WO2017193600A1 - 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置 - Google Patents

一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置 Download PDF

Info

Publication number
WO2017193600A1
WO2017193600A1 PCT/CN2016/113708 CN2016113708W WO2017193600A1 WO 2017193600 A1 WO2017193600 A1 WO 2017193600A1 CN 2016113708 W CN2016113708 W CN 2016113708W WO 2017193600 A1 WO2017193600 A1 WO 2017193600A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
light source
wdm
pon system
narrowband
Prior art date
Application number
PCT/CN2016/113708
Other languages
English (en)
French (fr)
Inventor
胡琪凯
徐玮
符小东
何品翰
吴媛媛
Original Assignee
中天宽带技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天宽带技术有限公司 filed Critical 中天宽带技术有限公司
Publication of WO2017193600A1 publication Critical patent/WO2017193600A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25137Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/612Coherent receivers for optical signals modulated with a format different from binary or higher-order PSK [X-PSK], e.g. QAM, DPSK, FSK, MSK, ASK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/675Optical arrangements in the receiver for controlling the input optical signal for controlling the optical bandwidth of the input signal, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • H04J14/0239Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths in WDM-PON sharing multiple downstream wavelengths for groups of optical network units [ONU], e.g. multicasting wavelengths

Definitions

  • the invention belongs to the field of communication technologies, and in particular relates to a communication device based on an ultra-narrowband spectrally split incoherent light source and an adaptive threshold adjustment in a WDM-PON system.
  • Wavelength-locked WDM-PON mainly utilizes the principle of injection mode-locking.
  • FP-LD Fabry-Perot Laser Diode
  • the seed source can be a broadband source (BBS), such as an Amplified Spontaneous Emission (ASE), or a multi-wavelength/multi-longitudinal mode laser, or directly double-FP-LD inter-injection to lock the wavelength.
  • BSS broadband source
  • ASE Amplified Spontaneous Emission
  • ASE Amplified Spontaneous Emission
  • ASE Amplified Spontaneous Emission
  • ASE multi-wavelength/multi-longitudinal mode laser
  • the broadband seed source can be in the Central Office (CO) Optical Line Terminal (OLT) or Optical Network Unit (ONU), or it can be completely concentrated in the CO to provide downlink or uplink communication for the entire communication system.
  • Required seed source When the broadband seed source passes through the wavelength division multiplexing multiplexer/demultiplexer (WDMMUX/DMUX), the spectrum is split, and the spectrally split seed light is injected into the FP-LD.
  • WDMMUX/DMUX wavelength division multiplexing multiplexer/demultiplexer
  • the spectral width after WDMMUX/DMUX spectral segmentation is wider (greater than 60 GHz), which is susceptible to dispersion and optical filtering, limited transmission distance, and is not suitable for dense wavelength division multiplexing systems.
  • the present invention provides a communication device based on ultra-narrowband spectrally split incoherent light source and adaptive threshold adjustment in a WDM-PON system, which effectively resists the influence of intensity noise, and at the same time, the ultra-narrowband line width pair of the light source
  • the effects of dispersion and optical filtering are highly resistant and are suitable for long-distance DWDM communication systems.
  • a communication device based on ultra-narrowband spectrally split incoherent light source and adaptive threshold adjustment in a WDM-PON system, including a central station, a long-distance optical fiber transmission system, a remote node, and an optical network unit,
  • the remote node is connected to the central station by a long-distance optical fiber transmission system
  • the optical network unit is connected to the remote node
  • the central station includes a wide-spectrum light source for sequentially inputting the downlink signal for segmentation.
  • An ultra-narrowband bandpass filter for a broad spectrum source a first demultiplexing coupling device for separating different wavelength ultra-narrowband sources to a corresponding channel (a first-order arrayed waveguide grating AWG1 may be selected), and a plurality of data modulation modules and a second wavelength division multiplexer (which may be selected from the second-stage arrayed waveguide grating AWG2) that couples the multiple downlink signals, and the two ends of the plurality of data modulation modules are respectively coupled to the first demultiplexing coupling device and the second wavelength division Multiplexer connection; the data modulation module enhances 3-dB system transmission performance with a polarization-insensitive electro-absorption optical modulator.
