WO2017193601A1 - 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置 - Google Patents

一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置 Download PDF

Info

Publication number
WO2017193601A1
WO2017193601A1 PCT/CN2016/113709 CN2016113709W WO2017193601A1 WO 2017193601 A1 WO2017193601 A1 WO 2017193601A1 CN 2016113709 W CN2016113709 W CN 2016113709W WO 2017193601 A1 WO2017193601 A1 WO 2017193601A1
Authority
WO
WIPO (PCT)
Prior art keywords
ffp
light source
soa
ultra
filter
Prior art date
Application number
PCT/CN2016/113709
Other languages
English (en)
French (fr)
Inventor
胡琪凯
徐玮
符小东
Original Assignee
中天宽带技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天宽带技术有限公司 filed Critical 中天宽带技术有限公司
Publication of WO2017193601A1 publication Critical patent/WO2017193601A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25137Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • H04J14/0239Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths in WDM-PON sharing multiple downstream wavelengths for groups of optical network units [ONU], e.g. multicasting wavelengths

Definitions

  • the invention belongs to the technical field of communications, and in particular relates to a transmission device for an ultra-narrowband spectrally-divided incoherent light source based on an FFP filter and an FFP-SOA in a WDM-PON.
  • Passive Optical Network is considered to be the most critical technology for solving the "last mile" in the access network and plays an important role in the realization of FTTX.
  • Passive means that there are no active devices in the optical distribution node (ODN), and only optical couplers such as couplers, wavelength division multiplexing/demultiplexers, and circulators are used, which greatly reduces the cost of management and maintenance.
  • PON can be divided into power split passive optical network (PSPON) and wavelength division multiplexing passive optical network (WDM-PON) according to signal distribution.
  • PSPON power split passive optical network
  • WDM-PON wavelength division multiplexing passive optical network
  • APON, BPON, EPON, and GPON are all PSPON.
  • the PSPON is split by a star coupler, and the TDMA/TDM mode is adopted for uplink and downlink transmission to realize channel bandwidth sharing.
  • the optical splitter distributes signals sent by the OLT to optical network units (ONUs).
  • WDM-PON fully utilizes wavelength division multiplexing technology to separate signal light of different wavelengths by wavelength division multiplexing demultiplexer (such as array waveguide grating AWG), each wavelength can be separately modulated signal to achieve complete meaning.
  • the bandwidth on the exclusive
  • WDM-PON adopts wavelength as the user end identifier, and uses wavelength division multiplexing technology to provide wider working bandwidth and realize symmetric broadband access. In addition, it can avoid many technical difficulties such as ranging and fast bit synchronization of time-division multiple access technology, and has obvious advantages in system upgrade performance.
  • the current method that can better solve the dispersion effect is dispersion.
  • the fiber grating is compensated and the dispersion characteristics are improved by adding a compensation fiber grating to the AWG.
  • the essence of dispersion compensation is compression compensation for the pulse broadening caused by the secondary phase shift of the frequency.
  • the present invention provides a transmission device for an ultra-narrowband spectrally-splitting non-coherent light source based on an FFP filter and an FFP-SOA in a WDM-PON, which effectively suppresses the influence of intensity noise, and is suitable for long-distance DWDM. - PON communication system.
  • a transmission device for an ultra-narrowband spectrally-splitting non-coherent light source based on FFP filter and FFP-SOA in WDM-PON including central station (CO), transmission fiber, and remote node (RN) and an optical network terminal (ONU), the remote node is connected to the central station by a transmission optical fiber, and the optical network terminal is connected to the remote node, and the central station includes a width for sequentially connecting to the downlink signal Spectral incoherent source, FFP filter (Fabri-Perot filter), FFP-SOA (Fabry-Perot semiconductor optical amplifier), first-order arrayed waveguide grating (AWG1), multiple light modulators, and a second-stage arrayed waveguide grating (AWG2), the two ends of the plurality of optical modulators being respectively connected to the first-stage arrayed waveguide grating and the second-stage arrayed waveguide grating, wherein the FFP filter is used for cutting the broad
  • FFP-SOA has low saturation power and needs to work in a saturated working region for non-linear amplification of ultra-narrowband spectrally-divided incoherent light sources of different wavelengths, and simultaneously utilize Nonlinear amplification Squeezed multi-wavelength ultra-narrowband spectrum splitting the intensity noise of incoherent sources.
