (Quadrature Amplitude Modulation), such as 4th order QAM, 16th order QAM, 64th order QAM. Etc., where the 4th order QAM is QPSK (quadrature phase shift keying) modulation.
  • QAM Quadrature Amplitude Modulation
  • the modulated signal is processed by OFDM to form a baseband signal.
  • the baseband signal is represented by a complex number formed by the I path and the Q path, and then input into the middle radio frequency unit.
  • the I/Q imbalance is a common phenomenon of the radio frequency unit in the wireless communication system.
  • the radio unit will be respectively baseband signals I and Q branches amplified and modulated onto a carrier frequency f c.
  • the intermediate RF unit cannot accurately correct the parameters of the I/Q two paths. Therefore, the I/Q imbalance phenomenon will become more and more serious as the carrier frequency f c increases.
  • the I/Q imbalance reaches a certain level, the signal will be distorted and interference will occur, resulting in a decrease in wireless transmission performance.
  • the invention provides a signal processing method and device to improve the wireless transmission reliability of a signal.
  • the present invention provides a signal processing method, including:
  • N/2 QAM symbols are sequentially mapped to the 1st to N/2th subcarriers, and the N/2 conjugate symbols are sequentially mapped to the N/th according to a mapping order opposite to the N/2 QAM symbols. 2+1 to the Nth subcarrier; where N is the number of subcarriers.
  • N is an integer multiple of 2, that is, N/2 is a positive integer.
  • the QAM symbols may be multiple, such as greater than or less than N/2; for example, if the number of QAM symbols is less than N/2, the conjugate symbol is also smaller than N/2, and some subcarriers after mapping are air. Usually the number of QAM symbols is less than or equal to N/2.
  • the method further includes: dividing the binary bit information stream into bit blocks; wherein the bit blocks are usually multiple, and each of the foregoing solutions is described by taking one bit block as an example; in practical applications, if there are multiple bit blocks Each bit block performs the above operations.
  • the method further includes: performing OFDM processing on the mapped N symbols, and outputting a baseband signal including the I/Q two paths.
  • the N/2 QAM symbols are (d 1 , d 2 , . . . , d N/2 ), and the N/2 conjugate symbols are (d P(1) , d P(2) , ...,d P(N/2) ), the specific mapping process can be:
  • mapping method For example, suppose there are 8 subcarriers, according to the above mapping method, d 1 is mapped to the first subcarrier, d 2 is mapped to the second subcarrier, d 3 is mapped to the third subcarrier, and d 4 is mapped to the fourth subcarrier, d P(1) maps to the 8th subcarrier, d P(2) maps to the 7th subcarrier, d P(3) maps to the 6th subcarrier, and d P(4) maps to the 5th subcarrier.
  • the present invention also provides a signal processing method, including:
  • QAM modulating a bit block outputting a plurality of QAM symbols, the bit block including a plurality of bits; performing conjugate processing on the plurality of QAM symbols, outputting a plurality of conjugate symbols; and performing the plurality of QAM symbols and the Spreading a plurality of conjugate symbols respectively, and outputting N/2 spread QAM symbols and N/2 spread conjugate symbols; and sequentially performing the N/2 spread QAM symbols Mapping to the first to the N/2th subcarriers, and sequentially mapping the N/2 spread conjugate symbols to the Nth in a mapping order opposite to the N/2 spread QAM symbols /2+1 to the Nth subcarrier; where N is the number of subcarriers.
  • N is an integer multiple of 2, that is, N/2 is a positive integer.
  • the number of the spread QAM symbols may be multiple, such as greater than or less than N/2, for example, if the number of spread QAM symbols is less than N/2, and the number of conjugate symbols is also less than N. /2, some subcarriers are empty after mapping.
  • the QAM symbols are N/(2M), the conjugate symbols are N/(2M); N/(2M) is a positive integer.
  • This scheme is applicable to a more general signal processing method combining QAM and OFDM technology, and is applicable to a case where the spreading factor is greater than 2.
  • the method further includes: dividing the binary bit information stream into bit blocks; wherein the bit blocks are usually multiple, and the foregoing solution is described by taking one bit block as an example; in practical applications, if there are multiple bit blocks, Each bit block performs the above operations.
  • the method further includes: performing OFDM processing on the mapped N symbols, and outputting a baseband signal including the I/Q two paths.
  • the spread N/2 QAM symbols are (d' 1 , d' 2 , ..., d' N/2 ), and the spread N/2 conjugate symbols are (d ' P(1) , d' P(1)+1 ,...,d' P(1)+M-1 ,...,d' P(N/2M) ,d' P(N/2M)+1 , ...,d' P(N/2M)+M-1 ;), then the specific mapping process can be:
  • mapping method For example, suppose there are 8 subcarriers, according to the above mapping method, d 1 is mapped to the first subcarrier, d 2 is mapped to the second subcarrier, d 3 is mapped to the third subcarrier, and d 4 is mapped to the fourth subcarrier, d P(1) maps to the 8th subcarrier, d P(2) maps to the 7th subcarrier, d P(3) maps to the 6th subcarrier, and d P(4) maps to the 5th subcarrier.
  • Each of the above methods may be performed by a network device or by a terminal.
  • the present invention also provides a signal processing apparatus, including:
  • a modulation module configured to perform QAM modulation on the bit block, output N/2 QAM symbols, the bit block includes a plurality of bits, and a conjugate module, configured to perform conjugate processing on the N/2 QAM symbols, and output a N/2 conjugate symbol; a mapping module, configured to sequentially map the N/2 QAM symbols to the 1st to N/2th subcarriers, and the N/2 conjugate symbols according to the The reverse mapping order of the N/2 QAM symbols is sequentially mapped to the N/2+1th to Nth subcarriers; where N is the number of subcarriers.
  • the apparatus may further comprise a segmentation module for dividing the binary bit information stream into bit blocks, and inputting the bit blocks into the modulation module; the generated bit blocks are usually a plurality of blocks.
  • the apparatus may further include an OFDM module configured to perform OFDM processing on the mapped N symbols output by the mapping module, and output a baseband signal including the I/Q two paths.
  • an OFDM module configured to perform OFDM processing on the mapped N symbols output by the mapping module, and output a baseband signal including the I/Q two paths.
  • the present invention also provides a signal processing apparatus, including:
  • a modulation module configured to perform QAM modulation on the bit block, output a plurality of QAM symbols, the bit block includes a plurality of bits, and a conjugate module, configured to perform conjugate processing on the plurality of QAM symbols, and output multiple conjugates a spreading module, configured to separately perform spreading processing on the plurality of QAM symbols and the plurality of conjugate symbols, and output N/2 spread QAM symbols and N/2 spreads a yoke symbol; a mapping module, configured to sequentially map the N/2 spread QAM symbols to the first to the N/2th subcarriers, and use the N/2 spread conjugate symbols according to the conjugate symbol The mapping order opposite to the N/2 spread QAM symbols is sequentially mapped to the N/2+1th to Nth subcarriers; where N is the number of subcarriers.
  • the apparatus may further comprise a segmentation module for dividing the binary bit information stream into bit blocks, and inputting the bit blocks into the modulation module; the generated bit blocks are usually a plurality of blocks.
  • the apparatus may further include an OFDM module configured to perform OFDM processing on the mapped N symbols output by the mapping module, and output a baseband signal including the I/Q two paths.
  • an OFDM module configured to perform OFDM processing on the mapped N symbols output by the mapping module, and output a baseband signal including the I/Q two paths.
  • the signal processing method and apparatus provided by the present invention sequentially maps a plurality of QAM symbols after spreading processing to the first to N/2th subcarriers in order, and aligns a plurality of conjugate symbols after spreading processing.
  • the mapping order of the opposite QAM symbols is sequentially mapped to the N/2+1th to Nth subcarriers. Since the QAM symbols and the two subcarriers occupied by the conjugate symbols have a symmetric relationship, under the condition of I/Q imbalance, the improvement is performed. The reliability of wireless signal transmission.
  • 1A is a system block diagram of an SQPSK-OFDM signal processing method in an IEEE 802.11ad system.
  • 1B is a system block diagram of a signal processing method in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a QAM symbol and a conjugate symbol mapped to a subcarrier.