  • the remote node includes a third wavelength division multiplexer/demultiplexer for wavelength division multiplexing/demultiplexing; is connected to the central station by a long-distance optical fiber transmission system; the third wavelength division multiplexer/ The demultiplexer preferably employs an arrayed waveguide grating or a thin film filter.
  • the optical network unit includes an adaptive threshold adjustment module and a data demodulation module coupled to a third wavelength division multiplexer/demultiplexer, the adaptive threshold adjustment module including a photodetector, adaptive threshold calculation, and comparison Device.
  • the signal is modulated by the CO at each channel wavelength of the ultra-narrow spectrum-slicedin coherent light (USSIL); the intensity noise of the USSIL in the optical network unit (ONU) is mainly concentrated in the low-frequency region characteristics,
  • the adaptive algorithm dynamically adjusts the decision threshold of the receiving end, effectively resists the effects of dispersion and optical filtering, improves the communication performance of the optical system, and reduces the signal error rate (BitErrorRate, BER).
  • the broad-spectrum light source is an LED produced by a light-emitting diode LED, a Fabry Perot laser diode FP-LD, a super-radiation diode SLD or an erbium-doped fiber amplifier EDFA or a supercontinuum light source SLS generated by a nonlinear effect.
  • the ultra-narrow band pass filter uses a Gaussian filter or a fiber Bragg filter or a Fabry-Perot filter having a Lorentz shape.
  • the temperature of the ultra narrow band pass filter is controlled by the TEC.
  • the channel spacing of the ultra-narrowband bandpass filter is consistent with the channel spacing of the WDM-PON system.
  • the plurality of data modulation modules adopt an on-off keying modulation method that has better resistance to intensity noise.
  • the data modulation module is provided with pre-error correction coding, and the pre-error correction decoding circuit is used after the self-feedback threshold decision circuit of the optical network unit to enhance the noise resistance of the system.
  • the adaptive threshold adjustment module adjusts a decision threshold of a signal by an adaptive threshold adjustment algorithm using single symbol decision feedback, blind detection, or generalized likelihood ratio test-maximum likelihood sequence detection Wait.
  • pre-error correction coding can be used at the transmitting end, and pre-error correction decoding is used after the self-feedback threshold decision circuit at the receiving end to enhance the noise resistance of the system.
  • the invention has the advantages that the invention adopts an ultra-narrowband spectrally split non-coherent light source and an adaptive threshold control technique, and the ultra-narrowband spectrally split uncorrelated light source is obtained by filtering a wide-spectrum light source by using an ultra-narrowband bandpass filter, and the line width is obtained. Less than 700MHz.
  • an adaptive algorithm is used at the signal receiving end to estimate the change in intensity noise, and the threshold of the signal is adaptively adjusted to improve the bit error rate (BER).
  • BER bit error rate
  • FIG. 1 is a diagram of a downlink communication system device based on an ultra-narrowband spectrally-divided incoherent light source and an adaptive threshold control system in a WDM-PON.
  • Figure 2a is a spectrogram of a broad spectrum source used in a WDM-PON system.
  • Fig. 2b is a signal spectrum diagram of a broad-spectrum light source in a WDM-PON system after being subjected to modulation and optical multiplexing by ultra-narrow band division.
  • 3 is a comparison of the relative intensity noise spectrum of a spectrally-cut non-coherent source with a line width of 63-GHz and a spectrally-cut non-coherent source with a line width of 700-MHz.
  • FIG. 4 is a diagram showing the relationship between the bit error rate and the transmission distance of a 25 Gb/s signal located in a 1542 nm channel in a WDM-PON system.
  • the communication device based on the ultra-narrowband spectrally split incoherent light source and the adaptive threshold adjustment in the WDM-PON mainly includes a central station, a long-distance optical fiber transmission system, a remote node, and an optical network unit.