  • Multiple optical modulators are used to modulate the signal to ultra-narrowband spectrally-divided incoherent sources of various wavelengths where noise is suppressed.
  • Light modulator to enhance 3-dB system transmission performance.
  • Multi-wavelength ultra-narrowband spectrally segmented incoherent source signals are obtained by segmenting a broad-spectrum incoherent source with an ultra-narrow bandwidth FFP filter.
  • FFP-SOA in a saturated working region splits the multi-wavelength ultra-narrowband spectrum into incoherent source signals.
  • Amplifying and using the nonlinear amplification characteristic to compress the multi-wavelength ultra-narrowband spectrum to slice the intensity noise in the incoherent source and then assigning the different wavelengths of the ultra-narrowband spectrally incoherent light source through the first-order arrayed waveguide grating (AWG1) corresponding to the corresponding
  • the data information of each channel is modulated and loaded, and then wavelength division multiplexing is implemented by the second-stage arrayed waveguide grating (AWG2), and then transmitted by the transmission fiber to the remote node RN, and wave decomposition multiplexing is implemented at the remote node.
  • the data is distributed to the optical network terminal ONU.
  • the optical network terminal implements demodulation of downlink data and transmission of uplink data.
  • the remote node includes a third-order arrayed waveguide grating (AWG3) or a thin film filter
  • AWG3 arrayed waveguide grating
  • the optical fiber is connected to the central station, and the optical signal emitted from the central station CO is demultiplexed and multiplexed by the AWG 3 wave, and then output to a distributed optical communication line.
  • the optical network terminal includes a plurality of optical receivers coupled to the remote node.
  • the optical receiver is connected to a third demultiplexer/wavelength division multiplexer (such as AWG3).
  • the light receiver includes a photodiode, a first band pass filter and a decoder.
  • the broad spectrum incoherent light source is implemented by a high power erbium doped fiber amplifier, a light emitting diode, a super luminescent diode, or a Fabry-Perot laser diode spectroscopy source.
  • the channel spacing of the FFP filter and the FFP-SOA needs to be consistent with the communication channel spacing of the WDM-PON system.
  • the FFP-SOA operates in a saturated working region, and utilizes the nonlinear amplification characteristic of the saturated working region to achieve the purpose of compressing the intensity noise in the light source.
  • the temperature of the FFP filter and FFP-SOA is controlled by the TEC.
  • the plurality of light modulators employ an on-off keying modulation method that is more resistant to intensity noise.
  • the optical modulator is provided with pre-error correction coding, and the optical network terminal is provided with pre-error correction decoding to enhance the noise resistance of the system.
  • the FFP filter (Fabri-Perot filter) in the present invention is an ultra-narrow band band pass filter, and a Gaussian filter or a fiber grating filter having a Lorentz shape can also be used.
  • pre-error correction coding can be used at the transmitting end, and pre-error correction decoding is used after the self-feedback threshold decision circuit at the receiving end to enhance the noise resistance of the system.
  • an advantage of the present invention is that the ultra-narrowband spectrally-divided incoherent light source of the present invention filters an Amplified Spontaneous Emission (ASE) generated by an Erbium Doped Fiber Amplifier (EDFA) using an FFP filter.
  • FFP-SOA is amplified, and its linewidth is less than 700MHz.
  • the ultra-narrowband spectrally split incoherent light source after FFP-SOA amplification can realize the multi-channel spectral segmentation non-coherent source intensity noise compression, effectively suppressing the dispersion effect, suitable for Long-distance Dense Wavelength Division Multiplexing Optical Passive Network (DWDM-PON) communication system.
  • DWDM-PON Long-distance Dense Wavelength Division Multiplexing Optical Passive Network
  • Figure 1 is a WDM-PON view of an ultra-narrowband spectrally-divided incoherent source based on an FFP filter and an FFP-SOA.
  • Figure 2 is a diagram showing the relative intensity noise spectrum of the WDM-PON system before and after the FFP-SOA using the ultra-narrowband spectral splitting source.
  • Figure 3 is a schematic diagram of intensity noise in a FFP-SOA compressed light source operating in a saturated working region.