  • FIG. 3 is a system block diagram of a signal processing method according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a signal processing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a signal processing apparatus according to another embodiment of the present invention.
  • Figure 6 is a schematic diagram of a signal processing apparatus according to still another embodiment of the present invention.
  • a wireless access network may include different network elements in different systems.
  • the network elements of the LTE (Long Term Evolution) and the LTE-A (LTE Advanced) radio access network include an eNB (eNodeB, evolved base station), and a WLAN (wireless local area network)/Wi-Fi network element includes Access Point (AP), etc.
  • eNB eNodeB, evolved base station
  • WLAN wireless local area network
  • Wi-Fi Wireless Fidelity
  • Other wireless networks may also use a solution similar to the embodiment of the present invention, but the related modules in the base station system may be different, and the embodiment of the present invention is not limited.
  • user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset).
  • MS Mobile Station
  • Mobile Terminal mobile terminal
  • Mobile Telephone mobile Telephone
  • handset mobile phone
  • the portable device the user equipment can communicate with one or more core networks via a radio access network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN radio access network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • SQAM Spreading Quadrature Amplitude Modulation
  • SQPSK Send Quadrature Phase Shift Keying
  • Control the modulation method that combines 4th-order QAM (ie QPSK modulation) with spread spectrum technology.
  • the same QPSK symbol S is sent twice, which is the conjugate conj(S) of S and S, respectively, which is equivalent to spreading twice. Since the transmitted symbols S and conj(S) occupy two time-frequency units and are transmitted on different sub-carriers, the diversity gain of two time-frequency resources can be obtained in the wireless channel, which ensures the reliability of signal transmission.
  • FIG. 1A shows a schematic diagram of a signal processing system combining SQPSK and OFDM technology. The signal processing method is combined with the schematic diagram below. Description.
  • the binary bit information stream ⁇ c k ⁇ enters a segmentation module, and the segmentation module divides the binary bit information stream ⁇ c k ⁇ stream into a plurality of bit blocks, each block having N bits, denoted as (c 1 , c 2 , ..., c N ), where N is the number of subcarriers, which may be all subcarriers or partial subcarriers used for data transmission in the OFDM system; each bit block is input to the QPSK modulation module.
  • the QPSK modulation module After each bit block is input into the QPSK modulation module, taking a bit block as an example, the QPSK modulation module performs QPSK modulation on the bit block, and outputs a plurality of QPSK symbols to the mapping module and the conjugate module.
  • one symbol d k is transmitted twice, respectively d k and d P(k) , which is equivalent to 2 times the spreading, and the spreading sequence is equivalent to [+1, +1].
  • the N/2 QPSK symbols (d 1 , d 2 , . . . , d N/2 ) in the above step 102 and the ⁇ N/2 QPSK conjugate symbols in step 103 (d P(1) , d P (2) , ..., d P(N/2) ) are input to the mapping module.
  • the mapping module maps the N/2 QPSK symbols (d 1 , d 2 , . . . , d N/2 ) and the N/2 QPSK conjugate symbols (d P(1) , d P(2) , ..., d P(N/2) ), a total of N symbols, which are sequentially mapped to N subcarriers in order.
  • the mapped N symbols are then input to the OFDM module.
  • the OFDM module performs OFDM processing on the mapped N symbols, and outputs a baseband signal including two I/Q channels.
  • the OFDM processing is prior art and will not be described in detail.
  • the signal processing method is improved.
  • the mapping method of step 104 is improved.
  • the QPSK symbol d k still uses the mapping method of step 104, and sequentially maps to the front N in order. /2 subcarriers, but the QPSK conjugate symbol d P(k) is mapped to the last N/2 subcarriers in the reverse order of the QPSK symbol d k ; referring to FIG. 1B, the method specifically includes:
  • the mapping module sequentially maps N/2 QPSK symbols (d 1 , d 2 , . . . , d N/2 ) to the first to N/2th subcarriers of the OFDM in sequence; and sets the QPSK conjugate symbol (d P(1) , d P(2) , . . . , d P(N/2) are sequentially mapped to the N/2+1th to Nth subcarriers of the OFDM in the reverse order of the QPSK symbols, and then mapped The N symbols are input to the OFDM module.
  • FIG. 2 is a schematic diagram showing different mapping results obtained by the above two different mapping methods.
  • the mapping result obtained after step 104, the right side of the figure is the mapping result obtained after step 204. That is, the 1-4th QAM symbols are sequentially mapped to the 1-4th subcarriers, and the 1-4th QAM conjugate symbols are sequentially mapped to the 5th-8th subcarriers in the reverse mapping order of the QAM symbols.
  • the above method embodiment is described by taking 4th order QAM modulation (ie, QPSK modulation) as an example.
  • Q represents the QAM order
  • the QAM module outputs N/2 QAM symbols (d 1 , d 2 , ..., d N/2 ) to the mapping module and the conjugate module, the conjugate module
  • the output is N/2 QAM conjugate symbols (d P(1) , d P(2) , . . . , d P(N/2) ) to the mapping module, and other steps are consistent with the above embodiments.
  • QAM modulating a bit block outputting a plurality of QAM symbols, the bit block including a plurality of bits; performing conjugate processing on the plurality of QAM symbols, outputting a plurality of conjugate symbols; and sequentially mapping the plurality of QAM symbols And to the first to the N/2th subcarriers, the plurality of conjugate symbols are in a mapping order opposite to the N/2 QAM symbols Mapping to N/2+1 to Nth subcarriers in sequence; where N is the number of subcarriers.
  • the number of QAM symbols is less than or equal to N/2, and the number of QAM conjugate symbols is also less than or equal to N/2.
  • the total number of QAM symbols and conjugate symbols is less than or equal to the number of subcarriers N.
  • mapping module of FIG. 1B the embodiment of the present invention further discloses a mapping method, including:
  • the specific mapping method is consistent with the above embodiment.
  • the number of QAM symbols is less than or equal to N/2, and the number of QAM conjugate symbols is also less than or equal to N/2.
  • the total number of QAM symbols and conjugate symbols is less than or equal to the number of subcarriers N.
  • the spreading of the above embodiment is limited to the case where the spreading factor is 2, and a more general spreading scheme is not given, such as the case where the spreading factor is greater than 2.
  • FIG. 3 is a schematic diagram of a signal processing system combining QAM and OFDM technology. The signal processing method will be described below in conjunction with the schematic diagram.
  • the spreading factor is 2M, where M is a natural number less than N/2, N/2M is an even number, N is the number of subcarriers, and may be all subcarriers or partial subcarriers used for data transmission in an OFDM system.
  • the binary bit information stream ⁇ c k ⁇ enters a segmentation module, and the segmentation module divides the binary bit information stream ⁇ c k ⁇ stream into a plurality of bit blocks, and inputs each bit block into the Q-QAM module;
  • each block may have Nq/M bits, which are denoted as (c 1 , c 2 , . . . , c Nq/M ), and Nq/M is (N ⁇ q)/M.
  • Nq/M is (N ⁇ q)/M.
  • the Q-QAM module After each bit block is input to the Q-QAM module, taking a bit block as an example, the Q-QAM module performs Q-th order QAM modulation on the bit block, and outputs a plurality of QAM symbols to the spreading module and the conjugate module.
  • a total of two symbols are input to the spread spectrum module, one for the N/2M QAM symbols (d 1 , d 2 , ..., d N/2M ) output by the Q-QAM module, and the other for the output of the conjugate module.
  • /2M QAM conjugate symbols (d P(1) , d P(2) , ..., d P(N/2M) ).
  • the input of the spread spectrum module is composed of N/2M QAM symbols (d 1 , d 2 , ..., d N/2M ) and N/2M QAM conjugate symbols (d P(1) , d P(2) , ..., d P(N/2M) ) consisting of N/M symbols, and the spreading unit performs M-fold spreading on the input symbols d k and d P(k) .
  • the specific spreading method can be:
  • the spread spectrum module outputs the spread N symbols to the mapping module, specifically including N/2 spread QAM symbols (d' 1 , d' 2 , ..., d' N/2 ) and N/2
  • the spread QAM conjugate symbol (d' P(1) , d' P(1)+1 ,...,d' P(1)+M-1 ,...,d' P(N/2M) ,d ' P(N/2M)+1 ,...,d' P(N/2M)+M-1 ;).
