WO2017193401A1 - 一种终端的同步方法及终端 - Google Patents

一种终端的同步方法及终端 Download PDF

Info

Publication number
WO2017193401A1
WO2017193401A1 PCT/CN2016/082130 CN2016082130W WO2017193401A1 WO 2017193401 A1 WO2017193401 A1 WO 2017193401A1 CN 2016082130 W CN2016082130 W CN 2016082130W WO 2017193401 A1 WO2017193401 A1 WO 2017193401A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
terminal
synchronization
transmission
signal
Prior art date
Application number
PCT/CN2016/082130
Other languages
English (en)
French (fr)
Inventor
曾勇波
刘斌
才宇
王键
李国荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202110196493.0A priority Critical patent/CN112911552B/zh
Priority to EP20203032.6A priority patent/EP3836653B1/en
Priority to EP16901356.2A priority patent/EP3448097B1/en
Priority to PCT/CN2016/082130 priority patent/WO2017193401A1/zh
Priority to US16/301,340 priority patent/US10959198B2/en
Priority to CN201680084680.7A priority patent/CN109076469B/zh
Publication of WO2017193401A1 publication Critical patent/WO2017193401A1/zh
Priority to US17/000,902 priority patent/US11452055B2/en
Priority to US17/882,847 priority patent/US11844036B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a terminal for synchronizing a terminal.
  • the car networking technology includes car and car (English full name: Vehicle to Vehicle, English abbreviation: V2V) communication, car and people (English full name: Vehicle to Pedestrian, English abbreviation: V2P) communication and vehicle and infrastructure network (English full name: Vehicle to Infrastructure, English abbreviation: V2I) communication, collectively referred to as V2X (Vehicle to X).
  • V2V communication technology is an evolution of the long-term evolution technology-device-to-device (English name: Long Term Evolution Device to Device, English abbreviation: LTE-D2D) communication technology.
  • the communication between the vehicle and the vehicle has higher requirements such as fast moving speed, small delay and high communication reliability, and then synchronization between the terminals is a prerequisite for satisfying the above requirements.
  • the first terminal needs to receive signals from other terminals at the same time, and some of the multiple terminals may be outside the coverage of the cellular network to which the first terminal is connected, as shown in the figure.
  • the second terminal shown in 1.
  • the first terminal uses a bypass synchronization signal (English name: SideLink Synchronization Signal, English abbreviation: SLSS).
  • SLSS SideLink Synchronization Signal
  • terminals located outside the coverage of the cellular network or overlapping areas covered by the two cellular networks may receive multiple SLSSs.
  • the second terminal shown in FIG. 2 is in an overlapping area of the cellular network coverage of the first base station and the cellular network coverage of the second base station. Since the terminal in the LTE-D2D system has low requirements on delay and communication reliability, the terminal in the overlapping area can be based on the priority and signal of the synchronization source.
  • the strength selection synchronizes with the timing of the synchronization source of the terminal with which it communicates, ignoring the timing of the received synchronization source of other terminals, thus causing all terminals within a certain range to be unable to synchronize.
  • all terminals within a certain range are required to be synchronized, and communication is performed with uniform timing.
  • An object of the present invention is to provide a method for synchronizing a terminal and a terminal, which can transmit a synchronization signal in a distributed manner by controlling a transmission timing of a synchronization signal, so that a terminal in a vehicle-to-vehicle communication system can communicate at a uniform timing at the same time.
  • the first aspect provides a method for synchronizing a terminal, including:
  • the terminal acquires a transmission period for transmitting the first synchronization signal, where the transmission period is used to indicate a time interval between two adjacent synchronization signals sent by the terminal, the transmission period is a configurable period, and then, the first synchronization is sent according to the transmission period.
  • the signal, the first synchronization signal is a signal corresponding to the timing of the first synchronization source currently configured by the terminal.
  • the synchronization method of the terminal provided by the foregoing first aspect is different from the prior art in that the transmission period is not configurable. Since the limited transmission period of the present invention can be arbitrarily configured, different terminals may use different transmission periods.
  • the synchronization signal is transmitted so that the terminal controls the order in which the synchronization signals are transmitted, and the collision between the synchronization signals transmitted by the synchronization sources of different timings is avoided, so that the terminals in the vehicle-to-vehicle communication system can have uniform timing at the same time.
  • the method further includes:
  • the terminal may further obtain a start time offset for transmitting the first synchronization signal, where the start time offset is used to indicate an offset period from the start time of starting the transmission of the synchronization signal by the terminal; and the terminal sends the first synchronization signal according to the transmission period.
  • the method includes: the terminal sending, according to the transmission period and the start time offset, the first synchronization signal;
  • the terminal may further obtain a continuous transmission time for transmitting the first synchronization signal, where the continuous transmission time is used to indicate a duration of the synchronization signal sent by the terminal; and the terminal sends the first synchronization signal according to the transmission period, where the terminal sends the time according to the transmission period and the continuous transmission time. Sending a first synchronization signal;
  • the terminal may further obtain a start time offset and a continuous transmission time for sending the first synchronization signal, and the terminal sending the first synchronization signal according to the transmission period includes: the terminal sends according to the transmission period, the start time offset, and the continuous transmission time.
  • First sync signal the terminal may further obtain a start time offset and a continuous transmission time for sending the first synchronization signal, and the terminal sending the first synchronization signal according to the transmission period includes: the terminal sends according to the transmission period, the start time offset, and the continuous transmission time.
  • the terminal can control the sequence of transmitting the synchronization signal according to any combination of the transmission period, the start time offset, and the continuous transmission time, thereby avoiding conflicts between the synchronization signals sent by the synchronization sources of different timings, thereby enabling the terminal to
  • the terminals in the car-to-vehicle communication system have uniform timing at the same time.
  • the method before acquiring at least one of a transmission period, a start time offset, and a continuous transmission time of transmitting the first synchronization signal
  • the method further includes:
  • the terminal pre-configures at least two transmission periods, at least two start time offsets, and at least two persistent transmission times; or, the terminal receives a system message sent by the base station, where the system message includes at least two transmission periods, at least two start times Time offset and at least two continuous transmission times. In this way, the terminal can select the parameter transmission synchronization signal that it needs in the two configured transmission periods, the at least two start time offsets, and the at least two continuous transmission times.
  • any one of the following implementation modes may also be included.
  • the terminal Before the terminal acquires the transmission period of transmitting the first synchronization signal, the terminal pre-configures at least two transmission periods; or, the terminal receives the system message sent by the base station, and the system message includes at least two transmission periods.
  • the terminal Before the terminal acquires the start time offset of the first synchronization signal, the terminal pre-configures at least two start time offsets; or the terminal receives the system message sent by the base station, where the system message includes at least two start time offsets. the amount.
  • the terminal pre-configures at least two consecutive transmission times before the terminal acquires the continuous transmission time of transmitting the first synchronization signal; or, the terminal receives the system message sent by the base station, and the system message includes at least two continuous transmission times.
  • the transmission of the synchronization signal can be implemented in any combination, and the present invention does not limit any implementation manner.
  • the terminal acquires the first transmission Before the transmission period and the start time offset of the step signal, the terminal pre-configures at least two transmission periods and at least two start time offsets; or, the terminal receives the system message sent by the base station, and the system message includes at least two transmissions. The period and the offset of at least two starting moments.
  • the acquiring a transmission period of sending the first synchronization signal includes:
  • Obtaining the starting time offset for transmitting the first synchronization signal includes:
  • the terminal acquires a transmission period corresponding to the first synchronization source corresponding to the first synchronization signal according to the priority of the first synchronization source corresponding to the first synchronization signal; or the location of the first synchronization source corresponding to the terminal according to the first synchronization signal And/or the type of the first synchronization source, acquiring a transmission period corresponding to the first synchronization source corresponding to the first synchronization signal;
  • Obtaining the continuous transmission time for transmitting the first synchronization signal includes:
  • the terminal obtains, by the terminal, the continuous transmission time corresponding to the first synchronization source corresponding to the first synchronization signal according to the priority of the first synchronization source corresponding to the first synchronization signal; or the terminal is located according to the first synchronization source corresponding to the first synchronization signal The location and/or the type of the first synchronization source acquires a continuous transmission time corresponding to the first synchronization source corresponding to the first synchronization signal.
  • the acquiring the start time offset, the transmission period, and the persistent transmission time of sending the first synchronization signal includes:
  • the terminal randomly selects a starting time offset from at least two starting time offsets; the terminal randomly selects one transmission period from at least two transmission periods; and the terminal randomly selects from at least two consecutive transmission times A continuous transmission time.
  • the method further includes:
  • the terminal receives an indication message sent by the base station, where the indication message is used to indicate at least one of a transmission period, a start time offset, and a continuous transmission time used by the terminal.
  • the method further includes:
  • the terminal monitors the vehicle and the vehicle V2V channel within the starting time offset; when the terminal detects the third synchronization signal, and the third synchronization source corresponding to the third synchronization signal has a higher priority than the first synchronization signal The priority of the synchronization source, the terminal cancels transmitting the first synchronization signal, or the terminal cancels transmitting the first synchronization signal while transmitting the third synchronization signal.
  • the terminal carries the transmission period of the first synchronization signal on the PSBCH for transmission.
  • the terminal sends the first synchronization
  • the remaining transmission times are carried on the physical bypass broadcast channel PSBCH, and the remaining transmission times are used to indicate the number of times the terminal continues to transmit the synchronization signal after the end of the current synchronization signal transmission.
  • the method further includes:
  • the terminal determines that the sending policy is satisfied, and the sending policy includes that the terminal does not detect any other synchronization signal within the preset time period; or the terminal detects the second synchronization signal, and the second synchronization source corresponding to the second synchronization signal has a lower priority than the second synchronization source.
  • the priority of the first synchronization source corresponding to the synchronization signal; or receiving the indication message sent by the base station, the indication message is used to indicate that the terminal sends the synchronization signal, and the base station is the base station where the terminal camps. In this way, all terminals in an area are prevented from transmitting synchronization signals.
  • the second aspect provides a method for synchronizing a terminal, including:
  • the terminal After receiving the first synchronization signal, the terminal forwards the first synchronization signal according to the preset time offset, where the time offset is used to indicate the time difference between the synchronization signal received by the terminal and the forwarding of the synchronization signal; or The terminal generates a fourth synchronization signal different from the sequence of the first synchronization signal, and then forwards the fourth synchronization signal, wherein the fourth synchronization signal and the first synchronization signal correspond to the timing of the same synchronization source.
  • the method for synchronizing the terminal provided by the second aspect, after the terminal receives the forwarded synchronization signal, sends a synchronization signal at a certain interval, and is distinguished from the original synchronization signal, so that the terminal can identify between the original synchronization signal and the forwarded synchronization signal. Error.
  • a terminal including:
  • An acquiring unit configured to acquire a transmission period of sending the first synchronization signal, where the transmission period is used to indicate a time interval between two adjacent synchronization signals sent by the terminal, the transmission period is a configurable period, and the sending unit is configured to perform The transmission period transmits a first synchronization signal.
  • the transmission period is used to indicate a time interval between two adjacent synchronization signals sent by the terminal, the transmission period is a configurable period, and the sending unit is configured to perform The transmission period transmits a first synchronization signal.
  • a terminal including:
  • a receiving unit configured to receive the first synchronization signal, and a sending unit, configured to forward the first synchronization signal according to a preset time offset, where the time offset is used to indicate the synchronization signal received by the terminal and forward the synchronization a time difference between the signals;
  • a generating unit configured to generate a fourth synchronization signal, the sequence of the fourth synchronization signal being different from the sequence of the first synchronization signal, wherein the fourth synchronization signal and the first synchronization signal correspond to the timing of the same synchronization source;
  • the sending unit is further configured to forward the fourth synchronization signal.
  • a fifth aspect provides a method for synchronizing a terminal, including:
  • the terminal When the terminal has configured the timing of the first synchronization source corresponding to the first synchronization signal, the second synchronization signal sent by the second synchronization source is received, and the second synchronization signal is a signal of the timing of the second synchronization source corresponding to the second synchronization signal;
  • the terminal acquires a timing deviation between the timing of the first synchronization source and the timing of the second synchronization source; the terminal adjusts the timing of transmitting the first synchronization signal according to the timing offset; and the terminal transmits the first synchronization signal according to the adjusted timing.
  • the terminal adjusts the timing of the synchronization signal to be transmitted, so that the synchronization source of the terminal remains unchanged. In this case, it is possible to maintain high synchronization accuracy and reduce interference to other terminals due to timing deviation.
  • a terminal including:
  • a receiving unit configured to receive a second synchronization signal sent by the second synchronization source when the terminal has configured the first synchronization source corresponding to the first synchronization signal, where the second synchronization signal is a second synchronization source corresponding to the second synchronization signal
  • the timing unit is configured to acquire a timing deviation of a timing of the first synchronization source and a timing of the second synchronization source
  • an adjustment unit configured to adjust, by the terminal, a timing of transmitting the first synchronization signal according to the timing offset; And configured to send the first synchronization signal according to the adjusted time.
  • a seventh aspect provides a method for synchronizing a terminal, including:
  • the terminal divides the V2V channel of the transmission vehicle and the vehicle V2V signal into at least two subchannels; when the terminal scans the idle subchannel, sends the synchronization signal and the V2V signal on the idle subchannel; when the terminal does not scan for idle For the subchannel, the V2V signal is transmitted on the subchannel having the smallest signal strength among all the subchannels, and the V2V signal includes the synchronization signal.