  • FIG. 4 is a diagram showing the relationship between the bit error rate and the transmission distance of a 25-Gb/sOOK signal transmitted in a 1542 nm wavelength channel in a WDM-PON system using an FFP filter and an FFP-SOA.
  • Figure 5 shows the bit error rate performance of different wavelength channels in a back-to-back system in a WDM-PON system based on an FFP filter and an FFP-SOA ultra-narrowband spectrally-divided incoherent source.
  • a transmission device for an ultra-narrowband spectrally-divided incoherent light source based on an FFP filter and an FFP-SOA in a WDM-PON including a central station (CO), a transmission fiber (selecting a single-mode fiber)
  • the remote node (RN) and the optical network terminal (ONU) the remote node is connected to the central station through the transmission fiber, and the optical network terminal is connected to the remote node.
  • the central station includes a broad-spectrum incoherent light source BLS for incident to a downlink signal, in this embodiment a high-power erbium-doped fiber amplifier is used to generate a spontaneously amplified divergent light source; and an ultra-narrow band for splitting a broad-spectrum incoherent light source
  • a broad-spectrum incoherent light source BLS for incident to a downlink signal
  • a high-power erbium-doped fiber amplifier is used to generate a spontaneously amplified divergent light source
  • an ultra-narrow band for splitting a broad-spectrum incoherent light source
  • an FFP filter Fabri-Perot filter
  • FFP-SOA Fabri-Perot semiconductor optical amplifier
  • a first demultiplexing coupling device that separates different wavelength ultra-narrowband spectrally split incoherent light sources into corresponding channels, in this embodiment
  • a first-order arrayed waveguide grating A first-order arrayed waveguide grating (AWG1) is selected; a plurality of optical modulators for modulating a signal to an ultra-narrowband spectrally-divided incoherent light source of various wavelengths where noise is suppressed, and a polarization-insensitive electro-absorption optical modulator To enhance the signal-to-noise ratio, enhance the transmission performance of the 3-dB system, and perform signal modulation on the signal.
  • the preamble error correction coding is adopted before; and the second wavelength division multiplexer coupling the multiple downlink signals is used.
  • the second stage arrayed waveguide grating AMG2 is selected.
  • the channel spacing of the FFP filter and the FFP-SOA should be consistent with the communication channel spacing of the WDM-PON system.
  • the remote node includes a third wavelength division multiplexer/demultiplexer for wavelength division multiplexing/demultiplexing, and is connected to the central station through a transmission fiber; in this embodiment, a third-order arrayed waveguide grating (AWG3) is selected.
  • AWG3 arrayed waveguide grating
  • the optical network terminal includes a plurality of optical receivers connected to the remote node.
  • the optical receiver is connected to the third wavelength division multiplexer/demultiplexer.
  • the AWG 3 is selected.
  • the optical receiver includes a photodiode, a first bandpass filter and a decoder.
  • the relative intensity noise spectrum of the ultra-narrowband spectral splitting light source before and after passing through the FFP-SOA in the WDM-PON system is compared.
  • Ultra-narrowband 700-MHz linewidth spectral splitting incoherent sources are mainly concentrated in the low frequency region.
  • the intensity noise can be effectively reduced by using FFP-SOA operating in a saturated region, and the relative intensity noise is reduced from -90 dB/Hz to -118 dB/Hz (near DC range).
  • FFP-SOA operating in a saturated region has a nonlinear amplification characteristic, that is, the amplification factor of the low power input signal is much larger than the high power.
  • the amplification factor of the input signal this characteristic can be used to compress the intensity noise in the light source to obtain a light source signal with stable relative intensity.
  • the bit error rate of the 25 Gb/s OOK signal is transmitted in different wavelength channels in back-to-back transmission (pre-error correction decoding is not used). It is to be understood that those skilled in the art can make other variations and the like in the spirit of the present invention for use in the design of the present invention as long as it does not deviate from the technical effects of the present invention. These changes in accordance with the spirit of the present invention should be included in the claimed invention. Within the scope of protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,包括中心站,传输光纤,远端节点和光网络终端,所述远端节点通过传输光纤与中心站连接,所述光网络终端与远端节点连接,所述中心站包括依次连接的宽谱非相干光源、FFP滤波器、FFP-SOA、第一级阵列波导光栅、多个光调制器和第二级阵列波导光栅,所述多个光调制器的两端分别与第一级阵列波导光栅和第二级阵列波导光栅连接。经过FFP-SOA放大之后的超窄带谱切分非相干光源可以实现多通道的谱切片非相干光源强度噪声的压缩,有效抑制色散影响,适用于远距离密集波分复用光无源网络(DWDM-PON)通信系统。