  • the mapping module maps the spread N symbols to N subcarriers of the OFDM, where the N/2 spread QAM symbols (d' 1 , d' 2 , . . . , d' N/ 2 ) sequentially mapping to the 1st to N/2th subcarriers in order, and N/2 spread QAM conjugate symbols (d' P(1) , d' P(1)+1 , ..., d' P(1)+M-1 ,...,d' P(N/2M) ,d' P(N/2M)+1 ,...,d' P(N/2M)+M-1 ;)
  • the sequence opposite to the QAM symbol is sequentially mapped to the N/2+1th to Nth subcarriers, that is, N/2 spread QAM conjugate symbols (d' P(1) , d' P(1)+ 1 ,...,d' P(1)+M-1 ,...,d' P(N/2M) ,d' P(N/2M)+1 ,...,d' P(N/2M)+M- 1
  • the mapped N symbols are then input to the OFDM module.
  • the OFDM module performs OFDM processing on the mapped N symbols, and outputs a baseband signal including two I/Q channels.
  • the OFDM module processing is prior art and will not be described in detail.
  • n is a natural number, For example, 1, 2, 3, etc., the case where the spreading factor described in the embodiment of Fig. 1B is 2 is excluded.
  • This embodiment implements a more general OFDM system-based SQAM modulated signal processing procedure.
  • QAM modulating a bit block outputting a plurality of QAM symbols, the bit block including a plurality of bits; performing conjugate processing on the plurality of QAM symbols, outputting a plurality of conjugate symbols; and performing the plurality of QAM symbols and the Each of the plurality of conjugate symbols performs spreading processing, and outputs a plurality of spread QAM symbols and a plurality of spread conjugate symbols; and sequentially mapping the plurality of spread QAM symbols to the first to the first And mapping, on the N/2 subcarriers, the plurality of spread conjugate symbols to the N/2+1th to Nth subcarriers in a mapping order opposite to the plurality of the spread QAM symbols Where N is the number of subcarriers.
  • the number of spread QAM symbols is less than or equal to N/2, and the number of spread QAM conjugate symbols is also less than or equal to N/2; the spread QAM symbol and the spread conjugate symbol total The number is less than or equal to the number of subcarriers N.
  • mapping module of FIG. 3 the embodiment of the present invention further discloses a mapping method, including:
  • the specific mapping method is consistent with the above embodiment.
  • the spread QAM symbol is less than or equal to N/2, and the number of spread QAM conjugate symbols is also less than or equal to N/2; the total number of the spread QAM symbols and the spread conjugate symbols is less than Equal to the number of subcarriers N.
  • each embodiment of the present invention is described by taking QAM modulation as an example. This is the most commonly used modulation method at present. If there are other modulation modes to produce other modulation symbols, the letter of the present invention can also be used. The number processing method and mapping method are not described in detail.
  • the receiving side uses the relationship on the two symmetric subcarriers to perform the part I after performing OFDM demodulation.
  • the distortion signal generated by the /Q imbalance changes from interference to an effective signal. Therefore, under the condition of I/Q imbalance, the wireless transmission reliability of the signal is improved, and the reception performance is further improved.
  • the SQAM-OFDM signal processing method according to the present invention is executed by the transmitting end, and before sending data of the transmitting end, the following configuration information may be sent to the receiving end, such as:
  • the modulation order can be included in the MCS (modulation and coding scheme) information
  • the transmitting end needs to send the spreading factor 2M used by the receiving end; if the system uses only one spreading, the transmitting end does not need to send the spreading factor to the receiving end;
  • the transmitting end needs to send the currently used spreading sequence number to the receiving end;
  • the configuration information sent by the transmitting end to the receiving end can be sent to the receiving end in advance through a control channel, a broadcast channel, or a data channel.
  • the receiving end After receiving the configuration information, the receiving end performs demodulation of SQAM-OFDM based on the configuration information.
  • the SQAM-OFDM signal processing scheme of the embodiment of the present invention can be applied to a multi-carrier communication system.
  • IEEE 802.11ay has determined to use a plurality of carriers to transmit higher rate data, and the bandwidth of each carrier is 2.16 GHz. It can also be applied to future 5G communication systems, and the joint transmission of multiple carriers is divided into two cases.
  • Discrete Multicarrier Multiple carriers are discontinuous in the spectrum.
  • each carrier performs OFDM modulation and demodulation.
  • the SQAM-OFDM signal processing scheme in the above embodiment is applied to the discrete multi-carrier case, that is, different carriers transmit different data.
  • N c carriers there are N c carriers, and the bit stream that each carrier needs to be modulated is Then, each carrier performs SQAM-OFDM signal processing according to the steps of the embodiment shown in FIG. 1B or FIG. 3 as the transmission signal of the nth carrier.
  • the SQAM-OFDM signal processing scheme of the present invention can also be applied to a SU-MIMO (single user multiple-input multiple-output) case.
  • the SQAM-OFDM of the present invention is applied to a SU-MIMO case of a single carrier, for example, the base station prepares N s independent data bit streams for a certain user equipment Each bit stream performs a corresponding step according to the embodiment shown in FIG. 1B or FIG. 3, and performs SQAM-OFDM signal processing as a transmission signal of the nth antenna.
  • the SQAM-OFDM of the present invention is applied to the SU-MIMO case of multiple consecutive carriers, first preparing N c *N s independent data bit streams of length N for a certain user Where N c is the number of carriers, and Ns is the number of antennas; each data bit stream is subjected to SQAM-OFDM signal processing according to the steps of the embodiment of FIG. 1B or FIG. 3, and the output of the SQAM-OFDM modulation is used as the nth s antenna and n c of the carrier of the transmission signal.
  • the SQAM-OFDM scheme of the present invention is applied to the case of multi-carrier and SU-MIMO, and the transmitting end needs to send the following configuration information to the receiving end before transmitting the data:
  • the number of multicarriers for example, two bits, representing 1/2/3/4 carriers;
  • the multi-carrier is discrete or continuous, for example, one bit indicates discrete or continuous;
  • the number of data streams transmitted by SU-MIMO for example, two bits representing 1/2/4 data streams;
  • the configuration information sent by the transmitting end to the receiving end can be sent to the receiving end in advance through a control channel, a broadcast channel, or a data channel.
  • the receiving end After receiving the configuration information, the receiving end performs demodulation of SQAM-OFDM based on the configuration information.
  • the scheme can also be applied to MU-MIMO (multi-user multiple-input multiple-output).
  • the foregoing method embodiments may be performed by a device on the network side, such as a base station, an access point, etc., or may be executed by a terminal, such as a mobile phone, a notebook computer, a vehicle mobile device, etc., corresponding to the method execution entity of the embodiment of FIG. 1B.
  • the present invention also provides a signal processing apparatus in an OFDM system. Referring to FIG. 4, the apparatus includes:
  • the modulation module 401 is configured to perform QAM modulation on the bit block, and output N/2 QAM symbols to the conjugate module 402 and the mapping module 403, where the bit block includes multiple bits;
  • the conjugate module 402 is configured to perform conjugate processing on the N/2 QAM symbols, and output N/2 conjugate symbols to the mapping module 403;
  • the mapping module 403 is configured to sequentially map the N/2 QAM symbols to the first to the N/2th subcarriers, and the N/2 conjugate symbols are opposite to the N/2 QAM symbols.
  • the mapping order is sequentially mapped to the N/2+1th to Nth subcarriers; where N is the number of subcarriers.
  • the QAM modulation is QPSK modulation.
  • the apparatus may further include a segmentation module 400, configured to divide the binary bit information stream into bit blocks, and input the bit block into the modulation module 401; the generated bit blocks are usually multiple.
  • a segmentation module 400 configured to divide the binary bit information stream into bit blocks, and input the bit block into the modulation module 401; the generated bit blocks are usually multiple.
  • the apparatus may further include an OFDM module (not shown) for performing OFDM processing on the mapped N symbols output by the mapping module 403, and outputting a baseband signal including two I/Q channels.
  • the OFDM processing is prior art and will not be described in detail.