  • the central station further includes a broad spectrum incoherent light source BLS for incident to the downlink signal.
  • a broad spectrum incoherent light source BLS for incident to the downlink signal.
  • an erbium doped fiber amplifier EDFA is selected to generate a spontaneously amplified divergent light source; and an ultra narrow band for segmenting the broad spectrum incoherent light source
  • a Fabry-Perot (FFP) filter is selected; a first demultiplexing coupling device that separates different wavelength ultra-narrowband sources into corresponding channels, and an array waveguide is selected in this embodiment.
  • FFP Fabry-Perot
  • the array waveguide is selected Raster (arrayedwavelengthgratingAWG); the channel spacing of the ultra-narrowband bandpass optical filter should be consistent with the channel spacing of the WDM-PON system, and the ultra-narrowband spectrally split uncorrelated source is fiber Fabry-Perot (FFP)
  • the filter filters the amplified spontaneous emission source (Amplified Spontaneous Emission, ASE), the line width is less than 700 MHz, and the data modulation module can adopt polarization.
  • Sensitive electro-absorption modulator to boost the signal to noise ratio.
  • a broad-spectrum light source (BLS) or ASE signal is generated by using an erbium-doped fiber amplifier EDFA, and then the BLS spectrum is split by an ultra-narrow bandwidth FFP optical filter to obtain a non-coherent ultra-narrow linewidth multi-wavelength source, incoherent ultra-narrow linewidth.
  • the multi-wavelength light source realizes wavelength separation by the arrayed waveguide grating AWG1, and modulates the signals to different wavelengths by using a plurality of data modulation modules, and then couples the respective wavelength signals of the loaded signals together by the AWG2, that is, the wavelength division multiplexing WDMMUX, through A fiber is transmitted to the remote node RN.
  • the intensity noise mainly affects the low frequency signal. Therefore, for high speed signals (such as rates above 20 Gb/s), the intensity noise of adjacent bit signals has a strong correlation.
  • the remote node is responsible for receiving the optical signal transmitted over long distances, including the third wavelength division multiplexer/demultiplexer for wavelength division multiplexing/demultiplexing.
  • the array waveguide grating AWG3 is selected, and each wavelength is selected.
  • Signal separation, ie, wave decomposition multiplexing, is connected to the central station via a long-distance fiber optic transmission system.
  • the optical network unit ONU includes an adaptive threshold adjustment module and a data demodulation module connected to the third wavelength division multiplexer/demultiplexer, wherein the adaptive threshold adjustment module includes a photodetector (option photodiode), based on electricity The threshold calculation module and comparator of the signal.
  • the optical signals of the respective wavelength channels are converted into electrical signals by photodiodes, and the electrical signals are adjusted by the adaptive threshold-regulated feedback line to control the threshold of the receiving system, thereby reducing the bit error rate of the system and improving the performance of the communication system.
  • the wide-spectrum non-coherent light source BLS is characterized by flatness and high power in a wide wavelength range.
  • the ultra-narrowband segmentation and signal modulation are performed, and the optical signal spectrum of the optical path is multiplexed with ultra-narrow bandwidth, channel spacing and system channel spacing matching.
  • the relative intensity noise spectrum of the spectrally-divided incoherent light source with a line width of 63-GHz and the spectrally-cut non-coherent light source with a line width of 700-MHz is compared.
  • Conventional 63-GHz spectrally segmented incoherent sources exhibit Gaussian noise-like characteristics within the signal bandwidth.
  • the ultra-narrowband 700-MHz linewidth spectrally-cut non-coherent source is mainly concentrated in the low frequency region.
  • the relative intensity noise of the spectrally-segmented incoherent light source of the ultra-narrowband 700-MHz linewidth is lower than the corresponding value of the spectrally-cut non-coherent light source of the 63-GHz linewidth.
  • the adaptive feedback control threshold can greatly reduce the bit error rate of the transmission system, compared with the fixed optimal threshold.
  • the bit error rate, the threshold of adaptive feedback control can reduce the bit error rate by more than 10dB.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