  • a terminal including:
  • a processing unit configured to divide a V2V channel of the transport vehicle and the vehicle V2V signal into at least two subchannels; and a sending unit, configured to: when the terminal scans the idle subchannel, send the synchronization signal on the idle subchannel and The V2V signal is used to transmit a V2V signal on the subchannel with the smallest signal strength among all the subchannels when the terminal does not scan the idle subchannel, and the V2V signal includes the synchronization signal.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a communication interface for performing functions of a receiving unit and a transmitting unit, a processor for completing a function of the processing unit, and a memory for storing a volume threshold.
  • the processor, communication interface, and memory are connected by a bus and communicate with each other.
  • the function of the behavior of the terminal in the synchronization method of the provided terminal may be referred to.
  • the names of the terminals are not limited to the devices themselves, and in actual implementation, these devices may appear under other names. As long as the functions of the respective devices are similar to the present invention, they are within the scope of the claims and the equivalents thereof.
  • FIG. 1 is a schematic diagram of a communication system provided by the prior art
  • FIG. 2 is a schematic diagram of another communication system provided by the prior art
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a computer device according to an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for synchronizing a terminal according to an embodiment of the present application
  • FIG. 6 is a flowchart of a method for synchronizing another terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of distributed transmission of a synchronization signal according to an embodiment of the present application.
  • FIG. 8 is a flowchart of still another method for synchronizing a terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a synchronization signal transmission according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another terminal according to an embodiment of the present application.
  • FIG. 12 is a flowchart of still another method for synchronizing a terminal according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another synchronization signal transmission according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of still another terminal according to an embodiment of the present application.
  • FIG. 15 is a flowchart of another method for synchronizing a terminal according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of still another synchronization signal transmission according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of still another terminal according to an embodiment of the present application.
  • the basic principle of the present invention is that the present invention enables different terminals to use different transmission periods to transmit synchronization signals through an arbitrarily configured transmission period, so that the terminal transmits the synchronization signals distributedly, and controls the order of transmitting the synchronization signals to avoid different
  • the collision between the synchronization signals transmitted by the timing synchronization source enables the terminals in the vehicle-to-vehicle communication system to have uniform timing at the same time.
  • the embodiment of the invention provides a schematic diagram of a communication system.
  • the system includes: a first base station, a second base station, a first terminal, a second terminal, a third terminal, a fourth terminal, and a fifth terminal.
  • the first terminal belongs to a terminal within the coverage of the first base station.
  • the second terminal belongs to a terminal within the coverage of the second base station.
  • the third terminal belongs to a terminal within a range of an overlapping area of the first base station and the second base station.
  • the fourth terminal and the fifth terminal neither belong to the terminal within the coverage of the first base station nor to the terminal within the coverage of the second base station.
  • the first terminal synchronizes with the first base station where the first terminal resides, and the timing of the synchronization source corresponding to the first terminal is the timing of the first base station.
  • the first terminal synchronizes with the first base station by receiving a primary synchronization signal (English name: Primary Syncharonization Signal, PSS) and a secondary synchronization signal (English full name: Secondary Synchronization Signal, SSS).
  • PSS Primary Syncharonization Signal
  • SSS Secondary Synchronization Signal
  • the second terminal synchronizes with the second base station where the second terminal is located, the timing of the synchronization source corresponding to the second terminal is the timing of the second base station, and the second terminal also synchronizes with the second base station through the PSS/SSS.
  • the synchronization source that synchronizes the terminal outside the coverage of the cellular network with the terminal within the coverage of the cellular network
  • a terminal within the coverage of a cellular network (English name: In-Coverage UE, English abbreviation: InC UE), for example, a first terminal.
  • the fourth terminal may synchronize with the first terminal by receiving the SLSS of the first terminal.
  • the synchronization source that synchronizes the terminal outside the coverage of the cellular network with the terminal that forwards the timing is the terminal that forwards the timing ( English full name: Out-of-Coverage (forwarding) network (timing) UE), English abbreviation: OoC_net UE), for example, the fourth terminal.
  • the fifth terminal may synchronize with the fourth terminal by receiving the SLSS of the fourth terminal.
  • the terminal can simultaneously send a synchronization signal when transmitting data, which is outside the coverage of the cellular network.
  • the synchronization source of the terminal is (English full name: Out-of-Coverage UE, English abbreviation: OoC UE).
  • the timing of the synchronization source corresponding to the fourth terminal may be a global navigation satellite system (English name: Global Navigation Satellite System, English abbreviation: GNSS).
  • the timing of the synchronization source corresponding to the fifth terminal may also be GNSS.
  • the priority of the synchronization source may be eNB>InC UE>OoC_net UE>OoC UE.
  • the terminal in FIG. 3 can be implemented in the manner of the computer device (or system) in FIG.
  • FIG. 4 is a schematic diagram of a computer device according to an embodiment of the present invention.
  • the computer device 100 includes at least one processor 101, a communication bus 102, a memory 103, and at least one communication interface 104.
  • the processor 101 can be a processor or a collective name for a plurality of processing elements.
  • the processor 101 may be a general-purpose central processing unit (English name: Central Processing Unit, English abbreviation: CPU), or may be an application-specific integrated circuit (English name: ASIC), or One or more integrated circuits for controlling the execution of the program of the present invention, such as one or more microprocessors (English name: digital signal processor, English) Abbreviation: DSP), or one or more field programmable gate arrays (English full name: Field Programmable Gate Array, English abbreviation: FPGA).
  • CPU Central Processing Unit
  • ASIC application-specific integrated circuit
  • One or more integrated circuits for controlling the execution of the program of the present invention such as one or more microprocessors (English name: digital signal processor, English) Abbreviation: DSP), or one or more field programmable gate arrays (English full name: Field Programmable Gate Array, English abbreviation: FPGA).
  • processor 101 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • computer device 100 can include multiple processors, such as processor 101 and processor 105 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication bus 102 can be an industry standard architecture (English name: Industry Standard Architecture, English abbreviation: ISA) bus, external device interconnection (English full name: Peripheral Component, English abbreviation: PCI) bus or extended industry standard architecture (English full name) :Extended Industry Standard Architecture, English abbreviation: EISA) bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 4, but it does not mean that there is only one bus or one type of bus.
  • the memory 103 can be a read-only memory (English full name: read-only memory, English abbreviation: ROM) or other types of static storage devices that can store static information and instructions.
  • Random access memory English full name: random access memory, English abbreviation : RAM
  • dynamic storage devices that can store information and instructions
  • electrically erasable programmable read-only memory English full name: Electrically Erasable Programmable Read-Only Memory, English abbreviation: EEPROM
  • read-only optical disk English full name: Compact Disc Read-Only Memory, English abbreviation: CD-ROM) or other disc storage
  • CD storage including compressed discs, laser discs, CDs, digital versatile discs, Blu-ray discs, etc.
  • a device or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and be connected to the processor via a
  • the memory 103 is used to store application code for executing the solution of the present invention, and is controlled by the processor 101 for execution.
  • the processor 101 is configured to execute application code stored in the memory 103.
  • the communication interface 104 uses a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), and Wireless LAN (English name: Wireless Local Area Networks, English abbreviation) : WLAN) and so on.
  • the communication interface 104 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the computer device 100 shown in FIG. 4 may be the terminal in FIG.
  • the processor 101 is configured to acquire a start time offset, a transmission period, and a continuous transmission time for transmitting the first synchronization signal.
  • the communication interface 104 is configured to send, by the first terminal, the first synchronization signal according to the starting time offset and the transmission period during the continuous transmission time.
  • the communication interface 104 is further configured to receive a system message sent by the base station.
  • the memory 103 is configured to store at least two start time offsets, at least two transmission periods, and at least two continuous transmission times.
  • An embodiment of the present invention provides a method for synchronizing a terminal, as shown in FIG. 5, including:
  • Step 201 The terminal acquires a transmission period of transmitting the first synchronization signal.
  • the transmission period is used to indicate the time interval between the transmission of two adjacent synchronization signals by the terminal.
  • the transmission period is a configurable period.
  • the terminal can obtain the transmission period of sending the first synchronization signal in the following two ways:
  • the terminal acquires a transmission period corresponding to the first synchronization source corresponding to the first synchronization signal according to the priority of the first synchronization source corresponding to the first synchronization signal.
  • Different priority synchronization sources correspond to different transmission periods, and the terminal selects a transmission period according to its own priority. For example, a high-priority synchronization source can use a smaller transmission period in order to have more transmissions. Lose opportunities.
  • the terminal acquires a transmission period corresponding to the first synchronization source corresponding to the first synchronization signal according to the location of the first synchronization source and/or the type of the first synchronization source. For example, there are different transmission periods within and outside the coverage.
  • the terminal randomly selects one transmission period from at least two transmission periods.
  • the terminal may transmit the transmission period of the first synchronization signal on the physical bypass broadcast channel (English name: Physical Sidelink Broadcast Channel, English abbreviation: PSBCH).
  • PSBCH Physical Sidelink Broadcast Channel
  • Step 202 The terminal sends the first synchronization signal according to the transmission period.
  • the terminal may further acquire a start time offset or/and a continuous transmission time for transmitting the first synchronization signal.
  • the start time offset is used to indicate an offset period from the start time at which the terminal initiates the transmission of the synchronization signal.
  • the continuous transmission time is used to indicate the duration of time that the terminal transmits the synchronization signal.
  • the terminal may perform steps 203 and 204, or perform steps 205 and 206, or perform steps 207 and 208.
  • Step 203 The terminal acquires a starting time offset of sending the first synchronization signal.
  • Step 204 The terminal sends the first synchronization signal according to the transmission period and the starting time offset.
  • Step 205 The terminal acquires a continuous transmission time of sending the first synchronization signal.
  • Step 206 The terminal sends the first synchronization signal according to the transmission period and the continuous transmission time.
  • Step 207 The terminal acquires a start time offset and a continuous transmission time of sending the first synchronization signal.
  • Step 208 The terminal sends the first synchronization signal according to the transmission period, the start time offset, and the continuous transmission time.
  • the terminal transmits the first synchronization signal according to the start time offset and the transmission period during the continuous transmission time.
  • the terminal obtains the offset of the start time of sending the first synchronization signal by using the following two methods:
  • the terminal acquires a starting time offset corresponding to the first synchronization source corresponding to the first synchronization signal according to the priority of the first synchronization source corresponding to the first synchronization signal.
  • the synchronization sources of different priorities correspond to different starting time offsets. For example, a high priority sync source can take a shorter start time offset to have more transmission opportunities.
  • the terminal acquires a starting time offset corresponding to the first synchronization source corresponding to the first synchronization signal according to the location of the first synchronization source and/or the type of the first synchronization source.
  • the starting time offset may be a specific value, such as 10 ms, 20 ms, 30 ms or 40 ms; the starting time offset may also be any one of 0 to the maximum starting time offset.
  • the terminal randomly selects a starting time offset from at least two starting time offsets.
  • the terminal can obtain the continuous transmission time of sending the first synchronization signal in the following two manners:
  • the terminal acquires the continuous transmission time corresponding to the first synchronization source corresponding to the first synchronization signal according to the priority of the first synchronization source corresponding to the first synchronization signal.
  • Different priority synchronization sources correspond to different continuous transmission times, and the terminal selects a transmission period according to its own priority. For example, a high priority sync source can take longer to allow for more transmission opportunities.
  • the terminal acquires the continuous transmission time corresponding to the first synchronization source corresponding to the first synchronization signal according to the location of the first synchronization source and/or the type of the first synchronization source corresponding to the first synchronization signal.
  • the terminal randomly acquires a continuous transmission time from at least two consecutive transmission times.
  • the duration of the remaining transmission may be used, and the remaining transmission times may be carried in the PSBCH, and the terminal sends the first synchronization signal once.
  • the number of remaining transmissions is reduced by one.
  • the priority of the synchronization source may be determined by the type of the synchronization source, such as a GNSS, an eNB, or a UE.
  • the priority of the synchronization source may also be determined by the location of the synchronization source, such as coverage or coverage.
  • the priority of the synchronization source can also be determined by the type of the synchronization source and the location of the synchronization source; in addition, the priority of the synchronization source can also be defined by the base station.
  • the present invention enables the different terminals to use different transmission periods to transmit synchronization signals through the arbitrarily configured transmission period, so that the terminal transmits the synchronization signals distributedly, controls the sequence of transmitting the synchronization signals, and avoids synchronization at different timings.
  • the collision between the synchronization signals transmitted by the source enables the terminals in the vehicle-to-vehicle communication system to have uniform timing at the same time.
  • FIG. 7 a schematic diagram of distributed transmission of synchronization signals is provided.
  • the first synchronization source configured by the first terminal has a higher priority than the second synchronization source configured by the fourth terminal.
  • the first terminal and the fourth terminal respectively randomly select the starting time offset, the first terminal periodically sends the first synchronization signal, and the fourth terminal periodically sends the second synchronization signal, although the first terminal sends the The first first synchronization signal collides with the first second synchronization signal sent by the fourth terminal, but the transmission period selected by the first terminal is smaller than the transmission period selected by the fourth terminal, and the continuous transmission time selected by the first terminal The duration of the continuous transmission is greater than that of the fourth terminal.