  • the foregoing apparatus may correspond to the execution body of the method embodiment of FIG. 1B, and the corresponding modules respectively perform corresponding method steps, which are not detailed in one embodiment.
  • the method corresponding to the embodiment of FIG. 3 performs a main body, and the present invention further provides a signal processing apparatus in an OFDM system.
  • the method includes:
  • the modulation module 501 is configured to perform QAM modulation on the bit block, and output multiple QAM symbols to the conjugate module 502 and the spreading module 503, where the bit block includes multiple bits;
  • the conjugate module 502 is configured to perform conjugate processing on the plurality of QAM symbols, and output a plurality of conjugate symbols to the spreading module 503;
  • the spreading module 503 is configured to separately perform spreading processing on the plurality of QAM symbols and the plurality of conjugate symbols, and output N/2 spread QAM symbols and N/2 spread conjugates symbol;
  • the mapping module 504 is configured to sequentially map the N/2 spread QAM symbols to the first to the N/2th sub-child On the carrier, the N/2 spread conjugate symbols are sequentially mapped to the N/2+1th to Nth subcarriers in a mapping order opposite to the N/2 spread QAM symbols. Where N is the number of subcarriers.
  • the apparatus may further include a segmentation module 500, configured to divide the binary bit information stream into bit blocks, and input the bit block into the modulation module 501; the generated bit blocks are usually multiple.
  • a segmentation module 500 configured to divide the binary bit information stream into bit blocks, and input the bit block into the modulation module 501; the generated bit blocks are usually multiple.
  • the apparatus may further include an OFDM module (not shown) for performing OFDM processing on the mapped N symbols output by the mapping module 504, and outputting a baseband signal including two I/Q channels.
  • the OFDM processing is prior art and will not be described in detail.
  • the foregoing apparatus may correspond to the execution body of the method embodiment of FIG. 3, and the corresponding modules respectively perform corresponding method steps, which are not detailed in one embodiment.
  • a processor, a transceiver, a memory, and a transceiver are used for transceiving and processing signals, and the processor is configured to execute various types of processing processes, for example,
  • the function of any one or more of the modulation module 401, the conjugate module 402, the mapping module 403, the segmentation module 400, and the OFDM module in the apparatus shown in FIG. 4 is implemented; and the apparatus shown in FIG. 5 can also be implemented.
  • the various components of the device of Figure 6 are coupled together by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the device shown in FIG. 6 can implement the various processes implemented in the foregoing embodiments of the foregoing methods. To avoid repetition, details are not described herein again.
  • mapping module In addition, in the corresponding method embodiment, only the mapping module is considered.
  • the embodiment of the present invention further discloses a signal processing apparatus, including:
  • Receiving unit receiving N/2 QAM symbols and N/2 QAM conjugate symbols
  • Mapping unit sequentially mapping the N/2 QAM symbols to the 1st to N/2th subcarriers, and mapping the N/2 conjugate symbols according to a mapping order opposite to the N/2 QAM symbols Mapping to N/2+1 to Nth subcarriers in sequence; where N is the number of subcarriers.
  • Receiving unit for receiving N/2 QAM symbols and N/2 QAM conjugate symbols
  • Mapping unit sequentially mapping the N/2 QAM symbols to the 1st to N/2th subcarriers, and mapping the N/2 conjugate symbols according to a mapping order opposite to the N/2 QAM symbols Mapping to N/2+1 to Nth subcarriers in sequence; where N is the number of subcarriers.
  • the receiving unit may be implemented by a receiver, and the mapping unit may be implemented by a processor.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor can be a microprocessor or the processor can be any Conventional processors, etc.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明提供一种信号处理方法,包括:对比特块进行QAM调制,输出N/2个QAM符号,所述比特块包括多个比特;对所述N/2个QAM符号做共轭处理,输出N/2个共轭符号;将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数;由于QAM符号和共轭符号占用的2个子载波有对称关系,在I/Q不平衡的条件下,提高了无线信号的传输的可靠性。

Description

一种信号处理方法及装置 技术领域