本发明公开了一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,包括中心站、远距离光纤传输系统、远端节点和光网络单元,所述远端节点通过远距离光纤传输系统与中心站连接,所述光网络单元与远端节点连接,所述中心站包括依次连接的宽谱光源、超窄带带通滤波器、第一多路分离耦合装置、多个数据调制模块和第二波分复用器;所述远端节点包括第三波分复用器/多路分离器;所述光网络单元包括自适应阈值调节模块和数据解调模块,本发明可以有效改善强度噪声的影响,同时光源的超窄带线宽对色散和光学滤波的影响有较强抗性,适用于密集波分复用光无源网络(DWDM-PON)通信系统。

Description

一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置 技术领域
本发明属于通信技术领域,具体是一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置。
背景技术
随着信息技术的高速发展,远程医疗、IPTV,HDTV等视频业务、大数据云分析等先进通信系统对网络的带宽需求日益增加。FTTx的发展极大的带动了无源光网络(PON)的发展。其中,DWDM-PON系统被认为是最有前途和最有希望的接入系统。目前,国际上已将波长锁定WDM-PON和波长重用WDM-PON技术发展为商业级别。
波长锁定WDM-PON主要利用了注入锁模原理。当外部种子光源注入法布里-珀罗激光二极管(Fabry-PerotLaserDiode,FP-LD)中后,只有与种子光源波长一样的波长被锁定并被放大,同时抑制其他波长光的强度。种子光源可采用宽带光源(BroadbandSource,BBS),比如放大自发辐射光源(AmplifiedSpontaneousEmission,ASE),或者多波长/多纵模激光器,或者直接采用双FP-LD互注入的方式来锁定波长。
宽带种子光源可以在中心局(CentralOffice,CO)光线路终端(OpticalLineTerminal,OLT)中或者光网络单元(OpticalNetworkUnit,ONU)中,也可以完全集中在CO中,为整个通信系统提供下行或者上行通讯所需的种子光源。宽带种子光源在穿过波分复用多路复用/解复用器(WDMMUX/DMUX)时,光谱会被切分,谱切分后的种子光注入FP-LD中。但是,经过WDMMUX/DMUX谱切分后的光谱宽度较宽(大于60GHz),容易受色散和光学滤波影响,传输距离有限,并且不适用于密集波分复用系统。
发明内容
为解决上述技术问题,本发明提供一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,有效抵抗强度噪声的影响,同时光源的超窄带线宽对色散和光学滤波的影响有较强抗性,适用于远距离DWDM通信系统。
本发明采用以下技术方案:一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,包括中心站、远距离光纤传输系统、远端节点和光网络单元,所述远端节点通过远距离光纤传输系统与中心站连接,所述光网络单元与远端节点连接,所述中心站包括依次连接的用于入射到下行信号的宽谱光源、用于切分宽谱光源的超窄带带通滤波器、用于将不同波长超窄带光源分离到对应通道的第一多路分离耦合装置(可以选用第一级阵列波导光栅AWG1)、以及多个数据调制模块和将多路下行信号耦合的第二波分复用器(可以选用第二级阵列波导光栅AWG2),所述多个数据调制模块的两端分别与第一多路分离耦合装置和第二波分复用器连接;数据调制模块可通过偏振态不敏感的电吸收光调制器来增强3-dB的系统传输性能。
所述远端节点包括用于波分复用/多路分离的第三波分复用器/多路分离器;通过远距离光纤传输系统连接到中心站;所述第三波分复用器/多路分离器优选采用阵列波导光栅或者薄膜滤波器。
所述光网络单元包括连接到第三波分复用器/多路分离器的自适应阈值调节模块和数据解调模块,所述自适应阈值调节模块包括光电探测器、自适应阈值计算和比较器。在CO将信号调制在超窄带谱切分非相干光源(ultra-narrowspectrum-slicedincoherentlight,USSIL)的各个信道波长上;在光网络单元(ONU)利用USSIL的强度噪声主要集中在低频区域特性,通过自适应算法动态调节接收端的判决阈值,有效抵抗色散和光学滤波影响,改善光学系统的通信性能,降低信号误码率(BitErrorRate,BER)。
所述宽谱光源是发光二极管LED、法布里珀罗激光二极管FP-LD、超辐射二极管SLD或者掺铒光纤放大器EDFA产生的ASE或者通过非线性效应产生的超连续光源SLS等。
所述超窄带带通滤波器采用高斯滤波器或者具有洛仑兹形状的光纤光栅滤波器或法布里-珀罗滤波器。
所述超窄带带通滤波器的温度由TEC进行控制。
所述超窄带带通滤波器的频道间隔和WDM-PON系统的频道间隔保持一致。
所述多个数据调制模块采用对强度噪声有较好抗性的通断键控调制方式。
所述数据调制模块前设有前置纠错编码,在光网络单元的自反馈阈值判决电路之后采用前置纠错解码来增强系统的噪声抗性。
