WO2017193559A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2017193559A1
WO2017193559A1 PCT/CN2016/104797 CN2016104797W WO2017193559A1 WO 2017193559 A1 WO2017193559 A1 WO 2017193559A1 CN 2016104797 W CN2016104797 W CN 2016104797W WO 2017193559 A1 WO2017193559 A1 WO 2017193559A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
control channel
downlink control
domain
Prior art date
Application number
PCT/CN2016/104797
Other languages
English (en)
French (fr)
Inventor
胡文权
花梦
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16901514.6A priority Critical patent/EP3448101B1/en
Priority to CN201680085582.5A priority patent/CN109155989B/zh
Publication of WO2017193559A1 publication Critical patent/WO2017193559A1/zh
Priority to US16/186,049 priority patent/US10750530B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a data transmission method and apparatus.
  • one subframe When data transmission is performed in the existing LTE system, one subframe is usually used as a basic transmission time interval (TTI), and the time length is 1 millisecond. Each subframe can be further divided into two time slots, each of which can be divided into two time slots.
  • the time slots include 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols (corresponding to a normal cyclic prefix), that is, one subframe contains 14 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first 1-4 OFDM symbols of a subframe are generally defined as a control region (Control Region), and the base station sends Downlink Control Information (DCI) in the control region. Perform uplink or downlink scheduling.
  • the physical layer can carry the DCI through a physical downlink control channel (Physical Downlink Control Channel, PDCCH for short).
  • PDCCH Physical Downlink Control Channel
  • the PDCCH in the prior art is composed of one or more Control Channel Elements (CCEs), and the number of CCEs included in one PDCCH is usually expressed by an aggregation level.
  • CCE resource set in which the user terminal performs PDCCH blind detection is referred to as a PDCCH search space.
  • the base station determines the aggregation level adopted by the PDCCH according to the channel condition of the UE, and performs mapping in the search space corresponding to the aggregation level. Each aggregation level corresponds to one search space.
  • the 3rd Generation Partnership Project considers shortening the traditional 1 millisecond length TTI to a short TTI of 1-7 symbols (short TTI, short for short). sTTI). Due to the short TTI structure, the number of symbols of one TTI is reduced, and the number of OFDM symbols used for transmitting DCI is unchanged, so that the proportion of resource overhead occupied by the PDCCH carrying DCI becomes large.
  • the prior art adopts a physical downlink that embeds a PDCCH in transmitting data.
  • a self-contained channel transmission method sent in a Physical Downlink Share Channel (PDSCH) is used, and the PDCCH control channel is frequency-domain interleaved on a known time-frequency resource block to reduce resource overhead.
  • the PDCCH time-frequency resource domain is preset in the time-frequency resource domain to which the PDSCH belongs.
  • the base station when the base station sends the downlink control channel to the UE by using the self-contained channel transmission method, the time-frequency resources in the preset PDCCH time-frequency resource domain may not be completely occupied, thereby causing waste of time-frequency resources.
  • the embodiments of the present invention provide a data transmission method and device, which are used to solve the problem that the time-frequency resources used for transmitting the downlink control channel are not completely occupied and the time-frequency resources are wasted.
  • the embodiment of the present invention provides a data transmission method, including: a base station transmitting, to a UE, a downlink control channel for scheduling downlink data, and transmitting, to the UE, a downlink data channel scheduled by the downlink control channel;
  • the base station indicates, by using the downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and a second time-frequency resource domain, where the downlink data channel is in the first time-frequency resource domain.
  • the time-frequency resource that does not belong to the second time-frequency resource domain is sent.
  • the indicating, by the base station, the second time-frequency resource domain by using the downlink control channel including:
  • the information indicating the time-frequency resource occupied by the downlink control channel by the base station indicates the second time-frequency resource domain.
  • the indicating, by the base station, the second time-frequency resource domain by using the downlink control channel including:
  • the base station indicates the second time-frequency resource domain by using a first preset time-frequency resource location and information of a time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes an end position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: the first preset time-frequency The time-frequency resource between the resource location and the end position of the time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes the downlink control
  • the start time of the time-frequency resource occupied by the channel, the second time-frequency resource domain includes: a time-frequency resource from a start position of the time-frequency resource occupied by the downlink control channel to a second preset time-frequency resource location.
  • the downlink control channel carries the first resource quantity indication information
  • the base station indicates the second time-frequency resource domain by using the downlink control channel, including:
  • the second time-frequency resource domain includes: shifting the first resource amount from a start position of the time-frequency resource occupied by the downlink control channel to a start position of a time-frequency resource occupied by the downlink control channel A time-frequency resource between time-frequency resource locations after indicating the amount of resources indicated by the information.
  • the first resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the downlink control channel carries the second resource quantity indication information, where the base station indicates the second time-frequency resource domain by using the downlink control channel, including:
  • the base station indicates the second time-frequency resource domain by using the second resource quantity indication information and the third preset time-frequency resource position in the downlink control channel.
  • the base station indicates, by using the second resource quantity indication information in the downlink control channel, and the third preset time-frequency resource location, in the second time-frequency resource domain, except the downlink control channel. Time-frequency resources outside the occupied time-frequency resources.
  • the time-frequency resource other than the time-frequency resource occupied by the downlink control channel in the second time-frequency resource domain includes: from the third preset time-frequency resource location to the third pre- The time-frequency resource location is offset from the time-frequency resource between the time-frequency resource locations after the resource amount indicated by the second resource amount indication information.
  • the second resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the ratio of the size of the time-frequency resource occupied by the downlink control channel set that includes the at least one downlink control channel and the size of the second time-frequency resource domain that is carried in the second time-frequency resource domain is greater than Set the threshold.
  • the sending, by the base station, the downlink data channel scheduled by the downlink control channel to the UE including:
  • the downlink control channel carries third resource quantity indication information
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fourth preset time-frequency resource location and the third resource amount indication information in each of the first time-frequency resource domain, and the The time-frequency resource occupied by the downlink control channel for scheduling downlink data.
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit size indication
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit location indication.
  • the third resource quantity indication information indicates only one resource quantity information
  • the base station includes:
  • the base station indicates the time-frequency resource determined by the fourth preset time-frequency resource location and the third resource amount indication information in each of the first time-frequency resource domains by using the one resource quantity information.
  • the information about the time-frequency resource occupied by the downlink control channel further includes time-frequency resource call indication information, where the time-frequency resource call indication information is used to indicate a specific first time-frequency resource.
  • the domain, all time-frequency resources of the specific first time-frequency resource domain are used to send the downlink channel of the UE.
  • the sending, by the base station, the downlink data channel scheduled by the downlink control channel to the UE including:
  • the channel elements are connected end to end to form a joint control channel resource domain;
  • the downlink control channel carries the fourth resource quantity indication information, and the base station indicates the second time-frequency resource domain by using the downlink control channel;
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fifth preset time-frequency resource location and the fourth resource amount indication information in the joint control channel resource domain, and the used to schedule downlink data Time-frequency resources occupied by the downlink control channel.
  • the embodiment of the present invention further provides a channel resource indication method, including:
  • the UE receives a downlink control channel sent by the base station for scheduling downlink data, and a downlink data channel scheduled by the downlink control channel;
  • the time-frequency resource of the second time-frequency resource domain is sent.
  • the determining, by the UE, the second time-frequency resource domain according to the downlink control channel includes:
  • the UE indicates the second time-frequency resource domain according to the information of the time-frequency resource occupied by the downlink control channel.
  • the determining, by the UE, the second time-frequency resource domain according to the downlink control channel includes:
  • the UE determines the second time-frequency resource domain according to the first preset time-frequency resource location and the information of the time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes an end position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: the first preset time-frequency The time-frequency resource between the resource location and the end position of the time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes a start position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: when the downlink control channel is occupied.
  • the downlink control channel carries the first resource quantity indication information, and the downlink control channel indicates the second time-frequency resource domain, including:
  • the second time-frequency resource domain includes: shifting the first resource amount from a start position of the time-frequency resource occupied by the downlink control channel to a start position of a time-frequency resource occupied by the downlink control channel A time-frequency resource between time-frequency resource locations after indicating the amount of resources indicated by the information.
  • the first resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the downlink control channel carries the second resource quantity indication information, and the determining, by the UE, the second time-frequency resource domain according to the downlink control channel,
  • the UE determines the second time-frequency resource domain according to the second resource quantity indication information and the third preset time-frequency resource location in the downlink control channel.
  • the UE determines, according to the second resource quantity indication information in the downlink control channel and the third preset time-frequency resource location, the second time-frequency resource domain except the downlink control channel. Time-frequency resources outside the occupied time-frequency resources.
  • the time-frequency resource other than the time-frequency resource occupied by the downlink control channel in the second time-frequency resource domain includes: from the third preset time-frequency resource location to the third pre- Setting a time-frequency resource position offset from the time-frequency resource bit after the resource quantity indicated by the second resource quantity indication information Time-frequency resources between sets.
  • the second resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the ratio of the size of the time-frequency resource occupied by the downlink control channel set that includes the at least one downlink control channel and the size of the second time-frequency resource domain that is carried in the second time-frequency resource domain is greater than Set the threshold.
  • the UE receives a downlink control channel that is sent by the base station to schedule downlink data, and a downlink data channel that is scheduled by the downlink control channel, and includes:
  • the downlink control channel carries third resource quantity indication information
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fourth preset time-frequency resource location and the third resource amount indication information in each of the first time-frequency resource domain, and the The time-frequency resource occupied by the downlink control channel for scheduling downlink data.
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit size indication
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit location indication.
  • the third resource quantity indication information indicates only one resource quantity information
  • Determining, by the UE, the first time-frequency resource domain to which the downlink data channel belongs according to the downlink control channel, and determining the second time-frequency resource domain including:
  • the UE indicates, according to the one resource quantity information, the fourth preset time-frequency resource location and the time-frequency resource determined by the third resource quantity indication information in each of the first time-frequency resource domains.
  • the information about the time-frequency resource occupied by the downlink control channel further includes time-frequency resource adjustment.
  • the time-frequency resource call indication information is used to indicate a specific first time-frequency resource domain, where all time-frequency resources of the specific first time-frequency resource domain are used to send the downlink channel of the UE.
  • the UE receives a downlink control channel that is sent by the base station to schedule downlink data, and a downlink data channel that is scheduled by the downlink control channel, and includes:
  • the downlink data channel scheduled by the downlink control channel to the UE by using time-frequency resources of the at least two first time-frequency resource domains; wherein, the at least two first time-frequency channels
  • the control channel elements of the resource domain are connected end to end to form a joint control channel resource domain;
  • the downlink control channel carries the fourth resource quantity indication information, and the base station indicates the second time-frequency resource domain by using the downlink control channel;
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fifth preset time-frequency resource location and the fourth resource amount indication information in the joint control channel resource domain, and the used to schedule downlink data Time-frequency resources occupied by the downlink control channel.
  • an embodiment of the present invention further provides a data transmission apparatus, including:
  • a sending module configured to send, to the UE, a downlink control channel for scheduling downlink data, and send the downlink data channel scheduled by the downlink control channel to the UE;
  • a processing module configured to indicate, by using the downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and a second time-frequency resource domain, where the downlink data channel is in the first time-frequency resource The domain is sent on a time-frequency resource that does not belong to the second time-frequency resource domain.
  • the processing module is configured to indicate the second time-frequency resource domain by using information about a time-frequency resource occupied by the downlink control channel.
  • the processing module is configured to indicate the second time-frequency resource domain by using information about a first preset time-frequency resource location and a time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes an end position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: the first preset time-frequency The time-frequency resource between the resource location and the end position of the time-frequency resource occupied by the downlink control channel.
  • the information of the time-frequency resource occupied by the downlink control channel includes a start position of a time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: The time-frequency resource between the start position of the time-frequency resource occupied by the control channel and the second preset time-frequency resource location.
  • the downlink control channel carries the first resource quantity indication information
  • the base station indicates the second time-frequency resource domain by using the downlink control channel, including:
  • the second time-frequency resource domain includes: shifting the first resource amount from a start position of the time-frequency resource occupied by the downlink control channel to a start position of a time-frequency resource occupied by the downlink control channel A time-frequency resource between time-frequency resource locations after indicating the amount of resources indicated by the information.
  • the first resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the downlink control channel carries the second resource quantity indication information, where
  • the processing module is configured to: indicate, by using the second resource quantity indication information and the third preset time-frequency resource location in the downlink control channel, the second time-frequency resource domain.
  • the processing module is configured to indicate, by using the second resource quantity indication information in the downlink control channel and the third preset time-frequency resource location, the second time-frequency resource domain A time-frequency resource other than the time-frequency resource occupied by the downlink control channel.