Description

一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置 技术领域
本发明属于通信技术领域,具体是一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置。
背景技术
无源光网络(PON)被认为是解决接入网中“最后一公里”的最关键的技术,在实现FTTX中发挥重要的作用。“无源”是指光分配节点(ODN)中没有任何有源器件,只有耦合器、波分复用/解复用器、环形器等光无源器件组成,大大降低了管理维护的成本。
PON按信号分配可分为功率分割型无源光网络(PSPON)和波分复用型无源光网络(WDM-PON)。APON、BPON、EPON、GPON均属于PSPON。PSPON采用星型耦合器分路,上行、下行传送采用TDMA/TDM方式,实现信道带宽共享,光分路器将OLT发出的信号分配到各个光网络单元(OpticalNetworkUnit,ONU)上。WDM-PON则是充分运用波分复用技术,通过波分复用解复用器(比如阵列波导光栅AWG)将不同波长的信号光分开,每个波长都可以单独的调制信号,实现完全意义上的带宽独享。
虽然PSPON较为成熟,特别是EPON、GPON在北美、日本已经有较大规模的部署,但PSPON仍然存在关键问题需要解决,比如快速比特同步、动态带宽分配、基线漂移、ONU的测距与延时补偿、突发模式光收发模块的设计等。虽然一些问题得到了解决,但成本较高。而WDM-PON则采用波长作为用户端标识,利用波分复用技术,提供较宽工作带宽,实现对称宽带接入。除此之外,还可以避免时分多址技术中ONU的测距、快速比特同步等诸多技术难点,在系统升级性能等方面具有明显优势。
但是,随着WDM-PON系统接入距离的增加,光纤色散和阵列波导的色散效应会导致系统误码率的增加。目前认为能够比较好地解决色散效应的方法是色散 补偿光纤光栅,通过在AWG中加入补偿光纤光栅改善色散特性。色散补偿的本质是对频率的二次相移所造成的脉冲展宽进行压缩补偿。
发明内容
为解决上述技术问题,本发明提供一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,有效抑制强度噪声影响,适用于远距离DWDM-PON通信系统。
本发明采用以下技术方案:一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,包括中心站(CO),传输光纤,远端节点(RN)和光网络终端(ONU),所述远端节点通过传输光纤与中心站连接,所述光网络终端与远端节点连接,所述中心站包括依次连接的用于入射到下行信号的宽谱非相干光源、FFP滤波器(法布里-珀罗滤波器)、FFP-SOA(法布里-珀罗半导体光放大器)、第一级阵列波导光栅(AWG1)、多个光调制器和第二级阵列波导光栅(AWG2),所述多个光调制器的两端分别与第一级阵列波导光栅和第二级阵列波导光栅连接,其中,FFP滤波器用于切割宽谱非相干光源信号,产生并输出多波长超窄带谱切分非相干光源,FFP-SOA具有低饱和功率,需要工作于饱和工作区域,用于非线性放大不同波长的超窄带谱切分非相干光源,并同时利用非线性放大特性压缩多波长超窄带谱切分非相干光源的强度噪声,多个光调制器用于将信号调制到噪声受抑制的各个波长的超窄带谱切分非相干光源上,可通过偏振不敏感电吸收光调制器来增强3-dB系统传输性能。