所述自适应阈值调节模块通过自适应的阈值调控算法来调整信号的判决阈值,所述自适应的阈值调控算法采用单码元判决反馈、盲检测或广义似然比检验-最大似然序列检测等。
本发明中,可以在发射端采用前置纠错编码,并在接收端的自反馈阈值判决电路之后采用前置纠错解码来增强系统的噪声抗性。
本发明的优点是:本发明采用超窄带谱切分非相干光源和自适应阈值调控技术,超窄带谱切分非相关光源是利用超窄带带通滤波器对宽谱光源进行滤波得到,线宽小于700MHz。利用相邻的信号的强度噪声相关性,在信号接收端利用自适应算法,估算强度噪声的改变,并自适应地调整信号的阈值,改善信号误码率(BitErrorRate,BER)。有效抵抗强度噪声的影响,同时光源的超窄带线宽对色散和光学滤波的影响有较强抗性,适用于远距离DWDM-PON通信系统。
附图说明
图1为WDM-PON中的基于超窄带谱切分非相干光源和自适应阈值调控系统的下行通信系统装置图。
图2a为WDM-PON系统中采用的宽谱光源的光谱图。
图2b为WDM-PON系统中宽谱光源经超窄带切分后经过调制和光路复用后的信号光谱图。
图3为线宽63-GHz的谱切分非相干光源和超窄带700-MHz线宽的谱切分非相干光源的相对强度噪声频谱图的比较。
图4为基于WDM-PON系统中,位于1542nm通道的25Gb/s信号的误码率和传输距离的关系。
下面具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1所示,WDM-PON中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置主要包括了中心站、远距离光纤传输系统、远端节点和光网络单元。
中心站进一步包括了用于入射到下行信号的宽谱非相干光源BLS,本实施例中选取了掺铒光纤放大器EDFA来产生自发放大发散光源;用于切分宽谱非相干光源的超窄带带通光滤波器,本实施例中选取了法布里-珀罗(FFP)滤波器;将不同波长超窄带光源分离到对应通道的第一多路分离耦合装置,本实施例中选取了阵列波导光栅(arrayedwavelengthgratingAWG);以及多个数据调制模块,信号进行光调制之前先通过了前置纠错编码;和将多路下行信号耦合的第二波分复用器,本实施例中选取了阵列波导光栅(arrayedwavelengthgratingAWG);其中超窄带带通光滤波器的频道间隔应当与WDM-PON系统的频道间隔一致,超窄带谱切分非相关光源是利用光纤法布里珀罗(FiberFabry-Perot,FFP)滤波器对放大自发辐射光源(AmplifiedSpontaneousEmission,ASE)进行滤波得到,线宽小于700MHz,数据调制模块可采用偏振不敏感的电吸收调制器来增强信号信噪比。利用掺铒光纤放大器EDFA产生宽谱光源(broadlightspectrum,BLS)即ASE信号,之后BLS的光谱通过超窄带宽FFP光滤波器切分得到非相干超窄线宽多波长光源,非相干超窄线宽多波长光源通过阵列波导光栅AWG1实现波长的分离,并利用多个数据调制模块将信号调制到不同波长上,再利用AWG2将加载信号的各个波长信号耦合到一起,即波分复用WDMMUX,通过一根光纤传输到远端节点RN。FFP滤波器产生的USSIL在低频区具有很大的强度噪声,在靠近直流区噪声最大,并且和光源的线宽成反比(相对噪声强度=1/USSIL的线宽)。当 USSIL的线宽低于500MHz时,强度噪声主要影响低频信号。所以,对于高速信号(比如速率高于20Gb/s),相邻比特信号的强度噪声具有较强相关性。
远端节点:负责接收经过长途传输的光信号,包括用于波分复用/多路分离的第三波分复用器/多路分离器,本实施例中选用阵列波导光栅AWG3,将各个波长信号分离,即波分解复用,通过远距离光纤传输系统连接到中心站。
光网络单元ONU包括连接到第三波分复用器/多路分离器的自适应阈值调节模块和数据解调模块,其中,自适应阈值调节模块包括光电探测器(选用光电二极管)、基于电信号的阈值计算模块和比较器。各个波长信道的光学信号通过光电二极管转化为电信号,电信号经过自适应阈值调控的反馈线路对接收系统的阈值进行调控,降低系统的误码率,提升通信系统性能。
如图2a所示,采用的宽谱非相干个光源BLS具有很宽波长范围内平整,高功率的特点。如图2b所示,进行超窄带切分并经过信号调制,光路复用之后的光信号的光谱图,其具有超窄带宽,频道间隔和系统通道间隔匹配的特点。
如图3所示,比较了线宽63-GHz的谱切分非相干光源和超窄带700-MHz线宽的谱切分非相干光源的相对强度噪声频谱图。传统的63-GHz谱切分非相干光源在信号带宽内表现出类似高斯噪声的特性。而超窄带700-MHz线宽的谱切分非相干光源则主要集中在低频区域。当频率>2GHz时,超窄带700-MHz线宽的谱切分非相干光源的相对强度噪声低于63-GHz线宽的谱切分非相干光源的相应值。
如图4所示,基于WDM-PON系统里,位于1542nm的通道传输25Gb/s信号时,采用自适应反馈控制的阈值可以大大降低传输系统的误码率,相比较固定的最佳阈值获得的误码率,自适应反馈控制的阈值可以降低误码率大于10dB。
可以理解的是,本领域技术人员还可在本发明精神内做其它变化等用在本发明的设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