  • the time-frequency resource other than the time-frequency resource occupied by the downlink control channel in the second time-frequency resource domain includes: from the third preset time-frequency resource location to the third pre- The time-frequency resource location is offset from the time-frequency resource between the time-frequency resource locations after the resource amount indicated by the second resource amount indication information.
  • the second resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the ratio of the size of the time-frequency resource occupied by the downlink control channel set that includes the at least one downlink control channel and the size of the second time-frequency resource domain that is carried in the second time-frequency resource domain is greater than Set the threshold.
  • the sending module is specifically configured to:
  • the downlink control channel carries third resource quantity indication information
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fourth preset time-frequency resource location and the third resource amount indication information in each of the first time-frequency resource domain, and the The time-frequency resource occupied by the downlink control channel for scheduling downlink data.
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit size indication
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit location indication.
  • the third resource quantity indication information indicates only one resource quantity information
  • the processing module is specifically configured to:
  • the information about the time-frequency resource occupied by the downlink control channel further includes time-frequency resource call indication information, where the time-frequency resource call indication information is used to indicate a specific first time-frequency resource domain, where the specific All time-frequency resources of the one-time frequency resource domain are used to send the downlink channel of the UE.
  • the sending module is specifically configured to:
  • the downlink control channel carries the fourth resource quantity indication information, and the base station indicates the second time-frequency resource domain by using the downlink control channel;
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fifth preset time-frequency resource location and the fourth resource amount indication information in the joint control channel resource domain, and the used to schedule downlink data Time-frequency resources occupied by the downlink control channel.
  • the embodiment of the present invention further provides a channel resource indication device, including:
  • a receiving module configured to receive a downlink control channel that is sent by the base station to schedule downlink data, and a downlink data channel that is scheduled by the downlink control channel;
  • a processing module configured to determine, according to the received downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and determine a second time-frequency resource domain, where the downlink data channel is in the first time
  • the frequency resource domain is sent on a time-frequency resource that does not belong to the second time-frequency resource domain.
  • the processing module is configured to determine the second time-frequency resource domain according to information about time-frequency resources occupied by the downlink control channel.
  • processing module is configured to:
  • the information about the time-frequency resource occupied by the downlink control channel includes an end position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: the first preset time-frequency The time-frequency resource between the resource location and the end position of the time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes a start position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: when the downlink control channel is occupied.
  • the downlink control channel carries the first resource quantity indication information
  • the processing module is configured to:
  • the start position of the time-frequency resource occupied by the track indicates the second time-frequency resource domain.
  • the second time-frequency resource domain includes: shifting the first resource amount from a start position of the time-frequency resource occupied by the downlink control channel to a start position of a time-frequency resource occupied by the downlink control channel A time-frequency resource between time-frequency resource locations after indicating the amount of resources indicated by the information.
  • the first resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the downlink control channel carries the second resource quantity indication information
  • the processing module is configured to:
  • the processing module is configured to: determine, according to the second resource quantity indication information and the third preset time-frequency resource location in the downlink control channel, the second time-frequency resource domain Time-frequency resources other than time-frequency resources occupied by the downlink control channel.
  • the time-frequency resource other than the time-frequency resource occupied by the downlink control channel in the second time-frequency resource domain includes: from the third preset time-frequency resource location to the third pre- The time-frequency resource location is offset from the time-frequency resource between the time-frequency resource locations after the resource amount indicated by the second resource amount indication information.
  • the second resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the ratio of the size of the time-frequency resource occupied by the downlink control channel set that includes the at least one downlink control channel and the size of the second time-frequency resource domain that is carried in the second time-frequency resource domain is greater than Set the threshold.
  • the receiving module is specifically configured to:
  • the downlink control channel carries third resource quantity indication information
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fourth preset time-frequency resource location and the third resource amount indication information in each of the first time-frequency resource domain, and the The time-frequency resource occupied by the downlink control channel for scheduling downlink data.
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit size indication
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit location indication.
  • the third resource quantity indication information indicates only one resource quantity information
  • the processing module is specifically configured to:
  • the information about the time-frequency resource occupied by the downlink control channel further includes time-frequency resource call indication information, where the time-frequency resource call indication information is used to indicate a specific first time-frequency resource domain, where the specific All time-frequency resources of the one-time frequency domain are used to transmit the downlink data channel.
  • the receiving module is specifically configured to:
  • the base station Receiving, by the base station, the downlink data channel scheduled by the downlink control channel to the UE by using time-frequency resources of the at least two first time-frequency resource domains; wherein, the at least two first time-frequency resource domains are Control channel elements are connected end to end to form a joint control channel resource domain;
  • the downlink control channel carries the fourth resource quantity indication information, and the base station indicates the second time-frequency resource domain by using the downlink control channel;
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fifth preset time-frequency resource location and the fourth resource amount indication information in the joint control channel resource domain, and the used to schedule downlink data Time-frequency resources occupied by the downlink control channel.
  • an embodiment of the present invention further provides a data transmission apparatus, including:
  • a transmitter configured to send, to the UE, a downlink control channel for scheduling downlink data, and send the downlink data channel scheduled by the downlink control channel to the UE;
  • a processor configured to indicate, by using the downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and a second time-frequency resource domain, where the downlink data channel is in the first time-frequency resource The domain is sent on a time-frequency resource that does not belong to the second time-frequency resource domain.
  • the embodiment of the present invention further provides a data transmission apparatus, including:
  • a receiver configured to receive a downlink control channel sent by the base station for scheduling downlink data, and a downlink data channel scheduled by the downlink control channel;
  • a processor configured to determine, according to the received downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and determine a second time-frequency resource domain, where the downlink data channel is in the first time
  • the frequency resource domain is sent on a time-frequency resource that does not belong to the second time-frequency resource domain.
  • the base station sends a downlink control channel for scheduling downlink data to the UE, and a downlink data channel scheduled by the downlink control channel, and indicates the downlink data by using the downlink control channel.
  • the downlink data channel is sent on a time-frequency resource that does not belong to the second time-frequency resource domain in the first time-frequency resource domain.
  • the downlink control channel may indicate that the control channel in the current sTTI is not in the time-frequency resource domain.
  • the occupied time-frequency resources so that the base station can multiplex the unoccupied time-frequency resources in the time-frequency resource domain for transmitting the PDCCH when scheduling the downlink data channel, and improve the utilization of the time-frequency resources. rate.
  • FIG. 1 is a schematic structural diagram of a frame of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of time-frequency resource distribution of a downlink control channel and a downlink data channel in a data transmission method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of time-frequency resource allocation occupied by a downlink control channel in FIG. 3;
  • FIG. 5 is another schematic diagram of distribution of time-frequency resources occupied by the downlink control channel in FIG. 3;
  • FIG. 6(a) is a schematic diagram of an uplink search space and a downlink search space in a data transmission method according to an embodiment of the present invention
  • 6(b) is a time-frequency resource distribution diagram of the downlink control channel occupied by the uplink search space and the downlink search space according to FIG. 6(a);
  • FIG. 7(a) is a schematic diagram of another uplink search space and a downlink search space in a data transmission method according to an embodiment of the present invention.
  • FIG. 7(b) is a time-frequency resource distribution diagram of the downlink control channel occupied by the uplink search space and the downlink search space according to FIG. 7(a);
  • FIG. 8 is another schematic diagram of a distribution of time-frequency resources occupied by the downlink control channel in FIG. 3;
  • FIG. 9 is another schematic diagram of a distribution of time-frequency resources occupied by the downlink control channel in FIG. 3;
  • FIG. 10 is another schematic diagram of a distribution of time-frequency resources occupied by the downlink control channel in FIG. 3;
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a data transmission apparatus according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a data transmission apparatus according to another embodiment of the present invention.
  • An embodiment of the present invention provides a data transmission method and apparatus, for a preset time-frequency resource domain for transmitting a PDCCH in a process in which a base station sends a downlink control channel (Physical Downlink Control Channel, PDCCH for short) to a UE.
  • the unoccupied time-frequency resource is instructed, so that the base station can multiplex the unoccupied time-frequency resources in the time-frequency resource domain for transmitting the PDCCH when scheduling the downlink data channel, and improve the time. Utilization of frequency resources.
  • FIG. 1 is a schematic structural diagram of a frame of a data transmission apparatus according to an embodiment of the present invention.
  • a data transmission apparatus includes a processor 10 and a transceiver 20.
  • the data transmission device may be disposed in a base station or a user equipment (User Terminal, UE for short).
  • UE User Terminal
  • the base station side generates, in the processor 10, a downlink control channel for scheduling downlink data of the UE and a downlink data channel scheduled by the downlink control channel, and the scheduled UE is used by the transceiver 20.
  • the downlink control channel of the downlink data and the downlink data channel are sent to the UE.
  • FIG. 2 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present invention.
  • a data transmission method provided by an embodiment of the present invention includes:
  • the base station generates a downlink PDCCH for scheduling downlink data of the UE and a downlink data channel scheduled by the downlink PDCCH.
  • the base station sends the downlink PDCCH to the UE, and sends the downlink data channel scheduled by the downlink PDCCH to the UE.
  • the part of the time-frequency resource in the first time-frequency resource domain to which the downlink data channel belongs is preset to send a control channel time-frequency resource domain of the downlink control channel, where the second time-frequency resource domain includes the control channel. All occupied time-frequency resources in the time-frequency resource domain.
  • the time-frequency resource in the second time-frequency resource domain may be used to send the downlink PDCCH for scheduling downlink data, or send an uplink PDCCH for scheduling uplink data, or send other downlink control for sending ACK feedback.
  • the channel, or the second time-frequency resource domain may further include a reference signal (RS) or a broadcast channel (BCH). Time-frequency resources occupied.
  • the base station may not be limited to indicate the second time-frequency resource domain by using the following implementation manners.
  • the indicating, by the downlink control channel, the second time-frequency resource domain includes:
  • the base station indicates the second time-frequency resource domain according to the information of the time-frequency resource occupied by the downlink control channel.
  • the base station indicates the second time-frequency resource domain according to the first preset time-frequency resource location and the information of the time-frequency resource occupied by the downlink control channel.
  • the first preset time-frequency resource location may be a start position of a time-frequency resource occupied by the uplink PDCCH or other PDCCH.
  • the base station determines the aggregation level adopted by the PDCCH according to the channel condition of the UE, and performs mapping in the search space corresponding to the aggregation level.
  • Each aggregation level corresponds to one search space, and the size of the search space is related to the number of candidates of the PDCCH that can be supported under the aggregation level.
  • the start point of the search space may be based on the UE ID of the UE (such as a radio network temporary identifier) or a bearer PDCCH mapping. At least one of the sub-frame index or the slot index is calculated according to a predefined functional relationship.
  • the size and starting point of the search space are well defined by the system. Therefore, when the PDCCH is mapped to the time-frequency resource in the control channel resource domain, the first preset time-frequency resource location can be determined. That is, the base station may implicitly indicate the second time-frequency resource domain by using the downlink PDCCH of the scheduled downlink data, and reduce the indication overhead of the downlink PDCCH.
  • the information of the time-frequency resource occupied by the downlink control channel includes an end position of a time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: Presetting the time-frequency resource between the time-frequency resource location and the end position of the time-frequency resource occupied by the downlink control channel.
  • step S102 will be specifically described below with reference to FIGS. 3 and 4.
  • FIG. 3 is a schematic diagram of time-frequency resource allocation of a downlink control channel and a downlink data channel in a data transmission method according to an embodiment of the present invention.
  • 4 is a schematic diagram of time-frequency resource allocation occupied by the downlink control channel in FIG.
  • the base station is in a time-frequency resource block of a short transmission time interval (sTTI) of the self-contained structure (ie, the first The downlink data channel of UE2 is scheduled on the one-time frequency resource domain.
  • the control channel time-frequency resource domain is preset in the first time-frequency resource domain (as shown in FIG. 4).
  • the control channel time-frequency resource domain may be used to send the downlink PDCCH for scheduling UE2 downlink data and an uplink PDCCH for scheduling other UE uplink data.
  • the first time-frequency resource domain includes all time-frequency resources in the second time-frequency resource domain.
  • the downlink PDCCH for scheduling the downlink data and the time-frequency resource occupied by the uplink PDCCH for scheduling the uplink data are in units of a Control Channel Element (CCE).
  • CCE Control Channel Element
  • the uplink PDCCH for scheduling the uplink data starts to be mapped from a CCE location (that is, the first preset time-frequency resource location) that is known in the time-frequency resource domain, and is configured according to the uplink scheduled UE.
  • the aggregation level allocates the number of CCEs occupied by the uplink PDCCH.
  • mapping the downlink PDCCH for scheduling downlink data on the time-frequency resource after the time-frequency resource occupied by the uplink PDCCH for scheduling the uplink data is mapped to a CCE location (that is, the first preset time-frequency resource location) that is known in the time-frequency resource domain.
  • mapping the downlink PDCCH for scheduling downlink data on the time-frequency resource after the time-frequency resource occupied by the uplink PDCCH for
  • the centralized distribution of time-frequency resources occupied by the PDCCH on the preset control channel time-frequency resource domain refers to the size of all time-frequency resources occupied by the PDCCH on the preset control channel time-frequency resource domain.
  • the ratio of the size of the second time-frequency resource domain is greater than a preset threshold. Then, time-frequency resources other than the second time-frequency resource domain in the first time-frequency resource domain may be used to send the downlink data channel.
  • the downlink control channel PDCCH is transmitted on the first symbol.