利用具有超窄带宽的FFP滤波器将宽谱非相干光源切分获得多波长超窄带谱切分非相干光源信号,处于饱和工作区域的FFP-SOA将多波长超窄带谱切分非相干光源信号放大并利用非线性放大特性压缩多波长超窄带谱切分非相干光源中的强度噪声,之后通过第一级阵列波导光栅(AWG1)分配超窄带谱切分非相干光源的不同光波长对应到相应的波长信道中,并调制加载各路数据信息,再通过第二级阵列波导光栅(AWG2)实现波分复用,然后由传输光纤向远端节点RN传输,在远端节点实现波分解复用,最后将数据分发到光网络终端ONU。光网络终端实现下行数据的解调和上行数据的发送。
所述远端节点包括第三级阵列波导光栅(AWG3)或者薄膜滤波器,通过传 输光纤连接到中心站,从中心站CO发出的光信号经过AWG3波分解复用后,输出到分布式的光学通信线路。
所述光网络终端包括与远端节点连接的多个光接收器。光接收器与第三多路分解器/波分复用器(比如AWG3)相连。所述光接收器包含光电二极管,第一带通滤波器和解码器。
所述宽谱非相干光源通过高功率掺铒光纤放大器、发光二极管、超辐射发光二极管或法布里-珀罗激光二极管光谱光源实现。
所述FFP滤波器和FFP-SOA的频道间隔需要都和WDM-PON系统的通信信道间隔一致。
所述FFP-SOA工作于饱和工作区域,利用饱和工作区域的非线性放大特性达到压缩光源中强度噪声的目的。
所述FFP滤波器和FFP-SOA的温度由TEC进行控制。
所述多个光调制器采用对强度噪声有较好抗性的通断键控调制方式。
所述光调制器前设有前置纠错编码,光网络终端设有前置纠错解码来增强系统的噪声抗性。
本发明中FFP滤波器(法布里-珀罗滤波器)是一种超窄带带通滤波器,还可以采用高斯滤波器或者具有洛仑兹形状的光纤光栅滤波器。
本发明中可以在发射端采用前置纠错编码,并在接收端的自反馈阈值判决电路之后采用前置纠错解码来增强系统的噪声抗性。
本发明的优点是:本发明的超窄带谱切分非相干光源是利用FFP滤波器对掺饵光纤放大器(ErbiumDopedFiberAmplifier,EDFA)产生的宽谱放大自发辐射光源(AmplifiedSpontaneousEmission,ASE)进行滤波,并通过FFP-SOA放大得到,其线宽小于700MHz,经过FFP-SOA放大之后的超窄带谱切分非相干光源可以实现多通道的谱切分非相干光源强度噪声的压缩,有效抑制色散影响,适用于远距离密集波分复用光无源网络(DWDM-PON)通信系统。
附图说明
图1为基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的WDM-PON视图。
图2为WDM-PON系统中采用超窄带谱切分光源经过FFP-SOA之前和之后的相对强度噪声频谱图。
图3为利用工作在饱和工作区域的FFP-SOA压缩光源中强度噪声的原理图。
图4为利用FFP滤波器和FFP-SOA的WDM-PON系统里,位于1542nm波长通道传输25-Gb/sOOK信号的误码率和传输距离的关系图。
图5为基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的WDM-PON系统里,在背靠背系统中不同波长通道的误码率性能。