  • the first synchronization signal sent by the subsequent first terminal does not collide with the second synchronization signal sent by the fourth terminal, so that different terminals may use different parameters including the starting time offset.
  • the shifting, the transmission period, and the continuous transmission time are distributed to transmit the synchronization signal, and the terminal controls the sequence of transmitting the synchronization signal to avoid collision between the synchronization signals transmitted by the synchronization sources of different timings, thereby enabling the terminal in the vehicle-to-vehicle communication system to be There is a uniform timing at the same time.
  • the terminal may also receive an indication message sent by the base station, and the base station indicates the transmission period, the starting time offset, and the continuous transmission time used by the terminal.
  • the indication message is used to indicate at least one of a transmission period, a start time offset, and a continuous transmission time used by the terminal.
  • the method further includes the following specific steps:
  • Step 209 The terminal determines that the sending policy is met.
  • the sending policy includes that the terminal does not detect any other synchronization signal within a preset time period; or the signal strength of the synchronization signal of the synchronization source whose priority is not lower than the priority of the terminal is lower than a preset threshold. Or, the terminal detects the second synchronization signal, and the second synchronization source corresponding to the second synchronization signal has a lower priority than the first synchronization source corresponding to the first synchronization signal.
  • the terminal detects the second synchronization signal, and the priority of the second synchronization source corresponding to the second synchronization signal is lower than the priority of the first synchronization source corresponding to the first synchronization signal, and the terminal determines to send the first synchronization signal. Notifying other terminals of the timing of the first synchronization source currently configured by the terminal.
  • the terminal when the terminal detects that the second synchronization source corresponding to the second synchronization signal has a lower priority than the first synchronization source corresponding to the first synchronization signal, and the received signal strength of the second synchronization signal (eg, When the reference signal reception strength (English name: Reference Signal Receiving Power, English abbreviation: RSRP) exceeds a certain threshold, the terminal determines the timing of notifying the other terminal that the terminal has the first synchronization source currently configured by transmitting the first synchronization signal.
  • a higher signal strength means that the closer the terminal that transmits the signal is, the higher the risk factor is.
  • the terminal may further determine, by using the detected location information in the V2V signal, whether other terminals exist in the periphery of the terminal, and the priority of the synchronization source configured by the other terminal is higher than the priority of the synchronization source configured by the terminal. If the distance of the other terminal is determined from the location information, the terminal is lower than a certain threshold (representing a relatively close distance), the terminal determines to notify the other terminal that the terminal has the first synchronization source currently configured by sending the first synchronization signal. timing.
  • the terminal may also be instructed by the base station to transmit a synchronization signal.
  • Step 210 The terminal pre-configures at least two start time offsets, at least two transmission periods, and at least two persistent transmission times.
  • Step 211 The terminal receives a system message sent by the base station.
  • the system message includes at least two transmission periods, at least two start time offsets, and At least two continuous transmission times.
  • the system message can be a system information block (English name: System Information Block, English abbreviation: SIB) message.
  • the terminal may also configure a correspondence between the synchronization source and the start time offset, the transmission period, and the continuous transmission time.
  • one synchronization source may correspond to one start time offset or multiple start time offsets.
  • the transmission period and the continuous transmission time can also refer to the start time offset to establish a correspondence with the synchronization source.
  • the terminal may establish a correspondence relationship list, where the correspondence relationship list includes a correspondence between at least two synchronization source start time offsets, a transmission period, and a persistent transmission time.
  • the terminal may perform step 210 or step 211.
  • the terminal may stop transmitting the current first synchronization signal.
  • the terminal determines that the continuous transmission time ends, and the terminal stops transmitting the first synchronization signal.
  • the terminal monitors the V2V channel; the terminal detects the third synchronization signal, and the synchronization source corresponding to the third synchronization signal has a higher priority than the synchronization source corresponding to the first synchronization signal, and the terminal immediately cancels The first synchronization signal is sent, or after the terminal sends the first synchronization signal several times, the third synchronization signal is sent while canceling the transmission of the first synchronization signal.
  • the method steps shown in FIG. 5 above may be specifically implemented by the computer device shown in FIG.
  • the method steps described in step 202 can all be implemented by the communication interface 104.
  • the method steps described in step 201 can be implemented by processor 101.
  • the terminal when the terminal includes multiple carriers, the terminal still keeps its existing timing unchanged on the primary carrier, such as continuing to adopt GNSS timing, base station timing, or the timing of the base station itself.
  • the primary carriers allocated by each base station may be different or the same, but the timings are different.
  • the subcarrier is a common carrier, and on the subcarrier, the terminal changes its timing according to the synchronization method of the terminal proposed by the present invention.
  • An embodiment of the present invention provides a method for synchronizing a terminal, as shown in FIG. 8, including:
  • Step 301 The terminal receives the first synchronization signal.
  • Step 302 or steps 303 to 304 are performed.
  • Step 302 The terminal forwards the first synchronization signal according to a preset time offset.
  • the time offset is used to indicate the time difference between the synchronization signal received by the terminal and the forwarding of the synchronization signal.
  • the period in which the terminal forwards the first synchronization signal may use the transmission period included in the first synchronization signal.
  • a number of bits (for example, 2 bits) may be carried in the PSBCH to indicate the number of times of forwarding.
  • Step 303 The terminal generates a fourth synchronization signal.
  • the sequence of the fourth synchronization signal is different from the sequence of the first synchronization signal, and the fourth synchronization signal corresponds to the timing of the same synchronization source as the first synchronization signal.
  • Step 304 The terminal forwards the fourth synchronization signal.
  • the synchronization signal is sent again at a certain time interval, and is distinguished from the original synchronization signal, so that the terminal can recognize the original synchronization signal and the forwarded synchronization signal.
  • the resource allocation for transmitting the V2V signal may be as follows:
  • a physical bypass shared channel (English full name: Physical Sidelink Shared Channel, PSSCH) is defined as a resource for transmitting a V2V signal, and a resource indication of the PSSCH can be carried by the PSBCH.
  • PSSCH Physical Sidelink Shared Channel
  • the PSSCH resources may be out of synchronization. Therefore, PSSCH resources are not allocated in the first few transmission periods. For example, the PSSCH resource allocation is carried from the second or subsequent transmission period:
  • PSSCH resources are divided into several parts by means of FDM or TDM, and are respectively allocated to terminals for different timings.
  • a guard band can be inserted between the parts; if divided by TDM, a guard interval can be inserted between the parts.
  • the reliability of the synchronization scheme can be extended to the SLSS synchronization mechanism to eliminate the effects of timing errors.
  • the embodiment of the present invention provides a terminal 30, as shown in FIG. 10, including:
  • the obtaining unit 301 is configured to acquire a transmission period of the first synchronization signal, where the transmission period is used to indicate a time interval between two adjacent synchronization signals sent by the terminal, where the transmission period is a configurable period;
  • the sending unit 302 is configured to send the first synchronization signal according to the transmission period acquired by the acquiring unit.
  • different terminals may use different transmission periods to transmit the synchronization signal, so that the terminal transmits the synchronization signal distributedly, controls the sequence of transmitting the synchronization signal, and avoids the synchronization source transmission of different timings.
  • the collision between the synchronization signals enables the terminals in the vehicle-to-vehicle communication system to have uniform timing at the same time.
  • the terminal 30 further includes:
  • the processing unit 303 is configured to determine that the sending policy is met.
  • the receiving unit 304 is configured to receive a system message sent by the base station, where the system message includes at least two start time offsets and at least two transmission periods of at least two continuous transmission times.
  • the monitoring unit 305 is configured to monitor the vehicle-to-vehicle V2V channel within the starting time offset.
  • the terminal 30 is presented in the form of a functional unit.
  • the term "unit” herein may refer to an application-specific integrated circuit (English name: ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or the like.
  • terminal 30 can take the form shown in FIG.
  • the obtaining unit 301 and the sending unit 302 can be implemented by the computer device of FIG. 4.
  • the sending unit 302 can be implemented by the communication interface 104
  • the obtaining unit 301 can be implemented by the processor 101.
  • the first base station configuration uses the timing T1 of the first base station, the timing used by the first terminal is T1, and is not synchronized with the GNSS; and the fourth terminal outside the coverage uses the GNSS preferentially according to the current standard. Timing T2.
  • the SLSS and the V2V signal sent by the fourth terminal may cause interference to the first terminal in the coverage area.
  • An embodiment of the present invention provides a method for synchronizing a terminal, as shown in FIG. 12, including:
  • Step 401 Receive a second synchronization signal sent by the second synchronization source when the terminal has configured the timing of the first synchronization source corresponding to the first synchronization signal.
  • the second synchronization signal is a signal of a timing of a second synchronization source corresponding to the second synchronization signal.
  • Step 402 The terminal acquires a timing offset between a timing of the first synchronization source and a timing of the second synchronization source.
  • Step 403 The terminal adjusts a time at which the first synchronization signal is sent according to the timing offset.
  • Step 404 The terminal sends the first synchronization signal according to the adjusted time.
  • the terminal carries the timing offset on the PSBCH for transmission.
  • the terminal transmits the synchronization signal of the first terminal by adjusting the timing of transmitting the synchronization signal to the timing of the received high priority synchronization source, thereby reducing interference to the terminal within the coverage due to the timing deviation.
  • the fourth terminal needs to send a V2V signal (including SLSS and V2V messages), first adjust its timing of transmitting the V2V signal to T2+To.
  • the fourth terminal does not change the synchronization source, and the fourth terminal remains synchronized with the synchronization source GNSS. In this way, the synchronization source of the terminal is unchanged, which can maintain high synchronization accuracy and reduce the coverage due to timing deviation. Interference within the terminal.
  • the fifth terminal adjusts its transmission timing accordingly and continues to forward the timing offset.
  • the embodiment of the present invention provides a terminal 50, as shown in FIG. 14, comprising:
  • the receiving unit 501 is configured to receive a second synchronization signal sent by the second synchronization source when the terminal has configured the first synchronization source corresponding to the first synchronization signal, where the second synchronization signal is a corresponding location of the second synchronization signal. a signal for timing of the second synchronization source;
  • the obtaining unit 502 is configured to acquire a timing offset between a timing of the first synchronization source and a timing of the second synchronization source;
  • the adjusting unit 503 is configured to adjust a time at which the first synchronization signal is sent according to the timing offset;
  • the sending unit 504 is configured to send the first synchronization signal according to the adjusted time.
  • the terminal 50 is presented in the form of a functional unit.
  • the term "unit” herein may refer to an application-specific integrated circuit (English name: ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or the like.
  • terminal 50 can take the form shown in FIG.
  • the receiving unit 501 and the obtaining unit 502 can be implemented by the computer device of FIG. 4. Specifically, the receiving unit 501 can be implemented by the communication interface 104, and the obtaining unit 502 can be implemented by the processor 101.
  • An embodiment of the present invention provides a method for synchronizing a terminal, as shown in FIG.
  • Step 601 The terminal divides the V2V channel that transmits the V2V signal into at least two subchannels.
  • Step 602 When the terminal scans the idle subchannel, the synchronization signal and the V2V signal are sent on the idle subchannel.
  • the terminal scans each subchannel to obtain the density and/or signal distribution of the energy intensity and/or the carried signal on each subchannel.
  • the signal distribution includes detected transmission periods and time slot positions of signals from different terminals.
  • Step 603 When the terminal does not scan the idle subchannel, select the idle time position on the subchannel with the smallest signal strength among all the subchannels to send the V2V signal.
  • the V2V signal includes a synchronization signal.
  • the terminal retreats from the preset time period.
  • the preset period of backoff may be determined according to the idle time slot detected by the terminal, that is, the signal is periodically transmitted, and the signal transmitted by each terminal is discrete in time, and therefore, the terminal may transmit its signal in the idle time slot.
  • the backoff mode can be: random backoff, or priority based backoff.
  • the available spectrum resources are divided into three subchannels, two of which are used for periodic message transmission. For example, subchannel 1 and subchannel 2, another subchannel, for bursty message transmission, for example, subchannel 3.
  • the terminal finds that V2V signal transmission is already on subchannel 1, and when subchannel 2 is idle, it selects subchannel 2 to transmit V2V signal, and randomly retreats for a period of time before transmission.
  • only one subchannel is configured for burst message transmission, and there is no subchannel selection process.
  • the terminal at the receiving end can synchronize to the highest priority synchronization source according to the priority.
  • the foregoing scanning time may be configured by the eNB, using a preset value, or randomly selected.
  • the embodiment of the present invention provides a terminal 70, as shown in FIG. 17, comprising:
  • the processing unit 701 is configured to divide the V2V channel of the transport vehicle and the vehicle V2V signal into at least two subchannels;
  • the sending unit 702 is configured to: when the terminal scans an idle subchannel, send a synchronization signal and the V2V signal on the idle subchannel;
  • the sending unit 702 is further configured to: when the terminal does not scan an idle subchannel, send the V2V signal on a subchannel that selects a minimum signal strength among all the subchannels, where the V2V signal includes a synchronization signal. .
  • the terminal 70 is presented in the form of a functional unit.
  • the term "unit” herein may refer to an application-specific integrated circuit (English name: ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or the like.
  • terminal 70 can take the form shown in FIG.
  • the processing unit 701 and the sending unit 702 can be implemented by the computer device of FIG. 4. Specifically, the sending unit 702 can be implemented by the communication interface 104, and the processing unit 701 can be implemented by the processor 101.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. The medium of the code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请的实施例提供一种终端的同步方法及终端,涉及通信领域,终端通过控制同步信号的发送顺序,分布式地发送同步信号,能够使车与车通信系统中的终端具有统一的定时。包括:终端获取发送第一同步信号的可配置的传输周期,终端根据可配置的传输周期发送第一同步信号。