  • the entire system bandwidth is divided into multiple time-frequency resource blocks, and one time-frequency resource block (the first time-frequency resource domain) can be used for downlink data channel transmission of one UE at most.
  • the control channel time-frequency resource domain is preset on one time-frequency resource block of each sTTI, and is used to send a PDCCH.
  • a control channel unit whose logic changes from CCE0 to CCE(N-1) is formed on the preset control channel time-frequency resource domain.
  • N is an integer greater than or equal to zero.
  • N is 19.
  • the uplink PDCCH scheduling uplink data starts resource mapping from a known time-frequency resource location (the first preset time-frequency resource location) CCE2.
  • image 3 The aggregation level of UE3 that is scheduled in the uplink is 2, thus occupying 2 CCEs.
  • UE4, UE5 is similar to UE6.
  • UE2 is a downlink scheduled UE whose aggregation level is 4.
  • the optional starting positions of the downlink control channel with the aggregation level of 4 are CCE2, CCE6, CCE10, CCE14, etc., and so on. Since the CCE2-CCE6 is occupied by the uplink PDCCH, resources for scheduling the PDCCH channel of the downlink of the UE2 may start from the CCE 10 and the CCE 14. After the UE2 detects the downlink PDCCH scheduling the downlink data of the UE2, it can be known that the time-frequency resources corresponding to the CCEs other than the CCE2 to the CCE13 can be used to send the downlink data channel.
  • the UE receives the downlink control channel that is sent by the base station to schedule the downlink data, and the downlink data channel that is scheduled by the downlink control channel.
  • the UE determines, according to the downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and determines a second time-frequency resource domain.
  • the UE when the UE detects a downlink data channel scheduled for the UE, the UE combines the first preset time-frequency resource location and the downlink data for scheduling.
  • the end position of the downlink PDCCH that is, the time-frequency resource included in the second time-frequency resource domain can be known.
  • the time-frequency resource that does not belong to the second time-frequency resource domain in the first time-frequency resource domain can be used for sending the downlink data channel.
  • the UE may also detect whether there is a PDCCH channel that schedules uplink of the UE.
  • the UE does not detect the downlink PDCCH that is scheduled to be downlinked by the UE, it continues to detect whether there is a PDCCH channel for scheduling the uplink of the UE; otherwise, it indicates that the UE in the sTTI is not scheduled by the base station.
  • FIG. 5 is another schematic diagram of the distribution of time-frequency resources occupied by the downlink control channel in FIG.
  • the information about the time-frequency resource occupied by the downlink control channel includes a start position of a time-frequency resource occupied by the downlink control channel, where
  • the second time-frequency resource domain includes: a time-frequency resource from a start position of the time-frequency resource occupied by the downlink control channel to a second preset time-frequency resource location.
  • the downlink PDCCH for scheduling downlink data starts to be mapped from a CCE location that is known in the time-frequency resource domain, and is aggregated according to each uplink-scheduled UE. Assign CCEs horizontally. Mapping the used for scheduling uplink data on the time-frequency resource after the time-frequency resource occupied by the downlink PDCCH for scheduling downlink data The uplink PDCCH. In this manner, all the PDCCHs occupied by the preset control channel time-frequency resource domain are collectively distributed to form the second time-frequency resource domain.
  • the second preset time-frequency resource location is an end position of the time-frequency resource occupied by the uplink PDCCH.
  • the first time-frequency resource domain includes all time-frequency resources in the second time-frequency resource domain.
  • the base station determines the aggregation level adopted by the PDCCH according to the channel condition of the UE, and performs mapping in the search space corresponding to the aggregation level.
  • Each aggregation level corresponds to one search space, and the size of the search space is related to the number of PDCCH candidates that can be supported under the aggregation level.
  • the starting point of the search space may be based on the UE ID of the UE (such as a radio network temporary identifier) or a bearer PDCCH mapping. At least one of the sub-frame index or the slot index is calculated according to a predefined functional relationship.
  • the size and starting point of the search space are well defined by the system.
  • the base station when the base station sends a downlink PDCCH for scheduling downlink data to the UE, the start location and the end location of the downlink PDCCH, and the second preset time-frequency resource may be determined. position. That is, the base station may implicitly indicate the second time-frequency resource domain by using the downlink PDCCH of the scheduled downlink data, and reduce the indication overhead of the downlink PDCCH.
  • the downlink control channel carries the first resource quantity indication information
  • the base station indicates the second time-frequency resource domain by using the downlink control channel, including:
  • the time-frequency resource after the time-frequency resource occupied by the downlink PDCCH for scheduling downlink data is mapped.
  • the uplink PDCCH for scheduling uplink data is mapped.
  • all the PDCCHs occupied by the preset control channel time-frequency resource domain are collectively distributed to form the second time-frequency resource domain.
  • the first resource amount indication information is carried in the DCI of the downlink PDCCH.
  • the base station indicates the second time-frequency resource domain according to the first resource quantity indication information in the downlink control channel and a start position of a time-frequency resource occupied by the downlink control channel.
  • the second time-frequency resource domain includes: a time frequency occupied by the downlink control channel
  • the time-frequency resource between the start position of the resource and the start position of the time-frequency resource occupied by the downlink control channel is offset from the time-frequency resource position after the resource quantity indicated by the first resource quantity indication information.
  • the downlink control channel carries the second resource quantity indication information
  • the base station indicates the second time-frequency resource domain by using the downlink control channel, including:
  • the base station indicates the second time-frequency resource domain according to the second resource amount indication information and the third preset time-frequency resource location in the downlink control channel for scheduling downlink data. Specifically, the base station indicates, by using the second resource quantity indication information in the downlink control channel and the third preset time-frequency resource location, that the second time-frequency resource domain is occupied by the downlink control channel. Time-frequency resources outside the time-frequency resources.
  • the time-frequency resource other than the time-frequency resource occupied by the downlink control channel for scheduling the downlink data in the second time-frequency resource domain includes: from the third preset time-frequency resource location to the location
  • the third preset time-frequency resource location is offset from the time-frequency resource between the time-frequency resource locations after the resource amount indicated by the second resource amount indication information.
  • the third preset time-frequency resource location is a start position of a time-frequency resource occupied by a downlink control channel except the downlink control channel for scheduling downlink data.
  • the determining manner of the third preset time-frequency resource location is the same as the determining manner of the first preset time-frequency resource location and the second time-frequency resource preset time-frequency resource location.
  • FIG. 6(a) is a schematic diagram of an uplink search space and a downlink search space in a data transmission method according to an embodiment of the present invention.
  • FIG. 6(b) is a time-frequency resource distribution diagram occupied by the downlink control channel determined according to the uplink search space and the downlink search space of FIG. 6(a).
  • FIG. 7(a) is a schematic diagram of another uplink search space and a downlink search space in a data transmission method according to an embodiment of the present invention.
  • FIG. 7(b) is a time-frequency resource distribution diagram occupied by the downlink control channel determined according to the uplink search space and the downlink search space of FIG. 7(a).
  • a downlink control search space and an uplink search space are respectively defined in the control channel time-frequency resource domain preset in the data channel resource of the self-contained structure.
  • the downlink control search space corresponds to the downlink PDCCH for scheduling downlink data
  • the uplink search space corresponds to an uplink PDCCH for uplink scheduling or acknowledgment (ACK).
  • ACK acknowledgment
  • the downlink PDCCH channel for scheduling the downlink data channel.
  • a control channel unit is allocated according to an aggregation level of each uplink scheduled UE in the uplink search space.
  • the downlink control information (Downlink control information, DCI for short-term PDCCH and the uplink PDCCH bearer) may be implicitly indicated according to the time-frequency resource. It is used for uplink scheduling or downlink scheduling without additional resources for indication, which saves the control channel indication overhead.
  • All the PDCCH channels used for the uplink scheduling or the ACK feedback are collectively distributed on the preset control channel resource domain, and the second resource amount indication may be carried in the DCI of the downlink PDCCH bearer used for scheduling the downlink data. information. And indicating, according to the second resource quantity indication information and the second preset time-frequency resource location, a time-frequency resource occupied by the downlink PDCCH for scheduling downlink data in the second time-frequency resource domain.
  • the external time-frequency resource includes time-frequency resources occupied by the uplink PDCCH for scheduling uplink data or ACK feedback, or time-frequency resources occupied by the RS and the BCH channel.
  • the time-frequency resource in the control channel time-frequency resource domain is removed from the time-frequency resource occupied by the downlink PDCCH for scheduling downlink data, and the indicated time-frequency resource is used, and other unused control channel time-frequency resources are used.
  • the transmission of the downlink data channel in the TTI is such that the multiplexing efficiency of the time-frequency resource is improved under a low control overhead.
  • the UE After detecting the scheduling of the downlink PDCCH in the downlink of the UE, the UE learns the information according to the second resource amount indication information and the second preset time-frequency resource location in the DCI of the downlink PDCCH.
  • the time-frequency resource occupied by the uplink PDCCH, thereby obtaining the occupied time-frequency resource in the time-frequency resource domain of the control channel, and the preset time-frequency resource of the control channel in the time-frequency resource domain is not used.
  • the downlink data channel is transmitted. Further, the UE may also detect whether there is a PDCCH channel that schedules uplink of the UE.
  • the UE does not detect the downlink PDCCH that is scheduled to be downlinked by the UE, it continues to detect whether the uplink PDCCH is scheduled to be uplinked by the UE, and if it is still not detected, it indicates that the UE in the sTTI is not Base station scheduling.
  • the length of one sTTI is 2 symbols, and the control channel is transmitted on the first symbol.
  • the entire system bandwidth is divided into multiple time-frequency resource blocks, and one time-frequency resource domain block can be used for the downlink data channel sPDSCH transmission of one UE at most.
  • the control channel time-frequency resource domain is preset on one time-frequency resource block (ie, the first time-frequency resource domain) of each sTTI. Presetting the control channel on the sTTI0, forming logic on the time-frequency resource domain Change the CCE from CCE0 to CCE25.
  • the downlink PDCCH for scheduling downlink data performs resource mapping on the control channel time-frequency resource domain according to an alternative subset defined on different aggregation levels.
  • the UE2 of the downlink scheduling has an aggregation level of 4, and is mapped to four CCEs of CCE0-CCE3 in the downlink control search space.
  • the uplink PDCCH for scheduling uplink data performs resource mapping on the control channel time-frequency resource domain according to an alternative subset defined on different aggregation levels.
  • the aggregated UE3 has an aggregation level of 8, which occupies 8 CCEs in the uplink search space.
  • UE4, UE5 is similar to UE6.
  • the uplink search space and the downlink search space are both defined in the first time-frequency resource domain, and the control channel is formed by the occupied time-frequency resource in the time-frequency resource domain.
  • the second time-frequency resource domain is part of the first time-frequency resource domain. That is, the first time-frequency resource domain includes all time-frequency resources in the second time-frequency resource domain.
  • the downlink data channel is sent on a time-frequency resource that does not belong to the second time-frequency resource domain in the first time-frequency resource domain.
  • the resource size of the uplink PDCCH used for scheduling uplink data is 16 from the second resource amount indication information of the DCI carried by the downlink PDCCH.
  • the second resource amount indication information may be a relative value, for example, a 3-bit (bit) quantization value (with 000, 001, ..., 111 corresponding to 1/8, 2/8, 3/8, ..., 8 respectively) /8) indicates the size of the time-frequency resource occupied by the uplink PDCCH.
  • the time-frequency resource of the uplink PDCCH mapping that can be used to schedule the uplink data is 16 CCEs, and the actual occupied CCE length is also 16.
  • the size of the time-frequency resource occupied by the uplink PDCCH of the data is 16 CCEs.
  • the second preset time-frequency resource location that is, the start position of the time-frequency resource occupied by the uplink PDCCH for scheduling uplink data
  • CCEs other than CCE0 to CCE3 can be used for scheduling except CCE0 to CCE3.
  • FIG. 7(a) and FIG. 7(b) simultaneously, and assume that the length of the sTTI is 2 symbols, and the downlink control channel PDCCH is transmitted on the first symbol.
  • the entire system bandwidth is divided into multiple time-frequency resource blocks, and one time-frequency resource block can be used for the downlink data channel transmission of one UE at most.
  • a time-frequency resource domain of a first control channel is preset on a time-frequency resource block (ie, the first time-frequency resource domain) of each sTTI, and is used to send the scheduled downlink data.
  • Downstream PDCCH Defining a corresponding downlink PDCCH on the first control channel time-frequency resource domain The downlink controls the search space.
  • a CCE that logically changes from CCE0 to CCE15 is formed on the control channel time-frequency resource domain in the time-frequency resource block in which the sTTI0 schedules the UE2 downlink.
  • the second control channel time-frequency resource domain is preset on the entire system bandwidth, and is used to send the uplink PDCCH of the scheduled uplink data.
  • An uplink search space corresponding to the uplink PDCCH is defined on the system bandwidth. For example, on the entire system bandwidth of sTTI0, a predetermined time-frequency resource block forms a CCE with a logical change from CCE0 to CCE27.
  • the second control channel time-frequency resource domain is defined on the entire system bandwidth of the sTTI0, and therefore, the second control channel time-frequency resource domain includes the first time-frequency. Time-frequency resources outside the resource domain.
  • the second time-frequency resource domain includes a time-frequency resource that is partially occupied in the first control channel resource domain and a time-frequency resource that is partially occupied in the time-frequency resource of the second control channel. Therefore, when the time-frequency resource occupied by the second control channel is a time-frequency resource other than the first time-frequency resource domain, the time-frequency resource in the second time-frequency resource domain does not completely belong to The first time-frequency resource domain, but an intersection with the time-frequency resource in the first time-frequency resource domain.
  • the downlink data channel is sent on a time-frequency resource that does not belong to the second time-frequency resource domain in the first time-frequency resource domain.
  • the downlink PDCCH for scheduling downlink data performs resource mapping according to an alternative subset defined on different aggregation levels.
  • the aggregation level of the downlink scheduled UE2 is 4, and CCE0-CCE3 mapped in the downlink search space. A total of 4 CCE.
  • the uplink PDCCH for scheduling uplink data performs resource mapping according to an alternative subset defined on different aggregation levels.
  • the aggregation level of the UE 3 that is scheduled in the uplink is 8, and thus occupies 8 CCEs in the uplink search space.
  • UE4, UE5 is similar to UE6.
  • the time-frequency resource occupied by the uplink PDCCH is 16 CCEs from the DCI of the downlink PDCCH, and the first control channel is known.
  • CCE0 to CCE3 in the time-frequency resource domain, and time-frequency resources other than CCE0 to CCE15 in the second-time control channel time-frequency resource domain are available for resource mapping of the downlink data channel.
  • the first resource quantity indication information and the second resource quantity indication information include any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the time-frequency resources that are occupied by the downlink control channel set that includes the at least one downlink control channel that are carried in the second time-frequency resource domain are concentrated, that is, the second time-frequency resource domain includes at least one The ratio of the size of the time-frequency resource occupied by the downlink control channel set of the downlink control channel to the size of the second time-frequency resource domain is greater than a preset threshold.