下面具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1所示,一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,包括中心站(CO),传输光纤(选用单模光纤),远端节点(RN)和光网络终端(ONU),远端节点通过传输光纤与中心站连接,光网络终端与远端节点连接。
中心站包括用于入射到下行信号的宽谱非相干光源BLS,本实施例中选取了高功率掺铒光纤放大器来产生的自发放大发散光源;用于切分宽谱非相干光源的超窄带带通光滤波器,本实施例中选取了FFP滤波器(法布里-珀罗滤波器);用于将不同波长的超窄带谱切分非相干光源信号非线性放大并利用非线性放大特性压缩不同波长光源中强度噪声的FFP-SOA(法布里-珀罗半导体光放大器);将不同波长超窄带谱切分非相干光源分离到对应通道的第一多路分离耦合装置,本实施例中选用第一级阵列波导光栅(AWG1);多个光调制器,用于将信号调制到噪声受抑制的各个波长的超窄带谱切分非相干光源上,可通过偏振不敏感电吸收光调制器来增强信号信噪比,增强3-dB系统传输性能,信号进行光调制之 前先通过了前置纠错编码;和将多路下行信号耦合的第二波分复用器,本实施例中选用第二级阵列波导光栅(AWG2)。其中,FFP滤波器和FFP-SOA的频道间隔应当与WDM-PON系统的通信信道间隔一致,FFP-SOA需要工作在饱和工作区域,而且需要有很宽的工作波长范围,实现同时对所有WDM-PON系统不同波长光源的强度噪声抑制,FFP滤波器切分获得的不同波长的超窄带谱切分非相干光源信号在低频区具有很大的强度噪声,在靠近直流区噪声最大,并且和光源的线宽成反比(相对噪声强度=1/超窄带频谱切分非相干光源的线宽)。
远端节点包括用于波分复用/多路分离的第三波分复用器/多路分离器,通过传输光纤连接到中心站;本实施例中选用第三级阵列波导光栅(AWG3),从中心站CO发出的光信号经过AWG3波分解复用后,输出到分布式的光学通信线路。
光网络终端包括与远端节点连接的多个光接收器。光接收器与第三波分复用器/多路分离器相连,本实施例中选取AWG3。光接收器包含光电二极管,第一带通滤波器和解码器。
如图2所示,比较了WDM-PON系统中采用超窄带谱切分光源经过FFP-SOA之前和之后的相对强度噪声频谱图。超窄带700-MHz线宽的波谱切分非相干光源则主要集中在低频区域。利用工作在饱和区域的FFP-SOA可以有效的降低强度噪声,相对强度噪声从-90dB/Hz降低到-118dB/Hz(近直流的范围)。
如图3所示,利用工作在饱和区域的FFP-SOA压缩光源中的强度噪声的原理:工作在饱和区域的FFP-SOA具有非线性放大特点,即低功率输入信号的放大倍数远大于高功率输入信号的放大倍数,利用这个特性可以压缩光源中的强度噪声,获得相对强度稳定的光源信号。
如图4所示,WDM-PON系统中,位于1542nm的通道传输25Gb/s信号时,利用饱和光放大器压缩光源中的强度噪声之后,信号的误码率和信号传输距离的关系。
如图5所示,WDM-PON系统里,在背靠背传输中,不同波长通道传输25Gb/sOOK信号的误码率(未采用前置纠错解码)。可以理解的是,本领域技术人员还可在本发明精神内做其它变化等用在本发明的设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保 护的范围之内。