Description

一种终端的同步方法及终端 技术领域
本申请涉及通信领域,尤其涉及一种终端的同步方法及终端。
背景技术
基于长期演进技术(英文全称:LongTerm Evolution,英文简称:LTE)的车联网技术包括车与车(英文全称:Vehicle to Vehicle,英文简称:V2V)通信、车与人(英文全称:Vehicle to Pedestrian,英文简称:V2P)通信和车与基础设施网络(英文全称:Vehicle to Infrastructure,英文简称:V2I)通信,统称为V2X(Vehicle to X)。V2V通信技术是长期演进技术-设备到设备(英文全称:Long Term Evolution Device to Device,英文简称:LTE-D2D)通信技术的一种演进。车与车之间的通信具有移动速度快、时延小和通信可靠性高等更高的要求,那么,终端之间的同步是满足上述要求的一个前提条件。
在现有的LTE-D2D系统中,假设第一终端需要同时接收来自其他多个终端的信号,而这多个终端中有的终端可能处于第一终端所连接的蜂窝网络覆盖范围外,如图1所示的第二终端。为了保证蜂窝网络覆盖范围外的终端与第一终端同步,使它们之间的信号不会相互干扰,通常,第一终端采用旁路同步信号(英文全称:SideLink Synchronization Signal,英文简称:SLSS)将具有高优先级的同步源的定时转发给蜂窝网络覆盖范围外的终端,从而使得蜂窝网络覆盖范围外的终端能够与蜂窝网络覆盖范围内的终端同步。
进一步的,处于蜂窝网络覆盖范围外的终端或者两个蜂窝网络覆盖的重叠区域的终端,可能接收到多个SLSS。如图2所示的第二终端处于第一基站的蜂窝网络覆盖范围与第二基站的蜂窝网络覆盖范围的重叠区域。由于LTE-D2D系统中的终端对时延和通信可靠性的要求不高,处于重叠区域的终端可以根据同步源的优先级和信号 强度选择与其通信的终端的同步源的定时进行同步,忽略接收到的其他的终端的同步源的定时,这样导致一定范围内的所有终端不能同步。但是,在车与车通信系统中,需要一定范围内的所有终端进行同步,具有统一的定时进行通信。
发明内容
本发明的目的在于提供一种终端的同步方法及终端,终端通过控制同步信号的发送时刻,分布式地发送同步信号,能够使车与车通信系统中的终端在同一时刻具有统一的定时进行通信。
上述目标和其他目标将通过独立权利要求中的特征来达成。进一步的实现方式在从属权利要求、说明书和附图中体现。
第一方面,提供一种终端的同步方法,包括:
首先,终端获取发送第一同步信号的传输周期,传输周期用于指示终端发送的两个相邻同步信号之间的时间间隔,传输周期为可配置的周期,然后,根据传输周期发送第一同步信号,第一同步信号为终端当前已配置的第一同步源的定时对应的信号。
上述第一方面提供的终端的同步方法,相对于现有技术中,传输周期是不可配置的,由于本发明的限定的传输周期是可以任意配置的,使得不同的终端可能使用不同的传输周期来发送同步信号,使得终端控制发送同步信号的顺序,避免不同定时的同步源发送的同步信号间的冲突,从而能够使车与车通信系统中的终端在同一时刻具有统一的定时。
在第一方面的第一种可实现方式中,方法还包括:
终端还可以获取发送第一同步信号的起始时刻偏移量,起始时刻偏移量用于指示从终端启动发送同步信号的起始时刻的偏移时段;终端根据传输周期发送第一同步信号包括:终端根据传输周期和起始时刻偏移量发送第一同步信号;
或者,终端还可以获取发送第一同步信号的持续传输时间,持续传输时间用于指示终端发送同步信号的持续时长;终端根据传输周期发送第一同步信号包括:终端根据传输周期和持续传输时间发 送第一同步信号;
或者,终端还可以获取发送第一同步信号的起始时刻偏移量和持续传输时间,终端根据传输周期发送第一同步信号包括:终端根据传输周期、起始时刻偏移量和持续传输时间发送第一同步信号。
这样一来,使得终端可以根据传输周期、起始时刻偏移量和持续传输时间中的任意组合方式控制发送同步信号的顺序,避免不同定时的同步源发送的同步信号间的冲突,从而能够使车与车通信系统中的终端在同一时刻具有统一的定时。
结合第一方面的第一种可实现方式,在第一方面的第二种可实现方式中,在获取发送第一同步信号的传输周期、起始时刻偏移量和持续传输时间中至少一个之前,所述方法还包括:
终端预先配置至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间;或者,终端接收基站发送的系统消息,系统消息包括至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间。这样一来,终端可以在已配置的两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间中选择自己需要的参数传输同步信号即可。
可选的,还可以包括以下任意一种可实现方式,
终端获取发送第一同步信号的传输周期之前,终端预先配置至少两个传输周期;或者,终端接收基站发送的系统消息,系统消息包括至少两个传输周期。
终端获取发送第一同步信号的起始时刻偏移量之前,终端预先配置至少两个起始时刻偏移量;或者,终端接收基站发送的系统消息,系统消息包括至少两个起始时刻偏移量。
终端获取发送第一同步信号的持续传输时间之前,终端预先配置至少两个持续传输时间;或者,终端接收基站发送的系统消息,系统消息包括至少两个持续传输时间。
以上所述的方式可以进行任意的组合实现对同步信号的发送,本发明对任意一种实现方式不作限定。例如,终端获取发送第一同 步信号的传输周期和起始时刻偏移量之前,终端预先配置至少两个传输周期和至少两个起始时刻偏移量;或者,终端接收基站发送的系统消息,系统消息包括至少两个传输周期和至少两个起始时刻偏移量。
结合第一方面的第二种可实现方式,在第一方面的第三种可实现方式中,获取发送第一同步信号的传输周期包括:
终端根据第一同步信号对应的第一同步源的优先级获取第一同步信号对应的第一同步源所对应的起始时刻偏移量;或者,终端根据第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取第一同步信号对应的第一同步源所对应的起始时刻偏移量;
获取发送第一同步信号的起始时刻偏移量包括:
终端根据第一同步信号对应的第一同步源的优先级获取第一同步信号对应的第一同步源所对应的传输周期;或者,终端根据第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取第一同步信号对应的第一同步源所对应的传输周期;
获取发送第一同步信号的持续传输时间包括:
终端根据第一同步信号对应的第一同步源的优先级获取第一同步信号对应的第一同步源所对应的持续传输时间;或者,终端根据第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取第一同步信号对应的第一同步源所对应的持续传输时间。
结合第一方面的第二种可实现方式,在第一方面的第四种可实现方式中,获取发送第一同步信号的起始时刻偏移量、传输周期和持续传输时间包括:
终端从至少两个起始时刻偏移量中,随机选择一个起始时刻偏移量;终端从至少两个传输周期中,随机选择一个传输周期;终端从至少两个持续传输时间中,随机选择一个持续传输时间。
结合第一方面的第一种可实现方式,在第五种可实现方式中,方法还包括:
终端接收基站发送的指示消息,指示消息用于指示终端所使用的传输周期、起始时刻偏移量和持续传输时间中的至少一个。
结合第一方面的第一种可实现方式至第一方面的第五种可实现方式中的任意一种可实现方式,在第六种可实现方式中,在获取发送第一同步信号的起始时刻偏移量之后,方法还包括:
终端在起始时刻偏移量内,监测车与车V2V信道;当终端检测到第三同步信号,且第三同步信号对应的第三同步源的优先级高于第一同步信号对应的第一同步源的优先级,终端取消发送第一同步信号,或者,终端取消发送第一同步信号的同时发送第三同步信号。
结合第一方面、第一方面的第一种可实现方式至第一方面的第六种可实现方式中的任意一种可实现方式,在第七种可实现方式中,当终端预先配置至少两个传输周期时,包括:
终端将第一同步信号的传输周期承载在PSBCH上传输。
结合第一方面、第一方面的第一种可实现方式至第一方面的第七种可实现方式中的任意一种可实现方式,在第八种可实现方式中,终端在发送第一同步信号时,在物理旁路广播信道PSBCH上承载剩余传输次数,剩余传输次数用于表示终端在当前同步信号传输结束后继续传输同步信号的次数。
结合第一方面、第一方面的第一种可实现方式至第一方面的第八种可实现方式中的任意一种可实现方式,在第九种可实现方式中,在获取发送第一同步信号的传输周期之前,所述方法还包括:
终端确定满足发送策略,发送策略包括终端在预设时段内未检测到其他任何同步信号;或者,终端检测到第二同步信号,且第二同步信号对应的第二同步源的优先级低于第一同步信号对应的第一同步源的优先级;或者,接收到基站发送的指示消息,指示消息用于指示终端发送同步信号,基站为终端驻留的基站。这样一来,避免一个区域内的所有终端都发送同步信号。
第二方面,提供一种终端的同步方法,包括:
当终端接收到第一同步信号后,根据预先设置的时间偏移量转发第一同步信号,时间偏移量用于表示终端接收到的同步信号与转发所述同步信号之间的时差;或者,终端生成与第一同步信号的序列不同的第四同步信号,再转发第四同步信号,其中,第四同步信号与第一同步信号对应相同的同步源的定时。
上述第二方面提供的终端的同步方法,在终端接收到转发的同步信号后,间隔一定的时间在发送同步信号,与原同步信号区别开,使得终端能够识别原同步信号与转发的同步信号间的误差。
第三方面,提供一种终端,包括:
获取单元,用于获取发送第一同步信号的传输周期,传输周期用于指示终端发送的两个相邻同步信号之间的时间间隔,传输周期为可配置的周期;发送单元,用于根据所述传输周期发送第一同步信号。具体的实现方式可以参考第一方面提供的终端的同步方法中终端的行为的功能。
第四方面,提供一种终端,包括:
接收单元,用于接收第一同步信号;发送单元,用于根据预先设置的时间偏移量转发所述第一同步信号,时间偏移量用于表示终端接收到的同步信号与转发所述同步信号之间的时差;生成单元,用于生成第四同步信号,第四同步信号的序列与第一同步信号的序列不同,第四同步信号与第一同步信号对应相同的同步源的定时;所述发送单元,还用于转发第四同步信号。具体的实现方式可以参考第二方面提供的终端的同步方法中终端的行为的功能。
第五方面,提供一种终端的同步方法,包括:
当终端已配置第一同步信号对应的第一同步源的定时,接收到第二同步源发送的第二同步信号,第二同步信号为第二同步信号对应的第二同步源的定时的信号;终端获取第一同步源的定时与第二同步源的定时的定时偏差;终端根据定时偏差调整发送第一同步信号的时刻;终端根据调整后的时刻发送第一同步信号。这样一来,终端通过调整将要发送的同步信号的时刻,使得终端的同步源不变 的情况下,既能保持较高的同步精度,又能减少由于定时偏差引起的对其他终端的干扰。
第六方面,提供一种终端,包括:
接收单元,用于当终端已配置第一同步信号对应的第一同步源的定时,接收到第二同步源发送的第二同步信号,第二同步信号为第二同步信号对应的第二同步源的定时的信号;获取单元,用于获取第一同步源的定时与第二同步源的定时的定时偏差;调整单元,用于终端根据定时偏差调整发送所述第一同步信号的时刻;发送单元,用于根据调整后的时刻发送第一同步信号。具体的实现方式可以参考第五方面提供的终端的同步方法中终端的行为的功能。
第七方面,提供一种终端的同步方法,包括:
终端将传输车与车V2V信号的V2V信道划分为至少两个以上的子信道;当终端扫描到空闲的子信道时,在空闲的子信道上发送同步信号和V2V信号;当终端未扫描到空闲的子信道时,在所有子信道中选择信号强度最小的子信道上发送V2V信号,V2V信号包括同步信号。
第八方面,提供一种终端,包括:
处理单元,用于将传输车与车V2V信号的V2V信道划分为至少两个以上的子信道;发送单元,用于当终端扫描到空闲的子信道时,在空闲的子信道上发送同步信号和V2V信号;发送单元,还用于当终端未扫描到空闲的子信道时,在所有子信道中选择信号强度最小的子信道上发送V2V信号,V2V信号包括同步信号。
需要说明的是,上述各个方面所述功能模块可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,通信接口,用于完成接收单元和发送单元的功能,处理器,用于完成处理单元的功能,存储器,用于存储音量阈值。处理器、通信接口和存储器通过总线连接并完成相互间的通信。具体的,可以参考提供的终端的同步方法中终端的行为的功能。
本发明中,终端的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本发明类似,属于本发明权利要求及其等同技术的范围之内。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供一种通信系统示意图;
图2为现有技术提供另一种通信系统示意图;
图3为本申请实施例提供一种通信系统示意图;
图4为本申请实施例提供一种计算机设备结构示意图;
图5为本申请实施例提供一种终端的同步方法流程图;
图6为本申请实施例提供另一种终端的同步方法流程图;
图7为本申请实施例提供一种同步信号分布式发送示意图;
图8为本申请实施例提供又一种终端的同步方法流程图;
图9为本申请实施例提供一种同步信号发送示意图;
图10为本申请实施例提供一种终端结构示意图;
图11为本申请实施例提供另一种终端结构示意图;
图12为本申请实施例提供再一种终端的同步方法流程图;
图13为本申请实施例提供另一种同步信号发送示意图;
图14为本申请实施例提供又一种终端结构示意图;
图15为本申请实施例提供另再一种终端的同步方法流程图;
图16为本申请实施例提供再一种同步信号发送示意图;
图17为本申请实施例提供再一种终端结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明的基本原理在于:本发明通过可任意配置的传输周期,使得不同的终端可能使用不同的传输周期来发送同步信号,使得终端分布式地发送同步信号,控制发送同步信号的顺序,避免不同定时的同步源发送的同步信号间的冲突,从而能够使车与车通信系统中的终端在同一时刻具有统一的定时。
下面将参考附图详细描述本发明的实施方式。
本发明实施例提供一种通信系统示意图,如图3所示,包括:第一基站、第二基站、第一终端、第二终端、第三终端、第四终端和第五终端。其中,第一终端属于第一基站的覆盖范围内的终端。第二终端属于第二基站的覆盖范围内的终端。第三终端属于第一基站与第二基站的重叠区域的范围内的终端。第四终端和第五终端既不属于第一基站的覆盖范围内的终端,也不属于第二基站的覆盖范围内的终端。