  • the time-frequency resources occupied by the downlink control channel set are collectively distributed, when the first resource amount indication information or the second resource amount indication information carried in the DCI is used to indicate the second time-frequency resource domain, only The second time-frequency resource domain may be indicated by a resource size information and a second preset time-frequency resource location. Compared with the distributed distribution of time-frequency resources occupied by the downlink control channel set in the prior art, the indication overhead of the first resource quantity indication information and the second resource quantity indication information is saved.
  • FIG. 8 is another schematic diagram of the distribution of time-frequency resources occupied by the downlink control channel in FIG.
  • the base station sends the downlink data channel scheduled by the downlink control channel to the UE, including:
  • the downlink control channel carries third resource quantity indication information
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fourth preset time-frequency resource location and the third resource amount indication information in each of the first time-frequency resource domain, and the The time-frequency resource occupied by the downlink control channel for scheduling downlink data.
  • the above embodiment will be described in detail below with reference to FIG. Referring to FIG. 8, when the base station sends the downlink data channel to the UE, two or more sTTI time-frequency resource blocks, sTTI block0, sTTI block1, and sTTI block3, that is, two or more are called.
  • the first time-frequency resource domain is used to send the downlink data channel.
  • the downlink control channel for scheduling downlink data is mapped on one of the first time-frequency resource domains in the two or more first time-frequency resource domains
  • the downlink PDCCH for scheduling uplink data is mapped in part or two of the time-frequency resources in the first time-frequency resource domain.
  • the base station maps the downlink control channel for scheduling the downlink data of the UE2 through the control channel unit (CCE0-CCE3) on the sTTI block0, and the downlink PDCCH that schedules the uplink data on the control channel resources on the sTTI block0 and the sTTI block1 is known from
  • the time-frequency resource location (the fourth preset time-frequency resource location) CCE 23 starts resource mapping.
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit size indication
  • the resource quantity information indicated by the third resource quantity indication information is a control channel unit location indication.
  • the third resource amount indication information indicates only one resource amount information
  • the base station includes:
  • the base station indicates the time-frequency resource determined by the fourth preset time-frequency resource location and the third resource amount indication information in each of the first time-frequency resource domains by using the one resource quantity information.
  • the resource quantity information refers to a length or a position of a control channel unit occupied by a downlink control channel (uplink PDCCH) used for scheduling uplink data in each of the first time-frequency resource domains.
  • uplink PDCCH downlink control channel
  • the base station may indicate each of the foregoing by using only one resource amount information.
  • the time-frequency resource domain is used to map the time-frequency resources of the downlink control channel for scheduling uplink data.
  • the one resource quantity information is the length or location of the control channel unit with the most time-frequency resources occupied by the downlink control channel (uplink PDCCH) for scheduling the uplink data in the at least two first time-frequency resource domains.
  • the one resource amount information is used to indicate the length or position of all CCEs from CCE8 to CCE24.
  • the resource amount information may be indicated by 3-bit information.
  • downlink PDCCH downlink quantity control channel
  • uplink PDCCH downlink control channel
  • uplink PDCCH uplink control channel
  • the time-frequency resources occupied by the downlink control channel (uplink PDCCH) for scheduling uplink data in each first time-frequency resource domain are not required to be indicated by the plurality of resource quantity information, respectively.
  • the number of bits is saved, and the use overhead of time-frequency resources is reduced.
  • FIG. 9 is another schematic diagram of the distribution of time-frequency resources occupied by the downlink control channel in FIG.
  • the information about the time-frequency resource occupied by the downlink control channel further includes time-frequency resource call indication information, where the time-frequency resource call indication information is used to indicate a specific The first time-frequency resource domain, where all time-frequency resources of the specific first time-frequency resource domain are used to send the downlink channel of the UE.
  • the base station may send the downlink data channel on all time-frequency resources of the sTTI block 3.
  • the first time-frequency resource domain sTTI block0, sTTI block1, and sTTI block3 are not used in the first time-frequency resource domain occupied by the downlink control channel for scheduling uplink data by using the time-frequency resource call indication information.
  • all time-frequency resources on the first time-frequency resource domain are used to send a downlink data channel, thereby improving utilization of the multiple first time-frequency resource domains.
  • a scheduled downlink user is assigned three sTTIs (sTTI block0, sTTI block1 and sTTI block3), and the time-frequency resource call indication information is “01”, indicating that two sTTI blocks are used.
  • the sTTI block is the first two of the three sTTI blocks, that is, sTTI block0, sTTI block1.
  • FIG. 10 is another schematic diagram of the distribution of time-frequency resources occupied by the downlink control channel in FIG.
  • the base station sends the downlink data channel scheduled by the downlink control channel to the UE, including:
  • the channel elements are connected end to end to form a joint control channel resource domain;
  • the downlink control channel carries the fourth resource quantity indication information, and the base station indicates the second time-frequency resource domain by using the downlink control channel;
  • the second time-frequency resource domain includes: a time-frequency resource determined according to a fifth preset time-frequency resource location and the fourth resource amount indication information in the joint control channel resource domain, and the used to schedule downlink data Time-frequency resources occupied by the downlink control channel.
  • the UE2 is downlink-scheduled in the first time-frequency resource domains sTTI0, sTTI1, and sTTI3, and the control channel elements in the first time-frequency resource domains sTTI0, sTTI1, and sTTI3 are connected end-to-end.
  • all downlink control channels for scheduling uplink data are collectively scheduled in the control channel resource domain from the last first time-frequency resource domain sTTI3.
  • the downlink control channel carries the fourth resource quantity indication information, and is used to indicate time-frequency resources occupied by the downlink control channel used for scheduling uplink data in the last first time-frequency resource domain sTTI3. Length or location information.
  • the time-frequency resource occupied by the downlink control channel for scheduling downlink data is removed in the joint control channel resource domain, and the first The time-frequency resource that can be used to transmit the downlink data channel can be determined by using the preset time-frequency resource location and the time-frequency resource determined by the fourth resource quantity indication information.
  • the method for determining the fourth preset time-frequency resource location and the fifth preset time-frequency resource location, and the first preset time-frequency resource location in the foregoing embodiment to the third preset time The method for determining the location of the frequency resource is consistent, and will not be described here.
  • the base station sends a downlink control channel for scheduling downlink data and a downlink data channel scheduled by the downlink control channel to the UE, and indicates, by using the downlink control channel, the downlink data channel.
  • the downlink data channel is sent on a time-frequency resource that does not belong to the second time-frequency resource domain in the first time-frequency resource domain.
  • the downlink control channel may indicate that the control channel in the current sTTI is not in the time-frequency resource domain.
  • the occupied time-frequency resources so that the base station can multiplex the unoccupied time-frequency resources in the time-frequency resource domain for transmitting the PDCCH when scheduling the downlink data channel, and improve the utilization of the time-frequency resources. rate.
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a data processing apparatus, including:
  • the sending module 810 is configured to send, to the UE, a downlink control channel for scheduling downlink data, and send the downlink data channel scheduled by the downlink control channel to the UE;
  • the processing module 820 is configured to indicate, by using the downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and a second time-frequency resource domain, where the downlink data channel is in the first time-frequency domain
  • the resource domain is sent on a time-frequency resource that does not belong to the second time-frequency resource domain.
  • the processing module 820 is configured to indicate, by using information about a time-frequency resource occupied by the downlink control channel, the second time-frequency resource domain.
  • the processing module 820 is configured to indicate the second time-frequency resource domain by using a first preset time-frequency resource location and information of a time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes an end position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: the first preset time-frequency The time-frequency resource between the resource location and the end position of the time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes a start position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: when the downlink control channel is occupied.
  • the downlink control channel carries the first resource quantity indication information
  • the processing module 820 is configured to:
  • the second time-frequency resource domain includes: shifting the first resource amount from a start position of the time-frequency resource occupied by the downlink control channel to a start position of a time-frequency resource occupied by the downlink control channel A time-frequency resource between time-frequency resource locations after indicating the amount of resources indicated by the information.
  • the first resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the second time-frequency resource domain is other than the time-frequency resource occupied by the downlink control channel.
  • the downlink control channel carries the second resource quantity indication information, where
  • the processing module 820 is configured to: indicate, by using the second resource quantity indication information and the third preset time-frequency resource location in the downlink control channel, the second time-frequency resource domain.
  • the processing module 820 is configured to indicate, by using the second resource quantity indication information in the downlink control channel and the third preset time-frequency resource location, in the second time-frequency resource domain Time-frequency resources other than time-frequency resources occupied by the downlink control channel.
  • the time-frequency resource other than the time-frequency resource occupied by the downlink control channel in the second time-frequency resource domain includes: from the third preset time-frequency resource location to the third pre- The time-frequency resource location is offset from the time-frequency resource between the time-frequency resource locations after the resource amount indicated by the second resource amount indication information.
  • the second resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the ratio of the size of the time-frequency resource occupied by the downlink control channel set that includes the at least one downlink control channel and the size of the second time-frequency resource domain that is carried in the second time-frequency resource domain is greater than Set the threshold.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus according to another embodiment of the present invention.
  • another embodiment of the present invention further provides a data processing apparatus, including:
  • the receiving module 810 is configured to receive, by the base station, a downlink control channel for scheduling downlink data, and a downlink data channel scheduled by the downlink control channel;
  • the processing module 920 is configured to determine, according to the received downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and a second time-frequency resource domain, where the downlink data channel is not in the second time And transmitting, in the frequency resource domain, the downlink data channel is sent on a time-frequency resource that is not in the second time-frequency resource domain in the first time-frequency resource domain.
  • the processing module 920 is configured to determine the second time-frequency resource domain according to information about time-frequency resources occupied by the downlink control channel.
  • processing module 920 is configured to:
  • the information about the time-frequency resource occupied by the downlink control channel includes an end position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: the first preset time-frequency The time-frequency resource between the resource location and the end position of the time-frequency resource occupied by the downlink control channel.
  • the information about the time-frequency resource occupied by the downlink control channel includes a start position of the time-frequency resource occupied by the downlink control channel
  • the second time-frequency resource domain includes: when the downlink control channel is occupied.
  • the downlink control channel carries the first resource quantity indication information
  • the processing module 920 is configured to:
  • the second time-frequency resource domain includes: shifting the first resource amount from a start position of the time-frequency resource occupied by the downlink control channel to a start position of a time-frequency resource occupied by the downlink control channel A time-frequency resource between time-frequency resource locations after indicating the amount of resources indicated by the information.
  • the first resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the downlink control channel carries the second resource quantity indication information, where the processing mode is Block 920, for
  • the processing module 920 is configured to: determine, according to the second resource quantity indication information in the downlink control channel, and the third preset time-frequency resource location, in the second time-frequency resource domain A time-frequency resource other than the time-frequency resource occupied by the downlink control channel.
  • the time-frequency resource other than the time-frequency resource occupied by the downlink control channel in the second time-frequency resource domain includes: from the third preset time-frequency resource location to the third pre- The time-frequency resource location is offset from the time-frequency resource between the time-frequency resource locations after the resource amount indicated by the second resource amount indication information.
  • the second resource quantity indication information includes any one of the following:
  • the size of the time-frequency resource included in the second time-frequency resource domain is the size of the time-frequency resource included in the second time-frequency resource domain.
  • the ratio of the size of the time-frequency resource occupied by the downlink control channel set that includes the at least one downlink control channel and the size of the second time-frequency resource domain that is carried in the second time-frequency resource domain is greater than Set the threshold.
  • the data processing apparatus provided by the embodiment of the present invention is used to perform the data transmission method provided by the foregoing method embodiment, and the specific implementation manner and the technical effect of the implementation are similar to the method embodiment, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a data transmission apparatus according to another embodiment of the present invention.
  • an embodiment of the present invention further provides a data processing apparatus, including:
  • the transmitter 1010 is configured to send, to the UE, a downlink control channel for scheduling downlink data, and send the downlink data channel scheduled by the downlink control channel to the UE;
  • the processor 1020 is configured to indicate, by using the downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and a second time-frequency resource domain, where the downlink data channel is The first time-frequency resource domain is sent on a time-frequency resource that does not belong to the second time-frequency resource domain.
  • the data processing apparatus provided by the embodiment of the present invention is used to perform the data transmission method provided by the foregoing method embodiment, and the specific implementation manner and the technical effect of the implementation are similar to the method embodiment, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of a data transmission apparatus according to another embodiment of the present invention.
  • an embodiment of the present invention further provides a data processing apparatus, including:
  • the receiver 1110 is configured to receive a downlink control channel that is sent by the base station to schedule downlink data, and a downlink data channel that is scheduled by the downlink control channel.
  • the processor 1120 is configured to determine, according to the received downlink control channel, a first time-frequency resource domain to which the downlink data channel belongs, and determine a second time-frequency resource domain, where the downlink data channel is not in the second And transmitting, in the time-frequency resource domain, the downlink data channel is sent on a time-frequency resource that is not in the second time-frequency resource domain in the first time-frequency resource domain.
  • the data processing apparatus provided by the embodiment of the present invention is used to perform the data transmission method provided by the foregoing method embodiment, and the specific implementation manner and the technical effect of the implementation are similar to the method embodiment, and details are not described herein again.
  • the aforementioned program can be stored in a readable storage medium of a computer, mobile phone or other portable device.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法及装置,所述方法包括:基站向UE发送用于调度下行数据的下行控制信道,基站通过下行控制信道指示第一时频资源域及第二时频资源域,其中,下行数据信道在所述第一时频资源域中不属于第二时频资源域的时频资源上发送。本发明实施例提供的数据传输方法可以提高时频资源的利用率。