本发明涉及无线通信领域,更具体地,涉及一种信号处理方法及装置。
背景技术
OFDM(OFDM:Orthogonal Frequency Division Multiplex,正交频分复用)是无线通信系统已经广泛使用复用技术,已经在LTE(Long Term Evolution,长期演进)通信系统和IEEE 802.11系统中使用,OFDM波形也是5G移动通信系统的候选波形之一。调制技术是把二进制基带信号变换成可传输的数字信号的过程,OFDM系统中广泛使用的调制技术是QAM(Quadrature Amplitude Modulation,正交幅度调制),如4阶QAM,16阶QAM,64阶QAM等,其中4阶QAM就是QPSK(quadrature phase shift keying,正交相移键控)调制。
调制后的信号经OFDM处理后形成基带信号,基带信号表示为I路和Q路形成的复数,然后输入中射频单元,I/Q不平衡是无线通信系统中射频单元普遍存在的现象。中射频单元将把基带信号分别对I路和Q路放大,并调制到载波频率fc上。在高频(fc>6GHz)通信系统中,由于载波频点高、带宽大,导致中射频单元无法准确校正I/Q两路的参数。因此,I/Q不平衡现象随着载频fc的升高会越来越严重,I/Q不平衡到达一定程度会引起信号的畸变,产生干扰,导致无线传输性能下降。
高频通信系统中,如何在I/Q不平衡的情况下,保证OFDM调制信号在无线信道下可靠传输是当前的难点。
发明内容
本发明提供一种信号处理方法及装置,以提高信号的无线传输可靠性。
一方面,本发明提供一种信号处理方法,包括:
对比特块进行QAM调制,输出N/2个QAM符号,所述比特块包括多个比特;对所述N/2个QAM符号做共轭处理,输出N/2个共轭符号;将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
结合上述方面,在一个实施方式中,所述QAM调制为Q阶,Q=22q,q为自然数;便于将该方法扩展到通用的QAM调制。
结合上述各方面,其中,N为2的整数倍,即N/2为正整数。
另外,作为另一个实施例,QAM符号可以为多个,如大于或小于N/2;例如:如果QAM符号数小于N/2,则共轭符号也小于N/2,映射后有些子载波为空。通常QAM符号数小于等于N/2。
结合上述各个方面,该方法之前进一步包括:将二进制比特信息流分成比特块;其中比特块通常为多个,上述各方案以一个比特块为例进行说明;实际应用中,如果有多个比特块,各个比特块均执行上述操作。
结合上述各个方面,该方法进一步包括:对映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。
结合上述各个方面,所述N/2个QAM符号为(d1,d2,…,dN/2),N/2个共轭符号为(dP(1),dP(2),…,dP(N/2)),则具体映射过程可以为:
将符号dk映射到第k个子载波;
将符号dP(k)映射到第P(k)个子载波,P(k)=N-k+1;
其中k=1,2,…,N/2。
例如,假设有8个子载波,按照上述映射方法,d1映射到第1个子载波,d2映射到第2个子载波,d3映射到第3个子载波,d4映射到第4个子载波,dP(1)映射到第8个子载波,dP(2)映射到第7个子载波,dP(3)映射到第6个子载波,dP(4)映射到第5个子载波。
上面例子中,如果只有3个QAM符号(d1,d2,d3)及共轭符号(dP(1),dP(2),dP(3)),则第4,5个子载波为空。
另一方面,本发明还提供一种信号处理方法,包括:
对比特块进行QAM调制,输出多个QAM符号,所述比特块包括多个比特;对所述多个QAM符号做共轭处理,输出多个共轭符号;对所述多个QAM符号及所述多个共轭符号分别进行扩频处理,输出N/2个扩频后的QAM符号及N/2个扩频后的共轭符号;将所述N/2个扩频后的QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个扩频后的共轭符号按照与所述N/2个扩频后的QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
其中,N为2的整数倍,即N/2为正整数。
另外,作为一个实施例,扩频后的QAM符号可以为多个,如大于或小于N/2,例如:如果扩频后的QAM符号数小于N/2,则及共轭符号数也小于N/2,映射后有些子载波为空。
结合上述方面,在一个实施方式中,所述QAM符号为N/(2M)个,所述共轭符号为N/(2M)个;N/(2M)为正整数。
所述扩频处理为M倍扩频处理,M=2n,n为自然数。
该方案适用更加通用的QAM与OFDM技术相结合的信号处理方法,适用扩频因子大于2的情况。
结合上述各方面,所述QAM调制为Q阶,Q=22q,q为自然数。
结合上述各个方面,该方法之前进一步包括:将二进制比特信息流分成比特块;其中比特块通常为多个,上述方案以一个比特块为例进行说明;实际应用中,如果有多个比特块,各个比特块均执行上述操作。
结合上述各个方面,该方法进一步包括:对映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。
结合上述各个方面,所述扩频后的N/2个QAM符号为(d’1,d’2,…,d’N/2),扩频后的N/2个共轭符号为(d’P(1),d’P(1)+1,…,d’P(1)+M-1,…,d’P(N/2M),d’P(N/2M)+1,…,d’P(N/2M)+M-1;),则具体映射过程可以为:
将符号d’k映射到第k个子载波,其中k=1,2,…,N/2;
将符号d’P(k)+m映射到第P(k)+m个子载波,其中k=1,2,…,N/2M;m=0,1,…M-1;P(k)=N-Mk+1;Mk的含义为M×k。
例如,假设有8个子载波,按照上述映射方法,d1映射到第1个子载波,d2映射到第2个子载波,d3映射到第3个子载波,d4映射到第4个子载波,dP(1)映射到第8个子载 波,dP(2)映射到第7个子载波,dP(3)映射到第6个子载波,dP(4)映射到第5个子载波。
上面例子中,如果只有3个QAM符号(d1,d2,d3)及共轭符号(dP(1),dP(2),dP(3)),则第4,5个子载波为空。
上述各个方法可以由网络设备执行,也可以由终端执行。
另一方面,本发明还提供一种信号处理装置,包括:
调制模块,用于对比特块进行QAM调制,输出N/2个QAM符号,所述比特块包括多个比特;共轭模块,用于对所述N/2个QAM符号做共轭处理,输出N/2个共轭符号;映射模块,用于将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
结合上述方面,其中所述QAM调制为Q阶,Q=22q,q为自然数。
结合上述方面,该装置还可以包括分段模块,用于将二进制比特信息流分成比特块,将所述比特块输入调制模块;生成的比特块通常为多个。
该装置还可以进一步包括OFDM模块,用于对映射模块输出的映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。
又一方面,本发明还提供一种信号处理装置,包括:
调制模块,用于对比特块进行QAM调制,输出多个QAM符号,所述比特块包括多个比特;共轭模块,用于对所述多个QAM符号做共轭处理,输出多个共轭符号;扩频模块,用于对所述多个QAM符号及所述多个共轭符号分别进行扩频处理,输出N/2个扩频后的QAM符号及N/2个扩频后的共轭符号;映射模块,用于将所述N/2个扩频后的QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个扩频后的共轭符号按照与所述N/2个扩频后的QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
结合上述方面,所述QAM符号为N/(2M)个,所述共轭符号为N/(2M)个;所述扩频处理为M倍扩频处理,M=2n,n为自然数。
结合上述方面,其中,所述QAM调制为Q阶,Q=22q,q为自然数。
结合上述方面,该装置还可以包括分段模块,用于将二进制比特信息流分成比特块,将所述比特块输入调制模块;生成的比特块通常为多个。
该装置还可以进一步包括OFDM模块,用于对映射模块输出的映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。
本发明提供的信号处理方法及装置,将扩频处理后的多个QAM符号按顺序依次映射到第1到第N/2个子载波上,将扩频处理后的多个共轭符号按照与多个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上,由于QAM符号和共轭符号占用的2个子载波有对称关系,在I/Q不平衡的条件下,提高了无线信号传输的可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是IEEE802.11ad系统中SQPSK-OFDM信号处理方法的系统框图。
图1B是本发明一个实施例信号处理方法的系统框图。
图2是QAM符号及共轭符号映射到子载波后的示意图。
图3是本发明另一个实施例的信号处理方法的系统框图。
图4是本发明一个实施例的信号处理装置示意图。
图5是本发明另一实施例的信号处理装置示意图。
图6是本发明又一实施例的信号处理装置示意图。
具体实施方式
本发明实施例可以用于各种基于OFDM技术的的无线网络。无线接入网络在不同的系统中可包括不同的网元。例如,LTE(Long Term Evolution)和LTE-A(LTE Advanced)中无线接入网络的网元包括eNB(eNodeB,演进型基站),WLAN(wireless local area network)/Wi-Fi的网元包括接入点(Access Point,AP)等。其它无线网络也可以使用与本发明实施例类似的方案,只是基站系统中的相关模块可能有所不同,本发明实施例并不限定。
还应理解,在本发明实施例中,用户设备(UE,User Equipment)包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
SQAM(Spreading Quadrature Amplitude Modulation,扩展正交振幅调制)是把QAM调制技术与扩频相结合的调制方式,目前无线通信系统中主要采用的调制方式是SQPSK(Spreading Quadrature Phase Shift Keying,扩展相移键控),即将4阶QAM(即QPSK调制)与扩频技术相结合的调制方式。具体是将同一个的QPSK符号S发两遍,分别是S和S的共轭conj(S),相当于扩频2倍。由于发送的符号S和conj(S)占用两个时频单元,在不同的子载波进行传输,因此在无线信道中能够获得两个时频资源的分集增益,保证了信号传输的可靠性。