需要说明的是,第一终端与其驻留的第一基站同步,第一终端对应的同步源的定时为第一基站的定时。第一终端通过接收主同步信号(英文全称:Primary Syncharonization Signal,英文简称:PSS)和辅同步信号(英文全称:Secondary Synchronization Signal,英文简称:SSS)实现与第一基站的同步。
同理,第二终端与其驻留的第二基站同步,第二终端对应的同步源的定时为第二基站的定时,第二终端也通过PSS/SSS实现与第二基站的同步。
如果终端处于蜂窝网络覆盖范围外,但同时能接收到处于蜂窝网络覆盖范围内的终端发送的同步信号,则处于蜂窝网络覆盖范围外的终端与处于蜂窝网络覆盖范围内的终端进行同步的同步源为处 于蜂窝网络覆盖范围内的终端(英文全称:In-Coverage UE,英文简称:InC UE),例如,第一终端。第四终端可以通过接收第一终端的SLSS与第一终端同步。
如果终端处于蜂窝网络覆盖范围外,但能够接收到处于蜂窝网络覆盖范围外的终端转发的定时,则处于蜂窝网络覆盖范围外的终端与转发定时的终端进行同步的同步源为转发定时的终端(英文全称:Out-of-Coverage(forwarding)network(timing)UE),英文简称:OoC_net UE),例如,第四终端。第五终端可以通过接收第四终端的SLSS与第四终端同步。
如果终端处于蜂窝网络覆盖范围外,没有探测到同步信号或者所探测到的同步信号强度低于某个预设门限,则该终端在发送数据时可以同时发送同步信号,该处于蜂窝网络覆盖范围外的终端的同步源为(英文全称:Out-of-Coverage UE,英文简称:OoC UE)。
可选的,第四终端对应的同步源的定时可以为全球卫星导航系统(英文全称:Global Navigation Satellite System,英文简称:GNSS)。同理,第五终端对应的同步源的定时也可以为GNSS。
上述同步源的优先级可以为eNB>InC UE>OoC_net UE>OoC UE。
如图4所示,图3中的终端可以以图4中的计算机设备(或系统)的方式来实现。
图4所示为本发明实施例提供的计算机设备示意图。计算机设备100包括至少一个处理器101,通信总线102,存储器103以及至少一个通信接口104。
处理器101可以是一个处理器,也可以是多个处理元件的统称。例如,处理器101可以是一个通用中央处理器(英文全称:Central Processing Unit,英文简称:CPU),也可以是特定应用集成电路(英文全称:application-specific integrated circuit,英文简称:ASIC),或一个或多个用于控制本发明方案程序执行的集成电路,例如:一个或多个微处理器(英文全称:digital signal processor,英 文简称:DSP),或,一个或者多个现场可编程门阵列(英文全称:Field Programmable Gate Array,英文简称:FPGA)。
在具体实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,计算机设备100可以包括多个处理器,例如图4中的处理器101和处理器105。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
通信总线102可以是工业标准体系结构(英文全称:Industry Standard Architecture,英文简称:ISA)总线、外部设备互连(英文全称:Peripheral Component,英文简称:PCI)总线或扩展工业标准体系结构(英文全称:Extended Industry Standard Architecture,英文简称:EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器103可以是只读存储器(英文全称:read-only memory,英文简称:ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(英文全称:random access memory,英文简称:RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(英文全称:Electrically Erasable Programmable Read-Only Memory,英文简称:EEPROM)、只读光盘(英文全称:Compact Disc Read-Only Memory,英文简称:CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器103用于存储执行本发明方案的应用程序代码,并由处理器101来控制执行。所述处理器101用于执行所述存储器103中存储的应用程序代码。
所述通信接口104,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(英文全称:Wireless Local Area Networks,英文简称:WLAN)等。通信接口104可以包括接收单元实现接收功能,以及发送单元实现发送功能。
在具体实现中,作为一种实施例,图4所示的计算机设备100可以是图3中的终端。
处理器101,用于获取发送第一同步信号的起始时刻偏移量、传输周期和持续传输时间。
通信接口104,用于第一终端在持续传输时间内按照起始时刻偏移量和所述传输周期发送第一同步信号。
通信接口104,还用于接收基站发送的系统消息。
存储器103,用于存储至少两个起始时刻偏移量、至少两个传输周期和至少两个持续传输时间。
实施例1
本发明实施例提供一种终端的同步方法,如图5所示,包括:
步骤201、终端获取发送第一同步信号的传输周期。
传输周期用于指示终端发送两个相邻同步信号之间的时间间隔。传输周期为可配置的周期。
终端获取发送第一同步信号的传输周期可以采用以下两个方式:
在一种可实现方式中,
终端根据第一同步信号对应的第一同步源的优先级获取第一同步信号对应的第一同步源所对应的传输周期。不同优先级的同步源对应不同的传输周期,终端根据自身的优先级选择传输周期。例如,高优先级的同步源可以采用较小的传输周期,以便有更多的传 输机会。或者,终端根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取第一同步信号对应的第一同步源所对应的传输周期。比如覆盖范围内和覆盖范围外对应不同的传输周期。
在另一种实现方式中,终端从至少两个传输周期中,随机选择一个传输周期。
需要说明的是,当终端预先配置传输周期时,终端可以将第一同步信号的传输周期承载在物理旁路广播信道(英文全称:Physical Sidelink Broadcast Channel,英文简称:PSBCH)上传输。
步骤202、终端根据传输周期发送第一同步信号。
进一步的,如图6所示,在终端发送所述第一同步信号之前,例如步骤202之前,终端还可以获取发送第一同步信号的起始时刻偏移量或/和持续传输时间。起始时刻偏移量用于指示从终端启动发送同步信号的起始时刻的偏移时段。持续传输时间用于指示终端发送同步信号的持续时长。
终端可以执行步骤203和步骤204,或执行步骤205和步骤206,或执行步骤207和步骤208。
步骤203、终端获取到发送第一同步信号的起始时刻偏移量。
步骤204、终端根据传输周期和起始时刻偏移量发送第一同步信号。
步骤205、终端获取到发送第一同步信号的持续传输时间。
步骤206、终端根据传输周期和持续传输时间发送第一同步信号。
步骤207、终端获取到发送第一同步信号的起始时刻偏移量和持续传输时间。
步骤208、终端根据传输周期、起始时刻偏移量和持续传输时间发送第一同步信号。
终端在持续传输时间内按照起始时刻偏移量和传输周期发送第一同步信号。
具体的,终端获取发送第一同步信号的起始时刻偏移量可以采用以下两个方式:
在一种可实现方式中,
终端根据第一同步信号对应的第一同步源的优先级获取第一同步信号对应的第一同步源所对应的起始时刻偏移量。其中,不同优先级的同步源对应不同的起始时刻偏移量。例如,高优先级的同步源可以采用较短的起始时刻偏移量,以便有更多的传输机会。或者,终端根据第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取第一同步信号对应的第一同步源所对应的起始时刻偏移量。起始时刻偏移量可以是一个具体的值,例如10ms、20ms、30ms或40ms;起始时刻偏移量也可以是0到最大起始时刻偏移量中的任意一个值。
在另一种实现方式中,终端从至少两个起始时刻偏移量中,随机选择一个起始时刻偏移量。
具体的,终端获取发送第一同步信号的持续传输时间可以采用以下两个方式:
终端根据第一同步信号对应的第一同步源的优先级获取第一同步信号对应的第一同步源所对应的持续传输时间。不同优先级的同步源对应不同的持续传输时间,终端根据自身的优先级选择传输周期。例如,高优先级的同步源可以采用较长的传输时间,以便有更多的传输机会。或者,终端根据第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取第一同步信号对应的第一同步源所对应的持续传输时间。
在另一种实现方式中,终端从至少两个持续传输时间中,随机获取一个持续传输时间。
需要说明的是,为了便于接收第一同步信号的终端判断持续发送第一同步信号的时长,可以用剩余传输次数表示,可以将剩余传输次数承载在PSBCH中,终端每发送一次第一同步信号则剩余传输次数减一。
需要说明的是,同步源的优先级可以由同步源的类型来决定,比如GNSS、eNB或UE;同步源的优先级也可以由同步源所处位置来决定,比如覆盖范围内或覆盖范围外;同步源的优先级也可以由同步源的类型和所处的位置一起决定;此外同步源的优先级也可以由基站定义。
这样一来,本发明通过可任意配置的传输周期,使得不同的终端可能使用不同的传输周期来发送同步信号,使得终端分布式地发送同步信号,控制发送同步信号的顺序,避免不同定时的同步源发送的同步信号间的冲突,从而能够使车与车通信系统中的终端在同一时刻具有统一的定时。
示例的,基于图3中的第一终端和第四终端,如图7所示,提供一种同步信号分布式发送示意图。
假设第一终端已配置的第一同步源的优先级高于第四终端已配置的第二同步源的优先级。第一终端和第四终端各自随机选择了起始时刻偏移量后,第一终端周期性地发送第一同步信号,第四终端周期性地发送第二同步信号,虽然,第一终端发送的第一个第一同步信号与第四终端发送的第一个第二同步信号碰撞,但是,由于第一终端选择的传输周期小于第四终端选择的传输周期,且第一终端选择的持续传输时间大于第四终端选择的持续传输时间,因此,后续第一终端发送的第一同步信号与第四终端发送的第二同步信号不再碰撞,使得不同的终端可能使用不同的参数包括起始时刻偏移量、传输周期和持续传输时间分布式地发送同步信号,终端控制发送同步信号的顺序,避免不同定时的同步源发送的同步信号间的冲突,从而能够使车与车通信系统中的终端在同一时刻具有统一的定时。
特别的,终端还可以接收基站发送的指示消息,由基站来指示终端使用的传输周期、起始时刻偏移量和持续传输时间。所述指示消息用于指示终端所使用的传输周期、起始时刻偏移量和持续传输时间中的至少一个。
进一步的,在获取发送第一同步信号的传输周期之前,即步骤201之前,基于图5图6所示,所述方法还包括以下具体步骤:
步骤209、终端确定满足发送策略。
所述发送策略包括终端在预设时段内未检测到其他任何同步信号;或者,检测到的优先级不低于终端的优先级的同步源的同步信号的信号强度低于一个预设门限值;或者,终端检测到第二同步信号,且第二同步信号对应的第二同步源的优先级低于第一同步信号对应的第一同步源的优先级。
示例的,终端检测到第二同步信号,且第二同步信号对应的第二同步源的优先级低于第一同步信号对应的第一同步源的优先级,终端确定通过发送第一同步信号来告知其他终端该终端当前已配置的第一同步源的定时。示例的,当终端检测到第二同步信号对应的第二同步源的优先级低于第一同步信号对应的第一同步源的优先级,并且接收到的第二同步信号的信号强度(如:参考信号接收强度(英文全称:Reference Signal Receiving Power,英文简称:RSRP))超过某个门限时,终端确定通过发送第一同步信号来告知其他终端该终端当前已配置的第一同步源的定时。通常来说,信号强度较大意味着发送该信号的终端距离越近,其危险系数越高。可选的,终端还可以通过检测到的V2V信号中的位置信息,判断该终端周边是否存在其他终端,其他终端已配置的同步源的优先级相对于该终端已配置的同步源的优先级较低;如果从位置信息中确定该其他终端的距离该终端低于一定门限(表示距离较近),则终端确定通过发送第一同步信号来告知其他终端该终端当前已配置的第一同步源的定时。
又另一种情况,终端也可以被基站指示发送同步信号。
步骤210、终端预先配置至少两个起始时刻偏移量、至少两个传输周期和至少两个持续传输时间。
步骤211、终端接收基站发送的系统消息。
系统消息包括至少两个传输周期、至少两个起始时刻偏移量和 至少两个持续传输时间。该系统消息可以系统信息块(英文全称:System Information Block,英文简称:SIB)消息。
可选的,终端也可以配置同步源与起始时刻偏移量、传输周期和持续传输时间之间的对应关系。例如,在对应关系中,一个同步源可以对应一个起始时刻偏移量或多个起始时刻偏移量。同理,传输周期和持续传输时间也可以参考起始时刻偏移量与同步源建立对应关系。进一步的,终端可以建立对应关系列表,对应关系列表包括至少两个同步源起始时刻偏移量、传输周期和持续传输时间之间的对应关系。
需要说明的是,终端可以执行步骤210或步骤211。
进一步的,终端在发送第一同步信号后,终端可以停止发送当前第一同步信号。在一种实现方式中,终端所确定的持续传输时间结束,终端停止发送第一同步信号。在另一种实现方式中,终端监测V2V信道;终端检测到第三同步信号,且第三同步信号对应的同步源的优先级高于第一同步信号对应的同步源的优先级,终端立即取消发送第一同步信号,或者,终端发送若干次第一同步信号后,取消发送第一同步信号的同时发送第三同步信号。
上述图5所示的方法步骤具体的可以由图4所示的计算机设备实现。示例的,步骤202所述的方法步骤都可以由通信接口104来实现。步骤201所述的的方法步骤可以由处理器101来实现。