Description

数据传输方法及装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种数据传输方法及装置。
背景技术
在现有LTE系统中进行数据传输时,通常以一个子帧为基本的传输时间间隔(Transmission Time Interval,简称:TTI),时间长度1毫秒,每个子帧又可分为两个时隙,每个时隙包含有7个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号(对应于通常循环前缀),即一个子帧包含有14个OFDM符号。在LTE下行时频资源中,一个子帧的前1~4个OFDM符号,一般被规定为控制区域(Control Region),基站将在控制区域内发送下行控制信息(Downlink Control Information,简称:DCI)进行上行或者下行调度。现有LTE中,物理层可通过物理下行控制信道(Physical Downlink Control Channel,简称:PDCCH)承载DCI。现有技术中的PDCCH由一个或者多个控制信道元素(Control Channel Element,简称:CCE)构成,通常用聚合级别来表示一个PDCCH包含的CCE的个数。用户终端进行PDCCH盲检(Blind Detection)的CCE资源集合被称为PDCCH搜索空间(search space)。当前PDCCH在一个子帧内进行映射时,基站会根据UE的信道状况确定PDCCH采用的聚合级别,并在该聚合级别对应的搜索空间内进行映射。每个聚合级别对应一个搜索空间。
为了降低数据通信过程中的传输时延,第三代合作伙伴计划(3rd Generation Partnership Project,简称:3GPP)考虑将传统1毫秒长度的TTI缩短成1-7个符号的短TTI(short TTI,简称sTTI)。由于采用短TTI结构,一个TTI的符号数量减少,而用于发送DCI的OFDM符号的数量不变,导致承载DCI的PDCCH占用的资源开销的比例变大。为了降低PDCCH的开销,现有技术采用将PDCCH嵌入在发送数据的物理下行共 享信道(Physical Downlink Share Channel,简称:PDSCH)中发送的自包含信道发送方法,并将PDCCH控制信道在已知的时频资源块上进行频域交织减少资源开销。其中,所述PDSCH所属的时频资源域中预设PDCCH时频资源域。
但是,由于基站通过所述自包含信道发送方法向UE发送下行控制信道时,所述预设的PDCCH时频资源域中的时频资源不一定会被完全占用,从而导致时频资源的浪费。
发明内容
本发明实施例提供一种数据传输方法及装置,用以解决现有技术中用于发送下行控制信道的时频资源未被完全占用导致时频资源浪费的问题。
第一方面,本发明实施例提供一种数据传输方法,包括:基站向UE发送用于调度下行数据的下行控制信道,及向所述UE发送所述下行控制信道调度的下行数据信道;
所述基站通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
可选地,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
所述基站通过所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
所述基站通过第一预设时频资源位置和所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制 信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
可选地,所述下行控制信道中携带第一资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
根据所述下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的位置指示所述第二时频资源域。
可选地,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第一资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述下行控制信道中携带第二资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
所述基站通过所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
可选地,所述基站通过所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置指示所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
可选地,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第二资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
可选地,所述基站向所述UE发送所述下行控制信道调度的下行数据信道,包括:
所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
所述下行控制信道中携带第三资源量指示信息;
所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
可选地,所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
可选地,所述第三资源量指示信息只指示一个资源量信息;
所述基站通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,包括:
所述基站通过所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
可选地,所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源 域,所述特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
可选地,所述基站向所述UE发送所述下行控制信道调度的下行数据信道,包括:
所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
第二方面,本发明实施例还提供一种信道资源指示方法,包括:
UE接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;
所述UE根据所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
可选地,所述UE根据所述下行控制信道确定所述第二时频资源域,包括:
所述UE根据所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述UE根据所述下行控制信道确定所述第二时频资源域,包括:
所述UE根据第一预设时频资源位置和所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
可选地,所述下行控制信道中携带第一资源量指示信息,所述下行控制信道指示所述第二时频资源域,包括:
根据下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的开始位置指示所述第二时频资源域。
可选地,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第一资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述下行控制信道中携带第二资源量指示信息,所述UE根据所述下行控制信道确定所述第二时频资源域,包括:
所述UE根据所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置确定所述第二时频资源域。
可选地,所述UE根据所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置确定所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
可选地,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位 置之间的时频资源。
可选地,所述第二资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
可选地,所述UE接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道,包括:
所述UE接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
所述下行控制信道中携带第三资源量指示信息;
所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
可选地,所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
可选地,所述第三资源量指示信息只指示一个资源量信息;
所述UE根据所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,包括:
所述UE根据所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
可选地,所述下行控制信道占用的时频资源的信息还包括时频资源调 用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
可选地,所述UE接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道,包括:
所述UE接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
第三方面,本发明实施例还提供一种数据传输装置,包括:
发送模块,用于向UE发送用于调度下行数据的下行控制信道,及向所述UE发送所述下行控制信道调度的下行数据信道;
处理模块,用于通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
可选地,所述处理模块,用于通过所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述处理模块,用于通过第一预设时频资源位置和所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行 控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
可选地,所述下行控制信道中携带第一资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
根据所述下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的位置指示所述第二时频资源域。
可选地,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第一资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述下行控制信道中携带第二资源量指示信息,
所述处理模块,用于:通过所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
可选地,所述处理模块,用于通过所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置指示所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
可选地,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第二资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
可选地,所述发送模块,具体用于:
通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
所述下行控制信道中携带第三资源量指示信息;
所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
可选地,所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
可选地,所述第三资源量指示信息只指示一个资源量信息;
所述处理模块,具体用于:
根据所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
可选地,所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
可选地,所述发送模块,具体用于:
通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下 行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
第四方面,本发明实施例还提供一种信道资源指示装置,包括:
接收模块,用于接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;
处理模块,用于根据接收到所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
可选地,所述处理模块,用于根据所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
可选地,所述处理模块,用于
根据第一预设时频资源位置和所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
可选地,所述下行控制信道中携带第一资源量指示信息,所述处理模块,用于
根据下行控制信道中的所述第一资源量指示信息及所述下行控制信 道占用的时频资源的开始位置指示所述第二时频资源域。
可选地,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第一资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述下行控制信道中携带第二资源量指示信息,所述处理模块,用于
根据所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
可选地,所述处理模块,用于:根据所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置确定所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
可选地,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第二资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
可选地,所述接收模块,具体用于:
接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
所述下行控制信道中携带第三资源量指示信息;
所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
可选地,所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
可选地,所述第三资源量指示信息只指示一个资源量信息;
所述处理模块,具体用于:
根据所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
可选地,所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述特定的第一时频资源域的所有时频资源用于发送所述下行数据信道。
可选地,所述接收模块,具体用于:
接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
第五方面,本发明实施例还提供一种数据传输装置,包括:
发送器,用于向UE发送用于调度下行数据的下行控制信道,及向所述UE发送所述下行控制信道调度的下行数据信道;
处理器,用于通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
第六方面,本发明实施例还提供一种数据传输装置,包括:
接收器,用于接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;
处理器,用于根据接收到所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
本发明实施例提供的数据传输方法及装置,通过基站向UE发送用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域。其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。采用本发明实施例提供的数据传输方法,当基站向UE发送用于调度下行数据的下行控制信道时,即可以通过所述下行控制信道指示当前sTTI中预设的控制信道时频资源域中未被占用的时频资源,从而使基站在调度下行数据信道时可以对所述预设的用于发送PDCCH的时频资源域中未被占用的时频资源进行复用,提高时频资源的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员 来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例数据传输装置的框架结构示意图。
图2为为本发明实施例数据传输方法的流程示意图;
图3为本发明实施例数据传输方法中下行控制信道及下行数据信道的时频资源分布示意图;
图4为图3中下行控制信道占用的时频资源分布示意图;
图5为图3中下行控制信道占用的时频资源的另一种分布示意图;
图6(a)为本发明实施例数据传输方法中上行搜索空间与下行搜索空间的示意图;
图6(b)为根据图6(a)的上行搜索空间与下行搜索空间确定的下行控制信道占用的时频资源分布图;
图7(a)为本发明实施例数据传输方法中另一种上行搜索空间与下行搜索空间的示意图;
图7(b)为根据图7(a)的上行搜索空间与下行搜索空间确定的下行控制信道占用的时频资源分布图;
图8为图3中下行控制信道占用的时频资源的另一种分布示意图;
图9为图3中下行控制信道占用的时频资源的另一种分布示意图;
图10为图3中下行控制信道占用的时频资源的另一种分布示意图;
图11为本发明实施例数据传输装置的结构示意图;
图12为本发明另一实施例数据传输装置的结构示意图;
图13为本发明另一实施例数据传输装置的结构示意图;
图14为本发明另一实施例数据传输装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种数据传输方法及装置,用于在基站向UE发送下行控制信道(Physical Downlink Control Channel,简称:PDCCH)的过程中,对预设的用于发送PDCCH的时频资源域中未被占用的时频资源进行指示,从而使基站在调度下行数据信道时可以对所述预设的用于发送PDCCH的时频资源域中未被占用的时频资源进行复用,提高时频资源的利用率。
图1为本发明实施例数据传输装置的框架结构示意图。
请参阅图1,本发明实施例数据传输装置包括:处理器10及收发器20。所述数据传输装置可以设置于基站或者用户设备(User Terminal,简称:UE)中。
本发明实施例中,基站侧在所述处理器10中生成用于调度UE下行数据的下行控制信道及所述下行控制信道调度的下行数据信道,并通过所述收发器20将所述调度UE下行数据的下行控制信道及所述下行数据信道发送给所述UE。
图2为本发明实施例数据传输方法的流程示意图。
请参阅图2,本发明实施例提供的数据传输方法包括:
S101:基站生成用于调度UE下行数据的下行PDCCH及所述下行PDCCH调度的下行数据信道。
S102:所述基站向所述UE发送所述下行PDCCH,及向所述UE发送所述下行PDCCH调度的下行数据信道。
所述基站通过所述下行PDCCH指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源发送。
其中,所述下行数据信道所属的第一时频资源域中的部分时频资源预设用于发送下行控制信道的控制信道时频资源域,所述第二时频资源域包括所述控制信道时频资源域中所有被占用的时频资源。具体地,所述第二时频资源域中的时频资源可以用于发送所述用于调度下行数据的下行PDCCH,或者发送用于调度上行数据的上行PDCCH,或发送ACK反馈的其它下行控制信道,或者,所述第二时频资源域中还可以包括参考信号(Reference Signal,简称:RS)或广播信道(Broadcast Channel,简称BCH) 占用的时频资源。
在上述实施例的基础上,所述基站可以并不限于通过以下几种实现方式指示所述第二时频资源域。
在一种实现方式中,所述通过所述下行控制信道指示所述第二时频资源域,包括:
所述基站根据所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述基站根据第一预设时频资源位置和所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
在上述实现方式中,所述第一预设时频资源位置可以为所述上行PDCCH或其它PDCCH所占用的时频资源的开始位置。
具体地,当下行控制信道PDCCH在一个子帧内进行映射时,基站会根据UE的信道状况确定PDCCH采用的聚合级别,并在该聚合级别对应的搜索空间内进行映射。每个聚合级别对应一个搜索空间,搜索空间的大小与该聚合级别下可以支持的PDCCH的候选数目有关,搜索空间的起点可以根据UE的UE ID(如无线网络临时标识符)或承载PDCCH映射的子帧索引或时隙索引中的至少一项按照预定义的函数关系计算得出。在每种聚合级别下,搜索空间的大小和起点都是系统规定好的。因此,当PDCCH映射到所述控制信道资源域中的时频资源上时,所述第一预设时频资源位置即可被确定。即,所述基站可以通过所述调度下行数据的下行PDCCH隐式指示所述第二时频资源域,减小了所述下行PDCCH的指示开销。
在上述实施例的基础上,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
下面结合图3及图4对步骤S102的上述实现方式进行具体说明。
图3为本发明实施例数据传输方法中下行控制信道及下行数据信道的时频资源分布示意图。图4为图3中下行控制信道占用的时频资源分布示意图。
具体地,请参阅图3,以自包含结构的数据信道为例,基站在自包含结构的一个短传输时间间隔(short Transmission Time Interval,简称:sTTI)的一个时频资源块(即所述第一时频资源域)上调度UE2的下行数据信道。所述第一时频资源域中预设所述控制信道时频资源域(如图4所示)。所述控制信道时频资源域可用于发送所述用于调度UE2下行数据的下行PDCCH及用于调度其它UE上行数据的上行PDCCH。在本实现方式中,所述第一时频资源域包括所述第二时频资源域中的所有时频资源。
其中,所述用于调度下行数据的下行PDCCH及所述用于调度上行数据的上行PDCCH占用的时频资源以控制信道单元(Control Channel Element,简称:CCE)为单位。所述用于调度上行数据的所述上行PDCCH从所述时频资源域中已知的CCE位置(即,所述第一预设时频资源位置)开始映射,并根据被上行调度的UE的聚合水平分配所述上行PDCCH所占用的CCE的数量。在所述用于调度上行数据的上行PDCCH占用的时频资源之后的时频资源上,映射所述用于调度下行数据的下行PDCCH。通过这样的方式,所述预设的控制信道时频资源域上被PDCCH占用的所有时频资源集中分布,形成所述第二时频资源域。具体地,所述预设的控制信道时频资源域上被PDCCH占用的时频资源集中分布是指,所述预设的控制信道时频资源域上被PDCCH占用的所有时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。则所述第一时频资源域中除所述第二时频资源域以外的时频资源即可被可用于发送所述下行数据信道。
如图3所示,假设一个sTTI的长度为2个符号,下行控制信道PDCCH在第一个符号上发送。整个系统带宽分为多个时频资源块,一个时频资源块(所述第一时频资源域)最多能用于一个UE的下行数据信道发送。每个sTTI的一个时频资源块上预设所述控制信道时频资源域,用于发送PDCCH。
请参阅图4,在sTTI0上,所述预设的控制信道时频资源域上形成逻辑变化从CCE0~CCE(N-1)的控制信道单元。N为大于等于0的整数。图4所示实施例中,N为19。调度上行数据的所述上行PDCCH从已知的时频资源位置(所述第一预设时频资源位置)CCE2开始进行资源映射。图3 中被上行调度的UE3的聚合水平为2,因而占用2个CCE。UE4,UE5与UE6类似。UE2是被下行调度的UE,其聚合水平是4。从起始的CCE2开始,聚合水平为4的下行控制信道可选的起始位置为CCE2、CCE6、CCE10、CCE14等,依次类推。由于CCE2-CCE6被所述上行PDCCH占用,因而调度UE2下行的PDCCH信道占用的资源可以从CCE10以及CCE14开始。当UE2检测到调度所述UE2下行数据的所述下行PDCCH后,即可知除了CCE2至CCE13之外的CCE对应的时频资源均可用于发送所述下行数据信道。
S103:所述UE接收所述基站发送的用于调度所述下行数据的所述下行控制信道,及所述下行控制信道调度的所述下行数据信道。
S104:所述UE根据所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域。