  1. 一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,包括中心站、远距离光纤传输系统、远端节点和光网络单元,所述远端节点通过远距离光纤传输系统与中心站连接,所述光网络单元与远端节点连接,所述中心站包括依次连接的宽谱光源、超窄带带通滤波器、第一多路分离耦合装置、多个数据调制模块和第二波分复用器,所述多个数据调制模块的两端分别与第一多路分离耦合装置和第二波分复用器连接;所述远端节点包括第三波分复用器/多路分离器;所述光网络单元包括自适应阈值调节模块和数据解调模块,所述自适应阈值调节模块包括光电探测器、自适应阈值计算和比较器。
  2. 根据权利要求1所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述宽谱光源是发光二极管LED、法布里珀罗激光二极管FP-LD、超辐射二极管SLD或者掺铒光纤放大器EDFA产生的ASE或者通过非线性效应产生的超连续光源SLS。
  3. 根据权利要求1所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述超窄带带通滤波器采用高斯滤波器或者具有洛仑兹形状的光纤光栅滤波器或法布里-珀罗滤波器。
  4. 根据权利要求1或3所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述超窄带带通滤波器的温度由TEC进行控制。
  5. 根据权利要求1或3所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述超窄带带通滤波器的频道间隔和WDM-PON系统的频道间隔保持一致。
  6. 根据权利要求1所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述多个数据调制模块采用对强度噪声有抗性的通断键控调制方式。
  7. 根据权利要求1所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述数据调制模块采用偏振态不敏感的电吸收光调制器。
  8. 根据权利要求1所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述数据调制模块前设有前置 纠错编码,在光网络单元的自反馈阈值判决电路之后采用前置纠错解码来增强系统的噪声抗性。
  9. 根据权利要求1所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述第三波分复用器/多路分离器采用阵列波导光栅或者薄膜滤波器。
  10. 根据权利要求1所述的一种WDM-PON系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置,其特征在于,所述自适应阈值调节模块通过自适应的阈值调控算法来调整信号的判决阈值,所述自适应的阈值调控算法采用单码元判决反馈、盲检测或广义似然比检验-最大似然序列检测。
PCT/CN2016/113708 2016-05-11 2016-12-30 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置 WO2017193600A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610307684.9 2016-05-11
CN201610307684.9A CN106027151B (zh) 2016-05-11 2016-05-11 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置