Claims (10)

  1. 一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,包括中心站,传输光纤,远端节点和光网络终端,所述远端节点通过传输光纤与中心站连接,所述光网络终端与远端节点连接,所述中心站包括依次连接的宽谱非相干光源、FFP滤波器、FFP-SOA、第一级阵列波导光栅、多个光调制器和第二级阵列波导光栅,所述多个光调制器的两端分别与第一级阵列波导光栅和第二级阵列波导光栅连接,利用FFP滤波器将宽谱非相干光源切分获得多波长超窄带谱切分非相干光源,接着利用工作于饱和状态的FFP-SOA来压缩多波长超窄带谱切分非相干光源的强度噪声,之后通过第一级阵列波导光栅分路并加载各路数据信息,再通过第二级阵列波导光栅实现波分复用,然后由传输光纤向远端节点传输,在远端节点实现波分解复用,最后将数据分发到光网络终端。
  2. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述远端节点包括第三级阵列波导光栅或者薄膜滤波器。
  3. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述光网络终端包括与远端节点连接的多个光接收器。
  4. 根据权利要求3所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述光接收器包含光电二极管,第一带通滤波器和解码器。
  5. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述宽谱非相干光源通过高功率掺铒光纤放大器、发光二极管、超辐射发光二极管或法布里-珀罗激光二极管光谱光源实现。
  6. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述FFP滤波器和FFP-SOA的频道间隔需要都和WDM-PON系统的通信信道间隔一致。
  7. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述FFP-SOA工作于饱和工作区域,利用饱和工作区域的非线性放大特性达到压缩光源中强度 噪声的目的。
  8. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述FFP滤波器和FFP-SOA的温度由TEC进行控制。
  9. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述多个光调制器采用对强度噪声有抗性的通断键控调制方式。
  10. 根据权利要求1所述的一种用于WDM-PON中的基于FFP滤波器和FFP-SOA的超窄带谱切分非相干光源的传输装置,其特征在于,所述光调制器前设有前置纠错编码,光网络终端设有前置纠错解码。
PCT/CN2016/113709 2016-05-11 2016-12-30 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置 WO2017193601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610308392.7 2016-05-11
CN201610308392.7A CN105827320B (zh) 2016-05-11 2016-05-11 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置

Publications (1)

Publication Number Publication Date
WO2017193601A1 true WO2017193601A1 (zh) 2017-11-16

Family

ID=56528667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113709 WO2017193601A1 (zh) 2016-05-11 2016-12-30 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置

Country Status (2)

Country Link
CN (1) CN105827320B (zh)
WO (1) WO2017193601A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827320B (zh) * 2016-05-11 2018-07-27 中天宽带技术有限公司 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
CN106027151B (zh) * 2016-05-11 2018-09-14 中天宽带技术有限公司 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置
EP3316497B1 (en) * 2016-10-26 2019-10-16 STMicroelectronics (Research & Development) Limited A single photon avalanche diode module for communications
CN106656334B (zh) * 2017-01-12 2023-06-02 中天宽带技术有限公司 基于相干光正交频分复用长距离无源光网络系统及其方法
CN109752032B (zh) * 2019-01-30 2020-10-30 重庆理工大学 基于光强的光纤光栅解调系统、方法与结构损伤监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188460A (zh) * 2007-12-13 2008-05-28 上海交通大学 无源光网和城域网的全光网络互联系统
US20090097849A1 (en) * 2007-10-15 2009-04-16 Mark Childers Performance optimized receiver with bandwidth adaptive optical filter for high speed long haul wdm systems
CN101719803A (zh) * 2009-11-27 2010-06-02 上海交通大学 波分复用无源光网络中的副载波组播传输系统
US20100316378A1 (en) * 2008-07-08 2010-12-16 Chien-Hung Yeh Laser Source Based On Fabry-Perot Laser Diodes And Seeding Method Using The Same
CN104243045A (zh) * 2014-09-10 2014-12-24 上海交通大学 应用于dwdm-pon系统中的下行发射机及系统
CN105827320A (zh) * 2016-05-11 2016-08-03 中天宽带技术有限公司 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
CN205754341U (zh) * 2016-05-11 2016-11-30 中天宽带技术有限公司 一种用于wdm-pon下行通信系统中基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719804A (zh) * 2010-01-08 2010-06-02 烽火通信科技股份有限公司 一种波分复用无源光网络中无色onu的实现方法和装置
US8873963B2 (en) * 2012-07-25 2014-10-28 Doron Handelman Apparatus and methods for generating and receiving optical signals at substantially 100Gb/s and beyond
US8831047B1 (en) * 2013-02-19 2014-09-09 King Fahd University Of Petroleum And Minerals Multi-wavelength laser
US9019998B1 (en) * 2014-04-02 2015-04-28 King Fahd University Of Petroleum And Minerals Tunable fiber ring laser with a gain clamped semiconductor optical amplifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097849A1 (en) * 2007-10-15 2009-04-16 Mark Childers Performance optimized receiver with bandwidth adaptive optical filter for high speed long haul wdm systems
CN101188460A (zh) * 2007-12-13 2008-05-28 上海交通大学 无源光网和城域网的全光网络互联系统
US20100316378A1 (en) * 2008-07-08 2010-12-16 Chien-Hung Yeh Laser Source Based On Fabry-Perot Laser Diodes And Seeding Method Using The Same
CN101719803A (zh) * 2009-11-27 2010-06-02 上海交通大学 波分复用无源光网络中的副载波组播传输系统
CN104243045A (zh) * 2014-09-10 2014-12-24 上海交通大学 应用于dwdm-pon系统中的下行发射机及系统
CN105827320A (zh) * 2016-05-11 2016-08-03 中天宽带技术有限公司 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
CN205754341U (zh) * 2016-05-11 2016-11-30 中天宽带技术有限公司 一种用于wdm-pon下行通信系统中基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置