在一种实现方式中,所述UE在接收过程中,当检测到调度给所述UE的下行数据信道时,结合所述第一预设时频资源位置,以及所述用于调度下行数据的所述下行PDCCH的结束位置,即可以获知所述第二时频资源域所包含的时频资源。所述第一时频资源域中不属于所述第二时频资源域的时频资源即可用于所述下行数据信道的发送。进一步地,所述UE还可检测是否有调度所述UE上行的PDCCH信道。
若某个UE未检测到调度所述UE下行的所述下行PDCCH,则继续检测是否有调度所述UE上行的PDCCH信道;否则表示本sTTI内所述UE未被所述基站调度。
图5为图3中下行控制信道占用的时频资源的另一种分布示意图。
请同时参阅图3及图5,可选地,在另一种实现方式中,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
请参阅图5,在所述控制信道时频资源域中,所述用于调度下行数据的下行PDCCH从所述时频资源域中已知的CCE位置开始映射,根据各被上行调度UE的聚合水平分配CCE。所述用于调度下行数据的所述下行PDCCH占用的时频资源之后的时频资源上,映射所述用于调度上行数据 的所述上行PDCCH。通过这样的方式,所述预设的控制信道时频资源域上被占用的所有PDCCH集中分布,形成所述第二时频资源域。在本实施例中,所述第二预设时频资源位置为所述上行PDCCH所占用的时频资源的结束位置。所述第一时频资源域包括所述第二时频资源域中的所有时频资源。
当下行控制信道PDCCH在一个子帧内进行映射时,基站会根据UE的信道状况确定PDCCH采用的聚合级别,并在该聚合级别对应的搜索空间内进行映射。每个聚合级别对应一个搜索空间,搜索空间的大小是与该聚合级别下可以支持的PDCCH候选数目有关,搜索空间的起点可以根据UE的UE ID(如无线网络临时标识符)或承载PDCCH映射的子帧索引或时隙索引中的至少一项按照预定义的函数关系计算得出。在每种聚合级别下,搜索空间的大小和起点都是系统规定好的。
因此,在上述实施例中,当所述基站向所述UE发送调度下行数据的下行PDCCH时,即可确定所述下行PDCCH的起始位置及结束位置,以及所述第二预设时频资源位置。即,所述基站可以通过所述调度下行数据的下行PDCCH隐式指示所述第二时频资源域,减小了所述下行PDCCH的指示开销。
在另一种实现方式中,所述下行控制信道中携带第一资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
根据下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的开始位置指示所述第二时频资源域。
具体地,请参阅图5,与上述实现方式类似,在所述控制信道时频资源域中,所述用于调度下行数据的所述下行PDCCH占用的时频资源之后的时频资源上,映射所述用于调度上行数据的所述上行PDCCH。通过这样的方式,所述预设的控制信道时频资源域上被占用的所有PDCCH集中分布,形成所述第二时频资源域。
同时,在所述下行PDCCH承载的DCI中携带所述第一资源量指示信息。所述基站根据所述下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的开始位置指示所述第二时频资源域。
具体地,所述第二时频资源域包括:从所述下行控制信道占用的时频 资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
在另一种实现方式中,所述下行控制信道中携带第二资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
所述基站根据所述用于调度下行数据的所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。具体地,所述基站通过所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置指示所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
所述第二时频资源域中除所述用于调度下行数据的所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
所述第三预设时频资源位置为除所述用于调度下行数据的所述下行控制信道外的下行控制信道所占用的时频资源的起始位置。
具体地,所述第三预设时频资源位置的确定方式与所述第一预设时频资源位置及所述第二时频资源预设时频资源位置的确定方式相同。
图6(a)为本发明实施例数据传输方法中上行搜索空间与下行搜索空间的示意图。图6(b)为根据图6(a)的上行搜索空间与下行搜索空间确定的下行控制信道占用的时频资源分布图。图7(a)为本发明实施例数据传输方法中另一种上行搜索空间与下行搜索空间的示意图。图7(b)为根据图7(a)的上行搜索空间与下行搜索空间确定的下行控制信道占用的时频资源分布图。
下面结合图3、图6(a)-图7(b)对上述实现方式进行详细说明。请参阅图3、图6(a)及图6(b),在自包含结构的数据信道资源中预设的所述控制信道时频资源域中,分别定义下行控制搜索空间和上行搜索空间。所述下行控制搜索空间对应调度下行数据的所述下行PDCCH,所述上行搜索空间对应用于上行调度或确认(Acknowledgement,简称:ACK)反馈的上行PDCCH。在所述下行控制搜索空间中定义的时频资源上映射 用于调度所述下行数据信道的所述下行PDCCH信道。在所述上行搜索空间中根据各被上行调度UE的聚合水平分配控制信道单元。通过对所述控制信道时频资源域中的时频资源进行定义,可以根据时频资源的区分隐含指示所述下行PDCCH及所述上行PDCCH承载的下行控制信息(Downlink control information,简称:DCI)用于上行调度或下行调度,而无需额外占用资源进行指示,起到节省控制信道指示开销的作用。
将所有用于上行调度或ACK反馈的PDCCH信道在预设的控制信道资源域上集中分布,在所述用于调度下行数据的所述下行PDCCH承载的DCI中可携带所述第二资源量指示信息。根据所述第二资源量指示信息及所述第二预设时频资源位置,即可指示所述第二时频资源域中除用于调度下行数据的所述下行PDCCH占用的时频资源之外的时频资源,包括用于调度上行数据或ACK反馈的所述上行PDCCH占用的时频资源,或者RS及BCH信道所占用的时频资源。而所述控制信道时频资源域中除去所述用于调度下行数据的下行PDCCH所占用的时频资源及所述被指示的时频资源,其它未被使用的控制信道时频资源即可用于本TTI中所述下行数据信道的发送,以使得在低的控制开销下提高时频资源的复用效率。
所述UE在检测到调度所述UE下行的所述下行PDCCH后,根据所述下行PDCCH承载的DCI中的所述第二资源量指示信息及所述第二预设时频资源位置获知所述上行PDCCH占用的时频资源的大小,由此获知所述控制信道时频资源域中被占用的时频资源,而预设的所述控制信道时频资源域中未被使用的时频资源用于发送所述下行数据信道。进一步地,所述UE还可检测是否有调度所述UE上行的PDCCH信道。若所述UE未检测到调度所述UE下行的所述下行PDCCH,则继续检测是否有调度所述UE上行的所述上行PDCCH,若仍然未检测到,则表示本sTTI内所述UE未被基站调度。
具体地,如图6(a)及图6(b)所示,假设一个sTTI的长度为2个符号,控制信道在第一个符号上发送。整个系统带宽分为多个时频资源块,一个时频资源域块最多能用于一个UE的下行数据信道sPDSCH发送。每个sTTI的一个时频资源块(即所述第一时频资源域)上预设所述控制信道时频资源域。在sTTI0上,预设的所述控制信道时频资源域上形成逻辑 变化从CCE0~CCE25的CCE。用于调度下行数据的所述下行PDCCH按不同的聚合水平上定义的备选子集在所述控制信道时频资源域上进行资源映射。例如,被下行调度的UE2的聚合水平为4,映射在所述下行控制搜索空间中CCE0-CCE3共4个CCE上。用于调度上行数据的所述上行PDCCH按不同的聚合水平上定义的备选子集在所述控制信道时频资源域上进行资源映射。例如,被上行调度的UE3的聚合水平为8,占用上行搜索空间中的8个CCE。UE4,UE5与UE6类似。在本实现方式中,所述上行搜索空间及所述下行搜索空间均在所述第一时频资源域上定义,所述控制信道时频资源域中被占用的时频资源所形成的所述第二时频资源域为所述第一时频资源域的一部分。即,所述第一时频资源域包括所述第二时频资源域中的所有时频资源。所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
当UE2检测到调度所述UE2下行的下行PDCCH后,从所述下行PDCCH承载的DCI的所述第二资源量指示信息中获知用于调度上行数据的所述上行PDCCH占用的资源大小为16个CCE。其中,所述第二资源量指示信息可以是一种相对值,例如用3位(bit)量化值(用000,001,…,111分别对应1/8,2/8,3/8,…,8/8)表示所述上行PDCCH占用的时频资源的大小。以图5为例,预先设定的可用于调度上行数据的上行PDCCH映射的时频资源量为16个CCE,而实际占用的CCE长度也为16,则可用111量化表示所述用于调度上行数据的上行PDCCH占用的时频资源的大小为16个CCE。根据所述第二预设时频资源位置,即所述用于调度上行数据的上行PDCCH占用的时频资源的起始位置,即可知除了CCE0至CCE3,CCE8至CCE23之外的CCE可用于调度所述UE2的下行数据信道的资源映射。
请同时参阅图3、图7(a)和图7(b),假设sTTI的长度为2个符号,下行控制信道PDCCH在第一个符号上发送。整个系统带宽分为多个时频资源块,一个时频资源块最多能用于一个UE的下行数据信道发送。如图图7(a)所示,每个sTTI的一个时频资源块(即所述第一时频资源域)上预设第一控制信道时频资源域,用于发送所述调度下行数据的下行PDCCH。在所述第一控制信道时频资源域上定义与所述下行PDCCH对应 的下行控制搜索空间。例如,在sTTI0调度UE2下行的所述时频资源块中的所述控制信道时频资源域上形成逻辑变化从CCE0~CCE15的CCE。在整个系统带宽上预设第二控制信道时频资源域,用于发送所述调度上行数据的上行PDCCH。在所述系统带宽上定义与所述上行PDCCH对应的上行搜索空间。例如,在sTTI0的整个系统带宽上,预设的时频资源块上形成逻辑变化从CCE0~CCE27的CCE。在本实现方式中,所述第二控制信道时频资源域是在所述sTTI0的整个系统带宽上定义的,因此,所述第二控制信道时频资源域包括了除所述第一时频资源域以外的时频资源。所述第二时频资源域包括所述第一控制信道资源域中部分被占用的时频资源及所述第二控制信道时频资源中部分被占用的时频资源。因此,当所述第二控制信道中被占用的时频资源为所述第一时频资源域以外的时频资源时,则所述第二时频资源域中的时频资源并不完全属于所述第一时频资源域,而是与所述第一时频资源域中的时频资源产生交集。所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
所述用于调度下行数据的下行PDCCH按不同的聚合水平上定义的备选子集进行资源映射,例如被下行调度的UE2的聚合水平为4,映射在所述下行搜索空间中的CCE0-CCE3共4个CCE上。所述用于调度上行数据的上行PDCCH按不同的聚合水平上定义的备选子集进行资源映射,例如,被上行调度的UE3的聚合水平为8,因而占用上行搜索空间中的8个CCE,UE4,UE5与UE6类似。当UE2检测到调度所述UE2下行数据的所述下行PDCCH后,从所述下行PDCCH承载的DCI中获知所述上行PDCCH占用的时频资源大小为16个CCE,即可知所述第一控制信道时频资源域中的CCE0至CCE3,及所述第二控制信道时频资源域中的CCE0至CCE15之外的时频资源可用于所述下行数据信道的资源映射。
在上述实施例的基础上,所述第一资源量指示信息及所述第二资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
具体地,所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源集中分布,即所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。通过将所述下行控制信道集合占用的时频资源集中分布,当通过DCI中携带的所述第一资源量指示信息或第二资源量指示信息指示所述第二时频资源域时,仅需要一个资源大小信息及一个所述第二预设时频资源位置即可指示所述第二时频资源域。相对于现有技术中所述下行控制信道集合占用的时频资源分散分布,节省了所述第一资源量指示信息及第二资源量指示信息的指示开销。
图8为图3中下行控制信道占用的时频资源的另一种分布示意图。
请同时参阅图3及图8,可选地,所述基站向所述UE发送所述下行控制信道调度的下行数据信道,包括:
所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
所述下行控制信道中携带第三资源量指示信息;
所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
下面结合图8对上述实施例进行详细说明。请参阅图8,所述基站向所述UE发送所述下行数据信道时,会调用两个或多个sTTI时频资源块(block),sTTI block0,sTTI block1和sTTI block3,即两个或多个所述第一时频资源域,用于发送所述下行数据信道。在一种实现方式中,所述两个或多个所述第一时频资源域中的其中一个所述第一时频资源域上映射所述用于调度下行数据的下行控制信道,所述两个或多个所述第一时频资源域中的部分时频资源中映射所述用于调度上行数据的下行PDCCH。
所述基站通过sTTI block0上的控制信道单元(CCE0-CCE3)映射调度UE2下行数据的下行控制信道,并通过sTTI block0及sTTI block1上的控制信道资源上调度上行数据的所述下行PDCCH从已知的时频资源位置(所述第四预设时频资源位置)CCE23开始进行资源映射。
具体地,所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
所述第三资源量指示信息只指示一个资源量信息,
所述基站通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,包括:
所述基站通过所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
具体地,所述资源量信息是指,每个所述第一时频资源域中用于调度上行数据的下行控制信道(上行PDCCH)所占用的控制信道单元的长度或者位置。当每个所述第一时频资源域中均映射有所述用于调度上行数据的下行控制信道(上行PDCCH)时,所述基站可以仅通过所述一个资源量信息指示每个所述第一时频资源域中用于映射所述用于调度上行数据的下行控制信道的时频资源。其中,所述一个资源量信息为所述至少两个第一时频资源域中所述用于调度上行数据的下行控制信道(上行PDCCH)占用的时频资源最多的控制信道单元的长度或者位置。例如:如图8所示,所述一个资源量信息用于表示从CCE8至CCE24之间的所有CCE的长度或者位置。具体地,所述资源量信息可以用3比特的信息来指示。
采用上述实施例,当一个UE被调度了多个第一时频资源域用于发送下行数据信道时,仅需要通过所述用于调度下行数据的下行控制信道(下行PDCCH)携带一个资源量信息来指示每个所述第一时频资源域中被用于调度上行数据的下行控制信道(上行PDCCH)占用的时频资源,从而确定出所述至少两个第一时频资源域中用于发送数据信道的时频资源。而无需通过多个资源量信息分别对每个第一时频资源域中被所述用于调度上行数据的下行控制信道(上行PDCCH)占用的时频资源进行指示,从 而节省比特数,减小时频资源的使用开销。
图9为图3中下行控制信道占用的时频资源的另一种分布示意图。
请同时参阅图3及图9,在上述实施例的基础上,所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
具体地,如图9所示,所述第一时频资源域sTTI block0,sTTI block1和sTTI block3中,sTTI block3中没有映射所述用于调度下行数据的下行控制信道以及所述用于调度上行数据的下行控制信道。因此,所述基站可以在所述sTTI block3的所有时频资源上发送所述下行数据信道。通过所述时频资源调用指示信息,可以指示所述第一时频资源域sTTI block0,sTTI block1和sTTI block3中未被所述用于调度上行数据的下行控制信道占用的第一时频资源域,并将所述第一时频资源域上的所有时频资源用于发送下行数据信道,从而提高所述多个第一时频资源域的利用率。
具体地,所述时频资源调用指示信息可以用2比特的信息来指示。例如:比如说当前的频域资源一共被分为了4个sTTI时频资源块,则Y=2,”00,01,10,11”分别表示所述用于调度上行数据的下行控制信道占据了1,2,3,4个sTTI block。假设某个被调度的下行用户被分配了三个sTTI(sTTI block0,sTTI block1和sTTI block3),且所述时频资源调用指示信息为“01”,则指示有2个sTTI block被所述用于调度上行数据的下行控制信道占据,则这两个sTTI block必然是所述三个sTTI block中的前两个,即sTTI block0,sTTI block1。
图10为图3中下行控制信道占用的时频资源的另一种分布示意图。
请同时参阅图3及图10,所述基站向所述UE发送所述下行控制信道调度的下行数据信道,包括:
所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
具体地,请参阅图10,所述UE2被下行调度在所述第一时频资源域sTTI0,sTTI1和sTTI3上,所述第一时频资源域sTTI0,sTTI1和sTTI3中的控制信道单元首尾连接进行合并,所有用于调度上行数据的下行控制信道集中调度在从最后一个第一时频资源域sTTI3的控制信道资源域。所述下行控制信道中携带所述第四资源量指示信息,用于指示从所述最后一个第一时频资源域sTTI3中所述用于调度上行数据的下行控制信道所占用的时频资源的长度或位置信息。当所述UE2检测完用于调度下行数据的的下行控制信道之后,在所述联合控制信道资源域中去掉所述用于调度下行数据的下行控制信道所占用的时频资源,以及所述第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,即可确定出可以用于发送所述下行数据信道的时频资源。上述各实施例中,所述第四预设时频资源位置及所述第五预设时频资源位置的确定方法与前述实施例中的第一预设时频资源位置至第三预设时频资源位置的确定方法一致,在此不再赘述。
本发明实施例提供的数据传输方法,通过基站向UE发送用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域。其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。采用本发明实施例提供的数据传输方法,当基站向UE发送用于调度下行数据的下行控制信道时,即可以通过所述下行控制信道指示当前sTTI中预设的控制信道时频资源域中未被占用的时频资源,从而使基站在调度下行数据信道时可以对所述预设的用于发送PDCCH的时频资源域中未被占用的时频资源进行复用,提高时频资源的利用率。
图11为本发明实施例数据传输装置的结构示意图。
请参阅图11,本发明实施例还提供一种数据处理装置,包括:
发送模块810,用于向UE发送用于调度下行数据的下行控制信道,及向所述UE发送所述下行控制信道调度的下行数据信道;
处理模块820,用于通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
可选地,所述处理模块820,用于通过所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述处理模块820,用于通过第一预设时频资源位置和所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
可选地,所述下行控制信道中携带第一资源量指示信息,所述处理模块820,用于:
根据所述下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的位置指示所述第二时频资源域。
可选地,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第一资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的 时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述下行控制信道中携带第二资源量指示信息,
所述处理模块820,用于:通过所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
可选地,所述处理模块820,用于通过所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置指示所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
可选地,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第二资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
图12为本发明另一实施例数据传输装置的结构示意图。
请参阅图12,本发明另一实施例还提供一种数据处理装置,包括:
接收模块810,用于接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;
处理模块920,用于根据接收到所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及第二时频资源域,其中,所述下行数据信道不在所述第二时频资源域中发送,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
可选地,所述处理模块920,用于根据所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
可选地,所述处理模块920,用于
根据第一预设时频资源位置和所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
可选地,所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
可选地,所述下行控制信道中携带第一资源量指示信息,所述处理模块920,用于
根据下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的开始位置指示所述第二时频资源域。
可选地,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第一资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述下行控制信道中携带第二资源量指示信息,所述处理模 块920,用于
根据所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
可选地,所述处理模块920,用于:根据所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置确定所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
可选地,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
可选地,所述第二资源量指示信息包括以下任意一种:
第二时频资源域中包括的时频资源的大小;或
所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
可选地,所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
具体地,本发明实施例提供的数据处理装置,用于执行上述方法实施例提供的数据传输方法,及具体实现方式及实现的技术效果与方法实施例类似,在此不再赘述。
图13为本发明另一实施例数据传输装置的结构示意图。
请参阅图13,本发明实施例还提供一种数据处理装置,包括:
发送器1010,用于向UE发送用于调度下行数据的下行控制信道,及向所述UE发送所述下行控制信道调度的下行数据信道;
处理器1020,用于通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在 所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
具体地,本发明实施例提供的数据处理装置,用于执行上述方法实施例提供的数据传输方法,及具体实现方式及实现的技术效果与方法实施例类似,在此不再赘述。
图14为本发明另一实施例数据传输装置的结构示意图。
请参阅图14,本发明实施例还提供一种数据处理装置,包括:
接收器1110,用于接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;
处理器1120,用于根据接收到所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,其中,所述下行数据信道不在所述第二时频资源域中发送,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
具体地,本发明实施例提供的数据处理装置,用于执行上述方法实施例提供的数据传输方法,及具体实现方式及实现的技术效果与方法实施例类似,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机、手机或其他便携装置的可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (72)