Publications (1)

Publication Number Publication Date
WO2017193600A1 true WO2017193600A1 (zh) 2017-11-16

Family

ID=57100376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113708 WO2017193600A1 (zh) 2016-05-11 2016-12-30 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置

Country Status (2)

Country Link
CN (1) CN106027151B (zh)
WO (1) WO2017193600A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106027151B (zh) * 2016-05-11 2018-09-14 中天宽带技术有限公司 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置
CN111062978B (zh) * 2019-11-27 2022-02-01 武汉大学 基于频域滤波技术的时空图像测流的纹理识别方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1620772A (zh) * 2002-01-21 2005-05-25 诺维拉光学公司 提供基于波长锁定波分复用光源的波分复用无源光网络的方法与装置
US20050163508A1 (en) * 2004-01-27 2005-07-28 Hwang Seong-Taek Wavelength division multiplexed passive optical network
CN102088329A (zh) * 2010-12-28 2011-06-08 上海大学 一种波分复用无源光网络实现广播业务传输的系统和方法
CN102158772A (zh) * 2011-05-27 2011-08-17 上海大学 无色波分复用无源光网络兼容广播业务的系统和方法
CN102724012A (zh) * 2012-06-19 2012-10-10 上海交通大学 基于载波抑制调制技术的光源共享wdm-pon系统
CN104243045A (zh) * 2014-09-10 2014-12-24 上海交通大学 应用于dwdm-pon系统中的下行发射机及系统
CN105827320A (zh) * 2016-05-11 2016-08-03 中天宽带技术有限公司 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
CN106027151A (zh) * 2016-05-11 2016-10-12 中天宽带技术有限公司 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置
CN205754341U (zh) * 2016-05-11 2016-11-30 中天宽带技术有限公司 一种用于wdm-pon下行通信系统中基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
CN205754342U (zh) * 2016-05-11 2016-11-30 中天宽带技术有限公司 一种基于超窄带谱切分非相干光源和自适应阈值调控的wdm-pon通信系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2258924B1 (es) * 2005-02-21 2007-11-16 Universitat Politecnica De Catalunya Receptor para comunicaciones opticas con ecualizador no lineal.
CN1741420A (zh) * 2005-09-09 2006-03-01 清华大学 用于光突发接收机中的判决电平快速检测电路
CN101321015B (zh) * 2008-06-20 2011-02-09 中国科学院上海光学精密机械研究所 全数字化的脉冲位置调制信号接收机及接收方法
CN102891721B (zh) * 2012-10-13 2015-06-17 电子科技大学 一种光突发交换obs网络的光突发接收方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1620772A (zh) * 2002-01-21 2005-05-25 诺维拉光学公司 提供基于波长锁定波分复用光源的波分复用无源光网络的方法与装置
US20050163508A1 (en) * 2004-01-27 2005-07-28 Hwang Seong-Taek Wavelength division multiplexed passive optical network
CN102088329A (zh) * 2010-12-28 2011-06-08 上海大学 一种波分复用无源光网络实现广播业务传输的系统和方法
CN102158772A (zh) * 2011-05-27 2011-08-17 上海大学 无色波分复用无源光网络兼容广播业务的系统和方法
CN102724012A (zh) * 2012-06-19 2012-10-10 上海交通大学 基于载波抑制调制技术的光源共享wdm-pon系统
CN104243045A (zh) * 2014-09-10 2014-12-24 上海交通大学 应用于dwdm-pon系统中的下行发射机及系统
CN105827320A (zh) * 2016-05-11 2016-08-03 中天宽带技术有限公司 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
CN106027151A (zh) * 2016-05-11 2016-10-12 中天宽带技术有限公司 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置
CN205754341U (zh) * 2016-05-11 2016-11-30 中天宽带技术有限公司 一种用于wdm-pon下行通信系统中基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
CN205754342U (zh) * 2016-05-11 2016-11-30 中天宽带技术有限公司 一种基于超窄带谱切分非相干光源和自适应阈值调控的wdm-pon通信系统