需要说明的是,当终端包括多个载波时,在主载波上,终端仍保持其既有定时不变,比如继续采用GNSS定时、基站定时或基站自身的定时。各基站(可能隶属不同的运营商)分配的主载波可能不同,也可能相同,但定时不同。副载波是公共载波,在副载波上,终端根据本发明提出的终端的同步方法变更其定时。
实施例2
本发明实施例提供一种终端的同步方法,如图8所示,包括:
步骤301、终端接收第一同步信号。
执行步骤302或步骤303至304。
步骤302、终端根据预先设置的时间偏移量转发第一同步信号。
时间偏移量用于表示终端接收到的同步信号与转发所述同步信号之间的时差。
示例的,如图9所示。
需要说明的是,终端转发第一同步信号的周期可以使用第一同步信号包括的传输周期。为了便于接收端的终端区别转发次数,可在PSBCH中携带若干比特(例如2比特)表示转发次数。
步骤303、终端生成第四同步信号。
第四同步信号的序列与所述第一同步信号的序列不同,第四同步信号与第一同步信号对应相同的同步源的定时。
步骤304、终端转发第四同步信号。
这样一来,在终端接收到同步信号后,间隔一定的时间再发送同步信号,与原同步信号区别开,使得终端能够识别原同步信号与转发的同步信号。
进一步的,在终端根据本发明所述的终端的同步方法方式发送同步信号后,用于发送V2V信号的资源分配可以采用如下的方式:
在目前3GPP 36.xxx系列标准中,将物理旁路共享信道(英文全称:Physical Sidelink Shared Channel,英文简称:PSSCH)定义为发送V2V信号的资源,可以由PSBCH来承载PSSCH的资源指示。但是,在同步的初始阶段,可能存在多种定时源,如果在每个同步信号的子帧内都携带资源分配信息,则可能导致PSSCH资源的不同步。因此,在初始的几个传输周期不分配PSSCH资源。比如PSSCH资源分配从第二个或后续的传输周期承载:
a)将PSSCH资源通过FDM或TDM的方式划分成几个部分,分别分配给用于不同定时的终端使用。
b)如果通过FDM方式划分,可在各部分之间插入保护频带;如果通过TDM方式划分,可在各部分之间插入保护间隔。
为了进一步减少定时传递过程中累积误差造成的影响以及增加 同步方案的可靠性,可针对SLSS的同步机制采用扩展CP来消除定时误差的影响。
实施例3
本发明实施例提供一种终端30,如图10所示,包括:
获取单元301,用于获取发送第一同步信号的传输周期,所述传输周期用于指示终端发送的两个相邻同步信号之间的时间间隔,所述传输周期为可配置的周期;
发送单元302,用于根据获取单元获取的传输周期发送第一同步信号。
这样一来,通过可任意配置的传输周期,使得不同的终端可能使用不同的传输周期来发送同步信号,使得终端分布式地发送同步信号,控制发送同步信号的顺序,避免不同定时的同步源发送的同步信号间的冲突,从而能够使车与车通信系统中的终端在同一时刻具有统一的定时。
如图11所示,所述终端30还包括:
处理单元303,用于确定满足发送策略。
接收单元304,用于接收基站发送的系统消息,所述系统消息包括至少两个起始时刻偏移量、至少两个传输周期至少两个持续传输时间。
监测单元305,用于在所述起始时刻偏移量内,监测车与车V2V信道。
在本实施例中,终端30是以功能单元的形式来呈现。这里的“单元”可以指特定应用集成电路(英文全称:application-specific integrated circuit,英文简称:ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到终端30可以采用图10所示的形式。获取单元301和发送单元302可以通过图4的计算机设备来实现,具体的,发送单元302可以由通信接口104实现,获取单元301可以由处理器101实现。
在覆盖范围内的终端和覆盖范围外的终端使用不同的定时情况下,覆盖范围外的终端发送的同步信号对覆盖范围内终端造成的干扰的场景。如图3所示,假设第一基站配置使用第一基站的定时T1,第一终端使用的定时为T1,并且没有与GNSS同步;而覆盖范围外的第四终端根据目前的标准优先使用GNSS的定时T2。此时第四终端发送的SLSS以及V2V信号会对覆盖范围内的第一终端造成干扰。
实施例4
本发明实施例提供一种终端的同步方法,如图12所示,包括:
步骤401、当终端已配置第一同步信号对应的第一同步源的定时,接收到第二同步源发送的第二同步信号。
所述第二同步信号为第二同步信号对应的第二同步源的定时的信号。
步骤402、终端获取第一同步源的定时与第二同步源的定时的定时偏差。
步骤403、终端根据定时偏差调整发送第一同步信号的时刻。
步骤404、终端根据调整后的时刻发送第一同步信号。
终端将定时偏差承载在PSBCH上传输。
这样一来,终端通过将发送同步信号的时刻调整为接收到的高优先级的同步源的定时,来发送第一终端的同步信号,从而减少由于定时偏差引起的对覆盖范围内终端的干扰。
如图13所示,第四终端检测到第一基站的定时T1和GNSS的定时T2,测量T1与T2的定时偏差(Timing offset),T1和T2之间存在定时偏差,可以将定时偏差表示为记为T1-T2=To。第四终端需要发送V2V信号(包括SLSS和V2V消息)时,首先调整其发送V2V信号的定时为T2+To。但是,第四终端未改变同步源,第四终端依然与同步源GNSS保持同步。这样,终端的同步源不变,既能保持较高的同步精度,又能将减少由于定时偏差引起的对覆盖范围 内终端的干扰。
进一步的,第五终端收到由第四终端转发的定时偏差后,也相应地调整其发送定时并继续转发定时偏差。
实施例5
本发明实施例提供一种终端50,如图14所示,包括:
接收单元501,用于当终端已配置第一同步信号对应的第一同步源的定时,接收到第二同步源发送的第二同步信号,所述第二同步信号为第二同步信号对应的所述第二同步源的定时的信号;
获取单元502,用于获取所述第一同步源的定时与所述第二同步源的定时的定时偏差;
调整单元503,用于根据定时偏差调整发送第一同步信号的时刻;
发送单元504,用于根据调整后的时刻发送所述第一同步信号。
在本实施例中,终端50是以功能单元的形式来呈现。这里的“单元”可以指特定应用集成电路(英文全称:application-specific integrated circuit,英文简称:ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到终端50可以采用图14所示的形式。接收单元501和获取单元502可以通过图4的计算机设备来实现,具体的,接收单元501可以由通信接口104实现,获取单元502可以由处理器101实现。
实施例6
本发明实施例提供一种终端的同步方法,如图15所示,包括:
步骤601、终端将传输V2V信号的V2V信道划分为至少两个以上的子信道。
步骤602、当终端扫描到空闲的子信道时,在空闲的子信道上发送同步信号和所述V2V信号。
终端扫描每个子信道,获取每个子信道上能量强度和/或承载的信号的密度和/或信号分布情况。所述信号分布包括检测到的来自不同终端的信号的发送周期及时隙位置。
步骤603、当终端未扫描到空闲的子信道时,在所有所述子信道中选择信号强度最小的子信道上的空闲时间位置发送所述V2V信号。
所述V2V信号包括同步信号。
进一步的,终端发送V2V信号之前,终端退避预设时段。退避的预设时段可以根据终端检测到的空闲时隙来确定,即信号是周期发送,各终端发送的信号在时间上离散,因此,终端可在空闲时隙发送其信号。退避方式可以采用:随机退避,或,基于优先级的退避。
如图16所示,将可用频谱资源划分为三个子信道,其中两个子信道,用于周期性的消息传输。例如,子信道1和子信道2,另一个子信道,用于突发性的消息传输,例如,子信道3。终端在扫描阶段发现子信道1上已有V2V信号传输,而子信道2上空闲,则其选择子信道2发送V2V信号,发送之前随机退避一段时间。图15中示例,对于突发消息传输只配置一个子信道,则没有子信道的选择过程。
为了能够实现各个子信道上的同步收发,接收端的终端可以按照优先级同步到最高优先级的同步源。
需要说明的是,上述扫描时间可由eNB配置、采用预设值或者随机选择。
实施例7
本发明实施例提供一种终端70,如图17所示,包括:
处理单元701,用于将传输车与车V2V信号的V2V信道划分为至少两个以上的子信道;
发送单元702,用于当所述终端扫描到空闲的子信道时,在所述空闲的子信道上发送同步信号和所述V2V信号;
所述发送单元702,还用于当所述终端未扫描到空闲的子信道时,在所有所述子信道中选择信号强度最小的子信道上发送所述V2V信号,所述V2V信号包括同步信号。
在本实施例中,终端70是以功能单元的形式来呈现。这里的“单元”可以指特定应用集成电路(英文全称:application-specific integrated circuit,英文简称:ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到终端70可以采用图17所示的形式。处理单元701和发送单元702可以通过图4的计算机设备来实现,具体的,发送单元702可以由通信接口104实现,处理单元701可以由处理器101实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random-Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种终端的同步方法,其特征在于,包括:
    终端获取发送第一同步信号的传输周期Transmission Period,所述传输周期用于指示终端发送的两个相邻同步信号之间的时间间隔,所述传输周期为可配置的周期;
    所述终端根据所述传输周期发送所述第一同步信号。
  2. 根据权利要求1所述的方法,其特征在于,在终端发送所述第一同步信号之前,所述方法还包括:
    所述终端获取发送第一同步信号的起始时刻偏移量Starting offset,所述起始时刻偏移量用于指示从终端启动发送同步信号的起始时刻的偏移时段;所述终端根据所述传输周期发送所述第一同步信号包括:所述终端根据所述传输周期和所述起始时刻偏移量发送所述第一同步信号;
    或者,所述终端获取发送第一同步信号的持续传输时间Transmission Duration,所述持续传输时间用于指示终端发送同步信号的持续时长;所述终端根据所述传输周期发送所述第一同步信号包括:所述终端根据所述传输周期和所述持续传输时间发送所述第一同步信号;
    或者,所述终端获取发送第一同步信号的起始时刻偏移量和持续传输时间,所述终端根据所述传输周期发送所述第一同步信号包括:所述终端根据所述传输周期、所述起始时刻偏移量和所述持续传输时间发送所述第一同步信号。
  3. 根据权利要求2所述的方法,其特征在于,在获取发送第一同步信号的传输周期、起始时刻偏移量和持续传输时间中至少一个之前,所述方法还包括:
    所述终端预先配置至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间;
    或者,所述终端接收基站发送的系统消息,所述系统消息包括至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时 间。
  4. 根据权利要求3所述的方法,其特征在于,
    所述获取发送第一同步信号的传输周期包括:
    所述终端根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的起始时刻偏移量;或者,所述终端根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的起始时刻偏移量;
    所述获取发送第一同步信号的起始时刻偏移量包括:
    所述终端根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的传输周期;或者,所述终端根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的传输周期;
    所述获取发送第一同步信号的持续传输时间包括:
    所述终端根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的持续传输时间;或者,所述终端根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的持续传输时间。
  5. 根据权利要求3所述的方法,其特征在于,所述获取发送第一同步信号的起始时刻偏移量、传输周期和持续传输时间包括:
    所述终端从至少两个起始时刻偏移量中,随机选择一个起始时刻偏移量;
    所述终端从至少两个传输周期中,随机选择一个传输周期;
    所述终端从至少两个持续传输时间中,随机选择一个持续传输时间。
  6. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述基站发送的指示消息,所述指示消息用于指示所述终端所使用的传输周期、起始时刻偏移量和持续传输时间中的至少一个。
  7. 根据权利要求2-6任一项权利要求所述的方法,其特征在于,在所述获取发送第一同步信号的起始时刻偏移量之后,所述方法还包括:
    所述终端在所述起始时刻偏移量内,监测车与车V2V信道;
    当所述终端检测到第三同步信号,且所述第三同步信号对应的第三同步源的优先级高于所述第一同步信号对应的第一同步源的优先级,所述终端取消发送所述第一同步信号,或者,所述终端取消发送所述第一同步信号的同时发送所述第三同步信号。
  8. 根据权利要求1-7任一项权利要求所述的方法,其特征在于,当所述终端预先配置传输周期时,包括:
    所述终端将所述第一同步信号的传输周期承载在物理旁路广播信道PSBCH上传输。
  9. 根据权利要求1-8任一项权利要求所述的方法,其特征在于,所述终端在发送所述第一同步信号时,在物理旁路广播信道PSBCH上承载剩余传输次数,所述剩余传输次数用于表示终端在当前同步信号传输结束后继续传输同步信号的次数。
  10. 一种终端的同步方法,其特征在于,包括:
    终端接收第一同步信号;
    所述终端根据预先设置的时间偏移量转发所述第一同步信号,所述时间偏移量用于表示终端接收到的同步信号与转发所述同步信号之间的时差;
    或者,所述终端生成第四同步信号,所述第四同步信号的序列与所述第一同步信号的序列不同,所述第四同步信号与所述第一同步信号对应相同的同步源的定时;
    所述终端转发所述第四同步信号。
  11. 一种终端,其特征在于,包括:
    获取单元,用于获取发送第一同步信号的传输周期Transmission Period,所述传输周期用于指示终端发送的两个相邻同步信号之间的时间间隔,所述传输周期为可配置的周期;
    发送单元,用于根据所述获取单元获取的所述传输周期发送所述第一同步信号。
  12. 根据权利要求11所述的终端,其特征在于,
    所述获取单元,还用于获取发送第一同步信号的起始时刻偏移量Starting offset,所述起始时刻偏移量用于指示从终端启动发送同步信号的起始时刻的偏移时段;所述发送单元,还用于所述终端根据所述获取单元获取的所述传输周期和所述起始时刻偏移量发送所述第一同步信号;
    或者,所述获取单元,还用于获取发送第一同步信号的持续传输时间Transmission Duration,所述持续传输时间用于指示终端发送同步信号的持续时长;所述发送单元,还用于根据所述获取单元获取的所述传输周期和所述持续传输时间发送所述第一同步信号;
    或者,所述获取单元,还用于获取发送第一同步信号的起始时刻偏移量和持续传输时间,所述发送单元,还用于根据所述获取单元获取的所述传输周期、所述起始时刻偏移量和所述持续传输时间发送所述第一同步信号。
  13. 根据权利要求12所述的终端,其特征在于,所述终端还包括:
    处理单元,用于预先配置至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间;
    接收单元,用于接收基站发送的系统消息,所述系统消息包括至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间。
  14. 根据权利要求13所述的终端,其特征在于,
    所述获取单元具体用于:
    根据所述第一同步信号对应的第一同步源的优先级获取所述第 一同步信号对应的第一同步源所对应的起始时刻偏移量;或者,根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的起始时刻偏移量;
    根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的传输周期;或者,根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的传输周期;
    根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的持续传输时间;或者,根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的持续传输时间。
  15. 根据权利要求13所述的终端,其特征在于,所述获取单元具体用于:
    从至少两个起始时刻偏移量中,随机选择一个起始时刻偏移量;
    从至少两个传输周期中,随机选择一个传输周期;
    从至少两个持续传输时间中,随机选择一个持续传输时间。
  16. 根据权利要求12所述的终端,其特征在于,所述终端还包括:
    接收单元,用于接收所述基站发送的指示消息,所述指示消息用于指示所述终端所使用的传输周期、起始时刻偏移量和持续传输时间中的至少一个。
  17. 根据权利要求12-16任一项权利要求所述的终端,其特征在于,所述终端还包括:
    监测单元,用于在所述起始时刻偏移量内,监测车与车V2V信道;
    所述处理单元,还用于当所述终端检测到第三同步信号,且所述第三同步信号对应的第三同步源的优先级高于所述第一同步信号对 应的第一同步源的优先级,所述终端取消发送所述第一同步信号,或者,所述终端取消发送所述第一同步信号的同时发送所述第三同步信号。
  18. 根据权利要求11-17任一项权利要求所述的终端,其特征在于,当所述终端预先配置至少两个传输周期时,
    所述发送单元,还用于将所述第一同步信号的传输周期承载在物理旁路广播信道PSBCH上传输。
  19. 根据权利要求11-18任一项权利要求所述的终端,其特征在于,所述终端在发送所述第一同步信号时,在物理旁路广播信道PSBCH上承载剩余传输次数,所述剩余传输次数用于表示终端在当前同步信号传输结束后继续传输同步信号的次数。
  20. 一种终端,其特征在于,包括:
    接收单元,用于接收第一同步信号;
    发送单元,用于根据预先设置的时间偏移量转发所述第一同步信号,所述时间偏移量用于表示终端接收到的同步信号与转发所述同步信号之间的时差;
    生成单元,用于生成第四同步信号,所述第四同步信号的序列与所述第一同步信号的序列不同,所述第四同步信号与所述第一同步信号对应相同的同步源的定时;
    所述发送单元,还用于转发所述第四同步信号。
  21. 一种终端,其特征在于,包括:
    处理器,用于获取发送第一同步信号的传输周期Transmission Period,所述传输周期用于指示终端发送的两个相邻同步信号之间的时间间隔,所述传输周期为可配置的周期;
    通信接口,用于根据所述传输周期发送所述第一同步信号。
  22. 根据权利要求21所述的终端,其特征在于,
    所述处理器,还用于获取发送第一同步信号的起始时刻偏移量Starting offset,所述起始时刻偏移量用于指示从终端启动发送同步信号的起始时刻的偏移时段;所述通信接口,还用于所述终端根据所述 传输周期和所述起始时刻偏移量发送所述第一同步信号;
    或者,所述处理器,还用于获取发送第一同步信号的持续传输时间Transmission Duration,所述持续传输时间用于指示终端发送同步信号的持续时长;所述通信接口,还用于根据所述传输周期和所述持续传输时间发送所述第一同步信号;
    或者,所述处理器,还用于获取发送第一同步信号的起始时刻偏移量和持续传输时间,所述通信接口,还用于根据所述传输周期、所述起始时刻偏移量和所述持续传输时间发送所述第一同步信号。
  23. 根据权利要求22所述的终端,其特征在于,
    所述处理器,还用于预先配置至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间;
    所述通信接口,还接收基站发送的系统消息,所述系统消息包括至少两个传输周期、至少两个起始时刻偏移量和至少两个持续传输时间。
  24. 根据权利要求23所述的终端,其特征在于,所述处理器具体用于:
    根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的起始时刻偏移量;或者,根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的起始时刻偏移量;
    根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的传输周期;或者,根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的传输周期;
    根据所述第一同步信号对应的第一同步源的优先级获取所述第一同步信号对应的第一同步源所对应的持续传输时间;或者,根据所述第一同步信号对应的第一同步源所处的位置和/或第一同步源的类型,获取所述第一同步信号对应的第一同步源所对应的持续传输时 间。
  25. 根据权利要求23所述的终端,其特征在于,所述处理器具体用于:
    从至少两个起始时刻偏移量中,随机选择一个起始时刻偏移量;
    从至少两个传输周期中,随机选择一个传输周期;
    从至少两个持续传输时间中,随机选择一个持续传输时间。
  26. 根据权利要求22所述的终端,其特征在于,
    所述通信接口,用于接收所述基站发送的指示消息,所述指示消息用于指示所述终端所使用的传输周期、起始时刻偏移量和持续传输时间中的至少一个。
  27. 根据权利要求22-26任一项权利要求所述的终端,其特征在于,
    所述处理器,还用于在所述起始时刻偏移量内,监测车与车V2V信道;
    所述处理器,还用于当所述终端检测到第三同步信号,且所述第三同步信号对应的第三同步源的优先级高于所述第一同步信号对应的第一同步源的优先级,所述终端取消发送所述第一同步信号,或者,所述终端取消发送所述第一同步信号的同时发送所述第三同步信号。
  28. 根据权利要求21-27任一项权利要求所述的终端,其特征在于,当所述终端预先配置至少两个传输周期时,
    所述通信接口,还用于将所述第一同步信号的传输周期承载在物理旁路广播信道PSBCH上传输。
  29. 根据权利要求21-28任一项权利要求所述的终端,其特征在于,所述终端在发送所述第一同步信号时,在物理旁路广播信道PSBCH上承载剩余传输次数,所述剩余传输次数用于表示终端在当前同步信号传输结束后继续传输同步信号的次数。
  30. 一种终端,其特征在于,包括:
    通信接口,用于接收第一同步信号;
    所述通信接口,还用于根据预先设置的时间偏移量转发所述第一 同步信号,所述时间偏移量用于表示终端接收到的同步信号与转发所述同步信号之间的时差;
    处理器,用于生成第四同步信号,所述第四同步信号的序列与所述第一同步信号的序列不同,所述第四同步信号与所述第一同步信号对应相同的同步源的定时;
    所述通信接口,还用于转发所述第四同步信号。
  31. 一种终端的同步方法,其特征在于,包括:
    当终端已配置第一同步信号对应的第一同步源的定时,接收到第二同步源发送的第二同步信号,所述第二同步信号为第二同步信号对应的所述第二同步源的定时的信号;
    所述终端获取所述第一同步源的定时与所述第二同步源的定时的定时偏差;
    所述终端根据所述定时偏差调整发送所述第一同步信号的时刻;
    所述终端根据调整后的时刻发送所述第一同步信号。
  32. 根据权利要求31所述的方法,其特征在于,包括:
    所述终端将所述定时偏差承载在物理旁路广播信道PSBCH上传输。
  33. 一种终端,其特征在于,包括:
    接收单元,用于当终端已配置第一同步信号对应的第一同步源的定时,接收到第二同步源发送的第二同步信号,所述第二同步信号为第二同步信号对应的所述第二同步源的定时的信号;
    获取单元,用于获取所述第一同步源的定时与所述第二同步源的定时的定时偏差;
    调整单元,用于根据所述获取单元获取到的所述定时偏差调整发送所述第一同步信号的时刻;
    发送单元,用于根据调整后的时刻发送所述第一同步信号。
  34. 一种终端,其特征在于,包括:
    通信接口,用于当终端已配置第一同步信号对应的第一同步源的定时,接收到第二同步源发送的第二同步信号,所述第二同步信号为 第二同步信号对应的所述第二同步源的定时的信号;
    处理器,用于获取所述第一同步源的定时与所述第二同步源的定时的定时偏差;
    所述处理器,还用于终端根据所述定时偏差调整发送所述第一同步信号的时刻
    所述通信接口,还用于根据调整后的时刻发送所述第一同步信号。
  35. 一种终端的同步方法,其特征在于,包括:
    终端将传输车与车V2V信号的V2V信道划分为至少两个以上的子信道;
    当所述终端扫描到空闲的子信道时,在所述空闲的子信道上发送同步信号和所述V2V信号;
    当所述终端未扫描到空闲的子信道时,在所有所述子信道中选择信号强度最小的子信道上发送所述V2V信号,所述V2V信号包括同步信号。
  36. 根据权利要求35所述的方法,其特征在于,所述发送所述V2V信号之前,所述方法还包括:
    所述终端退避预设时段。
  37. 一种终端,其特征在于,包括:
    处理单元,用于将传输车与车V2V信号的V2V信道划分为至少两个以上的子信道;
    发送单元,用于当所述终端扫描到空闲的子信道时,在所述空闲的子信道上发送同步信号和所述V2V信号;
    所述发送单元,还用于当所述终端未扫描到空闲的子信道时,在所有所述子信道中选择信号强度最小的子信道上发送所述V2V信号,所述V2V信号包括同步信号。
  38. 一种终端,其特征在于,包括:
    处理器,用于将传输车与车V2V信号的V2V信道划分为至少两个以上的子信道;
    通信接口,用于当所述终端扫描到空闲的子信道时,在所述空闲的子信道上发送同步信号和所述V2V信号;
    所述通信接口,还用于当所述终端未扫描到空闲的子信道时,在所有所述子信道中选择信号强度最小的子信道上发送所述V2V信号,所述V2V信号包括同步信号。
PCT/CN2016/082130 2016-05-13 2016-05-13 一种终端的同步方法及终端 WO2017193401A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202110196493.0A CN112911552B (zh) 2016-05-13 2016-05-13 一种终端的同步方法及终端
EP20203032.6A EP3836653B1 (en) 2016-05-13 2016-05-13 Terminal synchronization method, terminal and computer readable storage medium
EP16901356.2A EP3448097B1 (en) 2016-05-13 2016-05-13 Synchronization method for terminal, and terminal
PCT/CN2016/082130 WO2017193401A1 (zh) 2016-05-13 2016-05-13 一种终端的同步方法及终端
US16/301,340 US10959198B2 (en) 2016-05-13 2016-05-13 Terminal synchronization method and terminal
CN201680084680.7A CN109076469B (zh) 2016-05-13 2016-05-13 一种终端的同步方法及终端
US17/000,902 US11452055B2 (en) 2016-05-13 2020-08-24 Terminal synchronization method and terminal
US17/882,847 US11844036B2 (en) 2016-05-13 2022-08-08 Terminal synchronization method and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082130 WO2017193401A1 (zh) 2016-05-13 2016-05-13 一种终端的同步方法及终端