  1. 一种数据传输方法,其特征在于,包括:
    基站向UE发送用于调度下行数据的下行控制信道,及向所述UE发送所述下行控制信道调度的下行数据信道;
    所述基站通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
  2. 根据权利要求1所述的方法,其特征在于,
    所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
    所述基站通过所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
    所述基站通过第一预设时频资源位置和所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
  4. 根据权利要求3所述的方法,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
  5. 根据权利要求1或2所述的方法,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
  6. 根据权利要求1所述的方法,其特征在于,所述下行控制信道中携带第一资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
    根据所述下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的位置指示所述第二时频资源域。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  9. 根据权利要求1所述的方法,其特征在于,所述下行控制信道中携带第二资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域,包括:
    所述基站通过所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
  10. 根据权利要求9所述的方法,其特征在于,所述基站通过所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置指示所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述第二资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,
    所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
  14. 根据权利要求1所述的方法,其特征在于,所述基站向所述UE发送所述下行控制信道调度的下行数据信道,包括:
    所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
    所述下行控制信道中携带第三资源量指示信息;
    所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
    或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述第三资源量指示信息只指示一个资源量信息;
    所述基站通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,包括:
    所述基站通过所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,
    所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述 特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
  18. 根据权利要求1所述的方法,其特征在于,所述基站向所述UE发送所述下行控制信道调度的下行数据信道,包括:
    所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
    所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
    所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
  19. 一种信道资源指示方法,其特征在于,包括:
    UE接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;
    所述UE根据所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
  20. 根据权利要求19所述的方法,其特征在于,
    所述UE根据所述下行控制信道确定所述第二时频资源域,包括:
    所述UE根据所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
  21. 根据权利要求19或20所述的方法,其特征在于,所述UE根据所述下行控制信道确定所述第二时频资源域,包括:
    所述UE根据第一预设时频资源位置和所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
  22. 根据权利要求21所述的方法,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
  23. 根据权利要求21或22所述的方法,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
  24. 根据权利要求23所述的方法,其特征在于,所述下行控制信道中携带第一资源量指示信息,所述下行控制信道指示所述第二时频资源域,包括:
    根据下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的开始位置指示所述第二时频资源域。
  25. 根据权利要求24所述的方法,其特征在于,
    所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第一资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  27. 根据权利要求19所述的方法,其特征在于,所述下行控制信道中携带第二资源量指示信息,所述UE根据所述下行控制信道确定所述第二时频资源域,包括:
    所述UE根据所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置确定所述第二时频资源域。
  28. 根据权利要求27所述的方法,其特征在于,所述UE根据所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置确定所述第二时频资源域中除所述下行控制信道占用的时频资源之外 的时频资源。
  29. 根据权利要求28所述的方法,其特征在于,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
  30. 根据权利要求27-29任一项所述的方法,其特征在于,所述第二资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  31. 根据权利要求19-30任一项所述的方法,其特征在于,
    所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
  32. 根据权利要求19所述的方法,其特征在于,所述UE接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道,包括:
    所述UE接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
    所述下行控制信道中携带第三资源量指示信息;
    所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
  33. 根据权利要求32所述的方法,其特征在于,
    所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
    或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
  34. 根据权利要求32或33所述的方法,其特征在于,
    所述第三资源量指示信息只指示一个资源量信息;
    所述UE根据所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,包括:
    所述UE根据所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
  35. 根据权利要求32-34任一项所述的方法,其特征在于,
    所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
  36. 根据权利要求19所述的方法,其特征在于,所述UE接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道,包括:
    所述UE接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
    所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
    所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
  37. 一种数据传输装置,其特征在于,包括:
    发送模块,用于向UE发送用于调度下行数据的下行控制信道,及向所述UE发送所述下行控制信道调度的下行数据信道;
    处理模块,用于通过所述下行控制信道指示所述下行数据信道所属的第一时频资源域,及指示第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
  38. 根据权利要求37所述的装置,其特征在于,
    所述处理模块,用于通过所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
  39. 根据权利要求37或38所述的装置,其特征在于,所述处理模块,用于通过第一预设时频资源位置和所述下行控制信道占用的时频资源的信息指示所述第二时频资源域。
  40. 根据权利要求39所述的装置,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
  41. 根据权利要求47或48所述的装置,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
  42. 根据权利要求37所述的装置,其特征在于,所述下行控制信道中携带第一资源量指示信息,所述处理模块,用于:
    根据所述下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的位置指示所述第二时频资源域。
  43. 根据权利要求42所述的装置,其特征在于,
    所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
  44. 根据权利要求42或43所述的装置,其特征在于,所述第一资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  45. 根据权利要求37所述的装置,其特征在于,所述下行控制信道中携带第二资源量指示信息,
    所述处理模块,用于:通过所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
  46. 根据权利要求45所述的装置,其特征在于,所述处理模块,用于通过所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置指示所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
  47. 根据权利要求46所述的装置,其特征在于,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
  48. 根据权利要求45-47任一项所述的装置,其特征在于,所述第二资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  49. 根据权利要求47-48任一项所述的装置,其特征在于,
    所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
  50. 根据权利要求37所述的装置,其特征在于,所述发送模块,具体用于:
    通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下 行控制信道调度的下行数据信道;
    所述下行控制信道中携带第三资源量指示信息;
    所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
  51. 根据权利要求50所述的装置,其特征在于,
    所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
    或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
  52. 根据权利要求50或51所述的装置,其特征在于,
    所述第三资源量指示信息只指示一个资源量信息;
    所述处理模块,具体用于:
    根据所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
  53. 根据权利要求50-52任一项所述的装置,其特征在于,
    所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
  54. 根据权利要求37所述的装置,其特征在于,所述发送模块,具体用于:
    通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
    所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
    所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
  55. 一种信道资源指示装置,其特征在于,包括:
    接收模块,用于接收基站发送的用于调度下行数据的下行控制信道,及所述下行控制信道调度的下行数据信道;
    处理模块,用于根据接收到所述下行控制信道确定所述下行数据信道所属的第一时频资源域,及确定第二时频资源域,其中,所述下行数据信道在所述第一时频资源域中不属于所述第二时频资源域的时频资源上发送。
  56. 根据权利要求55所述的装置,其特征在于,
    所述处理模块,用于根据所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
  57. 根据权利要求55或56所述的装置,其特征在于,所述处理模块,用于
    根据第一预设时频资源位置和所述下行控制信道占用的时频资源的信息确定所述第二时频资源域。
  58. 根据权利要求57所述的装置,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的结束位置,所述第二时频资源域包括:从所述第一预设时频资源位置到所述下行控制信道占用的时频资源的结束位置之间的时频资源。
  59. 根据权利要求57或58所述的装置,其特征在于,
    所述下行控制信道占用的时频资源的信息包括所述下行控制信道占用的时频资源的开始位置,所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到第二预设时频资源位置之间的时频资源。
  60. 根据权利要求59所述的装置,其特征在于,所述下行控制信道中携带第一资源量指示信息,所述处理模块,用于
    根据下行控制信道中的所述第一资源量指示信息及所述下行控制信道占用的时频资源的开始位置指示所述第二时频资源域。
  61. 根据权利要求60所述的装置,其特征在于,
    所述第二时频资源域包括:从所述下行控制信道占用的时频资源的开始位置到所述下行控制信道占用的时频资源的开始位置偏移所述第一资源量指示信息所指示的资源量后的时频资源位置之间的时频资源。
  62. 根据权利要求60或61所述的装置,其特征在于,所述第一资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  63. 根据权利要求62所述的装置,其特征在于,所述下行控制信道中携带第二资源量指示信息,所述处理模块,用于
    根据所述下行控制信道中的所述第二资源量指示信息以及第三预设时频资源位置指示所述第二时频资源域。
  64. 根据权利要求63所述的装置,其特征在于,所述处理模块,用于:根据所述下行控制信道中的所述第二资源量指示信息以及所述第三预设时频资源位置确定所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源。
  65. 根据权利要求64所述的装置,其特征在于,所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源包括:从所述第三预设时频资源位置到与所述第三预设时频资源位置偏移所述第二资源量指示信息指示的资源量后的时频资源位置之间的时频资源。
  66. 根据权利要求63-65任一项所述的装置,其特征在于,所述第二资源量指示信息包括以下任意一种:
    第二时频资源域中包括的时频资源的大小;或
    所述第二时频资源域中包括的时频资源相对预设的用于发送控制信道的时频资源大小的比例;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源的大小;或
    所述第二时频资源域中除所述下行控制信道占用的时频资源之外的时频资源相对所述预设的用于控制信道发送的时频资源大小的比例。
  67. 根据权利要求55-66任一项所述的装置,其特征在于,
    所述第二时频资源域中承载的包括至少一个所述下行控制信道的下行控制信道集合占用的时频资源的大小与所述第二时频资源域的大小的比值大于预设阈值。
  68. 根据权利要求55所述的装置,其特征在于,所述接收模块,具体用于:
    接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;
    所述下行控制信道中携带第三资源量指示信息;
    所述第二时频资源域包括:根据每个所述第一时频资源域中第四预设时频资源位置和所述第三资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
  69. 根据权利要求68所述的装置,其特征在于,
    所述第三资源量指示信息指示的资源量信息为控制信道单元大小指示;
    或者,所述第三资源量指示信息指示的资源量信息为控制信道单元位置指示。
  70. 根据权利要求68或69所述的装置,其特征在于,
    所述第三资源量指示信息只指示一个资源量信息;
    所述处理模块,具体用于:
    根据所述一个资源量信息指示每个所述第一时频资源域中所述第四预设时频资源位置和所述第三资源量指示信息确定的时频资源。
  71. 根据权利要求68-70任一项所述的装置,其特征在于,
    所述下行控制信道占用的时频资源的信息还包括时频资源调用指示信息,所述时频资源调用指示信息用于指示特定的第一时频资源域,所述特定的第一时频资源域的所有时频资源用于发送所述UE的下行信道。
  72. 根据权利要求55所述的装置,其特征在于,所述接收模块,具体用于:
    接收所述基站通过至少两个所述第一时频资源域的时频资源向所述UE发送所述下行控制信道调度的下行数据信道;其中,所述至少两个第 一时频资源域的控制信道单元首尾相连,形成联合控制信道资源域;
    所述下行控制信道中携带第四资源量指示信息,所述基站通过所述下行控制信道指示所述第二时频资源域;
    所述第二时频资源域包括:根据所述联合控制信道资源域中第五预设时频资源位置和所述第四资源量指示信息确定的时频资源,以及所述用于调度下行数据的下行控制信道所占用的时频资源。
PCT/CN2016/104797 2016-05-12 2016-11-04 数据传输方法及装置 WO2017193559A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16901514.6A EP3448101B1 (en) 2016-05-12 2016-11-04 Data transmission method and apparatus
CN201680085582.5A CN109155989B (zh) 2016-05-12 2016-11-04 数据传输方法及装置
US16/186,049 US10750530B2 (en) 2016-05-12 2018-11-09 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016081902 2016-05-12
CNPCT/CN2016/081902 2016-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/186,049 Continuation US10750530B2 (en) 2016-05-12 2018-11-09 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017193559A1 true WO2017193559A1 (zh) 2017-11-16