Also Published As

Publication number Publication date
CN106027151A (zh) 2016-10-12
CN106027151B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Kazovsky et al. Next-generation optical access networks
KR100325687B1 (ko) 주입된 비간섭성 광에 파장 잠김된 페브리-페롯 레이저다이오드를 이용한 파장분할 다중방식 광통신용 광원
JP4885175B2 (ja) ファブリー・ペロ・レーザーダイオードを基礎とするレーザー装置及びその注入方法
US11855704B1 (en) Systems and methods for coherent optics interface
Marazzi et al. Up to 10.7-Gb/s high-PDG RSOA-based colorless transmitter for WDM networks
Xiong et al. Characterization of directly modulated self-seeded reflective semiconductor optical amplifiers utilized as colorless transmitters in WDM-PONs
Sundar et al. Performance investigation of 16/32-channel DWDM PON and long-reach PON systems using an ASE noise source
WO2017193601A1 (zh) 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
Lee et al. Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source
KR102085467B1 (ko) 광학 회선 단말 및 광학 네트워크 유닛
Cikan et al. A review of self-seeded RSOA based on WDM PON
Muciaccia et al. A TWDM-PON with advanced modulation techniques and a multi-pump Raman amplifier for cost-effective migration to future UDWDM-PONs
KR101186687B1 (ko) 수동형 광가입자망용 씨앗광 모듈
Le et al. Up to 60 km bidirectional transmission of a 16 channels× 10 Gb/s FDM-WDM PON based on self-seeded reflective semiconductor optical amplifiers
WO2017193600A1 (zh) 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置
CN107872288B (zh) 一种wdm pon系统中上行传输方法及其装置
CN205754342U (zh) 一种基于超窄带谱切分非相干光源和自适应阈值调控的wdm-pon通信系统
Lee et al. Enhancement of power budget in RSOA based loop-back type WDM-PON by using the cascaded RSOAs
CN205754341U (zh) 一种用于wdm-pon下行通信系统中基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
KR101856836B1 (ko) 단일파장 내 상향전송 다중접속 시스템에서 ase 광원의 주입을 통한 광비팅간섭잡음 경감 시스템 및 방법
KR101477355B1 (ko) 간섭형 잡음억제장치 및 이를 포함하는 광통신 시스템
KR20100119078A (ko) 무편광 광원을 이용하여 광신호의 고속 전송이 가능한 파장분할 다중방식 광통신용 광원 및 이를 구비한 파장분할 다중방식 수동형 광 가입자망
US11855694B1 (en) Systems and methods for full field transception
Murakami et al. Enhanced reflection tolerance of upstream signal in a RSOA-based WDM PON by using Manchester coding
Yoo et al. 1.25 Gb/s broadcast signal transmission in WDM-PON based on mutually injected Fabry-Perot laser diodes

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901555

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901555

Country of ref document: EP

Kind code of ref document: A1