Also Published As

Publication number Publication date
CN105827320B (zh) 2018-07-27
CN105827320A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
TWI452852B (zh) Optical transceivers and wavelength division multiplexing passive optical network system
WO2017193601A1 (zh) 一种用于wdm-pon中的基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
US8155523B2 (en) WDM PON RF overlay architecture based on quantum dot multi-wavelength laser source
US20110222855A1 (en) Wavelength division multiplexing-passive optical network system
US20120213519A1 (en) Transmission device of a low-noise optical signal having a low-noise multi-wavelength light source, a transmission device of broadcast signals using a low-noise multi-wavelength light source, and an optical access network having the same
JP2004159328A (ja) 中央局から生成された多波長光のループバックを利用する受動型光通信網
US8538262B2 (en) Color free WDM PON based on broadband optical transmitters
Schrenk et al. Demonstration of a remotely dual-pumped long-reach PON for flexible deployment
KR102085467B1 (ko) 광학 회선 단말 및 광학 네트워크 유닛
Cheng et al. 20Gb/s hybrid TDM/WDM PONs with 512-split using self-seeded reflective semiconductor optical amplifiers
RU2407169C1 (ru) Устройство и способ для терминала оптической линии (olt) и модуля оптической сети (onu) в не зависимых от длины волны пассивных оптических сетях с мультиплексированием с разделением по длине волны
CN205754341U (zh) 一种用于wdm-pon下行通信系统中基于ffp滤波器和ffp-soa的超窄带谱切分非相干光源的传输装置
Rosales et al. 50G-PON Upstream With Over 36dB Link Budget Using an SOA-PIN Based Receiver
Lin et al. WDM-PON systems using cross-remodulation to double network capacity with reduced Rayleigh scattering effects
Bonk et al. Cross-talk in TWDM-PON beyond NG-PON2
WO2017193600A1 (zh) 一种wdm-pon系统中的基于超窄带谱切分非相干光源和自适应阈值调控的通信装置
Le et al. TDM/DWDM PON extender for 10 Gbit/s downstream transmission
Shea et al. Experimental upstream demonstration of a long reach wavelength-converting PON with DWDM backhaul
Debrégeas et al. Components for high speed 5G access
US20090016741A1 (en) Optical communication
Bauwelinck et al. Full-duplex 10 Gb/s transmission in ultra-dense PONs with tree splits> 1: 1k and noise-powered extender box
US11855694B1 (en) Systems and methods for full field transception
KR101211908B1 (ko) 양방향 전송거리 확장 모듈 및 이를 이용한 광대역 광원 기반 파장분할다중 방식의 수동형 광 네트워크
Mizuno et al. Hybrid Cladding-pumped EDFA/Raman for SDM Transmission Systems Using Core-by-core Gain Control Scheme
Igarashi et al. Reach extension of 10G-EPON upstream transmission using distributed Raman amplification and SOA

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901556

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901556

Country of ref document: EP

Kind code of ref document: A1