Family

ID=60266216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104797 WO2017193559A1 (zh) 2016-05-12 2016-11-04 数据传输方法及装置

Country Status (4)

Country Link
US (1) US10750530B2 (zh)
EP (1) EP3448101B1 (zh)
CN (2) CN109155989B (zh)
WO (1) WO2017193559A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155989B (zh) * 2016-05-12 2023-02-03 华为技术有限公司 数据传输方法及装置
CN107889245B (zh) * 2016-09-30 2023-11-14 华为技术有限公司 无线通信的方法和设备
CN110719635B (zh) * 2018-07-13 2021-09-17 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
CN113259032B (zh) * 2020-02-11 2022-04-22 大唐移动通信设备有限公司 一种资源控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754376A (zh) * 2008-12-05 2010-06-23 中兴通讯股份有限公司 正交频分复用系统下行资源分配的方法
CN102263616A (zh) * 2011-08-15 2011-11-30 中兴通讯股份有限公司 指示控制信道的方法及装置
CN103517432A (zh) * 2012-06-29 2014-01-15 华为技术有限公司 信道资源指示方法及设备
CN104661309A (zh) * 2013-11-22 2015-05-27 中兴通讯股份有限公司 Lte系统中多点协作网络的下行资源指示方法、装置及系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2687789C (en) * 2007-05-29 2014-01-14 Samsung Electronics Co., Ltd. Apparatus and method for mapping symbols to resources in a mobile communication system
US9344259B2 (en) * 2007-06-20 2016-05-17 Google Technology Holdings LLC Control channel provisioning and signaling
CN101483916B (zh) 2008-01-07 2010-09-22 大唐移动通信设备有限公司 一种资源分配的方法和装置
CN101483475B (zh) 2008-01-07 2012-07-11 电信科学技术研究院 充分利用时分双工系统中特殊时隙资源的方法及装置
KR101670517B1 (ko) * 2009-11-26 2016-10-31 엘지전자 주식회사 반송파 집성 시스템에서 상향링크의 교차 반송파 스케줄링 방법 및 단말
ES2757683T3 (es) * 2011-06-07 2020-04-29 Electronics & Telecommunications Res Inst Método para transmitir y recibir información de control de un sistema de comunicación móvil
WO2013010301A1 (zh) * 2011-07-15 2013-01-24 富士通株式会社 一种下行控制信令的传输方法、搜索方法和装置
WO2013055159A2 (ko) * 2011-10-12 2013-04-18 엘지전자 주식회사 데이터 송수신 방법 및 이를 위한 장치
ES2909850T3 (es) * 2012-03-19 2022-05-10 Ericsson Telefon Ab L M Métodos y aparato en un sistema de comunicación inalámbrico para transmitir y recibir datos de usuario en una portadora no heredada
US10448379B2 (en) 2012-05-04 2019-10-15 Texas Instruments Incorporated Enhanced downlink control channel configuration for LTE
CN103581094B (zh) 2012-07-24 2016-12-28 电信科学技术研究院 下行用户专用解调参考信号的传输方法和设备
CN103796327A (zh) 2012-10-29 2014-05-14 中兴通讯股份有限公司 一种子帧调度方法、系统及网络设备、终端
CN109495231B (zh) * 2013-04-25 2023-05-09 华为技术有限公司 传输信号的方法和设备
EP2995031B1 (en) * 2013-05-08 2018-09-12 Huawei Technologies Co., Ltd. Methods and nodes in a wireless communication system
US11357022B2 (en) * 2014-05-19 2022-06-07 Qualcomm Incorporated Apparatus and method for interference mitigation utilizing thin control
US10412749B2 (en) * 2015-05-21 2019-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling in license assisted access
WO2017077179A1 (en) * 2015-11-02 2017-05-11 Nokia Technologies Oy Scheduling ues with mixed tti length
CN109155989B (zh) * 2016-05-12 2023-02-03 华为技术有限公司 数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754376A (zh) * 2008-12-05 2010-06-23 中兴通讯股份有限公司 正交频分复用系统下行资源分配的方法
CN102263616A (zh) * 2011-08-15 2011-11-30 中兴通讯股份有限公司 指示控制信道的方法及装置
CN103517432A (zh) * 2012-06-29 2014-01-15 华为技术有限公司 信道资源指示方法及设备
CN104661309A (zh) * 2013-11-22 2015-05-27 中兴通讯股份有限公司 Lte系统中多点协作网络的下行资源指示方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3448101A4 *

Also Published As

Publication number Publication date
CN111294191B (zh) 2021-01-01
EP3448101B1 (en) 2021-02-24
EP3448101A4 (en) 2019-03-27
US10750530B2 (en) 2020-08-18
US20190082458A1 (en) 2019-03-14
EP3448101A1 (en) 2019-02-27
CN109155989B (zh) 2023-02-03
CN111294191A (zh) 2020-06-16
CN109155989A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US11870730B2 (en) Method and apparatus for reporting channel state
JP6845277B2 (ja) 適応的に構成されたtdd通信システムのためのサウンディング参照信号の送信
JP6571012B2 (ja) 適応的に構成されたtdd通信システムのためのチャンネル状態情報
JP6579521B2 (ja) キャリアアグリゲーションにおける2つのセルに対するアップリンク制御情報の伝送電力制御
JP6701439B2 (ja) 短縮された送信時間間隔(tti)を用いたpuschにおけるアップリンク制御シグナリング
WO2017016332A1 (zh) 资源传输的指示方法、装置、网络侧设备及终端
CN111435878A (zh) 一种信息传输方法、终端及网络设备
US10813126B2 (en) Signaling for uplink short transmission time interval transmissions
CN109565385B (zh) 上行信道发送方法和装置
WO2015174504A1 (ja) 端末装置、集積回路、および、無線通信方法
WO2012113330A1 (zh) 信息传输的方法和装置
WO2017045180A1 (zh) 一种控制信息的传输方法、装置以及系统
WO2017193559A1 (zh) 数据传输方法及装置
JP2023171855A (ja) 通信システム
EP3113537B1 (en) Terminal device, integrated circuit, and radio communication method
JP2018517349A (ja) データ伝送方法及び装置
WO2018032243A1 (zh) 数据传输方法、装置和系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016901514

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016901514

Country of ref document: EP

Effective date: 20181119

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901514

Country of ref document: EP

Kind code of ref document: A1