在基于OFDM技术的无线通信系统中,例如IEEE802.11ad,SQPSK是基本调制方式之一,图1A给出了SQPSK与OFDM技术相结合的信号处理系统示意图,以下结合该示意图对该信号处理方法进行说明。
101,二进制比特信息流{ck}进入分段模块,分段模块将二进制比特信息流{ck}流分成多个比特块,每块有N个比特,记作(c1,c2,…,cN),其中N是子载波个数,可以为OFDM系统中用于数据传输的全部子载波或部分子载波;将各个比特块输入QPSK调制模块。
102,各个比特块输入QPSK调制模块后,以一个比特块为例,QPSK调制模块对所述比特块进行QPSK调制,输出多个QPSK符号到映射模块及共轭模块。
以一个比特块为例,将每两个比特作为一对比特,QPSK调制模块把每一对比特(c2k-1,c2k),其中k=1,2,…,N/2,映射成QPSK星座图中的一个QPSK星座点,映射后输出N/2个QPSK符号(d1,d2,…,dN/2)到映射模块及共轭模块。
103,共轭模块对输入的N/2个QPSK符号(d1,d2,…,dN/2)做共轭处理,生成共轭符号 dP(k),具体可以为dP(k)=conj(dk),输出N/2个QPSK共轭符号(dP(1),dP(2),…,dP(N/2))到映射模块。
这样,一个符号dk被传输了两遍,分别为dk和dP(k),相当于扩频了2倍,扩频序列相当于[+1,+1]。
上述步骤102中的所述N/2个QPSK符号(d1,d2,…,dN/2)及步骤103中的殴N/2个QPSK共轭符号(dP(1),dP(2),…,dP(N/2))均输入映射模块。
104,映射模块将所述N/2个QPSK符号(d1,d2,…,dN/2)及所述N/2个QPSK共轭符号(dP(1),dP(2),…,dP(N/2)),共N个符号,按顺序依次映射到N个子载波上。
具体方法是将QPSK符号dk映射到第k个子载波,其中k=1,2,…,N/2;将QPSK共轭符号dP(k)映射到第P(k)=k+N/2个子载波,其中k=1,2,…,N/2;因此,dk占用一半的OFDM子载波,dP(k)占用另外一半OFDM子载波。然后将映射后的N个符号输入OFDM模块。
105,OFDM模块对映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。OFDM处理过程是现有技术,不再详述。
上述SQPSK-OFDM信号处理过程已经应用于IEEE802.11ad中。
本发明一个具体实施例中,对上述信号处理方法进行了改进,具体的,是对步骤104的映射方法进行了改进,QPSK符号dk依然采用步骤104的映射方法,按顺序依次映射到前N/2个子载波,但QPSK共轭符号dP(k)按照与QPSK符号dk相反的顺序映射到后N/2个子载波;参考图1B,该方法具体包括:
201~203,同步骤101~103;不再详述。
204,映射模块将N/2个QPSK符号(d1,d2,…,dN/2)按顺序依次映射到OFDM的第1到第N/2个子载波上;将QPSK共轭符号(dP(1),dP(2),…,dP(N/2))按与QPSK符号相反的顺序依次映射到OFDM的第N/2+1到第N个子载波上,然后将映射后的N个符号输入OFDM模块。
具体的映射方法为:QPSK符号dk映射到第k个子载波,其中k=1,2,…,N/2,占用一半的OFDM子载波;将QPSK共轭符号dP(k)映射到第P(k)=N-k+1个子载波,其中k=1,2,…,N/2,占用另外一半OFDM子载波。
205,同步骤105;不再详述。
图2给出了上述两种不同映射方法得到的不同映射结果的示意图,当子载波的个数为8时,即N=8时,子载波编号依次为1-8,图的左侧为采用步骤104后得到的映射结果,图的右侧为采用步骤204后得到的映射结果。即第1-4个QAM符号依次映射到第1-4个子载波,第1-4个QAM共轭符号按QAM符号相反映射顺序依次映射到第5-8个子载波。
上述方法实施例以4阶QAM调制(即QPSK调制)为例进行说明,本领域的人员可以知道,16阶QAM,64阶QAM等同样可以适用上述的方法,只需要将图1B中的QPSK调制模块替换为Q-QAM模块即可,Q表示QAM阶数;QAM模块输出N/2个QAM符号(d1,d2,…,dN/2)到映射模块及共轭模块,共轭模块输出的为N/2个QAM共轭符号(dP(1),dP(2),…,dP(N/2))到映射模块,其他步骤与上述实施例一致。
上述实施例可以总结如下:
对比特块进行QAM调制,输出多个QAM符号,所述比特块包括多个比特;对所述多个QAM符号做共轭处理,输出多个共轭符号;将所述多个QAM符号依次映射到第1到第N/2个子载波上,将所述多个共轭符号按照与所述N/2个QAM符号相反的映射顺序 依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
通常情况下,所述QAM符号数小于等于N/2,QAM共轭符号数也小于等于N/2。QAM符号和共轭符号总数量小于等于子载波数N。
另外,从图1B的映射模块的角度,本发明实施例还公开了一种映射方法,包括:
接收多个QAM符号及多个QAM共轭符号;
将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。具体的映射方法和上述实施例一致。
通常情况下,所述QAM符号数小于等于N/2,QAM共轭符号数也小于等于N/2。QAM符号和共轭符号总数量小于等于子载波数N。
上述方法是从映射模块的角度来写,不考虑QAM符号及QAM共轭符号之前的处理过程。
上述实施例扩频是限制在扩频因子为2的情况,没有给出更通用的扩频方案,如扩频因子大于2的情况。
图3给出了QAM与OFDM技术相结合的信号处理系统示意图,以下结合该示意图对该信号处理方法进行说明。
考虑Q-QAM调制的通用情况,Q是QAM阶数,Q=22q,q为自然数,如1,2,3,4等;扩频因子为2M,其中M是小于N/2的自然数,N/2M是偶数,N是子载波个数,可以为OFDM系统中用于数据传输的全部子载波或部分子载波。参考图3,该方法流程如下:
301,二进制比特信息流{ck}进入分段模块,分段模块将二进制比特信息流{ck}流分成多个比特块,将各个比特块输入Q-QAM模块;
具体的,每块可以有Nq/M个比特,记作(c1,c2,…,cNq/M),Nq/M为(N×q)/M的意思。然后每个比特块输入Q-QAM模块进行调制。
302,各个比特块输入Q-QAM模块后,以一个比特块为例,Q-QAM模块对所述比特块进行Q阶QAM调制,输出多个QAM符号到扩频模块及共轭模块。
以一个比特块为例,Q-QAM模块把每2q个比特(c2q(k-1)+1,…c2qk)映射成Q-QAM星座图中的一个Q-QAM星座点;然后输出N/2M个Q-QAM符号(d1,d2,…,dN/2M)到扩频模块及共轭模块,其中k=1,2,…,N/2M,N/2M的含义为N/(2×M)。
303,共轭模块对输入的N/2M个Q-QAM符号做共轭处理,生成共轭符号dP(k),记作dP(k)=conj(dk),输出N/2M个Q-QAM共轭符号(dP(1),dP(2),…,dP(N/2M))到扩频模块。
因此,共两路符号输入了扩频模块,一路为Q-QAM模块输出的N/2M个QAM符号(d1,d2,…,dN/2M),另一路为共轭模块输出的N/2M个QAM共轭符号(dP(1),dP(2),…,dP(N/2M))。
304,扩频模块的输入是由N/2M个QAM符号(d1,d2,…,dN/2M)和N/2M个QAM共轭符号(dP(1),dP(2),…,dP(N/2M))组成的N/M个符号,扩频单元对输入符号dk和dP(k)进行M倍的扩频。
具体扩频方法可以为:
d’(k-1)M+1=dk×s1,d’(k-1)M+2=dk×s2,…,d’kM=dk×sM;k=1,2,…,N/2M;
d’P(k)=dP(k)×sM+1,d’P(k)+1=dP(k)×sM+2…,d’P(k)+M-1=dP(k)×s2M;k=1,2,…,N/2M;
其中{sm,m=1,2,…,2M}是长度为2M的扩频序列。
这样扩频模块输出扩频后的N个符号给映射模块,具体包括N/2个扩频后的QAM符 号(d’1,d’2,…,d’N/2)及N/2个扩频后的QAM共轭符号(d’P(1),d’P(1)+1,…,d’P(1)+M-1,…,d’P(N/2M),d’P(N/2M)+1,…,d’P(N/2M)+M-1;)。
305,映射模块将这扩频后的N个符号映射到OFDM的N个子载波上,其中,将N/2个扩频后的QAM符号(d’1,d’2,…,d’N/2)按顺序依次映射到第1到第N/2个子载波上,将N/2个扩频后的QAM共轭符号(d’P(1),d’P(1)+1,…,d’P(1)+M-1,…,d’P(N/2M),d’P(N/2M)+1,…,d’P(N/2M)+M-1;)按照与QAM符号相反的顺序依次映射到第N/2+1到第N个子载波上,即将N/2个扩频后的QAM共轭符号(d’P(1),d’P(1)+1,…,d’P(1)+M-1,…,d’P(N/2M),d’P(N/2M)+1,…,d’P(N/2M)+M-1;)按照顺序依次映射到第N到第N/2+1个子载波上。
具体方法是将符号d’k映射到第k个子载波,其中k=1,2,…,N/2;
将符号d’P(k)+m映射到第P(k)+m个子载波,其中k=1,2,…,N/2M;m=0,1,…M-1;其中P(k)=N-M×k+1。
然后将映射后的N个符号输入OFDM模块。
假设N=8,映射后的示意图同样可以参考图2。
306,OFDM模块对映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。OFDM模块处理过程是现有技术,不再详述。
本实施例相比上一个实施例多了一个扩频的步骤,扩频因子2M,M=2n,n≥0,QAM调制不局限于4阶,可以为16阶QAM,64阶QAM,256阶QAM等。当QAM调制为4阶,扩频因子为2时,即当n=0时,M=1,则每路符号扩频1倍,则等同于图1B中描述的实施例,如果n为自然数,如1,2,3等,则排除了图1B的实施例中描述的扩频因子为2情况。本实施例实现了更加通用的基于OFDM系统的SQAM调制信号处理过程。
上述实施例可总结如下:
对比特块进行QAM调制,输出多个QAM符号,所述比特块包括多个比特;对所述多个QAM符号做共轭处理,输出多个共轭符号;对所述多个QAM符号及所述多个共轭符号分别进行扩频处理,输出多个扩频后的QAM符号及多个扩频后的共轭符号;将所述多个扩频后的QAM符号依次映射到第1到第N/2个子载波上,将所述多个扩频后的共轭符号按照与所述多个扩频后的QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