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/301,340 A-371-Of-International US10959198B2 (en) 2016-05-13 2016-05-13 Terminal synchronization method and terminal
US17/000,902 Continuation US11452055B2 (en) 2016-05-13 2020-08-24 Terminal synchronization method and terminal

Publications (1)

Publication Number Publication Date
WO2017193401A1 true WO2017193401A1 (zh) 2017-11-16

Family

ID=60266939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082130 WO2017193401A1 (zh) 2016-05-13 2016-05-13 一种终端的同步方法及终端

Country Status (4)

Country Link
US (3) US10959198B2 (zh)
EP (2) EP3448097B1 (zh)
CN (2) CN112911552B (zh)
WO (1) WO2017193401A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143854A1 (en) * 2017-02-03 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device and a method therein for performing sidelink communication
CN110248404A (zh) * 2018-03-09 2019-09-17 维沃移动通信有限公司 信息同步的方法、装置和终端设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686521B (zh) * 2015-11-05 2021-05-18 索尼公司 用于车辆间通信的方法和设备
EP3512267B1 (en) * 2016-10-13 2021-03-24 LG Electronics Inc. Sidelink synchronization signal transmission method performed by terminal in wireless communication system and terminal using same
MX2019008035A (es) * 2017-01-05 2019-10-07 Fg innovation co ltd Metodo y aparato para determinar la direccion de haz.
US11212764B2 (en) * 2018-09-28 2021-12-28 Qualcomm Incorporated Timing accuracy control for vehicle-to-everything (V2X) sidelink transmission
EP3716701A1 (en) * 2019-03-29 2020-09-30 Mitsubishi Electric R&D Centre Europe B.V. Signaling method for d2d synchronization
CN109901109B (zh) * 2019-04-17 2021-07-23 北京邮电大学 一种基于空口时延测量实现授时的方法、终端及系统
US11696241B2 (en) * 2019-07-30 2023-07-04 Qualcomm Incorporated Techniques for synchronizing based on sidelink synchronization signal prioritization
CN114303398A (zh) 2019-08-15 2022-04-08 Lg电子株式会社 在nr v2x中发送s-ssb的方法和设备
CN113302991B (zh) * 2019-12-24 2022-07-29 华为技术有限公司 用于信号同步的方法、装置和系统
WO2021137304A1 (ko) * 2019-12-30 2021-07-08 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 수신 타이밍을 변경하는 방법 및 이를 위한 장치
US11863488B2 (en) * 2020-04-27 2024-01-02 Qualcomm Incorporated Single reference signal timing information for measurements of multiple reference signals of multiple cells
CN115039460A (zh) * 2020-05-07 2022-09-09 中兴通讯股份有限公司 用于上行链路补偿间隔的系统和方法
KR20230039599A (ko) * 2020-07-20 2023-03-21 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582077A (zh) * 2012-08-07 2014-02-12 华为技术有限公司 小区间d2d通信的方法、用户设备和基站
CN104219758A (zh) * 2014-08-08 2014-12-17 中兴通讯股份有限公司 D2d的通信方法及装置
CN104811925A (zh) * 2014-01-29 2015-07-29 索尼公司 设备到设备发现和/或设备到设备通信的同步方法、用户设备和同步控制单元
WO2015111851A1 (en) * 2014-01-24 2015-07-30 Samsung Electronics Co., Ltd. Method for implementing synchronization between d2d devices and a d2d device
CN105517139A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种设备到设备通信的同步方法和用户设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440031A (zh) * 2011-05-23 2012-05-02 华为技术有限公司 时钟同步的方法及装置
US9125236B2 (en) 2013-06-07 2015-09-01 Apple Inc. Method and apparatus for cooperative channel switching
WO2014205663A1 (zh) * 2013-06-26 2014-12-31 华为技术有限公司 一种定时同步方法、装置、用户设备和通信系统
US10666315B2 (en) 2013-08-22 2020-05-26 Fujitsu Limited Synchronization for terminal-to-terminal communication
JP6511048B2 (ja) * 2013-10-28 2019-05-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて装置対装置端末の信号送受信方法及び装置
JP2017501648A (ja) * 2013-10-31 2017-01-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド デバイス間同期のためのシステムおよび方法
WO2015111908A1 (ko) * 2014-01-26 2015-07-30 엘지전자(주) 단말 간 통신을 지원하는 무선 통신 시스템에서 동기 신호 및 동기 채널 전송 방법 및 이를 위한 장치
US20150264588A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Methods and apparatus for synchronization in device-to-device communication networks
KR102216830B1 (ko) * 2014-05-09 2021-02-18 선 페이턴트 트러스트 장치-대-장치 동기화 소스 선택
KR102245408B1 (ko) * 2014-05-10 2021-04-29 삼성전자주식회사 디바이스 대 디바이스 통신 시스템에서 동기화 방법 및 장치
KR101895946B1 (ko) 2014-06-16 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
US9615340B2 (en) 2014-07-21 2017-04-04 Qualcomm Incorporated Monitoring periods for device-to-device synchronization signals
US20160029334A1 (en) 2014-07-25 2016-01-28 Electronics And Telecommunications Research Institute Method and apparatus for synchronizing networks among heterogeneous wireless operators
KR101550552B1 (ko) 2014-09-19 2015-09-07 성균관대학교산학협력단 시간 동기화 주기를 조절할 수 있는 시간 동기화 슬레이브 장치 및 시간 동기화 주기 결정 방법
WO2016049270A2 (en) 2014-09-25 2016-03-31 Intel Corporation User equipment and synchronization methods for device to device (d2d) communication
JPWO2017026543A1 (ja) * 2015-08-13 2018-05-31 株式会社Nttドコモ ユーザ装置、及びd2d信号送信方法
US10693699B2 (en) * 2015-11-05 2020-06-23 Lg Electronics Inc. Method and terminal for transmitting synchronization signal in V2X communication
CN107371233B (zh) * 2016-05-12 2020-10-09 财团法人工业技术研究院 同步信号收发方法及无线通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582077A (zh) * 2012-08-07 2014-02-12 华为技术有限公司 小区间d2d通信的方法、用户设备和基站
WO2015111851A1 (en) * 2014-01-24 2015-07-30 Samsung Electronics Co., Ltd. Method for implementing synchronization between d2d devices and a d2d device
CN104811925A (zh) * 2014-01-29 2015-07-29 索尼公司 设备到设备发现和/或设备到设备通信的同步方法、用户设备和同步控制单元
CN104219758A (zh) * 2014-08-08 2014-12-17 中兴通讯股份有限公司 D2d的通信方法及装置
CN105517139A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种设备到设备通信的同步方法和用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "D2D Synchronization Procedure for Out-of-Coverage", 3GPPTSG RAN WG1 MEETING #78 RI-142845, 22 August 2014 (2014-08-22), XP050788330 *
See also references of EP3448097A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143854A1 (en) * 2017-02-03 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device and a method therein for performing sidelink communication
CN110248404A (zh) * 2018-03-09 2019-09-17 维沃移动通信有限公司 信息同步的方法、装置和终端设备

Also Published As

Publication number Publication date
EP3448097A4 (en) 2019-08-07
US11844036B2 (en) 2023-12-12
US10959198B2 (en) 2021-03-23
EP3448097B1 (en) 2020-12-23
EP3836653B1 (en) 2023-11-22
CN109076469A (zh) 2018-12-21
CN109076469B (zh) 2021-02-23
CN112911552B (zh) 2022-08-26
EP3448097A1 (en) 2019-02-27
US11452055B2 (en) 2022-09-20
US20190200309A1 (en) 2019-06-27
EP3836653A1 (en) 2021-06-16
CN112911552A (zh) 2021-06-04
US20210051615A1 (en) 2021-02-18
US20220386254A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2017193401A1 (zh) 一种终端的同步方法及终端
US10299233B2 (en) User equipment, a network node and methods therein for performing and enabling device-to-device (D2D) communication in a radio communications network
JP6616515B2 (ja) サイドリンク通信を含むセルラハンドオーバのための方法および装置
JP6388966B2 (ja) 免許不要無線周波数スペクトルを介するワイヤレス通信
JP6377756B2 (ja) 無認可無線周波数スペクトル帯域における非同期送信を可能にするための技法
TWI726996B (zh) 無線通訊媒體上的上行鏈路程序
TWI697245B (zh) 用於使用衝突避免訊號傳遞以與未授權網路共存的技術
AU2017305148A1 (en) Dynamic resource allocation in a wireless network with wireless backhaul
US11576136B2 (en) Enabling interference mitigation for over-the-air synchronization
CN113630899B (zh) 在通信网络中控制传送的方法和装置
JP2023506128A (ja) 複数のアクティブグラント設定におけるタイマーハンドリング
WO2021016967A1 (zh) 随机接入方法、接收方法、装置、设备及介质
TW202218465A (zh) 用於小資料傳送(sdt)的傳輸塊大小(tbs)配置
US20180332621A1 (en) Random access resources in a telecommunication network
EP4124140A1 (en) User equipment and base station involved in transmission of small data

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016901356

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016901356

Country of ref document: EP

Effective date: 20181123

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901356

Country of ref document: EP

Kind code of ref document: A1