通常情况下,所述扩频后的QAM符号数小于等于N/2,扩频后的QAM共轭符号数也小于等于N/2;扩频后的QAM符号和扩频后的共轭符号总数量小于等于子载波数N。
另外,从图3的映射模块的角度,本发明实施例还公开了一种映射方法,包括:
接收多个扩频后的QAM符号及多个扩频后的QAM共轭符号;
将所述多个扩频后的QAM符号依次映射到第1到第N/2个子载波上,将所述多个扩频后的QAM共轭符号按照与所述多个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。具体的映射方法和上述实施例一致。
上述实施例中,扩频后的QAM符号小于等于N/2,扩频后的QAM共轭符号数也小于等于N/2;扩频后的QAM符号和扩频后的共轭符号总数量小于等于子载波数N。
上述方法是从映射模块的角度来写,不考虑QAM符号及QAM共轭符号之前的处理过程。
需要说明的是,本发明各个实施例都是以QAM调制为例进行说明,这是目前最常用的调制方式,如果还有其他的调制方式生产其他的调制符号,也同样可以采用本发明的信 号处理方法及映射方法,不再详述。
本发明实施例的上述方法中,由于将QAM共轭符号按照与QAM符号相反的顺序进行子载波的映射,接收侧在进行OFDM解调后,利用两个对称子载波上的关系,把部分I/Q不平衡产生的畸变信号从干扰变成了有效信号,因此,在I/Q不平衡的条件下,以提高信号的无线传输可靠性,进一步的提升接收性能。
基于本发明SQAM-OFDM信号处理方法,由发送端执行,发送端数据发送之前,可以给接收端发送如下配置信息,如:
调制阶数,可以在MCS(modulation and coding scheme)信息中包含;
如果存在多个扩频因子,发送端需要给接收端发送所采用的扩频因子2M;如果系统只采用一个扩频,那么发送端不需要给接收端发送扩频因子;
扩频序列,如果存在多个扩频序列,发送端需要给接收端发送当前所采用的扩频序列号;
基于本发明SQAM-OFDM方案,发送端给接收端的配置信息可以通过控制信道、广播信道、或者数据信道提前发送给接收端。接收端在收到这些配置信息后,基于这些配置信息进行SQAM-OFDM的解调。
本发明实施例的SQAM-OFDM信号处理方案可以应用到多载波通信系统中。如:IEEE802.11ay已经确定采用多个载波传输更高速率的数据,每个载波的带宽是2.16GHz。也可用应用于未来的5G通信系统,多个载波的联合传输分两种情况。
连续多载波:多个载波在频谱上连续;这种情况下,将上述图1B或图3所示的实施例中的N替换成N’=Nc*N,其中Nc是载波个数,如取2或4等;N是每个载波的子载波的个数,其他步骤不变。
离散多载波:多个载波在频谱上不连续。这种情况下各个载波各自做OFDM调制解调。上述实施例中的SQAM-OFDM信号处理方案应用于离散多载波情况,即不同载波传输不同的数据。假设有Nc个载波,每个载波需要调制的比特流是
Figure PCTCN2017082500-appb-000001
则各个载波分别按照图1B或图3所示的实施例的步骤做SQAM-OFDM信号处理,作为第n个载波的发送信号。
本发明的SQAM-OFDM信号处理方案也可以应用于SU-MIMO(single user multiple-input multiple-output)情况。如:IEEE802.11ay可以配置SU-MIMO允许传输Ns个独立的数据流,其中Ns=2,4。共分下面几种情况:
单个载波SU-MIMO传输:本发明的SQAM-OFDM应用于单个载波的SU-MIMO情况,如,基站为某个用户设备准备Ns个独立数据比特流
Figure PCTCN2017082500-appb-000002
每个比特流分别按照图1B或图3所示的实施例执行相应的步骤,进行SQAM-OFDM信号处理,作为第n根天线的发送信号。
多个连续载波SU-MIMO传输:本发明的SQAM-OFDM应用于多个连续载波的SU-MIMO情况,首先为某个用户设备准备Ns个独立的长度为N’=Nc*N的数据比特流
Figure PCTCN2017082500-appb-000003
其中Nc是载波个数,每个数据比特流分别按照图1B或图3实施例的步骤做SQAM-OFDM信号处理,其中将N替换成N’,SQPSK-OFDM调制的输出作为第n根天线的发送信号。
多个离散载波SU-MIMO传输:本发明的SQAM-OFDM应用于多个连续载波的SU-MIMO情况,首先为某个用户准备Nc*Ns个独立的长度为N的数据比特流
Figure PCTCN2017082500-appb-000004
其中Nc是载波个数,Ns是天线个数;每个数据比特流分别按照图1B或图3实施例的步骤做SQAM-OFDM信号处理,SQAM-OFDM调制的输出作为第ns根天线和第nc个载波的发送信号。
本发明SQAM-OFDM方案应用于多载波、SU-MIMO的情况,发送端在发送数据之前,需要给接收端发送如下配置信息:
多载波的个数,例如用两个比特,表示1/2/3/4个载波;
多载波是否离散或者连续,例如用一个比特表示离散或者连续;
SU-MIMO传输的数据流数,例如用两个比特表示1/2/4个数据流;
基于本发明SQAM-OFDM方案,发送端给接收端的配置信息可以通过控制信道、或者广播信道、或者数据信道提前发送给接收端。接收端在收到这些配置信息后,基于这些配置信息进行SQAM-OFDM的解调。
更进一步的延伸和推广,该方案还可以应用于MU-MIMO(multi-user multiple-input multiple-output)。
上述各方法实施例可以由网络侧的设备执行,如基站,接入点等,也可以由终端来执行,如手机,笔记本电脑,车载移动装置等,对应图1B的实施例的方法执行主体,本发明还提供一种OFDM系统中信号处理装置,参考图4,该装置包括:
调制模块401,用于对比特块进行QAM调制,输出N/2个QAM符号到共轭模块402及映射模块403,所述比特块包括多个比特;
共轭模块402,用于对所述N/2个QAM符号做共轭处理,输出N/2个共轭符号到映射模块403;
映射模块403,用于将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
结合上述方面,其中所述QAM调制为QPSK调制。
进一步的,该装置还可以包括分段模块400,用于将二进制比特信息流分成比特块,将所述比特块输入调制模块401;生成的比特块通常为多个。
该装置还可以进一步包括OFDM模块(图中未示出),用于对映射模块403输出的映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。OFDM处理过程是现有技术,不再详述。
上述装置可以对应步骤图1B的方法实施例的执行主体,对应的模块分别执行相应的方法步骤,不在一一详述。
又一方面,对应图3的实施例的方法执行主体,本发明还提供一种OFDM系统中信号处理装置,参考图5,包括:
调制模块501,用于对比特块进行QAM调制,输出多个QAM符号到共轭模块502及扩频模块503,所述比特块包括多个比特;
共轭模块502,用于对所述多个QAM符号做共轭处理,输出多个共轭符号到扩频模块503;
扩频模块503,用于对所述多个QAM符号及所述多个共轭符号分别进行扩频处理,输出N/2个扩频后的QAM符号及N/2个扩频后的共轭符号;
映射模块504,用于将所述N/2个扩频后的QAM符号依次映射到第1到第N/2个子 载波上,将所述N/2个扩频后的共轭符号按照与所述N/2个扩频后的QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
结合上述方面,所述QAM符号为N/(2M)个,所述共轭符号为N/(2M)个;所述扩频处理为M倍扩频处理,M=2n,n为自然数。
结合上述方面,其中,所述QAM调制为Q阶,Q=22q,q为自然数。
进一步的,该装置还可以包括分段模块500,用于将二进制比特信息流分成比特块,将所述比特块输入调制模块501;生成的比特块通常为多个。
该装置还可以进一步包括OFDM模块(图中未示出),用于对映射模块504输出的映射后的N个符号进行OFDM处理,输出包含I/Q两路的基带信号。OFDM处理过程是现有技术,不再详述。
上述装置可以对应图3的方法实施例的执行主体,对应的模块分别执行相应的方法步骤,不在一一详述。
上述两个装置实施例还有另一个形式的实施例,参考图6,包括处理器,收发器,存储器,收发器用于对信号进行收发处理,处理器用于执行各类的处理流程,例如:可以实现图4所示的装置中调制模块401,共轭模块402,映射模块403,分段模块400及OFDM模块中任意的一个或多个模块的功能;也可以实现可以实现图5所示的装置中调制模块501,共轭模块502,扩频模块503,映射模块504,分段模块500及OFDM模块中任意的一个或多个模块的功能。
可选地,图6中的设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图6所示的设备能够实现前述各个方法的实施例中所实现的各个过程,为避免重复,这里不再赘述。
另外,对应方法实施例中仅考虑映射模块的情况,本发明实施例还公开了一种信号处理装置,包括:
接收单元:接收N/2个QAM符号及N/2个QAM共轭符号;
映射单元:将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
接收单元:用于接收N/2个QAM符号及N/2个QAM共轭符号;
映射单元:将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;其中N为子载波的个数。
具体的映射方法在上述方法实施例中已经详述。
对应另一个形式的实施例,上述接收单元可以用接收器来实现,映射单元可以用处理器来实现。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何 常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种信号处理方法,包括:
    对比特块进行QAM调制,输出N/2个QAM符号,所述比特块包括多个比特;
    对所述N/2个QAM符号做共轭处理,输出N/2个共轭符号;
    将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;
    其中N为子载波的个数。
  2. 如权利要求1所述的方法,其中,所述N/2个QAM符号为(d1,d2,…,dN/2),N/2个共轭符号为(dP(1),dP(2),…,dP(N/2)),所述映射步骤包括:
    将符号dk映射到第k个子载波;
    将符号dP(k)映射到第P(k)个子载波,P(k)=N-k+1;
    其中k=1,2,…,N/2。
  3. 一种信号处理方法,包括:
    对比特块进行QAM调制,输出多个QAM符号,所述比特块包括多个比特;
    对所述多个QAM符号做共轭处理,输出多个共轭符号;
    对所述多个QAM符号及所述多个共轭符号分别进行扩频处理,输出N/2个扩频后的QAM符号及N/2个扩频后的共轭符号;
    将所述N/2个扩频后的QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个扩频后的共轭符号按照与所述N/2个扩频后的QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;
    其中N为子载波的个数。
  4. 如权利要求3所述的方法,其特征在于:
    所述QAM符号为N/(2M)个,所述共轭符号为N/(2M)个;
    所述扩频处理为M倍扩频处理,M=2n,n为自然数。
  5. 如权利要求3或4任意一项所述的方法,其中,所述QAM调制为Q阶,Q=22q,q为自然数。
  6. 一种信号处理装置,包括:
    调制模块,用于对比特块进行QAM调制,输出N/2个QAM符号,所述比特块包括多个比特;
    共轭模块,用于对所述N/2个QAM符号做共轭处理,输出N/2个共轭符号;
    映射模块,用于将所述N/2个QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个共轭符号按照与所述N/2个QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;
    其中N为子载波的个数。
  7. 如权利要求6所述的装置,其中,所述QAM调制为Q阶,Q=22q,q为自然数。
  8. 一种信号处理装置,包括:
    调制模块,用于对比特块进行QAM调制,输出多个QAM符号,所述比特块包括多个比特;
    共轭模块,用于对所述多个QAM符号做共轭处理,输出多个共轭符号;
    扩频模块,用于对所述多个QAM符号及所述多个共轭符号分别进行扩频处理,输 出N/2个扩频后的QAM符号及N/2个扩频后的共轭符号;
    映射模块,用于将所述N/2个扩频后的QAM符号依次映射到第1到第N/2个子载波上,将所述N/2个扩频后的共轭符号按照与所述N/2个扩频后的QAM符号相反的映射顺序依次映射到第N/2+1到第N个子载波上;
    其中N为子载波的个数。
  9. 如权利要求8所述的装置,其特征在于:
    所述QAM符号为N/(2M)个,所述共轭符号为N/(2M)个;
    所述扩频处理为M倍扩频处理,M=2n,n为自然数。
  10. 如权利要求8或9任意一项所述的装置,其中,所述QAM调制为Q阶,Q=22q,q为自然数。
PCT/CN2017/082500 2016-05-13 2017-04-28 一种信号处理方法及装置 WO2017193834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610318943.8 2016-05-13
CN201610318943.8A CN107370707B (zh) 2016-05-13 2016-05-13 一种信号处理方法及装置

Publications (1)

Publication Number Publication Date
WO2017193834A1 true WO2017193834A1 (zh) 2017-11-16

Family

ID=60266196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082500 WO2017193834A1 (zh) 2016-05-13 2017-04-28 一种信号处理方法及装置

Country Status (2)

Country Link
CN (1) CN107370707B (zh)
WO (1) WO2017193834A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904098B1 (en) * 2001-10-16 2005-06-07 Wideband Semiconductors, Inc. Linear phase robust carrier recovery for QAM modems
CN1909404A (zh) * 2006-08-17 2007-02-07 华为技术有限公司 分集发送信号的方法及其装置
CN102714648A (zh) * 2010-07-09 2012-10-03 联发科技(新加坡)私人有限公司 无线局域网设备及其方法
CN103916356A (zh) * 2014-04-02 2014-07-09 东南大学 一种基于动态标量调节的低峰均比无线光传输方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889553A (zh) * 2005-06-30 2007-01-03 都科摩(北京)通信技术研究中心有限公司 训练序列的生成方法、通信系统和通信方法
US7808883B2 (en) * 2005-08-08 2010-10-05 Nokia Corporation Multicarrier modulation with enhanced frequency coding
CN101222469B (zh) * 2008-01-24 2012-03-21 上海华为技术有限公司 子载波映射方法及系统
US20090232252A1 (en) * 2008-03-14 2009-09-17 Dukhyun Kim Method and Apparatus for Digital Encoding with Reduced Memory Requirement and Complexity
CN101729212B (zh) * 2008-10-16 2014-02-05 中兴通讯股份有限公司南京分公司 一种空频分组码的子载波映射方法
CN103873404B (zh) * 2014-02-28 2017-08-29 北京遥测技术研究所 高阶正交幅度调制系统中基于i/q路幅值的多模盲均衡方法
CN103986484B (zh) * 2014-05-15 2017-02-15 中国电子科技集团公司第四十一研究所 宽带中频信号幅度不平衡补偿方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904098B1 (en) * 2001-10-16 2005-06-07 Wideband Semiconductors, Inc. Linear phase robust carrier recovery for QAM modems
CN1909404A (zh) * 2006-08-17 2007-02-07 华为技术有限公司 分集发送信号的方法及其装置
CN102714648A (zh) * 2010-07-09 2012-10-03 联发科技(新加坡)私人有限公司 无线局域网设备及其方法
CN103916356A (zh) * 2014-04-02 2014-07-09 东南大学 一种基于动态标量调节的低峰均比无线光传输方法

Also Published As

Publication number Publication date
CN107370707B (zh) 2020-06-16
CN107370707A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN109088840B (zh) 一种信息传输方法和装置
WO2017035808A1 (zh) 一种信号发送或接收方法和设备
US20220038236A1 (en) Reference signal transmission method and apparatus
CN109245844A (zh) 无线通信方法、装置及系统
WO2018082457A1 (zh) 配置参考信号的方法和装置
WO2016127324A1 (zh) 一种降低峰均比的方法、装置、设备和系统
US11700159B2 (en) Reception apparatus and reception method
WO2016176877A1 (zh) 物理层协议数据单元的传输方法和装置
CN111526106A (zh) 通信方法及装置
WO2017219788A1 (zh) 一种信号处理方法及装置
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
WO2018059350A1 (zh) 一种数据处理方法、装置和系统
CN111478759A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
US10491344B2 (en) Signal transmission method and apparatus
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
WO2017059719A1 (zh) 传输数据的方法和设备
WO2019029716A1 (zh) 处理数据的方法和装置
US11444818B2 (en) Signal transmission method and apparatus
WO2017193834A1 (zh) 一种信号处理方法及装置
US20050237921A1 (en) Low peak to average ratio search algorithm
WO2023142825A1 (zh) 一种数据处理方法、装置及相关设备
WO2022188660A1 (zh) Dmrs正交化的方法、终端设备和网络设备
WO2022253116A1 (zh) 一种多用户通信的方法及相关通信装置
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795452

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795452

Country of ref document: EP

Kind code of ref document: A1